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A recurrent neural network model storing multiple spatial maps, or *‘charts,”” is analyzed. A network of this
type has been suggested as a model for the origin of place cells in the hippocampus of rodents. The extremely
diluted and fully connected limits are studied, and the storage capacity and the information capacity are found.
The important parameters determining the performance of the network are the sparsity of the spatial represen-
tations and the degree of connectivity, as found already for the storage of individual memory patterns in the
general theory of autoassociative networks. Such results suggest a quantitative parallel between theories of
hippocampal function in different animal species, such as primates (episodic memory) and rodents (memory

for space). [S1063-651X(98)09112-0]
PACS number(s): 87.10.+e, 05.90.+m

I. INTRODUCTION

Knowledge of space is one of the main objects of compu-
tation by the brain. It includes the organization of informa-
tion of many kinds and many origins (memory, the different
sensory channels, and so on) into mental constructs, i.e.,
maps, which retain a geometrical nature and correspond to
our perception of the outside world.

Every animal species appears to have specialized systems
for spatial knowledge in some region of the brain, more or
less well developed and capable of performing sophisticated
computations. For rodents there is a large amount of experi-
mental evidence that the hippocampus, a brain region func-
tionally situated at the end of all the sensory streams, is
involved in spatial processing. Many hippocampal cells ex-
hibit place related firing, that is, they fire when the animal is
in a given restricted region of the environment (the *‘place
field’”), so that they contain a representation of the position
of the animal in space.

The hippocampus, one of the most widely studied brain
structures, shares the same gross anatomical features across
mammalian species; nevertheless, it is known to have differ-
ent functional correlates, for example, in primates and hu-
mans (where it is believed to be involved in episodic
memory, roughly, memory of events) and in rodents, in
which it is mainly associated with spatial representation.

One relevant feature of the hippocampus which is main-
tained across species is a region, named CAS3, characterized
by massive intrinsic recurrent connections. It was appealing
for many theorists to model this region as an autoassociative
memory storing information in its intrinsic synaptic structure,
information which can be retrieved from small cues by
means of an attractor dynamics, and which is represented in
the form of activity configurations.

Within the episodic memory framework, each attractor
configuration of activity is the internal representation of
some memory item. The CA3 autoassociative network can
be seen as the heart of the hippocampal system, containing
the very complex, intermodal representations peculiar to epi-
sodic memory. Autoassociative, or attractor neural networks
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have been extensively studied with the tools of statistical
physics [1]. Efficiency measures, like the number of storable
memory items or the quality of retrieval, can be computed
for any appropriately defined formal model. An intensive
effort was performed to embed in these idealized models
more and more elements of biological realism, trying to cap-
ture the relevant anatomical and functional features affecting
the performance of the network. It was then found that a
theory of the hippocampus (or, more precisely, CA3) as an
autoassociative network has as its fundamental parameters
the degree of intrinsic connectivity, i.e., the average number
of units which send connections to a given unit, and the
sparsity of the representations, roughly the fraction of units
which are active in one representation. These parameters
have biological correlates that are measurable with anatomi-
cal and neurophysiological techniques.

Spatial processing, as it is performed by the rodent hip-
pocampus, also involves memory of some kind; recent ex-
perimental evidence supports the idea that spatially related
firing is not driven exclusively by sensory inputs but also
reflects some internal representation of the explored environ-
ment. First, place fields are present and stable also in the
dark, and in conditions of deprived sensory experience. Sec-
ond, completely different arrangements of place fields are
found in different environments or even in the same environ-
ment in different behavioral conditions.

These findings have led to the hypothesis that CA3 (like,
perhaps, other brain regions with dense connectivity) stores
“‘charts,”” representations of environments in the form of ab-
stract manifolds, on which each neuron corresponds to a
point, that is the center of its place field. Place fields arise as
a result of an attractor dynamics, whose stable states are
““activity peaks’” centered, in the chart space, at the animal’s
position. It is important to note that the localization of each
neuron on a chart does not appear to be related to its physical
location in the neural tissue.

The positions of place fields are encoded by the recurrent
connections, and it is possible to store many different charts
in the same synaptic structure, just as many different patterns
are stored in a Hopfield net, for example, and different ac-
tivity peaks can be successively evoked by appropriate in-
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puts, just as it happens with autoassociative memories.

It is interesting to address the issue of whether an episodic
memory network and the “‘spatial multichart’” memory net-
work share the same functional constraints, so that a biologi-
cal brain module capable of performing one of the tasks is
also adequate for the other. Here we present a statistical me-
chanics analysis of the multichart network, focusing on the
parallel with autoassociative memory in the usual (episodic
memory) sense. It is found that the performances of these
two networks are governed by very similar laws, if the par-
allel between them is drawn in the appropriate way.

In Sec. Il the case of a single attractor chart stored is
studied, then in Sec. Il the case of multiple stored charts is
analyzed and the storage capacity is found, first for a simpli-
fied model and then for a more complex model which makes
it possible to address the issue of sparsity of representations.
In Sec. 1V the storable information in a multichart network is
calculated, making more precise the sense in which such a
network is a store of information, and completing the parallel
with autoassociative memories.

Il. THE SINGLE MAP NETWORK

As a first step, we consider the case of a single attractor
map encoded in the synaptic structure, as was proposed in
[2]. We focus here on the shape and properties of the attrac-
tor states, as a useful comparison for the following treatment
of the multiple charts case.

The neurons are modeled as threshold linear units, with
firing rate:

Vi=g[h;—6]"=g(hj—6)@(h;—0), 1)

i.e., equal to zero if the content of the square brackets is
negative. h represents the synaptic input current, coming
from other cells in the same module, @ is a firing threshold,
which may incorporate the effect of a subtractive inhibitory
input, common to all the cells, as it will be illustrated later
on. The connectivity within the module is shaped by the
selectivity of the units. If r; is the position of the center of
the place field of the ith cell in a manifold M of size [M|,
corresponding to the environment, the connection between
cells i and j may be expressed as

J _|M|K
TN (Iri—r;D), )

where K is a monotone decreasing function of its argument.
The synaptic input to the ith cell is therefore given by

M
hi:; Jijvj:; |,\l_|K(||’i—fj|)Vj- @)

If the number N of cells is large, and the place fields
centers (pfc) are homogeneously distributed over the envi-
ronment M (be it one or two dimensional), we can replace
the sum over the index j with an integration over the coor-
dinates of the pfc’s:

h(r)=fMdr’K(|r—r’|)V(r’). (4)
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Note that the normalization in Eq. (2) is chosen so as to
keep the synaptic input to a given unit fixed when |M| varies
and the number of units is kept fixed, that is, the density of
pfc’s N/|M| varies (the |[M| factor will then compensate for
the fewer input units within the range of substantial K
strength). A fixed-point activity configuration must have the
form

V(r):g[f dr'K(|r=r')V(r)'— o (5)
M
We could write Eg. (5) as

V(r)= g“ndr,K(“_r,')V(r,)_e} ref (6)

0, rell,

where Q is a domain for which there exists a solution of Eq.
(2) that is zero on the boundary.

