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Abstract. The sensory pathways of animals are well adapted to processing a special class
of signals, namely stimuli from the animal’s environment. An important fact about natural
stimuli is that they are typically very redundant and hence the sampled representation
of these signais formed by the array of sensory cells is inefficient. One could argue

- for some animals and pathways, as we do in this review, that efficiency of information
representation in the nervous system has several evolutionary advantages. Consequently,
one might expect that much of the processing in the early levels of these sensory pathways
could be dedicated towards recoding incoming sigmals into a more efficient form. In this
review, we explore the principle of efficiency of information representation as a design
principle for sensory processing. We give a preliminary discussion on how this principle
could be applied in general to predict neural processing and then discuss concretely
some neural systems where it recently has been shown to be successful. In particular, we
examine the fly’'s tmC coding strategy and the mammalian retinal coding in the spatial,
temporal and chromatic domains.

1. Introduction

This review explores the use of information theory (Shannon and Weaver 1949) as a
basis for a first principles approach to neural computing. The relevance of this theory
to the nervous system ultimately derives from the fact that the nervous system pos-
sesses a multitude of subsystems that acquire, process and communicate information.
This is especially true in the sensory pathways. One could use information theory to
assess the efficiency of information representation in many of these pathways. This
already has given some insight into computational strategies in simple neural systems
(Bialek et al 1991a, Warland et af 1992). More interestingly one could argue, as we do
in section 3, that efficiency of information representation in the nervous system po-
tentially has evolutionary advantages (Attneave 1954, Barlow 1961, 1985, Uttley 1979,
Srinjvisan ¢ af 1982, Linsker 1988, 198%a,b, Field 1987, Atick and Redlich 1990a,b,
19922, Atick et al 1990, 1991, Bialek et al 1991b, see also Barlow 1989 and references
therein) and that much of the processing in the early levels of sensory pathways might
be geared towards building efficient representations of sensory stimuli in an animal’s
environment.

The above efficiency principle, formulated as an optimization problem, can be
used as a design principle to predict neural processing. Starting with the natural
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representation of environmental signals as sampled by the array of sensory cells, one
can try to find the reccdings needed to improve efficiency subject to identifiable
biclogical hardware constraints, The several stages of processing required to cast
incoming data into the optimal form can then be compared to the stages of neural
processing observed in sensory pathways. This principle has been shown to successfully
predict retinal processing in space~time and colour (Atick and Redlich 1990a,b, 1992a,
Atick et al 1990, 1991), and there are encouraging signs that it could be equally
successful in predicting some of the cortical computation strategies (Barlow 1989,
Field 1989, Barlow and Foldiak 1989, Atick e al 1992). The approach just described
can be termed ‘ccological’, since it attempts to predict neural processing from physical
properties of the stimulus environment. Essential to the success of this programme is
a quantitative knowledge of (statistical) properties of natural signals. Several studies
on properties of natural stimuli are currently underway,

The organization of the review is as follows. We start in section 2 with a brief
review of information theory cast in a language suited for our subsequent analysis. In
section 3, we speculate on why efficiency of information representation could be an
organizing principle underlying sensory processing. We then formulate this principle
as an optimization problem and discuss how in general it might be solved. In sections
4 and 5 we analyse in detail some biological systems where information theory has
been shown to predict the observed neural processing, In section four, we analyse the
contrast-coding of the LMC cells in the blowfly compound eye (Laughlin 1981, 1989),
while in section 5 we study the spatio-temporal (Atick and Redlich 1950a,b, 1992a)
and colour (Atick er al 1990, 1991) coding of the mammalian retina. Our discussion
on retinal processing is self-contained since in subsection 5.1 we have included a brief
review of the relevant experimental facts on retinal coding in space, time and colour,

2. Information theory: 3 quick primer

Information theory evolved in the 1940s and 1950s in response to the need of electrical
engineers to design practical communication devices. The theory, however, despite
its practical origins, is a deep mathematical theory (Shannon and Weaver 1949)
concerned with the more basic aspects of the ‘communication process’. In fact, it
is a framework for investigating fundamental issues such as efficiency of information
representation and its limitations in reliable communication. The practical utility of
this theory stems from its multitude of powerful theorems that are used to compute
optimal efficiency bounds for any given communication process}. These ideal bounds
serve as benchmarks to guide the design of better information systems.

In this section we give a brief review of information theory. This review is not
intended to be a full account of the theory. It focuses primarily on one aspect
of information theory, namely the effect of statistical regularities on efficiency of
information representation. Other important aspects are ignored including the role
of noise and the reliability of representation. However, this account is adequate
to enable the reader with no prior knowledge of information theory to follow its
subsequent applications to neural computing. Readers interested in further details
are encouraged to consult the literature (Shannon and Weaver 1949, Gallager 1968).

 Physicists mmight find these bounds reminiscent of the bounds set by the laws of thermodynamics on the
performance of heat engines.
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2.1. Information sources and channels

In information theory any device, system or process that generates messages as its
output is generically referred to as an information source. Although each source has
its own representation that it uses to put out messages, generally speaking sources
represent their messages as combinations of symbols selected from their alphabets,
the list of all possible symbois they are capable of producing. The symbols are often
called the source symbols or the representation elements. The choice of alphabet and
the way the symbols are used to construct messages constitutes a representation or a
code—source coding,

For example, a book in English can be thought of as the output of an information
source—English language—whose alphabet is A, ..., Z,+ blank. Similarly, a neuron
or a layer of neurons can act as an information source whose alphabet is the different
neuronal response levels. Finally, an information source that is discussed often in
this review is the visual environment, where the alphabet is the different grey levels
of light pixels in the image mosaic. For simplicity, we introduce information theory
for the discrete case, where there is a countable number, N, of symbols that can be
produced by the information sourcej. In written English N = 27, while in an 8-bit
grey scale imaging, N = 2% = 256.

An important fact about ‘natural’ information sources is that they never produce
messages which are random combinations of their symbols. Instead, their messages
tend to possess regularities or what is known as statistical structure. In other words,
the way symbols are put together to form messages obeys certain statistical rules that
are source specific. Tb begin with, information scurces do not utilize their symbols
with equal frequency. In long sequences of written English for example, £ occurs at
the rate of once in every ten letters while Z occurs only once in a thousand (Pratt
1542). In twotally random sequences of English alphabet the frequency of occurrence
would be once in every 27 for all the letters. The frequency of occurrence of source
symbols is captured by the set of probabilities {P(m),m =1,...,N}.

More importantly, the selection of a symbol in a message is influenced by previous
selections; ie. symbois in a message are not statistically independent, instead there
are intersymbol dependencies or correlations. Again, in English when a T occurs
somewhere in a text it is very likely it will be followed by an A while it is very
unlikely that it will be followed by a @ for example. This statistical influence can be
quite significant and can extend up to many symbols. Mathematically, it is captured
by conditional probabilities or equivalently by joint probabilities among symbols. For
messages of length [ symbols the joint probabilities are denoted by { P(m,,...,m;)}
where m; is the ¢th symbol within the message,

We model real information sources as stochastic systems (Papoulis 1984) that
generate sequences of symbols subject to some statistical rules (see also Geman and
Geman 1984, Kersten 1990). Since our knowledge of the statistical regularities of
natural information sources is somewhat limited at this time, the rules we impose
on our models represent only a subset of all regularities real information sources
might possess. This is not necessarily a handicap since at any given stage in a sensory
pathway, especially at the early stages, we suspect that only incomplete knowledge
of statistical regularities of the stimulus source is available to neurons. For example,
we shall see in section 5 that retinal cells receptive fields can be accounted for with
knowledge of pairwise correlation function of input signals only. Thus an approximate

t This can always be achieved by an appropriate choice of discretization of source outputs.
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model of natural scenes that generates luminosity pixels subject only to the constraint
of a fixed pairwise correlation function may be sufficient for studying the retina, Of
course, to predict the processing in the cortex, knowledge of more complex regularities
is necessary.

Finally, another basic concept in this theory is the concept of an information chan-
nef, which is the medium through which messages from sources are transmitted or
stored. Just like an information source a channel possesses a set of symbols, called
channel symbols, which are used to carry the messages. The problem of mapping
source symbols into channel symbols is referred to as the channel coding problem
{Gallager 19638). For the sake of brevity in the present review we ignore all differ-
ences between source and channel coding and deal only with the generic problem
of information representation regardless of where the coding i happening. This is
justifiable especially since we are focusing on discrete noiseless information theory.

22, Efficiency of information representation

As mentioned earlier, one of the main concerns of noiseless information theory is
quantifying efficiency of information representation. Intuitively, inefficiency can be
attributed to the fact that information scurces are constrained to obey statistical rules
in constructing their messages. These rules build some degree of redundancy where,
for example, many pieces in 4 message are a priori predictable from other pieces and
from knowledge of the statistical structure. Also the presence of constraints implies
that a source does not utilize its alphabet to its fullest capacity since the constraints
limit the combinations of symbols that are allowed as output. Hence, a representation
that possesses any statistical regularities is in many ways wasteful or inefficient. In
this section we find a quantitative measure for this inefficiency.

To begin with, information theory attributes to each message in the ensemble M
of all messages that can be produced by a source, a statistica) quantity known as the
information which is given byf

IH{w) = —log, P(w) (2.1)

where P(w) is the probability of the message w normalized so that E‘:L y P(w) =1,
with N the total number of messages in the ensemble M. J{w) is essentially a
measure of ‘surprise’ or a priori ‘unexpectedness’ of a message. According to it, a
message that occurs often P(w) ~ 1 has low surprise or information value I(w) ~ 0,
while that which is unexpected has high information. This measure conforms to the
usual editorial policy whkere rare events are given more attention than frequently
occurring ones. However, we should emphasize that it ignores the semantic value of
a message; in this theory, the unexpectedness of a message plays an important role
but is distinct from the m2aning of the message.
Averaging (2,1) over all messages in the ensemble M defines

N N
H(M) =3 P(w) I{w)=- P(w)log, P(w) 22)

w=1 w=1

which is known as the entropy or average information per message. As is shown below,
H(M) is the mathematical object one needs to construct a quantitative measure of

1 Since we use log, the units of 7 are bits (or binary digits)/message.
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efficiency. Its precise significance derives from the powerful theorems that were
proven about it. For example, the source coding theorem (see e.g. Gallager 1968)
shows that H (M) is the minimum length in binary digits (bits) per source message
that are needed on average to represent the outputs of the source. Immediately, this
says that a representation is most efficient iff on average messages in the ensemble
M are equal to H( M) bits in length,

To see how H(AM) is used to define a quantitative measure of efficiency, we
investigate its dependence on what one intuitively perceives as the cause of inef-
ficiency, namely the statistical structure. FOr concreteness, we consider a repre-
sentation where each message w is built out of a combination of { symbols, then
P(w) = P(my,...,m;). We examine the value of A (M) as a function of the
statistical structure of the source keeping the N symboils and the length ! fixed. We
show that H{ M) decreases the more statistical constraints the source has to obey in
generating messages.