If only solutions for which Q is a convex domain are
considered, the fact that V(r) is zero on d€) will ensure that
units with pfc’s outside Q are under threshold, therefore
their activity is zero and solutions of Eq. (6) are guaranteed
to be solutions of Eq. (5). The size and the shape of the
domain Q in which activity is different from zero is deter-
mined by Eqg. (2). As a first remark, we notice that it is
independent of the value of the threshold 4. In fact, if V4 is
a solution of Eq. (6) with threshold @, given the linearity of
Eqg. (6) within Q,

!’

Vg,I?Vg

will be a solution of the same equation with 6’ instead of #,
with the same null boundary conditions on €. Rescaling the
threshold will then have the effect of rescaling the activity
configuration by the same coefficient. This means that sub-
tractive inhibition cannot shape, e.g., shrink or enlarge, this
stable configuration, and therefore it is not relevant for a
good part of the subsequent analysis. Some form of inhibi-
tion is nevertheless necessary to prevent the activity from
exploding. Moreover, there are fluctuation modes which can-
not be controlled by overall inhibition as they leave the total
average activity constant. They will be treated in Sec. Il C.
It is found that, at least in the one-dimensional (1D) case,
these modes do not affect stability in the single chart case.

In the absence of an external input, any solution can be at
most marginally stable, because a translation of the solution
is again a solution of Eq. (6). An external, ‘‘symmetry break-
ing’” input, taken as small when compared to the contribu-
tion of recurrent synapses, is therefore implicit in the follow-
ing analysis.

A. The one-dimensional case

The case of a recurrent network whose attractors reflect
the geometry of a one-dimensional manifold, besides being a
conceptual first step in approaching the two-dimensional
case, is relevant by itself, for example, in modeling other
brain systems showing direction selectivity, e.g., in head di-
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rection cells [3,4], and also for place fields on one-
dimensional environments [5].
In this case Eq. (6) reads

R
V(r)=g< fﬁRK(Ir—r’I)V(r’)—H :

V(R)=V(—R)=0. )

For several specific forms of the kernel K it is possible to
solve explicitly Eq. (7), yielding interesting conclusions. For
example, if

K(r=r'ph=eIrl, ®
(see, also, [2]) differentiating Eq. (7) twice yields

V'(r)=—~»*V(r)+gé, ©)
where y=2g—1.

Solutions vanishing at —R and R (and not vanishing in
1—R,R[), have the form

V(r)=A cos(yr)+

go
29-1 (10)
with

go

AT g DeosOR)

(11)

The value of R for which Eqg. (10) is a solution of Eq. (7)
is determined by the integral equation itself: for example, by
evaluating V'(R) or V'(—R) from Eq. (7) we get

V'(=R)=—V'(R)=g86. (12)
Substituting Egs. (10) and (11) in Eq. (12) we have
tan(yR)=—y,
so that

tan"Y(—y)+nw
” .

R:

Requiring R to be positive and V(x) to be positive for
—R<r<R, leads us to choose

_ -1
po @ T (mEm (13)
Y

Note that A>0. R is then a monotone decreasing function of
v, and therefore of the gain g.

This is also true for other forms of the connection kernel
K. As an example, consider the kernel

K(r—r'")=cos(r—r"). (14)

By a similar treatment it is shown that a solution is obtained
with

R—E (15)
=4
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The kernel
K(r=r)=0(1-|r—r'[)(1—|r—r'|) (16)

will result in a peak of activity of semiwidth

R= (17)

a

V29

Equations of this type (5) have more solutions in addition
to the ones considered above, representing a single activity
peak. For example, if we consider an infinite environment,
periodic solutions will be present as well, representing a row
of activity peaks separated by regions of zero activity. These
solutions can be verified to be unstable if we model the in-
hibition as an homogeneous term acting on all cells in the
same way and depending on the average activity. Intuitively,
if we perturb the solution by infinitesimally displacing one of
the peaks, it will tend to collapse with the neighbor that has
come closer.

B. The two-dimensional case

To model the place cells network in the hippocampus, we
need to extend this result to a two-dimensional environment.
The equation for the neural activity will be

V(r)=g fMdr’K(|r—r’|)V(r’)—0 . (18)

The generalization to 2D is straightforward if for the ker-
nel K(|r—r’|) we consider the one with Fourier transform

. 2

K(p):1+—p2' (19)

[the two-dimensional analog of the kernel of Eq. (8)] that is,
a kernel resembling the propagator of a Klein-Gordon field
in Euclidean space. The fact that this kernel is divergent for
(r—r")—0 does not give rise to particular problems, since,
in the continuum limit of Eq. (4), the contribution to the field
h coming from the nearby points will stay finite, and in fact
two units will be assigned pfc’s so close to each other as to
yield an overwhelmingly high connection only with a small
probability. Let us look for a solution with circular symmetry
such that activity V(r) is zero outside the circle of radius R,
C(R). If we apply the Laplacian operator on both sides of

V(r)=gJC(R)dr’K(r—r’)V(r’)—6, (20)

we obtain
V2V(r')=—+?V(r')+g#@ (21)

(again, y*=2g—1), which in polar coordinates reads
1
V”(r)+FV’(r):—yZV(r)Jrga. (22)

The solution is



PRE 58

V(r)y=AJg(yr)+ — (23)

29—1°

Jo is the Bessel function of order 0. For the solution to
vanish on the boundary of C(R) one must take

L
(2g-1)36(7R)’

The other condition that determines R may be found by
substituting Eqg. (23) in Eq. (20). Here again, R(g) is a
monotone decreasing function. As in the one-dimensional
case, solutions with a nonconnected (or even nonconvex)
support can be seen not to be stable.

A=

I11. STORING MORE THAN ONE MAP

Let us imagine now that the pfc’s for each cell are drawn
with uniform distribution on the environment manifold M,
and connections are formed according to Eq. (2). Several
“‘space representations’” may be created by drawing again at
random the pfc of each cell from the same distribution. The
connection between each pair of cells will then be the sum of
a number of terms of the form (2), one for every “‘space
representation,”” or “*‘map,”’ or ‘‘chart.”” With p=aN maps,
and the pfc of the ith cell in the wth map indicated by r{*):

W= 2N

K([ri# =r{#)). (24)

The question that immediately arises is: what is the ca-
pacity of this network, that is, how many maps can we store,
so that stable activity configurations, corresponding to some
region in the environment described by one map, like the
ones described by the solutions of Eq. (6), are present? The
problem resembles the classic attractor neural network prob-
lem [1], with threshold linear units. A standard treatment has
been developed [6] allowing us to calculate the capacity of a
network of threshold linear units with patterns drawn from a
given distribution and stored by means of a hebbian rule. The
treatment is very simplified in the extreme dilution limit
[7,8]. In the next sections it will be shown how this treatment
can be extended to the map case, first for one particular form
of the kernel K, leading to the solution of the capacity prob-
lem for a fully connected network; in the following, the so-
lution is extended to more general kernels, first in the diluted
limit, then for the fully connected network.

Another related question is: how much information is the
synaptic recurrent structure encoding, and in which sense is
the synaptic structure a store of information? The aim is to
develop a full parallel between the multichart network and
autoassociative networks, and if possible to characterize the
parameters constraining the performance of this system.

A. Thefully connected network: ‘Dot product’’ kernel

Let us consider a manifold M with periodic boundary con-
ditions, that is, a circle in one dimension and a torus in two
dimensions. The pfc of a cell r; can then be described by a
two-dimensional unit vector a; for the one-dimensional case
and by a pair of unit vectors ; L2 for the two-dimensional
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case. Suppose now that the contribution from the wth map to
the connection between cell i and cell j is given by

K(|ri# —r{#])= 2 (g™ g +1), (25)

so that

10 3
IJ_NE E |(/-t) |(M)+l) (26)

where d is the dimensionality.

p=aN is the number of stored charts. Equation (25) de-
scribes an excitatory, very widespread form for the kernel (2)
(the contribution to the connectivity is zero only if the rpc’s
of the two cells are at the farthest points apart, i.e., at 180°).
This spread of connectivity would lead to configurations of
activity that are large in the rpc space, which translated in
autoassociative memory language would be very “‘un-
sparse,’” i.e., very distributed representations. It is therefore
plausible that this will severely limit the capacity of the net.
In any case, the form of Eq. (25), factorizable in one term
depending on #; and one term depending on #;, after incor-
porating the constant part in a function b%(x), makes it pos-
sible to perform the free-energy calculation through Gauss-
ian transformations as in [6]. A similar model has been
studied in [9] with McCulloch-Pitts neurons.

A Hamiltonian useful to describe the thermodynamics of
such a system is

V:
Jijvivj—NB<2 WI)

I\)IH

iL,j(#1i)

Z 2 S'(M).n:(,u-)vi’ (27)
R

—M

where B(x) = [*b(y)dy, and b(x) is a function describing a
uniform inhibition term depending on the average activity in
the net. $(*) is a symmetry breaking field, pointing in a
direction in the uth map space. The mean-field free energy
in the replica-symmetric approximation can be calculated
(the partition function is calculated as the trace over a mea-
sure that implements the threshold-linear transfer function,
see [6]). The presence of a phase with spatially specific ac-
tivity correlated with one map will be signaled by solutions
of the mean-field equations with a nonzero value for the
order parameter

1 N
Xl(,u)—_dE I(M)Vi: (28)

which plays the role of the overlap in an autoassociative
memory. This parameter has the meaning of a population
vector [10], that is, the animal position is indicated by an
average over pfc’s of the cells weighted by cells activity.

The set of resulting mean-field equations can be reduced
to a set of two equations, Egs. (A7) and (A8), in two vari-
ables, the “‘nonspecific’” signal-to-noise ratio, w, and the
*‘specific,”” space-related signal-to-noise ratio v. The details
of the calculation are reported in Appendix A.
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The critical value «, indicating the storage capacity of the
network is the maximum value for which Eq. (A7) still ad-
mits solutions corresponding to space-related activity (non-
zero v) and may be found numerically. At this value a the
system undergoes a first-order phase transition towards a
state in which no space-related activity is possible. Equation
(A8) gives the range of gain values for which there exist
solutions at a given a<a, [6].

In this model there is no possibility of modulating the
spread of connections in the chart space. As we anticipated,
the activity configurations that one obtains are very wide,
with a large fraction of units active at the same time. Cells
will have very large place fields, covering a large part of the
environment (of the order of roughly one half for the one-
dimensional case, and roughly one quarter for the two-
dimensional case). As one would infer from the analysis of
autoassociative memories storing patterns, for example bi-
nary, these “‘unsparse’” representations of space will lead to
a very small capacity of the net.

For the model defined on the one-dimensional circle the
capacity found is a.~0.03. At this value the system under-
goes a first-order transition. As « increases beyond «., X
jumps discontinuously from a finite value to zero.

The capacity for the diluted analog of this model (see [8],
Appendix A and Sec. Il B) is given by the equation

E (w,V)=[(1+ 8)A,]>— aA;=0. (29)

Remember that in this case p=acN where c is the connec-
tivity fraction parameter; see Sec. Il B. In this case «.
~0.25. At o, the transition is second order, with the “‘spatial
overlap’ x approaching continuously zero, verified at least
with the precision at which it was possible to solve numeri-
cally Eqg. (29). For the 2D case, storage capacities are a;
~0.0008 for the fully connected network and «~0.44 for
the diluted network.

To get a larger capacity, and to provide a possible com-
parison with the experimental data from the hippocampus, in
which the tuning of place fields is generally narrow, we must
extend our treatment to more general kernels, and this will be
done in the following two sections.

B. Generic kernel: Extremely diluted limit

Consider a network in which every threshold-linear unit,
whose activity is denoted by V;, senses a field

1

where J;; is given by Eq. (24). From now on the kernel K is
defined as

K(r—r")=K(r—r")—K,

K={(R(r=r"))) (31)

for any r, where {(()) means averaging over r. With this

notation, whatever the original kernel K, K is the subtracted
kernel which averages to zero. The manifold M is taken with
periodic boundary condition (that is a circle in one dimen-
sion and a torus in the two-dimensional case).
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Cij is a ““dilution matrix’’

1 with prob c,

Cij 0 with prob 1-—c, (32)
and Nc/In N—0 as N—o. In the thermodynamic limit
N—oo the activity of any two neurons V; and V; will be
uncorrelated [7]. A number of charts p=acN is stored.
Looking for solutions with one “‘condensed’” map, that is,
solutions in which activity is confined to units having pfc for
a given chart in a certain neighborhood, it is possible to write
the field h; as the sum of two contributions, a *‘signal,”” due
to the condensed map and a “‘noise’” term, pz (z being a
random variable with Gaussian distribution and variance
one) due to all the other, uncondensed, maps. In the con-
tinuum limit, labeling units with the position r! of their pfc
in the condensed map,

h(r1)=gJMdr1'K(r1—rl/)V(r1')+pz; (33)

the noise will have a variance

p?=ay|MP((K*(r—r"))), (34)
where
1 N
y=52 (VO (35)
i=1

The fixed-point equation for the average activity profile
xX(r) is

n
xl(r)=gf Dz(h(r)—6), (36)

where again Dz is the Gaussian measure, and
h(r)=f dr'K(r=r")xX(r")+b(x)—pz (37)

and
[ o (38)
X= | 7=7 x(r
M|

is the average overall activity. The average squared activity
(entering the noise term) will read

dr [+
y=g~’-fmf Dz(h(r)—6)>. (39)

The fixed-point equations may be solved introducing the
rescaled variables

w= , (40)

v(r)= : (41)
p
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FIG. 1. The storage capacity plotted as a function of the ““map
sparsity’” a,,, for the 1D model, for the extremely diluted (upper
curve) and the fully connected (lower curve) limits.