Consider first the case of a source that uses a representation where the symbols are
statistically independent, ie. the only statistical structure is that given by {P(m,)}.
In that case P{m,,...,m;) = P(m,;). P(my)--- P(m,) and the entropy H(M)
can be written as a sum over the individual symbol (or pixel) entropies, H(i),

!
Pl =N H{ i
SN E g AR N

In general, however, the symbols are not statistically independent, so P(m,,...,m;)
does not factorize into a product apd the total entropy does not equal the sum of
symbol entropies. Instead it satisfiesf

H(M)< Y H(®) (2.4)
i=1

with equality iff the symbols are statistically independent. This means that statistical
influence among symbols lowers H{M) or the amount of information carried by
those symbols, which is intuitive since in this case many of the symbols redundantly
carry the same information.

The upper bound on H({M) in (2.4) is not the absolute maximum since one
can still look for the distribution {P(m;)} that maximizes the symbol entropy
HH=-%N =1 P(m;)log, P(m;). Again, it is not hard to show that the maxi-
mum occurs when {P(m;) =1/N, ¥ m,}, or when the alphabets are utilized with
equal frequency, as anticipated. The maximum this gives is

max(H(M)) = Bax, (Z H(s )) =llog, N=C (2.5)

t T see how the proof goes consider the simpie case of two symbols. Define the matrix Dy; =
P(m,)P(m,;} — P(m,, m,), then using the fundamental inequality = 2 In(1 + =} applied to z =
Dij/P(m;, m;} we have the inequality D.,/'P(m;,mjj 2 In(1+ D, f P(m;, m;)}. Multipiying this
by P(m,, m,} on both sides and summating on i and j remembering that P(m;) = 3=, P(m,, m;)
and 3, P{m;) = 1 one amives at H(1)+ H(2) > H(1,2). Generalizing this proof to arbitrary
number of symbols is straightforward.
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where the first maximization is over the full statistical structure, and the second is
over the distribution { P(w;)}. Thus, maximum entropy is achieved by a source that
represents its messages such that no statistical regularities exist among the symbols.
A representation with no statistical structure is one where the receiver’s knowledge
about what to expect is minimal and thus on average a message when received con-
veys maximum amount of ‘surprise’ or equivalently maximum amount of information
H(M).

The last equality in (2.5) defines another important information theoretic quantity,
namely the capacity C of the representation or the channel, which is the absolute
maximum information that { symbols selected from a list of N distinct alphabets
could ever carry. Notice that C = llog, N = log, N', is the logarithm of the total
number of messages, N', that the representation can carry. It can also be interpreted
as the actual length of messages in binary digits. In English, C/l = log,27 =
4.73 bits/letter, while the capacity of an 8-bit grey scale 256 x 256 pixel screen is
8 x 256 x 256.

We are now ready to define a measure of efficiency: for any source with H (M)
using a representation of capacity C' one useful measure of efficiency is

R=1-H(M)/C (2.6)

which is called the Shannon redundancy. Since H{M)< C, 0 R I with R =0
being the most efficient where C' = H(M). This measure has two interpretations.
First, thinking of H({ M) as the actual amount of information transmitted and C' as
the maximum amount that could be transmitted, efficiency calls for using a channel
where the transmitted rate H(M) is as close as possible to the maximum rate C.
Alternatively, since C is the average length of a message in bits and H(M) is the
smallest average length that can ever be achieved by any representation (source coding
theorem), efficiency calls for finding a representation where the actual length C is as
close as possible to minimum allowed H(M).

In general, to improve efficiency one recodes the output of the source into a
representation that uses C as close to H (M) as possible. This data compression is
achieved by discarding the structure that is a priori predictable from the messages (the
statistical structure) leaving only the so-called ‘textual’ or non-predictabie information.
In principle, a coding strategy that takes advantage of all statistical regularities can
compress the represcntation down to its minimal size, ie. can allow the use of
C = H(M). In practice, it might prove computationally prohibitive to achieve
the optimal compression. In general one tries to find a compromise between the
complexity of the representation and its efficiency, for example by ignoring certain
aspects of the statistical structure and concentrating on those regularities that are
su'nple to disentangle and discard in recoding. Also in real information systems noise
is always present. In that case it is not advantageous to eliminate the redundancy
completely, since it is redundancy after all that distinguishes what is signal from
what is noise. Information theory formulated for noisy channels can be used to
find the best compromise. In our analysis of real neural coding in section five we
use an effective approach to handle the noise without the need for developing the
complicated machinery of information theory in the presence of noise. The more
general approach for handling noise in early sensory processing can be found in
(Atick and Redlich 1990a,b).
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23. The cost of inefficiency

To illustrate the cost of inefficiency, it is helpful to start with an example. Consider
the DNA of a fictional creature whose bases, A, T, C, G are assumed to occur with
probabilities listed in the second column of table 1{. The problem is to find a
coding that will store long sequences of this DNA on a computer disk economically.
Since table 1 does not supply any knowledge of statistical structure beyond base
probabilities, we have to treat this information source approximately as if no statistical
influence among the bases existed, and deal with each symbol as an indepzndent
message. Then the entropy of this DNA is H(M) = I x1+1x2+Lix3+1ix3=1
bits/base. This means that there exists a code that can represent this DNA'S sequences
with as few as I bitspase. If we code the four bases into 00, 11, 01, 10, then
the average length (or capacity) used is 2 bits/base which is greater than H(M).
However, if we code in the fashion iltustrated in the third column of table 1, then

tha avarnca lanmarh e l 10 lvaorlteaeal oo 7 ahirh ic avantly tha antrany
UWiL gvYLicpu IvpiilL 1o 9 ® AT ’Z ML T 8 AT 8 Y ] Z, YFRULAE B2 wAtWLLY LEIW LIV Y

of the source and thus the most efficient code possible given base probabilities only.

Tabie 1. The probability distribution of the bases A, T C, G of the DNA of a fictional
creature and the two simple binary codes discussed in the text.

Symbol  P({i) Codel Code?2
A i 00 0
T 1 o1 10
C : 10 110
G i 1 1

MNna miaht thinly that cinea tha hacac in rada Y are nat Af snanal lanath that
AN LAEKLL UALER Widl DLW WU UdDUS Ul WIUL 4 aib OUL UL GAjudl IGIIEUL WGl

decoding sequences would be difficult. This is not true; the code by construction has
a trivial decoding algorithm. In any sequence, a zero signals the end of a coded base;
with one exception, where one does not encounter zero for three consecutive digits,
in that case the base is G and the next digit is part of the next coded base. There
is a general procedure for constructing these minimal redundancy codes known as
Huffman coding which generalizes this trivial example to arbitrarily complicated real
problems (see Gallager 1968).

Notice that code 2 js on average 3 L bits/base or 12.5% shorter than code 1. Thus

1f this creature has 10° bases in its DNA, code 1 effectively requires an additional

1 % 10° = 250 Megabits or ~ 31 Megabytes to store the same information. Further
savings in storage space could be achieved using a code that can discard other statis-
tical regularities that this DNA might have, such as correlations among the bases. Of
course, this would occur at the cost of increasing the compiexity of the code.

The above example leads into the general question of the cost of inefficiency. In
man-made systems, inefficiency usually means more storage space, more expenditure
of transmission power, longer transmission times or in general larger bandwidths or
dynamic range to transmit or store the same amount of information.

In biological systems the consequences of inefficiency are not as clear and they are
mogt I:Irt:lv animal denendent. What one needg is a way to tranglate the information

EAINSG R AMARSE Y GARRifnalal WP AaleN ilie ST ARGL i RASSSS s vadmanalai wasws iaisnss axadevancasn

theoretic cost into a biologically significant cost to an animal. However, generally

t Never mind the fact that they violate Chargaff’s rule.
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speaking we suspect that most areas in the nervous system of many species could
not afford to be inefficient, since invariably neurons have a limited response range
(capacity or dynamic range) especially in comparison with the wide range of stimuli
the animal encounters (Shapley and Enroth-Cugell 1984, Barlow et al 1987). Pooling
its dynamic range resources, we believe the brain possesses a relatively limited number
of states that it has to use to build representations of the great multitude of objects
and events in its information-rich environment. Under such circumstances, an efficient
representation can allow the brain to extract more information about its environment
without the need to evolve o larger sizes.

In addition to savings in dynamic range, efficient representations could potentially
facilitate certain cognitive tasks, such as associative learning (Barfow 1989} and pattern
recognition. Actually, in higher animals we feel it is more likely that cognitive benefits
are the driving force towards efficient representations. These issues are discussed in
further detail in section 3.

2.4. Bpes of inefficiencies

There are two types of inefficiencies that one encounters in information systems. As
we shall see shortly, both types can influence the computational strategies of real
sensory neurons. Both were alluded to in our discussion above, here for future
reference we exhibit them more explicitly. To do that, we rewrite the Shannon
redundancy (2.6) as R = (1/C)(C ~ H{M)) in the following equivalent form

! 4
R:%(C—ZH(Q) +—15(Z H(z’)—H(M)) @7
i=1 i=1

where we have added and subtracted (1/C) E§=1 H{t) to the definition of R.

The two terms in the brackets in (2.7) explicitly quantify the contribution of the
two forms of redundancy to /2. First if the alphabets are used with equal frequency
then Ele H(i) = I xlogy, N = C (2.5), and the first term in the bracket drops
out. In general, however, 2551 H{i} < C, and this term contributes positively to
the redundancy. Second, if there are no intersymbol dependencies, then the total
entropy H{M) equals Zi:i H(7) exactly and the second term in (2.7) vanishes.
Typically, however, there are statistical relations among the symbols in which case
Ti_, H(i) > H(M) (2.4) and hence the second term contributes a positive amount
to the redundancy. In a system where there is absolutely no redundancy C =
T, H(i) = H(M) to make R = 0.