The fixed-point equation for v (r) is

v(r)=g/\/(fdr’K(r—r’)v(r’)+w , (42)

where
N(X)=xD(X)+ o (X), (43)

[@(x) and o(x) are defined in Eq. (A15) and Eq. (A16)] is
a “‘‘smeared threshold linear function,”” monotonically in-
creasing, with

lim Mx)=0

X— — 0
and

lim Mx)/x=1.

X— + 00

In terms of w and v(r), y reads

max

102k /’é\

107 107 107
1/IMI

FIG. 2. Same as Fig. 1, for the 2D model. The capacity is
smaller than for the 1D model for the same a, .
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FIG. 3. The “‘activity peak’ profile corresponding to the solu-
tion of Eq. (42) at the maximal storage level at [M|=30 and |M]|
=15. The second case is plotted expanded to match the environ-
ment size of the first one and to show the effect of more widespread
connections.

d
y:ngzfﬁ/\/l(fdr’K(r—r’)v(r’)+W . (49)

where
M(X)=(1+x>)P(x)+x0o(X). (45)

By substituting Eq. (44) in Eq. (34), we obtain

%=92|M|<<K)>fdrM(fdr’K(r—r’)u(r’)er .
(46)

If we can solve Eg. 42 and find v(r) as a function of w
and g, a solution is found corresponding to a value of «
given by Eq. (46). To find the critical value of «, we have to
maximize « over w and g. The mathematical solution of Eq.
(42) is treated in Appendix B.

With this model, we can modulate the spread of connec-
tions by acting on K(r—r") or alternatively, by varying the
size of the environment. The results are depicted in Fig. 1 for
the 1D circular environment and in Fig. 2 for the 2D toroidal
environment (upper curves). Examples of the solutions of
Eq. 42 are displayed in Fig. 3 for the 1D environment and in
Fig. 4 for the 2D environment.

We note that, as the environment gets larger in compari-
son to the spread of connections (therefore, to the size of the
activity peak), the capacity decreases approximately as

a.~—1UlIn(ay), (47)
where a,, is the map sparsity and it is equal to

Kg

=M (48)

am

where kg is a factor roughly equal to ~4.5 for the 1D model
and ~3.6 for the 2D model.
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i
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FIG. 4. The maximal storage activity peak profile in 2D at
[M|=400.

That is, the sparser the coding, the less the capacity. This
is, at first glance, in contrast with what is known from the
theory of autoassociative networks, in which sparser repre-
sentations usually lead to larger storage capacities.

For comparison, keeping the formalism of [6], for
threshold-linear networks with hebbian learning rule, encod-
ing memory patterns {r;};—, with sparsity a defined as

Loy
)

(for binary patterns this is equal to the fraction of active
units), and for small a, the capacity is given by

1

- apIn(l/a,)” (“49)

p

The apparent paradox (larger capacity with sparser pat-
terns, smaller with sparser charts) is solved as one recognizes
that each chart can be seen as a collection of configurations
of activity relative to different points in space covering, as in
a tiling, the whole environment. Each configuration is
roughly equivalent to a pattern in the usual sense. Intuitively,
and in a sense that will be made clearer below, a chart is
equivalent, in terms of ‘‘use of synaptic resources,”” to a
number proportional to a;l of patterns of sparsity a, .

The proportionality coefficient or, equivalently, the dis-
tance at which different configurations are to be considered
to establish a correct analogy, will be dealt with in Appendix
D. These considerations and the comparison of Egs. (47) and
(49) make clear that « is the exact analog of the pattern
autoassociators’ a,, .

C. Inhibition independent stability

The dynamical stability of the solutions of Eq. (42) is in
general determined by the precise functional form chosen for
the inhibition, which we assumed to be a function of the
average overall activity in the net. Nevertheless, there are
fluctuation modes that leave the average activity unaltered.
Stability against these modes is therefore unaffected by the
inhibition and may be checked already for a general model.
Let us consider a “*synchronous’ dynamics, that is, all the
neurons are updated simultaneously at each time step. The
evolution operator for the variables V(r,t) and p(t) is
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V(r,t+1)=gp(t)
dr’ ,V(r’,t) b(x(t))
N fMWK“_” ORMO) )
(50)

P+ 1) =galMIp0((k2) [ ar
M

XM

dr’ , V('Y b(x(t))
fMWK“_” ORI )

(51)

This evolution operator has as its fixed points Vq(r)
=povo(r) and p, where vy(r) and p, are the solutions of
Egs. (42), (34), and (44), i.e., the stable states of our system.

We can linearize the evolution operator around
[Vo(r),po] and look for fluctuation modes (eigenvectors)
[8V(r),8p] with

f dr 8V (r)=0. (52)
M

We obtain the following equations:

A&V (r)=gd(ug(r))

X fdr'K(r—r’)ﬁv(r’) +90(ug(r))dp,
M
(53)
1
no=[ 1- 3 galMI((k®) [ ar uo<r>vo<r>)
1
X 8p+ Ega|M|<<K2)>fMdr Ug(r)sv(r), (54)
where

Inserting Eq. (53) in Eq. (52):

Jdr’(l)(uo(r))[f dr K(r—r’)é‘V(r’)}
_ M M

op
fMdr a(ug(r))
(55)

Equation (55) can be inserted again in Eq. (53), obtaining
a closed integral equation in 6V. Unfortunately, this equation
is very difficult to solve, but we can derive a stability condi-
tion by making an ansatz in the form of the eigenfunction
6V(r). More precisely, let us concentrate on the 1D case.
We look for solutions with even symmetry (we know there
must be an eigenfunction with odd symmetry, and an eigen-
value equal to 1, corresponding to a coherent displacement
of the activity peak). This kind of solution corresponds to
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spreading and shrinking of the activity peak. Let us assume
that the even eigenfunction with the highest eigenvalue (the
most unstable) has only two nodes [an even eigenfunction
must have at least two nodes because of Eq. (52)], at ry and
—ry. Let us take the sign of the eigenfunction 8V(r) such
that 8V (0)>0. From Egs. (52) and (55) we see that

6p<0.

Now, from Eq. (54)

1
= 1= gaatmic [ or wtregtn |
M
1 oV(r)
+sgalmik?) [ arun T ee)
and we recognize that
oV(r)
fMdr uo(r) 3p <O0.
Thus,
r
)\<1—§ (57)
with
P=galMi(k) [ dr uonwon).  @8)

Thus, if the ansatz we formulated holds, we have a stabil-
ity condition I"'>0, which is found to be fulfilled for all the
solutions we found relative to maximal storage capacity.
This implies that the storage capacity result is not affected by
instability of the solutions, provided of course that an appro-
priate form for inhibition is chosen. This stability result is
also related to the correlation in the static noise for two so-
lutions centered at different pfc’s, as we will show in Appen-
dix D.

It can also be shown that by taking the a—0 limit (i.e.,
the single chart case), one always has I'>0 since it is
vo(r)=0 when uy(r)<0.

D. The fully connected model

The treatment of the model with the fully connected net-
work and a kernel K for connection weights satisfying the
condition (31) will use the replica trick to average over the
disorder (the realizations of the r’s) and will eventually lead
to a nonlinear integral equation for the average activity pro-
file in the space of the ‘“‘condensed map’’ very similar to Eq.
(42). Let the Hamiltonian of the system be

1 Vi
H==3 X JViVi-NB| X -2 X $@.riv;,
2ijZ TN T
(59)

where now the J; are given by Eq. (24) with a generic kernel

]

K(r—r")=K(r—r")—K, (60)
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where, again,

K=((R(r—r")).

The free-energy calculation is sketched in Appendix C.
Again, the stable states of the system are governed by mean-
field equations. The mean-field equation (C16) is an integral
equation in the functional order parameter v(r), the average
space profile of activity.

If we are able to solve Eg. (C16) and find v“(r) as a
function of wand g', by substituting Egs. (C17) and (C18) in
Eg. (C11) we have an equation that gives us the value of «
corresponding to that pair (g’,w). a; is then the maximum
of « over the possible values of (g’,w).

To solve Eq. (C16), it is easy to verify that if v(r) is a
solution of

B(r)zg'/\/( fMdr'k(r—r')Z(r')Jr\?v (61)

with
\7V=W—Rf dro(r),
M
that is, the same equations as Egs. (B2) and (B3), then
E(r)=J dr'[L(r—r")—LJo(r")
M

is a solution of Eq. (C16). v can therefore be interpreted as
the average activity profile, apart from a constant. Equation
(61) can be solved with the same procedure used for Eq.
(42), and the maximum value of « can be found by maxi-
mizing over g’ and w.

The results for 1D and 2D environment are depicted in
Figs. 1 and 2 (lower curves). As we may expect from pattern
autoassociator theory, the capacity is much lower than for
the diluted model, due to an increased interference between
different charts.. As the sparsity a~1/|M| gets smaller, the
capacities of the two models get closer, both being propor-
tional to 1/In(K4|M|). Reducing the sparsity parameter of
space representations has therefore the effect of minimizing
the difference between nets with sparse and full connectivity.

E. Sparser maps

A possible extension of this treatment is inspired from the
experimental finding that, in general, not all the cells have
place cells in a given environment. Reference [11], e.g., re-
ported that ~28-45% of pyramidal cells of CAl have a
place field in a certain environment. We would like to see
how this fact could affect the performance of the multichart
autoassociator. It is then natural to introduce a new sparsity
parameter, the chart sparsity a. indicating the fraction of
cells which participate in a chart. We will show that, for the

capacity calculation, ac’l “‘sparse’” charts are equivalent to a
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FIG. 5. The maximum stored information per synapse, as a
function of 1/|M|.

single ““full’” chart, of size ac_l. We will present the argu-
ment for the diluted case; the fully connected case is com-
pletely analogous.

Let m! be equal to 1 if cell i participates in chart w, that
is, with probability a.. Thus, the synaptic coupling J;; will
read

|M| K(r(’”—r(”))m"m“ (62)
a:N i ] P

p
Jij=2
u=1

Let us consider a solution with one condensed map: cells
participating with pfc in r in that map will have a space-
related signal-to-noise ratio

v(r)zg/\/(fdr’K(r—r’)v(r’)+w (63)

for all the neurons not participating in the condensed map we
will have

v=Mw). (64)

The noise will have a variance

p*=aacy

Lﬂ) ((K2(r—=r~), (65)

that is a. times the value we would get for the same number
of ““full’” charts with size |[M|/a., and now

y= 242 d_r dr'K(r—r’ ’
P01 a. M|M|M rre(r—=ro(r’)+w

+(l—ac)./\/l(W)J. (66)

By comparing Egs. (44) and (66), and remembering that
for r far from the activity peak v (r)~A{(w), we realize that
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this y value is approximately equivalent to the y value we
would get for ““full’” charts of size |M|/a,.

Inserting Egs. (65) and (66) in Eq. (46), one finds, for the
maximal capacity:

1

Q¢ (sparse charts) ™ a.In(K M[/a,)" (67)

As we anticipated, one may interpret this result as fol-
lows: the capacity is the same as if we had taken a. !
““sparse’” charts, including ~N cells, and put them side by
side to form one single ““full’’ chart. If we have started with
aC *‘sparse’’ charts we now have a.aC *‘full charts.”” From
Eq. (46) we see that we can store at most au charts)C full
charts and

1
Qe (full charts)™ W’

and this explains Eq. (67). Therefore, this network is as ef-
ficient in terms of spatial information storage as the one op-
erating with full charts.

IV. INFORMATION STORAGE

Like a pattern autoassociator, the chart autoassociator is
an information storing network. The cognitive role of such a
module could be to provide a spatial context for information
of a nonspatial nature contained in other modules, which
connect with the multichart module. Each chart represents a
different spatial organization, possibly related to a different
environmental/behavioral condition. Within each chart, a cell
is bound to a particular position in space, thus being the
means for attaching some piece of knowledge to a particular
point in space, through intermodule connections. To give a
very extreme, unrealistic, but perhaps useful, example, let us
assume that each cell encodes a particular discrete item, or
the memory of some events happened somewhere in the en-
vironment, in ‘‘grandmother cell’” fashion, encoding ‘‘the
grandmother sitting in the armchair in the dining room.”” The
encoding of the “‘grandmother’” may be accomplished by
some set of afferents from other modules. The multichart
associator can then attach a spatial location to that memory
of the *“‘grandmother.”” The spatial location encoded is ide-
ally represented for each cell by its pfc.

In this sense, the information encoded in the network,
which can be extracted by measures of the activity of the
units, is the information about the spatial tuning of the units,
that is their pfc’s.

To restate this concept in a formal way, we look for

- nm%z SOACEVERL L, (689)
S—oo I !

that is, the information per synapse that can be extracted
from S different observations of activity of the cells with the
animal in S different positions, and the system in activity
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states related to chart w. This quantity does not diverge as
S—o0, since repeated observations of activity with the ani-
mal in nearby positions do not yield independent informa-
tion, because of correlations between activity configurations,
correlations that decrease with the distance at which the con-
figurations are sampled.