To get a feel for the relative significance of the two types of inefficiencies, consider
written English. There C'/{ = log, 27 = 4.76 bits/letter, while H (i) computed using
the well known probabilities of different symbols (Pratt 1942) is 4.03 bits/letter, which
gives a redundancy of about only 15%. In general inefficiency due to unequal use of
symbols is minor. The major source of redundancy comes from statistical correlations
among symbols. For English, an estimate of H{M}/l was first done by Shannon
(1951) using a method that takes into account statistical correlations among the
symbols. He found that the entropy is around 1.4 bits/letter. From C/l = 4.78,
H{(M){l = 1.4 and H({) = 4.03 we can see that redundancy due to intersymbol
correlations in English is about 55%, making the total redundancy of written English
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close to 709%%. The situation is very similar in many natural sensory information
sources.

2.5, Minimum-redundancy vs minimum-entropy codes

The expression for R in (2.7) also makes explicit two classes of codes that we will
refer to in our discussions on neural coding. A code that minimizes the full R i
known as minimum redundancy code, while that which minimizes the part of ® due
to intersymbol correlations is laown as minimum enirgpy code o faciorinl codej.
Minimum entropy codes minimize the difference )::.:1 H{i}y— H(M). In the limit
Z;:l H(i) = H(M), they produce a representation where the symbols are statisti-
cally independent, so the probability of any message is given by the product of the
probabilities of the symbols making up the message, i.e. joint probabilities factorize
into products of individual probabilities (hence the name factorial code). If one in-
sists on no Joss of information, then factorial codes minimize ‘Z‘i:l H(1) subject to
the constraint of fited total entropy H{M). We should emphasize that these codes
are not by themselves redundancy reducing. In fact, from (2.7} we can see that these
codes preserve the total redundancy by transforming redundancy due to cotrelations
to redundancy due to unequal use of symbols.

The interest in minimum redundancy codes in engineering is clear; they allow
the use of smaller dynamic range or smaller capacity. The reason factorial cades

are also interesting is that usually after minimizing ELI H(i) one can find trivial
transformations to fit the coded messages into a channel with a smaller C, and thus
they can be viewed as a convenient first step for achieving minimum redundancy
codes. For a simple example of this type of two-stage coding applied to continuous
signals see subsection 4.2.

In sensory pathways, we expect factorial codes to play an important role for
two reasons: just as in engineering, factorial codes are excellent first steps towards
redundancy reduction. This is especially true for natural stimuli where the most
significant part of the redundancy is coming from intersymbol dependency. Second,
factorial codes could have an intrinsic cognitive advantage beyond the fact that they
enable the pervous system to use smaller dynamic range. Both issues are elaborated
on in the next section.

3. Information theory as an ecological theory of sensory processing?

3.1. General remarks

The neural networks in the sensory pathways of animals are well adapted to processing
signals from the ‘natural’ environment. One fact about these special stimuli which was
discussed in subsection 2.1 is that they are never random; instead they tend to possess
statistical regularities. For example, in natural images, due to the morphological
consistency of objects, nearby pixels are very similar in their visual appearance. The
luminosity profile in these images changes gradually in space and only abruptly at
edges or borders. Similarly in time and colour there is continuity and smoothness.

t For estimates of redundancy in other western languages, see Bamard (1955).

t Elegant examples of factorial codes can be found in Barlow et of (1989) and Hentschel and Barlow
(1991}, see also Watanabe (1981, 1985).
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This means that in natural images there is a high degree of spatio-temporal and
chromatic correlation among pixeis. Hence a pixel by pixel representation of natural
scenes, which is the representation formed by the photoreceptor mosaic, is inefficient.
This fact was well known to engineers in the television industry as far back as the
fifties. In fact, the statistical studies on television signals that they conducted indicate
that redundancy could run well in excess of 90% in natural images (Gouriet 1952,
Kretzmer 1952, Harrison 1952, Schreiber 1956). The situation is expected to be
similar for most other senses,

Given that natural stmuli come i a highly inefficient form, ihere are several
reasons why the nervous system might invest some of its resources to recode in-
coming signals to improve efficiency. We present three potentiai benefits of efficient
representations. The first is an advantage of strict redundancy reduction, while the
other two are advantages of both redundancy reduced and minimum entropy repre-
sentationst, These benefits, however, are not mutually exclusive and do not exhaust
all potential advantages of efficiency. Furthermore the discussion in this section is
somewhat heuristic; we hope to present a more mathematical analysis of the material
in this section elsewhere.

3.1.1. Information bottleneck. It is possible that at some point along a sensory
pathway there exists what may be termed an information bottleneck. This means
that somewhere there exists a restriction on the rate of data flow into the higher
jevels of a pathway. This could arise from a iimited bandwidih or dynamic range
of a neural link, which js not unlikely given that neurons invariably possess limited
response range (Shapley and Enroth-Cugeil 1984, Barlow er al 1987). Alternatively,
the limitation could be due to a computational bottleneck in the higher levels of
the sensory pathway that restricts the number of bits of data per second that can be
analysed in the object recognition process. An example of such limitation might be
the ‘attention bottleneck’ which is suspected to occur somewhere between area V4
and the inferotemporal cortex IT (Van Essen ef af 1991).

Studies on the speed of visual perception (Sziklai 1956) and reading speeds (Korn-
huber 1973), consistently give numbers around 40-50 bits/s for the perceptual capacity
of the visual pathway in humans. This number can be interpreted as the maximum
rate of visual information that can be processed by the deep layers of the visual
pathway and is in a sense a measure oOf the bottleneck. On the other hand the rate
at which visual data is collected by the photoreceptor mosaic is known to exceed
5 x 10° bits/s (Jacobson 1951). In order to fit the huge range of incoming signals
into the limited capacity anticipated at higher levels 2 sensory pathway might have to
perform a series of data compressions. One strategy for data compression in neurai
systems is redundancy reduction§ (Attneave 1954, Barlow 1961). Other strategies
include noise filtering and generalization.

t At this stage we cannot tell which of the two strategies, redundancy reduction or minimum entropy,
is more fundamental in the nervous system. However, since they are closely related we will continue to
ireat bath on an equal footing under the banner of efficiency.

1 Actually it is very unlikely that the bottleneck is abrupt. It is most likely happening through a gradual
constriction of data flow.

§ Of course, i the animal’s needs are very specific then it could develop specialized feature deteciors—bug
detectors—very early on in its pathways that are tuned for objects and patterns that are critical for ils
survival. Such detectors will cut down on the data rate since they discard almost everything they do
not detect. In higher animals, where the needs are not very specific and where flexibility 1o changing
environment is critical, a better strategy is one which recodes to improve efficiency without discarding a
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3.1.2. Associative learming. Barlow (1989), argued that the way the nervous system
represents objects and events in the eavironment might have dramatic implications to
an animal’s ability to perform associative learning. The idea is that for an animal to
learn a new association between any two events, m, and m,, the brain should have
lmowledge of the prior probability of occurrence or the ¢ priori coincidence rate of
m, and m,. Without this information the animal cannot tell whether event m, has
become a good predictor of m, or whether the joint occurrence of m, and m, (or
m, followed by m,) is consistent with the random coincidence rate, ie. it cannot
learn the association of m; and m,j. What the animal needs is knowledge of the
prior joint probability P(m,,m,)}. Similar arguments apply for associations among
any number of events,

However, knowledge of the prior probability of joint events in the environment is
not easy to achieve. In general, there is a huge number of events and conjunctions
among them. By any reasonable estimate, knowledge of the prior probabilities of all
these conjunctions would require storage of an exponentially large set of numbers
that far exceeds any estimate of brain storage resources. The only way out seems
to be if the representation of events and objects in the brain is very special. In
fact, if the representation is such that the elements are statistically independent—
of course, until the association to be learned occurs—then the probability of any
combination of them can be obtained very simply from individual probabilities, since
in that case P(m;,...,m,) = P(m;)---P(m,). Thus for any N events the
N™ probabilities { P(m,,...,m,)} can be computed from knowledge of the N
individual probabilities { P(m;);m; =1,...,N}§.

So the fact that the brain is finite in its resources suggests that a minimum
entropy representation of the world might be necessary for it to perform a cognitive
task essential for survival, namely associative learning.

3.1.3. Pattern recognition. The ultimate goal of any sensory pathway is pattern recog-
nition: for its survival, an animal needs to acquire from its senses knowledge of the
location and identity of aill objects in its immediate environment. A third possible
explanation for why a sensory pathway might choose to preprocess incoming signals
to improve their efficiency is that efficiency might facilitate the pattern recognition
process (see also Barlow 1985, Watanabe 1981, 19835).

Consider for instance the visual pathway. In the incoming representation, plxels
are highly correlated and thus have low information value. A large number of pix-
els is needed to define any feature. An efficient representation, on the other hand,
decomposes images in terms of elements that are statistically independent and thus

lot of information early on. In reality, a combination of the two mechanisms is in place. For example,
an animal chooses a sensory sampling unil—acuity limit or resolution—below which it discards all data.
t In Paviovian conditioning e is the conditional stimulus while mz is the unconditional one.

t T be more precise, it needs knowledge of the conditional probability P(mgzlm,) which is related
1o the joint probability through P(mz|m;) = P{m;,m3}/P(m;). A high conditional probability
P(mz|m;) means that m; is a good predictor of my.

§ To take an example, imagine the situation where the visual pathway recodes images into a factorial
mpresenl.alion Then the probability of any scene can be oomputed easily from the product of probabilities
of the individual elements that it activates. This scene pJ.UUdUH:IlJ’ can e LIIUI.IBI.II. of i two Wways, onec
as the probability of some complex stimulus and two as the joint probability of the features that make
up the stimulus. Thus factorial codes in vision provide the visual pathway with a simple way (0 compute
joint probabilities of visuai features.
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necessarily more informative elements. These elements are the features or the ‘vocab-
ulary’ from which natural images can be assembled most economically. It is possible
that these building blocks, arrived at by pure statistical considerations, are closer to
the patterns and objects an animal needs to recognize in its environment and hence
a representation that uses them could simplify the subsequent pattern recognition
process.

Independent of whether the visual system takes advantage of efficiency for pattern
recognition, it is of interest to find what the features in efficient representations of
natural images turn out to be. This is a concrete proposal, since starting with a data-
base of natural images, one can look for transformations that drive R or some variant
of it down. One promising approach for doing this is to use neural networks which
can be trained using unsupervised learning algorithms that incrementally improve
efficiency of representation as the metwork is exposed to more examples of natural
images. Some unsupervised learning algorithms that achieve this in some simple

cattanoc hava annanraed in fInndall 10A0 Hintnan and Cainnwelrsi 1082 Donrlmutriar
Fultllifo Lyl Gppiaitu L SSusan ss0u ALINIUA UMM DVJLIVWTORE L0, DCal vl

and Hinton 1986, Barlow and Foldiak 1989, Redlich 1991, Atick and Redlich 1992b).

3.2. An optimization problem

In this section we formulate the principle of coding to improve efficiency as an op-
timization problem. For concreteness, we focus on visual processing. We make the

hirmabhactie thar tha ol ouctarne 16 Asmcarnad wanth hoilding a AR Lt A bRaTy e
OYPULGCRIS Uil Uil Visldi Syolliil b CONCeliicy Wil GULOINE & MiRunUn SAULULYY Ul

factoriai representation of the natural worldt. What this means is that the visual
system has to map the photoreceptor signals, which are highly correlated, to a rep-
resentation where the elements are statistically independent. It is unlikely that any
system could achieve this in one recoding. It is more likely that it would have to
work in an iterative scheme that tries to improve efficiency by successively eliminating
more complex forms of correlations. For instance, we shall see in subsections 5.2
and 5.3 that if at the first stage one insists on eliminating only second order statistics
ignoring all the higher order regularities, one arrives at filters with properties that
are close to those observed in the retina. It is then conceivable that the elimination
of more complex statistical structures could lead to processing similar to that found
in the primary visual cortex.

To begin with, let {L,,i =1,...,n} denote the activities of the n ncurons in the
input iayer and {O;,7 = 1,...,{} the corresponding activities in ihe output ayer. (i
is not necessarily equal to n). The response of the output neurons is assumed to be
some general function of the input activities:

0; = K,(Ly,...,L,} Vi 3.1)

The input and output layer could be any two consecutive stages along the visual
pathway. The question is then how should the recoding functions { K;} be chosen in
order to achieve the desired statistical independence?

In subsection 3.2, we have seen that a recoding that minimizes the sum over
pixel entropies Z§=1 H{O;) to its absolute minimum while keeping the total entropy
fixed achieves statistical independence. In general, one may not be able to find the
{K,} that achieves the absojute minimum. For this reason, we define a fitness or

t Since by a simple wansformation we can also achieve minimum redundancy, the resuits of this section
are equally retevant to minimum redundancy coding.
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energy functional, £{K}, that grades different recodings, {K;}, according to how
well they minimize the sum of pixel entropies without loss of information. A recoding
is considered to yield an improved representation if it possesses a smaller value for
E. The simplest energy functional for statistical independence is

1
E{K;}=Y H(0;,)-2p[H(Oy,...,0,) - H(Ly,...,L,)] (32

i=1

where p is a parameter penalizing information lpss. It can also be treated as
a Lagrange multiplier in which case it enforces the constraint H(O,,...,0;) =
H(L,,...,L,) exactly. Any hardware constraint can be added to (3.2) with the
appropriate Lagrange multiplier.

The optimal recoding can be found by solving the variational equations:

SE{K} _

K, - 0. (3.3)
In general, these equations are hard to solve if { K} is allowed to be any arbitrary
function. However, it is not clear that biology could implement recodings by arbitrary
functions. A better approach would be to find the optimal solution for a restricted
class of functions that are implementable by realistic layers of neurons. For example
the retina to a good approximation performs a linear transform on the photoreceptor
signals, so one could solve (3.3) for the class of linear functions.

An interesting simplification occurs when { K} is restricted to the class of linear
one to one (I = n) recodings ie. O; =30, K;;L;, Vi. By a change of variables,
keepmg in mind that P( O1 . , O,,) transforms as a density it is not hard to show
that & Kulv . } - H ‘\"‘1! .y Lﬂ} = logdetK uxuuyualduu of details of the
statistical structure of natural scenes, where K stands for the matrix X.. The only
knowledge of the statistics resides in the pixel entropies {H({O;)}. In subsection
5.2, we solve (3.3) explicitly for this special class of codes. But first we discuss the

statistics of natural scenes which are needed to compute Eiﬂ H(O;) in (3.2).

3.3, Statistics of natural scenes

Unfortunately only little is known at the quantitative level about the statistical prop-
ertics of natural scenes. Some of that knowledge has come from the early work
on the statistics of television images (Gouriet 1952, Kretzmer 1952, Harrison 1952,
Schreiber 1956) and from the more recent measurements of the pairwise correlation
function of natural scenes by Field (1987, 1989). Thus our model of natural scenes

un'l'l 'hqun tn he annroximate
approximaie.

The two-dimensional pairwise correlation function, or alternatively the spatial
autocorrelator, is defined as

R(®;,z,) = (L(z,) L(x,)) (3.4)

where the brackets denote ensemble averaging over scenes or average over one large
scene assuming ergodicity (Papoulis 1984). L(=z,), L(=,) are the light levels above
the mean level at two spatial points =, and z,. By homogeneity of natural scenes
the autocorrelator is only a function of the relative distance, X = =, — =,: R(X).
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One can thus define the spatial power spectrum which is the Fourier transform of the
autocorrelator

R(f) = [ 4X exp(if - ORX). (3.5)

For an ergodic system (Papoulis 1984), the power spectrum R(f) is simply given by
L f)L( f) and therefore it is only necessary to take the Fourier transform of a

L HG bkz} l.[] UIUE:I io WI[IPUI.C: Lllﬂ pUWI:I bpt’.l.[ﬂ.ll]l
This is what Field did, where he found that invariably for natural scenes

R(f) ~1/|f? (3.6)

which corresponds to a scale invariant autocorrelator: under a global rescaling of
the cpnrml coordinates » — o the autocorrelator D(n.a-\ — R{z\t. Althoush thic

Qi WAASAMLLIGLNAS o i QniAad iRy s W TOAT A S LMLLV WO LAy

scale invariant spatial power spectrum is by no means a complete characterization of
natural scenes, it is the simplest regularity they possess.

The model of natural scenes that we adopt is one where the pixels
(L{=,),..., L(=,)) making up an image are chosen with a Gaussian probability
distribution of the form

P(L) = [(2m)" det(R)]~ /2 exp |:—%L»R"l . L] . 3.7

In writing this expression we have used upright bold-face symbols to dencte matrices
and vectors; R stands for the matrix R;; = (L(xz;)L(=z;)} and is given by the Fourier
transform of (3.6), and L is the vector ("L(zl), ..y L{=,)). The distribution in (3.7)
is the one that gives maximum total entropy (L) consistent with the autocorrelator
being R. In other words it is the distribution that incorporates no knowledge beyond
what is specified by the autocorrelator, and hence is the one that most honestly

reflects what we know about natural scenes. Equation (3.7) will be used in section 5.

VI o P9 LI
4 LAMLL

The number of examples of neural systems where a computational strategy to improve
efficiency has been demonstrated, is growing (Laughlin 1981, Atick and Redlich 1990a,
1992a, Bialek 1990, Atick er af 1990). In this review, we only have space to discuss in
detail two examples. These two illustrate coding strategies designed to deal with the
two types of inefficiencies described in subsection 2.4. Our first example, discussed
in thns section, illustrates a coding scheme from the fiy compound eye that eliminates
inefficiency due to unequal use of neural response levels (Laughlin 1981). The second,
to which we dedicate section 5, examines the mammalian retinal coding strategies in
space~time and colour, which appear to be designed primarily to deal with inefficiency

due to interpixel dependencies or correlations.

1 T make the inverse Fourier transform of (3.6) well defined one has to use a low and high frequency
cutoffs which physically correpond to 1/(size of the visual field) and 1/{resolution scale) respectively. These
cutoffs violate the scale invariance of R{z), which holds only as an approximate symmetry.
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4.1. LMC gain control in the blowfly compound eye

The large monopolar cells (LMC) in the blowfly compound eye have been studied
extensively over the last two decades (for reviews see Shaw 1984, Laughlin 1587).
They are interneurons known to respond to contrast signals. These neurons, just like
all other neurons, face a serious coding problem since they have a strictly limited
dynamic range, i.e. they possess only a small number of distinguishabie response
levels. The question is how the 1MC should choose its gain (or contrast sensitivity)
so as to most efficiently represent the different contrast levelst.

If the LMC sets its sensitivity too high, inputs very often would saturate the
response and much of the information about high contrast inputs would be lost. On
the other hand, if the sensitivity is too low, the information about low contrast inputs
would be lost. In both cases, the different output levels would be far from being
equally utilized. In the first case, the higher output states are used much more often
than the lower ones, while in the second case large parts of the output at the high
end remain under-utilized. ‘Tb achieve an efficient encoding, the LMC must choose its
gain such that all response levels are used with equal frequency.

This problem was first analysed information theoretically by Laughlin (1981}, here,
we paraphrase his analysis. The first step in trying to discover the optimal code is to
find out the statistical regularities of the input. In this case we only need to know the
probability distribution of contrast signals occurring in the natural environment of the
fly. Laughlin (1981) measured it from samples of horizontal scans of dry woodland
and lakeside vegetation.
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Figure 1. Probability distribution of contrasts, (@), in the fiy environment from the
measurements of Laughlin (1981). The contrast-response predicted by information theory

4
response and that actually measured by Laughlin (1981) in the LMC.

Let us denote the input contrast signal by ¢, and use o O represent any one
of the output or response levels, measured in some appropriate quantization units.
The probability distribution for the input is P(c) and it looks something like what
is shown in figure 1(a), adapted from Laughlin (1981). The neural transfer function

t Here we are working at high luminosity so we can ignore the role of noise and treat the probiem with
the tools of noiseless information theory.
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or the neural gain g defines a mapping from the input ¢ to the output ¢ = g(c).
To achieve optimal coding, the function g should be chosen such that the probability
distribution of the output, P{o), is constant for all output states o, ie. P(o) = o
for some constant . Since the transform from the input ¢ to the output o can be
thought of as a change of variables, and since the probabilities transform as densities,
then

P(o) do = P(c) de. 4.1

Setting P(o) = a, we can integrate the resulting equation to find the transformation
on the input needed to equalize the output probabilitiesf:

1 c
o=g(c)== | ddFP()
¢ /‘1 @4.2)

re
-=j dc' P{c")
-1

max

which can be recognized as the cumulative probability map. Notice that the constant
a is given by 1/o_ .. since o .. = (1/a) f_lldc’P(c’) = 1/a. Also, the sensitivity
of the cell, defined as do/de¢, in this coding scheme is simply P(¢). So the neuron is
most sensitive around the most probable input contrast, with its sensitivity dropping
to zero as the signal ¢ becomes improbable (see figure 1(d)).