The full calculation of this quantity involves a functional
integration over the distribution of noise affecting cell activ-
ity as the animal is moving and exploring the whole environ-
ment. In Appendix D we suggest a procedure to approximate
this quantity based on an *‘information correlation length’’ I,
such that samples corresponding to animal positions at a dis-
tance |, yield approximately independent information.

I is the amount of spatial information which is stored in
the module. It is the exact analog of the stored information
for pattern autoassociators [6]. As for storage capacity, it is
to be found numerically, by maximization over w and g.

As for the capacity, one can find the solution that maxi-
mizes |s. The resulting I, is @ function of the size of the
relative spread of connections a=1/|M|, and it amounts to a
fraction of bit per synapse (see Fig. 5).

As with pattern autoassociators, the information stored
increases with sparser representations. The increase is more
marked for the fully connected network. For very sparse rep-
resentations the performance of the fully connected model
approaches the extreme dilution limit.

V. DISCUSSION

We have studied the multichart threshold linear associator
as a spatial information encoding and storage module. We
have given the solution for the dot-product kernel model,
then introduced a formalism in which the generic kernel
problem is soluble.

The second treatment has the advantage of providing a
form for the average activity peak profile, which can be com-
pared with the experimental data (see, for example, [9],
Fig. 1).

We have shown that the nonlinear integral mean-field
equation [Eq. (42)] can be solved at least for one class of
connection kernels K(r—r").

The storage capacity for both models has been found. We
note that the capacity for the dot-product model is compat-
ible with the wide kernel (nonsparse) limit of the generic
model in one and two dimensions in the fully connected and
in the diluted condition.

The generic kernel treatment makes it possible to manipu-
late the most relevant parameter for storage efficiency, i.e.,

f

- (Eu IO —tx —royo+ iy, +
g),
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the spread of connections. It is shown that this parameter
plays a very similar role as sparsity for pattern autoassocia-
tors. In the multichart case, moreover, the effective sparsity
of the stable configurations is determined also by the value
of the gain parameter g, as shown analytically for the noise-
less case. Nevertheless, the capacity of the network depends
on the spread of connection parameter a,=kgy/|M| through a
relation which is the exact analog of the relation between
sparsity and capacity for the pattern autoassociator, at least in
the very sparse limit.

We have only considered here the capacity problem for
one form of the connection kernel, although the treatment we
propose is applicable, at least, to the other kernels considered
for the noiseless case. Our hypothesis is that a similar law for
sparsity is to be found as Eq. (47), at least in the high spar-
sity limit, for more general forms of the kernel.

We have then shown that the capacity scales in such a
way that the information stored is not changed when only a
fraction of the cells participate in each chart. In this case the
firing of a cell carries information not only about the position
of its pfc in the chart environment, but also about which
environment the cell has a place field in. This information
adds up, so that 1/a. charts can be assembled in a single
larger chart of size 1/a, times larger.

We have introduced a definition of stored information for
the multichart memory network, which measures the number
of effective different locations which can be discriminated by
such a net: representations of places at a distance less than I,
are confused, because of the finite width of the activity
peaks, and because of the static noise.

I, does not vary much when |M| varies. This is consistent
with the fact that the storage capacity is well fitted by Eq.
(47) with ky~4.5. 1, turns out to be ~3.5 for the 1D model,
with the arbitrary value for f of 0.95. 1, is therefore similar to
the “*radius’’ of the activity peak which should correspond to
the ““pattern’” in the parallel between the chart autoassociator
and the pattern autoassociator.

It was not possible to carry over the calculation of r4, and
I, in the 2D model as it turned out to be too computationally
demanding. Therefore, we are not able to show the values of
the storable information. The fact that the storage capacity
follows Eq. (47) also in this case is an indirect hint of a
behavior very similar to what is found in 1D.

APPENDIX A: REPLICA-SYMMETRIC FREE ENERGY
FOR THE “*‘DOT PRODUCT” KERNEL MODEL

The replica symmetry free energy reads

_-|-<<j Dz In Tr(h,h2)>>—£2 IX(")-'lz—B(x)—E (| |x+go)Ix (@)
200 (@

BY1

T=ToB(yo—y2) AD

IN[1-ToB(Yo—Y1)]—
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very much like Eq. (19) in 6 and with the same meaning for
symbols, except that the population vector x(?):! plays the
role of the overlap x, the vector Lagrange multiplier t(*):!
appears instead of its scalar counterpart t’, and the dimen-
sionality d appears multiplying the last term. h and h, are

h=—t— >t gl—z(=2Tr)¥2 (A2
(o).l

hy=r;—ry. (A3)

((...)) means averaging over the distribution of pfc’s . T
is the noise level in the thermodynamic analysis. T, is de-
fined here as

((ty- g # ) (- ')>>—

tl tz, (A4)
and it is found to be equal to 1/2 in 1D and to 1 for the 2D
torus.

The saddle-point equations can be found from this equa-
tion, and t and t(*)! can be eliminated, in the same way as in
[6]. Carrying on the calculation the T=0 equations eventu-
ally reduce to two equations in the two variables (in the case
of a single ““‘condensed’” map):

b(x)— 6

:[(X/)a ], (A5)
|

V= (x :SI). (A6)

Take, for simplicity, |v!|=v (while the direction is set by
v'cs). The two equations read

E (w,v)=(A;+ 6A,)%2— aA;=0, (A7)
1
Es(w,v)v=(A;+ 5A2)(g_|_0(T5)+0[—A2>—a’A2=O,
(A8)
where §=|st|/|x!| is the relative importance of the external
field and
(W,v)=—— ! vy f+Dz W+ > v'-n'—z)
l 1% TO ]
{{J).
1 +
= (1), 1) Lo
Ay(w,v) v2T0<<V i J Dz W+EI vy z)>>
(A10)
i 2
A3(W,U)=<<f Dz W+2I v'-r;'—z)
(A11)

Dz is the Gaussian measure (27) Y2 ~2"2dz. The + sign
on the integral means that integration extremes are chosen
such that (w+3v'- '—2)>0.
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When the quenched average on the #’s is performed, A4,
A,, A; reduce to (for the d-dimensional torus CY):

W,v) de' cos 6
Al 2w)dvT0f (2 )
X[[w+v, cos6'—vTo|P|w+o, cose')
| ]
+lwro cose')o Wto Y, cosa'”,
| ]
(A12)
Ay (w v)=;J da'(E cos 6'
T @2mWT, I
Wtov Y, cos&')d) Wtv D, cos&')
] |
+lw+ov, cosa')a W+o D, cosH'H,
| |
(A13)
2
Az(w,v)= do'| 1+ w+v Y, coso') }
|
X®[w+vD, cosf |+ w+ovD, coso')
] |
ol wtv, cosa'), (A14)
[
where
x dz 2
d(x =J —e 12 A15
(x) - (A15)
e—x2/2
ag(x)= . Al6
(x) N (A16)