Laughlin compared this predicted neural coding strategy to that found in experi-
ments where he measured the response of the light-adapted LMC to sudden increments
or decrements of light about the steady background level. The results of the compar-
ison are shown in figure i{c). The full curve is the cumulative probability computed
from measured contrast probability distribution in the fly environment, while the dots
with error bars are actual measurements of contrast response in the LMC. The dots
represent the average of repeated responses to the same stimulus, The agreement is
clearly very good.

4.2. Gain control in a layer of n neurons

In this section we generalize Laughlin’s result to a layer of n neurons each receiving
inputs from a spatial array of n sensory cells. If we denote the inputs from the sensory
cells by {c;,¢ = 1,...,n} and the response of the neurons by {o;,7=1,...,n}, the
question again is how to choose the gain function, defined by o; = g;(¢,,...,c,), in
order to use the neuronal output levels most efficiently. We will make the assumption
that all the output neurons have the the same limited dynamic range.

The analogue of (4.1) here is

Ploy,...,o ) do,- -do, = P(ey,...,e,) dc; - -de,. 4.3

In peneral, contrary to the one-neuron case, it is not obvious how to integrate (4.3)
when we set P(o,,...,0,) = a. However, suppose that the neurons before choosing
their gain function, coded the signals into a factorial representation, ie. coded the

t The contrast signal is defined as ([ — Iy) /I where I is the intensity of a given pixel while Iy is the
average intensify within some visual window. This definition gives a contrast that cannot be smaller than
-1.
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input signals {c;} into {+;} such that P(v,,...,v,) = P(v,) - P(~,). Equation
(4.3) can then be easily integrated to derive the necessary gain control on the resulting
signals. The latter is simply given by the cumulative probability maps

[
— = d'n P(;) (4.4)

max -1

o

for each neuron independently. Thus for this system, efficiency of output representa-
tion predicts the two stage coding shown in figure 2.

Minimum o Gain
= i Contral

Entrepy Ceding

Figure 2. The problem is how (o represent correlated signals most efficiently if the
output neurons possess limited dynamic range. The simplest solution is shown as a two-
stage process in this figure. In the first stage input signals are decorrelated to provide a
minimum entropy code which can be followed by a simple cumulative probability map
that functions as the gain control. The latter serves to fit the decomrelaied signals into
the limited dynamic range of each neuron independently.

To be more concrete we work out in detail the coding for the simple case of
n = 2 and where the signals ¢, and e, are Gaussian signals with a correlator given

by
(e, c1) (g Cz)) (1 7")
= 4.5
((Cz ) (e €3} o1 ()
where r is a number < 1 characterizing the degree of overlap between the two

channels, and the brackets denote ensemble averages. According to figure 2, the
signals ¢, , ¢, are first transformed to the decorrelated signals v ,~v_:

n=slate)  v=sle-c). 4.6)

The -+, ,v_ signals are also Gaussian with variances 1 4+ r and 1 - r respectively.
Thus the final transformation from v, ,~v_ 1 o.,o0_ is given by a cumulative integral
over a Gaussian which is simply related to the standard error functions. The net
transformation for this system is

1 ¢ +c
o, ~erf (ﬁm) -+ constant

o_ ~erf (\}_ \c/l.l_.___;) + constant.
Notice in the regime where the contrast signals are small in comparison with the
square root of the variance, the response linearizes, o, ~ {¢; & ¢,}/v/1 £ r, and the
only effect of the gain control is to normalize the signals by dividing by the square
root of the variance.

In the next section, we generalize the above minimum entropy code to the more
realistic case of the array of retinal ganglion cells and will modify the coding to take
into account the noise. However, we will ignore the gain control transform or the
cumulative probability map and work purely within the linearized approximation.

.7
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5. Retinal coding strategies in space—time and colour

The mammalian retina i$ a rather unique neural system. It is a network that is
complex enough so insight gained from understanding it promises to be useful in
understanding other areas in the brain, yet it is still simple and isolated enough that
quantitative experiments with clear outcomes can be performed. As such, the retina
is ideal for developing and testing theoretical ideas on neural computations.

In this section, we start by giving a brief review of relevant experimental facts
about the retina. We then explore the efficiency principle discussed in section 3 in
the context of the retina. This gives a predictive framework that explains many of the
experimental facts in subsection 5.1.

3.1. The retina: some relevant experimental facts

The retina is the thin tissue lining the back of the eyeball. As a neural network, it has
feedforward architecture with three essential layers: photoreceptors, bipolar cells, and
ganglion cells. However, it also has important lateral connections and interneurons
acting within a given layer. The photoreceptor Jayer forms the input to this network,
where photons from an image focused on the surface of the retina are captured and
transduced into graded voliage signals. The output is built of spike trains generated
by ganglion cells, and it propagates down the optic nerve to the LGN and subsequently
to the visual cortex.

Since, here, we are only interested in functional properties of the retina, neither
detailed connectivity of its network nor properties of cells other than photoreceptors
and ganglion cells are of interest to usi. We simply think of the retina as a black-box
processor whose input is the photoreceptors’ activities and output is the ganglion celis’
activities. This processor can be characterized by its transfer function which specifies
how the output is related to the input, see figure 3.

The retinal transfer function is measured in single-cell recordings of ganglion
cell outputs or inferred from psychophysical contrast sensitivity measurements subject
to some plausible assumptions (see Shapley and Enroth-Cugell 1984 and references
therein). In single-cell experiments, one finds that after adaptation to the light level
the output of any given ganglion cell, measured as the rate of spikes in spikes/s, is to
a pood approximation given by a weighted sum of the photoreceptor activities over
a small contiguous region on the surface of the retina known as the cell’s receptive
field, RF (figure 3). Thus the output of a ganglion cell whose RF is centred at z; and
at time ¢ can be written as}

O(=,,t) = /dz'dt’I((m,—,z’;t,t’)L(z’,t') =K L .1)

where L{z',t') is the activity of the photoreceptor at location =’ and at time ¢/, while
K(=;,2';1,t) is the retinal kernel or retinal transfer function.

t For further information about petinal organization the reader shoutd consult reviews on the subject (e.g.
Davson 1980, Shapley and Enroth-Cugell 1984, Sterling 1590). o '

1 The linear ceills in cat are often referred 1o as the X celis, while in monkey they are known as the
parvocellular cells which constitute about 80% of the ganglion cells in the retina, In monkey, they are
considered to be part of a pathway that extends into the deep layers and is believed to be concermned
with detailed form recognition (see e.g. Van Essen and Anderson 1988).
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Figure 3. The retina as a black-box processor.

Without loss of generality, the kernel can always be re-expressed in terms
of relative coordinates, X = (=; — #')/2, and average coordinates (=, -+ =')/2:
K((z;, - ®'}/2,(z; + =')/2;1,1'). However, in many species, K has a weak de-
pendence on the average coordinates. In other words, the kernel changes gradually
with eccentricity or with angular distance from centre of gaze. Also, after adaptation
it is known to be only a function of the temporal difference T = ¢ —¢'. Thus, to
a first approximation one can assume translation invariance and retain only the de-
pendence on the relative coordinates, K(z;,=';t,t') = K(=; — 2’51 - t'). This is
convenient since it enables us to define the retinal filter, K f,w), simply by Fourier
transforming X'

K(f,w)= ]dX AT exp(—if - X —iwT)K(X,T). (5.2)

This is the object that is actually measured in experiments. Furthermore, by rotational
symmetry it is only a function of (|f|,w). In experiments, a luminosity grating,
L = I,(1+mcos( fx) cos(wt)) is projected onto the RF of a cell and the minimum
contrast mn, , ; needed to elicit a certain level of response, 7y, at that spatio-
temporal frequency of stimulation is recorded. The recording is repeated for different
values of ( f,w, I;). By linearity of the output:
"o

I K

(1FE 2} =
DR RN F

y

_ T (5:3)
ml-ﬁ!w!IG

Thus there is a family of retinal filters, one for each adaptation or luminance
level I,. In figure 4, which is reproduced from the data of Enroth-Cugell and Robson
(1966) and De Valois et al (1974), we show two typical families of filters, one for the
cat and one for the monkey, as a function of f and at a given low temporal frequency
w. More precisely, what is shown is I, x K which is called contrast sensitivity. A
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Flgure 4 Measured contrast sensitivity. The data in the left figure are reproduced from
Enroth-Cugell and Robson (1966), while that on the right are from De Valois et of
(1974). In both cases, the luminance level fq decreases by one log unit cach time we
go to a lower curve.

prominent feature in that figure is the transition from band-pass to low-pass filtering
as I is lowered. A similar transition is also observed as the temporal frequency of
stimulation is increased for a given spatial frequency.

If a retinal filter at high Juminance is Fourier transformed back into space, it
looks like the curve in figure 5 This is a one-dimensional slice in a two-dimensional
rotationally invariant spatial profile, and it shows the familiar centre-surround orga-
nization of ganglion cell RF: The cell effectively receives excitatory input (+) from
the photoreceptors in a small region around its RF centre and inhibitory input (-)
from the surround region. These cells are known as on-centre cells, The other class
of spatially opponent cells found in the retina have an inhibitory centre and an ex-
citatory surround and are known as off-centre cells. A similar organization exists in
the temporal domain.

distance

Figure 5. Retinal kernel at high adaptation level showing the opponent spatial organi-
zation of a ganglion cell’s RF.

In retinas of species that possess colour vision, such as most primates and shallow-
water fish, RFs of ganglion cells possess a more complicated centre-surround organ-
ization. In these retinas, there are several types of photoreceptors that possess
different photosensitive pigments. Functionally, the various pigments are identical
except they differ in the location of their peak spectral sensitivity. In humans for
example, the three types of pigments referred to as B, G and R for blue, green,
and red respectively (or alternatively known as S, M and L for short, medium and
long spectral wavelength respectively) best absorb light of spectral wavelength around
419 nm, 530 nm and 558 nm respectively. '
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Corresponding to the diversity of photoreceptors there are several types of spa-
tially opponent ganglion cells. These cells differ in the way the three photoreceptor
types are used in the organization of their RF. In the primate retina, the most com-
mon on-centre ganglion cells receive excitatory input dominantly from one type of
photoreceptors in the centre and inhibitory input from a different type in the sur-
round: the two most common on-centre cell types are +R in centre and —G in the
surround or 4G in centre and —R in surround (Derrington et af 1984), see figure
6(a). The off-centre cells are similar. These colour coded cells are known as single
opponent cellst.