APPENDIX B: GENERIC KERNEL, EXTREME DILUTION

Let us consider the one-dimensional case first, and con-
sider the kernel
K(r—r)=K(r—r’)— ——=e I'""
Equation (42) can be written
v(r)=g/\/<fdr’R(r—r’)v(r’)+\7v), (B2)

where

w2 [ arurr os
w=w ™| r'o(r'). (B3)
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For the purpose of finding «., maximizing with respect to w
is equivalent to maximizing with respect to w.
To solve Eq. (42), the transformation

u(r)=J\/‘1(v;—r)) (B4)

is used, which results in
u(r):gj dr/K(r—r" )Nu(r)]+w. (B5)

By differentiating twice we get

. d
u(r)=—=2gNu(n]+u(r)—w=— - Ufu(r)],
(B6)

where
U= fudu’(ZgN(u')—u'+\?v). (B7)

The differential equation (B6) is locally equivalent to the
nonlinear integral equation (B5). Equation (B6) must be
solved numerically. As in the single-map case, not all the
solutions of the differential equation (B6) are a solution of
the integral equation (B5). Solutions of Eq. (B6) are a solu-
tion of Eq. (B5), strictly speaking, only in the case M=R.
Nevertheless, we force the equivalence since, also in the case
of limited environments, with periodic boundary conditions,
possible pathologies are not important for solutions with ac-
tivity concentrated far from the boundaries.

In order to classify the solutions of Eq. (B6) it is useful to
study the “‘potential function’” . If w is negative and large
enough in absolute value, U(u) has a maximum and a mini-
mum at the two roots of equation

%z/{(u)zng(u)—uﬂ?v:o, (B8)

or, in terms of v
v=gMN2v+W), (B9)

corresponding to constant solutions of Eq. (42). We look for
solutions representing a single, symmetric peak of activity
centered in r=0. We therefore need to solve the Cauchy
problem given by Eq. (B6) with the initial conditions:

u(0)=uo, (B10)

u’(0)=0. (B11)

From Fig. 6 it is clear that if ug>u* the solution will
escape to — oo for r tending to infinity. This will correspond
to v tending asymptotically to 0, and this solution cannot be
a solution for the integral equation (42) as the asymptotic
value must be a root of Eq. (B9).

The solutions of the problem with uy<<u™ are periodic,
corresponding to multiple peaks of activity, and they are dis-
carded as unstable with the same arguments holding for the
single map case. There is also the constant solution
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FIG. 6. The ““potential’” function ¢/(u) defined by Eq. (B7) and

entering the differential equation Eq. (B6). Solutions with u’(0)

=0 and u(0)=ug, with U,x<Uy<u™ are oscillating. The solution

with ug=u™ is the one we seek, asymptotically approaching u . as

r—o0,

u(r)=umin, (B12)

which obviously will not correspond to space-related activ-
ity. The solution corresponding to the single activity peak
can only be the one with ug=u*. It tends asymptotically to
Umax- This solution can be found numerically and inserted in
Eqg. (46) to find the value of « associated with the pair

(g,w). The solution will only be present for values of w for
which Z(u) has the extremal points U, and Ui, , that is
W<w*, (B13)

where W* is equal to —2gA{(u*)+u* and u* is the root of
the equation:

1
®(u)=

29 (B14)

obtained by derivating twice I, and this shows that Eq. (B5)
cannot have solutions for g<<1/2, as in the single-map case.
In the two-dimensional case, we can consider the kernel

. 2
K(r=r")=K(r—r')— +—

, B15
where K is the kernel having the Fourier transform
R(p)=— ®16)
Py p?’

The solution is worked out in the same way with the trans-
formation (B4) and application of the Laplacian. If we con-
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sider solutions with circular symmetry and pass to polar co-
ordinates (r, ¢), the equation for r reads

u”(r)+ %u’(r)z —2gN@Uu(r)+u(r)—w. (B17)

We still have a single peak solution which tends asymptoti-
cally to up,y, but in this case we cannot rely on the ¢ func-
tion argument to find the initial condition at r=0, which has
to be found numerically.

APPENDIX C: REPLICA FREE-ENERGY CALCULATION
FOR THE GENERIC KERNEL

Again we will consider an environment M with periodic
boundary conditions. We assume that there exists a kernel L
such that

f dr’L(r—r")L(r"—=r")=|M|K(r—r"). (C1)

Instead of the vector order parameter x* that we used for
the dot-product kernel case (or of the scalar overlap x* of
[6]), we can use the functional order parameter

f=—T<<J Dz In Tr(h,h2)>>—%Ejmdr[x”(r)]z—

> j dr to(r)x(r)—tx—royo+riy;+
T M

where now Ty(p) is the Fourier transform of the kernel
IM[K

To(P):|M|JMdr e”"P'K(r). (C5)
We now have
=b()+2 | drx7(r)[L(r=r")~L]
—z(—2try)*?, (Co)
hy=—rg+r;. (C7)

The T=0 mean-field equations are much like in [6] apart
from the x“(r) equation which reads

x”<r>=g'<<[L<r“—r'>—E]
forDzU dr’[L(r"—r’)—[]x"(r’)
M

+b(X)—0—pZ)>>, (C8)

%Ep:('n[l_-ro(p)ﬂ()’o_h)]_
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x“(F)=

%Ei [L(r=r{)1V; (C2)

in terms of which the interaction part of the Hamiltonian (59)
reads

1

EEiqutiaijv,vJ
—|M|ZEZ K(r“—r#)—KJV,Vv
TINS 44 [K(r{=r{)=K]VV;

—%M'[K(m—k]Ei Vi

1 . M _
=§N§M‘, fdr[x“(r)]z—#[K(O)—K]zi V2,

(C3)

Introducing the “‘square root’” kernel L allows us to perform
the standard Gaussian transformation manipulation and to
carry out the mean-field free-energy calculation in the
replica-symmetry approximation:

a|M| —
T[K(O)_K]YO+B(X)

BY1
1-To(P)B(Yo—Y1)/’

(C4)

where now the + sign on the integral means that the limits
of integration over z are chosen such that

f dr/[L(r®=r")—L]x(r’)+b(x)— 6>0. (C9)

g’ is a renormalized gain, which takes into account the effect
of static noise, defined by

/ —n-1_
(g")'=g aZ TP o5 ©0
where V¥ is given by Eqg. (C18).
The noise variance p? is given by
2
p?=—2Tr,=a, M, (C11)
P [1-To(p)W]?
where
yo=(g'>2<<f DzHMdr'[L(r“—r'>—E]
2
><x"(r’)+b(x)—6] >> (C12)
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and
\if=g’<<J+Dz>>. (C13)
We now pass to the rescaled variables
u"(r)zx (r)' (C14)
p
sz, (C15)
p
obtaining
v”(r)=g’JMdr"[L(r"—r)—[]
X w+f dr’[L(r"—r’)—[]v"(r)),
M
(C16)
Yo_ onz[ 97
p2 (g ) fM|M|
XM w+f dr’[L(r”—r’)—E]M(r)),
M
(C17)

W+J' dr'[L(r"—r’)—[]v"(r)).
M
(C18)

if—J ar”
~IuM|

APPENDIX D: GENERIC KERNEL:
STORABLE INFORMATION CALCULATION

First, the information per synapse we get from a single
observation of activity, with the animal in a certain position
times the number of stored charts is

dr un dz 2/
A S
|M| —o 27

e~ 2212

In
f (dr’/|M |) e~ [z—u(r)+u(r’)2]2

X

+[1=(u(r)]

<In [1-¢u(r)] . (o

[ @rmpi-gwe

Next, we wish to calculate the joint information from two
measures of activity, from the same cells, from all charts,
while the rat is in two different locations, at a distance e.
These two measures are correlated random variables: let
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Vi=[h;—pz;]"

be the activity of a cell measured while the rat is in position
1, and

V,=[h,—pz,]"
be the activity of the same cell while the rat is in position 2.