()

NS NS

-R+G -R-G
{5

Figure 6. The two extremes of opponent colour coding. ‘The cell types found in primates
are shown in (g), while those found in shallow-water fish are shown in (b).

Single opponent cells are not found in retinas of all species that possess colour
vision. In fact, they represent one extreme in colour coding. The other extreme
is found in shallow-water fish which possess what are called double opponent cells
(Daw 1968). As the name implies, these cells receive inputs of comparable strengths
from two types of cones at every spatial location in their RF. For example, in one
double opponent cell type found in goldfish retina, the R¥ has a centre that receives
excitatory R and inhibitory G stimulation while its surround receives inhibitory R and
excitatory G inputs, figure 6(b).

The fact that colour coding is qualitatively dependent on the environment of the
animal makes it an interesting dimension for testing ecological theories. A successful
theory of the retina should not only explain the shape of the retinal kermnel and its
dependence on background luminance, it should also account for differences seen
among species. In the theory of retinal processing presented in subsections 5.2 and
5.3, differences in computation strategies among species are attributed to identifiable
differences in the visual environment (information source differences). In subsection
5.2, we start by examining the problem jn the purely spatial domain, and then show
how to incorporate time. We also discuss something that we have ignored thus far,
namely the role of noise. We introduce colour in subsection 5.3. The problem in pure
space-time was first considered by Atick and Redlich (1990a,b), in the pure colour

t There are other opponent cell types that involve blue cotles. However, since blue cones are rare in
the retina (non-exisient in fovea) these cells are also rare and hence will not be discussed here (De
Monasterio et af 1985).
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domain by Buchsbaum and Gottschalk (1983), and in the fully mixed dimension of
space-time and colour by Atick e al (1990, 1991).

3.2, Theoretical approach to the retina: spatial processing

In section 3, we have given several reasons why a sensory pathway, such as the visual
pathway, might recode incoming signals from the natural environment into a more
efficient representation. In this section, we show how to use this idea to predict retinal
processing in the spatial domain. We work with the hypothesis that the retina’s main
goal is to build a minimum entropy representation, ie. a representation where the
clements are statistically independent or decorrelated (the same procedure followed
by the appropriate gain control yields a redundancy reduced code as we have seen in
subsection 4.2.) However, we limit the class of recodings to linear transformations.
Actually, with this restriction we shall see that the retina can only eliminate pairwise
correlationst.

5.2.1. Decorrelation in the absence of noise. In subsection 3.2 the problem of finding
minimum entropy codes was formulated as a variational problem of some well defined
energy functional (5.3). The solution to the variational equations (3.3) then gives the
optimal transformation that best minimizes (3.3). Here, we explicitly solve (3.3} for
the class of linear mappings which, as discussed in the previous section, is the class to
which the measured retinal transform belongs. We will also restrict this class further
to that of one to one mappings purely for simplicity. The analysis can be repeated
allowing the number of outputs to differ from the number of inputs—which is the
biologicaly more realistic situation—-however, our prediction for the organization of
the receptive fields is insensitive to this assumption. With these simplifications (5.3)
takes the following form

]
E{K} =) H(0;) - 2p[H(0) - H(L)]
i=1
i
=Y H(O;)- plogdetKT -K (5.4)
i=1
where O, = O(z,;) is the response level of ganglion cell at location x;, and we have
uscd the upright bold-face symbols to denote matrices and vectors; K denotes the
matrix K;; = K(z;—=;), 0 =(0;,...,0,), and similarly for L. We have also used
the fact that H{0O) — H(L) = logdet K = 1logdet KT - K which is valid when O
is related to L through a linear transformations.
To exhibit £{K} more explicitly we need to compute the sum over pixel entropies
Z:El H(O;). Treating the discrete response levels O; as a continucus variable, the
ith pixel entropy can be approximated by a simple integral:

H(O;))= —ZP(O;)log P(Oi}w—de,P(Oi)log P(O;) (5.5)
o,

t Since we will be assuming Gaussian signals, two-point decosrelation and statistical independence are
aanivalant

equivalent.

t To see this, note that under a linear transformation O = K . L, the probabilities being densities—
dOP(0) = dLP(L) transform as P(0)} = P(L)/ det K. Substituting this expression into the definition
of H{0) and changing variables it is straightforward to get H({0) = H(L) + log det K.
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which depends on the ith pixel probablhty P(O ). The latter is computable from
the input probability P(L) since O, = E ;L. P(L) in (3.7) is a Gaussian
with a covariance matrix R, therefore P(O) lS also a Gaussian but with covariance
matrix R = K -R - K. In (5.5) we only need the individual pixel probability P(O,)
for every 4, which is given by

P(O;) = [HdOjP(O).

L

It is easy to do the integrals and show that

P(O;) = o

1 1
- ——O7 . 5.6
R P ( 2R, ’) 66

(Again R,; = (O?), the diagonal part of R;; = (0,0;).)
Substituting the expression for P(O;) from (3.6) in (3.5), we find H(O;) =

log R;;, which when summed over all pixels yields

By translation invariance, all the R, are equal, R,; = {OZ) for a pixel at some
arbitrary location 0, thus ZL, H(O;) = llog({O3)). This can be substituted for
the first term in (5.4); however, there are a couple of mathematical steps that lead to
an even simpler form of the energy functional,

First since (O3} > 0, we can drop the logarithm from Iog((O }) and minimize
instead the simpler quantity {OZ). However, by translation invariance, minimizing
(O3} is equivalent to minimizing the explicitly invariant expression Y ,{O%(=,)) =
TL(K-R-KT),, = Tr(K-R-KT). The final energy function is then

E{K} = Tr(K-R-KT) - plog det(KT - K). (5.8)

The advantage of this invariant form of £ is that we can now go to Fourier space
very easily:

B{K) = [AIKOPR) - o [ aflog | KPP (59)

where we have used the identity log det Q = Trlog Q valid for any positive matrix
Q.

The variational equations in frequency space, § E{ K}/ K (Ff) = 0, are trivial in
this case: the optimal solution is just

|K(£)IP = ff (5.10)

This could have been guessed more easily by diagonalizing the autocorrelator matrix
of the output R(w, — x;) = (O(x;)O(=,;)). However, we have gone through the
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analysis systematically to illustrate the general procedure which will be useful for
more complex codings. Since R{f) = 1/|f|? for natural scenes, the predicted kernel
is simply K(f) = p|f]. On a lop-log plot this gives a curve of slope one.

We can compare this simple prediction with retinal filters in the regime where
the noise is not significant, namely in the regime of high luminance I; and at low
frequencies. In figures 7(a) and 7(c) we have plotted some typical experimentally
measured retinal filters at high luminance I,. The data are taken from De Valois
et al (1974) and from Kelly (1972), respectively. In figures 7(b) and 7(d), we show
the ratio x( fi= K, f)/ K »(f) where K, and K, ~ |f} are the measured and
predicted filters respectwely At Tow frequency, we can see that x(f} is fat or that
both filters have the same slope.
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Figure 7. Retinal filters (a), and {¢) at high mean luminosities, taken from the data of
De Valois et al (1974) and Kelly (1972), respectively. () and (d) are the data in (a) and
(c), respectively, multiplied by 1/[f][, which is the amplitude spectrum of natural scenes.
This gives the retinal ganglion cell's output amplitude spectrum. Notice the whitening
of the output at low frequency. The ordinate units are arbitrary.

Another way to interpret the results in figures 7(b) and 7{(d) is as follows. The
power spectrum of the output is given by the square of the retinal filter times the
input power spectrum:

{O(HO () = (K(H LKLY = 1K(HIPRF). (3.11)

However, R(f) from (3.6) is 1/|f|%>. The output amplitude spectrum, which is the
square root of the power spectrum, is then proportional to x(f) which is what is
plotted in figures 7(b) and 7(d). Thus at low frequencies, the input spectrum |7|~?
is converted by the retinal kernel X (f) into a flat spectrum at the retinal output:
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{O(F)O*(f)) = constant. This whitening of the input by the retina continues up to
the frequency where the kernel peaks in figures 7(a) and 7(c). Beyond that the noise
is no longer ignorable and the actual kernel deviates from the pure whitening kernel.
This whitening is the statement in frequency space of decorrelation in regular space.
Of course, since the whitening does not continue all the way to the system's cutoff
the decorrelation in space is not perfect. In the next section we shall see that by
incorporating a strategy for noise suppression in addition to decorrelation we arrive
at filters that agree with what is measured not only gver the entire range of visible

spatial frequencies but also at all luminance levels.

5.2.2. Decorrelation in the presence of noise. The above agreement does support a
strategy of decorrelation in the absence of noise. However, decorrelation cannot be
the only goal in the presence of input noise such as photon (or quantum} noise which
always exists. In that case, decorrelation alone would be a dangerous computational
strategy as we now argue: If the retina were to whiten all the way up to the cutoff
frequency or resolution limit, the kernel K'(f) would be proportional to | f| up to that
limit. This would imply a constant average squared response K R K™ to natural signals
L{x), which for R ~ |f|~% have large spatial power at low frequencies and low power
at high frequencies. But this same K (f) ~ |f| acting on input noise whose spatial
power spectrum is approximately flat has a very undesirable effect, since it amplifies
the noise at high frequencies where noise power, uniike signai power, is not becoming
small. Therefore, even if input noise is not a major problem without decorrelation,
after complete decorrelation (or whitening up to cutoff) it would become a problem.
Also, if both noise and signal are decorrelated at the output, it is no longer possible to
distinguish them. Thus, if decorrelation is & strategy, there must be some guarantee
that no significant input noise is passed through the retina to the next stage. We

halieve thic it why the retina stong whiteninag itc innut at a freaouency far lower that
Y reina SOps Winiclung us mpul atl a requendy

the cutoff frequency.

Further evidence that the retina is concerned about not passing sigaificant amounts
of input noise is found in the fact that the ganglion cell kernel, as we have seen in
subsection 5.1, makes a transition from band-pass to complete low-pass as the retina
adapts to very low [,. Since as [, decreases the signal to noise ratic of the input
signals decreases, one expects Jow-pass filtering as a way of suppressing the noise,
which is what the retina does.

Since here we are primarily interested in testing the predictions of minimum
entropy coding (equivalently redundancy reduction), we take a somewhat simplified
approach to the problem with noise. Instead of doing a full-fiedged information
theoretic analysis that unifies minimum entropy with noise suppression (as in Atick
and Redlich 1990a,b), we work in a formalism where the signal is first low-pass
fiitered to efiminate noise and the resuiting signai s then decorrelated as before. The
advantage of this modular approach is that it leads to a more intuitive picture of the
various processing stages in the retina and it also gives paramecters that have physical
significance. Furthermore, the analysis is not as complicated as that in the unified
formalism.

We start by going over the stages of signal processing that we assume precede
the decorrelation stage. Figure 8 shows a schematic of those stages, First, images
from natural scenes pass through the optical medjum of the eye and in doing so their
image quality is lowered. It is well kmown that this effect can be taken into account by
multiplying the images by the optical modulation transfer function or MTF of the eye,
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Figure 8 Schematic of the sighal processing stages assumed to take place in the retina.
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(Campbell and Gubisch 1966). In fact, an exponential of the form exp{~(|f|/f.)%),
for some scale f, characteristic of the animal (in primates f, ~ 22 cycles/deg and
« ~ 1.4) is a good approximation to the optical MTF. The resulting image is then
transduced by the photoreceptors and is low-pass filtered to eliminate input noise.
Finally, we assume that it is decorrelated. In this model, the output-input relation
schematically takes the form

O =K (M- -(L+n)+ng) (5.12)

where the dot denotes a convolution as defined in (5.1), n{z} is the input noise
(such as quantum noise) while n,(=;) is some intrinsic poise level which models
post-receptor synaptic noise, Finally, M is the filter that takes into account both the
optical MTF as welil as the low-pass filtering needed to eliminate noise. An expiicit
expression for M will be derived below.

With this mode}, the energy functional determining the decorrelation flter K (f)
is

E{K} = [df IK(DP (MP(F)R(D) + V%) + Nl - o / dflog |[K(f)]F (5.13)

where N2(f) = {|n(£)]?) and NE(f) = {|no(f)|*) are the input and synaptic noise
powers respectively. This energy functional is the same as that in (5.9) but with the
variance R(f) replaced by the variance of O in (5.12).

As before, the variational equations § E/6 K'(f) = 0, are easy to solve for K(f).
The predicted filter that should be compared with experimental measurements is this
variational solution, X, times the filter M. We denote this by K

veM(f) _
T [M(F) (R(F) + N®) + N2

An identical result can be obtained in space-time trivially by replacing the auto-
correlator R(f) and the filter M(f) by their space~time analogues R(f,w) and
M{f,w), respectively, with w the temporal frequency. However, we focus here on
the purely spatial problem where we have Field's (1987) measurement of the spatial
autocorrelator R(f) of natural scenes: R(f) = IZ/|f|>.

expt

| Kexpe (F) = | K(F)l M(F)

(5.14)
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5.2.3. Deriving the low-pass filter. In our explicit expression for K., below, we shall
vse the following low-pass filter

vt (i) "o [ (8)] e

The exponential term is the optical MTF while the first term is a low-pass filter that we
derive next using information theory. The reader who is not interested in the details
of the derivation can skip this rather technical section without loss of continuity.

It is not clear in the retina what principle dictates the choice of the low-pass
filter or how much of the details of the low-pass filter influence the final result. In
the absence of any strong experimental hints, of the type which imply redundancy
reduction, we shall try a simple information theoretic principle to derive an M. We
insist that the filter M should be chosen such that the filtered signal O’ = M .(L+n)
carries as much information as possible about the ideal signal £ subject to some
constraint. To be more explicit, the amount of information carried by O’, about L, is
the mutual information I(O’, L) (see the appendix). However, as we discuss in the
appendix f(O’, L) = H{O") — noise entropy (for L and n statistically independent
Gaussian variables), and thus if we maximize I{O’, L) keeping fixed the entropy
H(O") we achieve a form of noise suppression.

We can now formulate this as a variational principle. To simplify the calculation
we assume Gaussian statistics for all the stochastic variables involved. The output-
input relation takes the form: O = M - (L + n) + n,. A standard calculation leads
s

MR+ N2)+1) 5.16)

10, L) = /dflt)g( e

where we have chosen units where the quantization noise have unit variance (n2) = 1.
Similarly, one finds for the entropy H(O') = [dflog(M?(R+ N%)+ 1) in the
same units. The variational functional or energy for smoothing can then be written
as E{M} = -1(0', L)+ nH(O). It is not difficult to show that the optimal noise
suppressing solution § E/é M = 0 takes the form:

e () (et

If the parameter n > 1 then clearly there is no non-vanishing solution M to this
smoothing problem. We will assume that 7 < 1 50 in fact we are in the regime
where the first term inside the square root dominates and hence we can drop the —1
term. Actually » has a dependence on I, since to hold H(O') fixed at all values of
I, implies that n be a function of [,. It is not hard to see that n ~ I, will ensure
that H(O') fixed with mean luminance (we assume that noise N? is quantum noise,
and hence N?% ~ I,). Ignoring all overall factors in M that are independent of f
and [, we arrive at the expression that we exhibit in the first term in (3.13).

5.24. Analysing the solution. Let us now analyse the form of the complete solution
(5.14), with A given in (5.15). In figure 9 we have plotted A, (f} (curve A) for

a typical set of parameters. We have also plotted the filter without noise R(f)~!/2,
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(5.10), (curve B) and M(F), (5.15), (curve C). There are two points to note: at low
frequency the kernel K, (f) (curve A) is identically performing decorrelation, and
thus its shape in that regime is completely determined by the statistics of natural
scenes: the physiological functions Af and N drop out. At high frequencies, on the
other hand, the kernel coincides with the function M, and the power spectrum of
natural scenes R drops out.

We can also study the behaviour of the kernel in (5.14) as a function of mean
luminosity /,. If one assumes that the dominant source of noise is quantum noise,
then the dependence of the noise parameter on [ is simply N? = I, N'? where N’
is a constant independent of I, and independent of frequency (flat spectrum). This
gives an interesting result. At low frequency where K., goes like 1/v/R and jts
I, dependence will be K, ~ 1/I, (recall B ~ I3), the system exhibits a Weber
law behaviour, ie. its contrast sensitivity [y K, is independent of 1,. In the other
regime—at high frequency-—where the kernel asymptotes to M with N? > R, then

Keypy ~ 1/ 1}/? which is a De Vries-Rose behaviour I, Kogpr ~ Iul/ ?. This predicted
transition from Weber to De Vries-Rose with increasing frequency is in agreement

with what is generally found (see Kelly 1972, figure 3).
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Figure 8. A typical predicted retinal filter {curve
A) from (5.14), while curve C is R(F}~1/? which
is the pure whitening filter {5.10). Finally curve B
is the low-pass filter Af.

Figure 10. Predicted retinal filters, (5.14), at dif-
ferent [, separated by one log units, assuming that
the dominant source of input noisc is quantum
noise (N2 ~ Iy). No other parameters depend on

Ip. The fixed parameters are f. = 22 cycles/deg,
oa=14,p=2"7%x10°% N'= 075 The data arc
psychophysical contrast sensitivity measurements of
Van Nes and Bouman (1967).

Given the explicit expression in (5.14) and the choice of quantum noise for N we
can generate a set of kernels as a function of [,. The resulting family is shown for
primates in figure 10. We need to emphasize that there are no free parameters here
which depend on [,. The variables that needed to be fixed were the numbers f_, e,
/ N’ and N, and they are independent of I,. Also we work in units of synaptic
noise ng, so the synaptic noise power NZ is set to one. We have superimposed on
this family the data from the experiments of Van Nes and Bouman (1967) on human
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psychophysical contrast sensitivity. It does not take much imagination to see that the
agreement is very reasonable especially keeping in mind that this is not a fit but a
parameter-free prediction.

We can also compare the predicted kemnels in (5.14) to ganglion cell kernels mea-
sured in single-cell experiments. However a priori we do not expect close quantitative
agreement for the following reason. The theory predicts the transfer function for the
aggregate system, ie. for the collection of all the output cells. The only reason why
it might appear that we predicted a single-cell kernel is because of the assumption
of translation invariance which forced all cells to have the same kernel and forced
single-cell properties to be identical to aggregate properties. In the real retina, where
translation symmetry is broken, different cells have different kernels and hence the
aggregate wransfer function (obtained by combining the differcnt single-cell kernels)
is not equal to any one single-cell kernel. In experiments, it turns out that the
difference between single-cell and psychophysics data is quantitative not qualitative.
For instance, in the psychophysical data one finds that the frequency of optimal con-
trast sensitivity decreases with I, more than what is found in single-cell experiments.
The shifts that the theory predicts are more consistent with the psychophysical shifts.
However, we expect that repeating the calculations of the last section without trans-
lation invariance would produce a family of single-cell kernels with shifts that are in
closer quantitative agreement with experiment.

5.3. Introducing colour

Images in nature carry information through their spectral compositions in addition to
their spatio-temporal modulations. So an image is generally a function of the form
L(=,t, ), where X is the spectral wavelength. Many animals have evolved visual
pathways capable of extracting this colour information. In the retina of these species,
images are first sampled in the spectral domain through the three cone types to give
the output activities

Po(z,t) = /dAC“()\)L(z,t,)\) +n(z,t) (5.18)

where the functions C*(\) are the spectral sensitivity functions for the three pho-
toreceptor types, ¢ = 1,2,3 for R, G and B respectively. In figures 11(a) and 11(b)
we show the spectral sensitivity curves for the cones in the retinas of primates and
shallow-water fish, respectively (the two systems that form the two extremes in retinal
colour coding).

One important feature to notice about the two sets of curves in figure 11 is the
fact that the R and G spectral sensitivity curves overlap. The degree of overlap is
more significant for primates’ retina than for shallow-water fish. To be quantitative,
in the monkey Macaca fascicularis the separation of the spectral peak sensitivities
between R and G is about 30 nm while for goldfish the corresponding separation is
about 90 nm. This difference between the two species is due to adaptation of cone
pigments to different visual environmentst and will play an essential role in explaining

t in the case of primates, which are believed to have evolved in a forest like environment, one finds
that the proximity of R and G cones can be explained by'the fact that most of the information in a
forest is squeczed in a narrow spectral band centred about 550 nm. Thus one needs (0 sample that
region more densely if one is to resolve different objects found in that spectral band. On the other hand,
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the subsequent differences in the neural coding strategies for colour mentioned in
subsection 5.1.

The fact that the cones sample in such an overlapping fashion introduces an addi-
tional source of correlations in the photoreceptor signals and thus an additional source
of inefficiency that has to be eliminated (Barlow 1961, Buchsbaum and Gottschalk
1983, Atick er g 1990). We will limit our analysis w0 the two-cone (R and G) system,
since in primate retina these photoreceptors occur with equal density and are more
abundant than the blue cones. In fact, the blue cones comstitute only 15% of the total
cone population in the entire retina while in the fovea they are virtually non-cxistent.
For a discussion of the role of blue cones see Atick et af (1990).