The two noise variables are distributed according to a
joint bivariate Gaussian distribution:

1

11,09)= ———F—=
p(l 2) 2’”_\/1_—@2

exp| — (22+125—2r5212,) |

2(1-r%)
(D2)

The correlation coefficient r4, is a function of the distance
e, implicitly defined through the equation

p?ria( €)= a|MI((K?))y1y(e), (D3)

where y, is defined as

1
V(€)= 52 (ViaVia) (D4)

and assuming periodic boundary conditions:

dr (++
ylg(e)szngMf Dz, (D5)
dr’
X JWK(r—r’)v(r’)er—zl)
dr”
X JWK(r—r”)v(r”+e)+w—zz> (D6)

or

d ++
ylZ(E):PZQZJﬁJ’ Dzpu(rju(r+e), (D7)

where u(r) is defined by Eq. (B4). The integration measure
for the noise variable is defined as

++
f DZ12:f dz,dz,p(z1,2).
u(r)—z;>0,u(r+e)—z,>0
(D8)

Inserting Eq. (D7) in Eq. (D3) yields

r12=a|M|<(K2>>g2J’ dr Q[u(r),u(r+e),ry,], (D9)

where
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FIG. 7. The ry, function plotted as a function of the distance
between the two pfc’s, € in the [M|=30 case.

Q(Xd/-rlz):j Dz1y(Xx—21)(y—25).

Equation (D9) can be solved numerically. An example is
provided in Fig. 7, but a few features can be explored ana-
lytically, in the neighborhood of €=0. r;,=1,6=0 is a so-
lution, but now consider what happens when e increases.

The derivatives of

_ a2 [ A7
D(ry,,e)=a((K"))g JWQ[U(r)vU(r‘FG),rlz]_rlz
(D10)

with respect to e and rq, must be taken into consideration.
One has

J
—D(rp=1€=0)

= o((K?))g?

xf—dr 2 orx= =u(r+e),1Ju’(r)=0
™ r)yQ[X—U(r),y—u(r €),1]u’(r)=0,
(D11)

(92

ED(I'12=1,E=O)<O, (D12)

and
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FIG. 8. The I, function plotted as a function of the distance
between the two pfc’s, € in the [M|=30 case. Note that I,, with
f=0.95 [see Eq. (D17)] would be approximately 3.5. This is seen
not to change much when |M| varies (not shown).

J
ED(rlz—L’L,E:O)

d
:a<<K2>>92J ﬁ@(u(r))—l

=fd—r<b(u<r>)(fd—rM(u<r>))l—1 (D13)
M| M| '

From Eq. (D12) it turns out that when the derivative in Eq.
(D13) is greater than zero, the solution r,=1 disappears as
one moves from e=1, but another solution is still present so
that

||m r12(6)<1. (D14)

e—0"

Note that the condition

i D 1,e=0)>0
FTon (rp—1e=0)>
is equivalent to
r:ga|M|<<K2>>f dru(r)v(r)<o, (D15)
M

and the quantity I" enters in the stability analysis consider-
ations we sketched in Sec. Il C, at least for the 1D case.
Solutions with I'>0 are stable against inhibition orthogonal
fluctuations, so that it is likely that the possible pathology
implied by Eq. (D14) reflects an instability of the solution.
We have always found numerically that for the solution cor-
responding to the maximal storage capacity and information,
r>0.

Once we know the joint probability distribution for z, and
Z,, we can calculate the information we can extract about the
pfc of a cell from two measurements of activity, while the rat
is standing in two positions at a distance e, from all charts:
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(25+25—

2(1-r2,)

(u(r)—
RN

=2rpu(r")—u(r)+z))u(r'+e) —u(r+e+z,)]

+- dz,
+2f Dzl In f ——ex
z£>u(r+s)277

f dr’ iz’
M|M| 2,>u(r’ + e 2

—In Z,exp

21-1%)

=2rpu(r")—u(r)+z)u(r' + e —u(r+e+z,)]

+f Dzy,

| j dzidz,
n -
z;>u(n),z;>u(r+e) 27\ 1— l’%z

! !
dz;dz,

ATTRACTOR NEURAL NETWORKS STORING MULTIPLE. ..
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21152125)

u(r)+z,)°+u(r’' +e)—u(r+e) +z,)>°

1
p( 2(1_—)(2 T+z5° 2r12212é)>)

—————[(u(r")—u(r)+z,)?>+u(r' + e —u(r+ e +z,)*

J

1 ( 2 2 151
ex z — 2119242
p 2(1_ 12) 122127

—In

j dr
mIM| 2>u(r') 2y >u(r + e 271 — rfz

—2r12(u(r’)—u(r)+2£)(u(r’+e)—u(r+e)+z§)])) ] ] }

The minus signs (—) beside the integration signs mean
that, respectively, the first, or the second condition determin-
ing the integration intervals in Eq. (D8) is reversed. The first
term in the sum accounts for the contribution coming from
measurement in which both activity values are positive. The
second term is the contribution from measurements in which
one value is zero and the other is positive. The third term
comes from measurements in which both values are zero.
For e=0, I,=14, since the two measures are identical.

For large e one has I,~21,, because the noise decorre-
lates and because in general the two measures will give non-
zero results in distinct regions of the environment. The be-
havior of I, as a function of € is exemplified in Fig. 8. We
define as “‘information correlation length’’ the value |, of €
for which

1
exp( 2(1-1%) [(u(r)—u(r)+z)?+(u(r'+ e —u(r+ e +z;)?

(D16)

|2_|1:f|1, (D17)

where f is a fixed fraction, say 0.95. We may say that mea-
surements of activity with the rat in two positions at a dis-
tance |, give independent information.

This allows us to define as the stored information I
quantity

the

(D18)

that is, sampling the activity of a cell [M|/I¢ times, with the
animal spanning a lattice with size 1,, we may effectively
add up the information amounts we get from each single
sample, as if they were independent.
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