We now generalize the analysis of the previous subsection 5.2 to include
colour. The chromatic-spatio-temporal correlator is a matrix of the form R**(x,1)
or in Fourier space R*(f,w). Here R'Y(x,t) is the red-red correlator
(P1{(0,0)P'(x,t)) and R'*(x,t) is the red—green correlator defined similarly and
so on. Unfortunately, not much is known experimentally about the entries of this

under water light in the spectral band between 550 nm and 610 nm is heavily absorbed by water with
the amount of absorption increasing dramatically with distance travelled. Thus if shallow-water fish had
adopted pigtments around 568 nm just like primates, they would not have been able 0 see far under water.
Shalow-water fish instead evolved cones that sampled near the infrared, an areca where the signal under
water travels much farther before complete absorption. Additional discussion regarding the adaptation
of the cone system of various species 1o the environment can be found in the excellent book of Lythgoe
(1979,
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matrix. Thus, we are forced to make some assumptions. Although, it is possible to do
the analysis entirely for the most general form of R**(f,w) (see Atick et al 1990), it
is just as informative and much simpler to analyse the case where R**(f,w) can be
factorized into a pure spatio-temporal correlator times a 2 x 2 matrix describing the
degree of overlap between the R and G systems. We will also only examine colour
coding under conditions of slow temporal stimulation or zero temporal frequency. In
that case, we can replace the spatio-temporal correlator by by 12 /|f|? (3.6). Thus we
take

I2
RO(§,0) = (1{ ’1’) e (5.19)

where r < 1 is a parameter describing the degree of overlap of R and G. We should
emphasize, that we do not advocate that this is the form of R%® necessarily found
in nature. We have reduced R°® to one degree of freedom in order to illustrate
very simply the possibilities. More complex R?°, in particular those where space
and colour are not decoupled, lead to quantitatively different but qualitatively similar
solutions.

As before, the output O is related to the input P through

0=K-(M-(P+n)+n,) (5.20)

where n®(x,t) is input noise including transduction and quantum noise, while
ny(z,t) is noise (e.g. synaptic) added following the low-pass filter M. We have
introduced upright bold face to denote in this section matrices in the 2 x 2 colour
space; also in (5.20) each - denotes a convolution in space. To see how the presence
of two channels affect the spatial low-pass filtering, it is helpful to rotate in colour
space to the basis where the colour matrix is diagonal. For the simple colour matrix
in (5.19), this is a 45 degree rotation from the red R and green G basis to the lumi-
nance, G+R, and chromatic, G — R, channels (in vector notation, the red and green
channels are denoted by R = (1,0) and G = (0,1)). This 45 degree rotation matrix
is

1 /71 1Y N
7 521

In the G & R basis, the total correlation matrix plus the contribution due to noise is

Uy =

I

U45(R(f)+N2)UIs=m§(1;r 1Er)+N2($ ?) (5.22)

where the noise, (n®n®) = §*® N2, is assumed equal in both the R and G channels,
for simplicity. Since in the G £ R basis the two channels are decoupled, the spa-
tial filters M (f) are found by applying our single-channel result in (5.15). More
specifically they are found by replacing R(f) in (3.15) by

2 TN e oY
. {Jhe3)

Notice that the two channels differ only jn their effective signal-to-noise ratios:
(S/N)y = /(1 £7)({;/N) which depend multiplicatively on the colour eigenvalues
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1 & r, In the luminance channel, G 4+ R, the signal-to-noise is increased above that
in either the R or G channel alone, due to the summation over the R and G signals.
The filter M_(f), therefore, passes relatively higher spatial frequencies, increasing
spatial resolution, than without the R plus G summation. On the other hand, the
chromatic channel, G — R, has lower S/N, proportional to 1 — », so its spatial filter
M _(f) cuts out higher spatial frequencies, thus sacrificing resolution in favour of
colour discriminability. The complete filter is finally obtained by rotating from the
G % R basis by 45 degrees back to the R and G basis

Mabm%(} —11_)(M+0(f) M?(f)) (_11 :) (5.24)

(Again M,(f) is given by (5.15) with R(f)} — R.(f) in (5.23).)

After filtering noise, the next step is to decorrelate the signal as if no noise existed
as we did in the purely spatial problem (subsection 5.2). In this case this means that
we have to find the kernel K that achieves diagonalization of the low-pass filtered
spatio-chromatic autocorrelator

R={(M-(P+n)+ng) (M- (P+n)+ny)7). (5.25)

In other words we need to find K that satisfies K - R - KT = D with D a diagonal
matrix in space and colour. In the purely spatizl problem, we have insisted on
a translationally invariant, local set of retinal filters: the approximation where all
retinal ganglion cells (in some local neighbourhood, at least) have the same receptive
ficlds, except translated on the retina, and these fields sum from only 2 nearby set
of photoreceptor inputs. These assumptions force D to be proportional to the unit
matrix. In generalizing this to include colour, we note that when D is proportional
to the unit matrix, the mean squared outputs ((K RKT)22 for output O%) of all
ganglion cells are equal. This equalization provides efficient use of optic nerve cables
{ganglion cell axons) if the set of cables for the cells in a local neighbourhood all have
similar information carrying capacity. We therefore continue to take D proportional
to the identity matrix in the combined space—colour system. Thaking D proportional
to the identity, however, still leaves a freedom to arbitrarily mix the proportion of
the two decorrelated colour signals since one can still rotate by a 2 x 2 orthogonal
matrix Ug®, ie. K(f) — U,K(f), that leaves D proportional to the identityt. This
freedom to rotate by U, will be eliminated later by looking at how much information
(basically S/N) is carried by each channel. We shall insist that no optic ncrves are
wasted carrying signals with very low S/N.

We are now ready to write down the prediction for K2%(f). To do that we go
to the G £ R basis where M2*(f) is diagonal in colour space. J**(f} can then be
taken to be diagonal since there are no correlations in colour in that basis: it consists
of two functions K (f) which are chosen to separately whiten the G £ R channels.
Since the complete frequency space correlators in the two channels after filtering by
Mo (f)are MI(FY RL(f)+ N?)+ NZ, the K, (f) are therefore

. Nz ’
K. ( = - - 5.26
«(F) [MI(FRL(F)+ N2) + Ng]'? (>:26)

t Ug" is a constant matrix depending only on one number, the rotation angle; it satisfies UgUE =L
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where NZ is the power of the noise which is added following the filter M**(f), see
(5.20).

Now putting (5.26) together with (5.23) and (5.15), we obtain the complete retinal
transfer function, ie. the one to be compared with expetiment,

%o =0 (57 1) (57 ln) (411): 20

As a reminder, the rightmost matrix transforms the G, R inputs into the G &+ R basis.
These signals are then separately filtered by K, M,. Finally, the rotation U, to
be specified shortly, determines the mix of these two channels carried by individual
retinal ganglion cells. We should emphasize that the outputs of the two colour
channels defined by (5.27) continue to be decorrelated for any choice of rotation
angle 6.

5.3.1. Analysing the colour solutions. In this section we show how the diverse process-
ing types such as those found in goldfish and primates are both given by (5.27) but
for different values of the parameter r in the colour correlation matrix.

For the case of goldfish, as mentioned earlier, one expects only small overlap
between R and G responses and thus r is small. The diagonal channels G £ R then
have eigenvalues 1 £ r of the same order: (1 — 7}/(1 + r) ~ 1. This means both
channels on average carry roughly the same amount of information and transmit
signals of comparable S/N. Thus the filters K (fYM_(f) and K_(f}M_(Ff) are
very similar. In fact, they are both band-pass filters as shown in figure 12(a) for some
typical set of parameters. Since these channels are already nearly equalized in S/N,
there is no need to mix them by rotating with U,, so that matrix can be set to unity.
Therefore, the complete solution (5.27) when acting on the input vectors R, G, gives
two output channels corresponding to two ganglion cell types:

Z, = (G+R) K M,

(5.28)
Z,=(G—-R) K_M_.
If we Fourier transform these solutions to get their profiles in space, we arrive at the
kernels K% (x — 2') shown in figure 13 for some typical set of parameters. The top
row is one cell type acting on the R and G signals, and the bottom row is another
cell type. These have features of double opponency cells.
Moving to primates, there is one crucial difference which is the expectation that
r is closer to 1 since the overlap of the spectral semsitivity curves of the red and
green is much greater: the ratio of eigenvalues (1 — r)/(1 + ») « 1. Since the
colour eigenvalues modify the S/N, this implies that the G — R channel has a low
S/N while the G + R has much higher S/N. Therefore, K_(f)M_(f) is a low-
pass filter while K (f)M, (f) is band-pass as shown in figure 12(b). These two
channels can be identified with the chromatic and luminance channels measured in
psychophysical experiments, respectively. The curves shown in figure 12{(6) do qual-
itatively match the results of psychophysical contrast sensitivity experiments (Mullen
1985): namely the low-pass and band-pass properties of the chromatic and luminance
curves, respectively.
Although there is psychophysical evidence that indicates that colour mformanon
in primate cortex is organized into luminance and chromatic channels under normal



245

300 —

100

12
o

Sensitivity

—_
o

J J Atick

B 300 ~ -
L lal L =3
— TOOE
- 30
— 10 =
- \ F \\
v et vl e el p Lot 0 vl e vl g
A 1 i0 100 A 1 10

Spotial frequency (cyclesideq)

100

Spatiet frequency {cycles/deq)

Figure 12, The luminance and chromatic channels for goldfish, (a), and for primates,
(&) In both figures the curve that is more like band-pass is for the luminance G + R
channel, while the other is for the G — R channel, Parameters used are Jo /N = 5.0,
a = 1.4, fo =22.0 cycles/deg, Np = 1.0 for both {g) and (p), the differences being

that r = 0.2 for (c) and 0.85 for (b).

1 1 12
X K" X K
.5 5
= » -
s I/ o I ——
Py B N
-5 — -5
PR I NN SR NN NEANE DY NI SINN SUPUN B B
6 2 4 & B 1 o .2 .4 & .8 1
10— 1 -
KZ!. KEZ
5= 5
£ '\
=] /———-—._\_:_____
@ o 0 E——
=
v = -
-5 -5 =
P AT NI BN R B b Lo oy 1y g
o 2 4 6 8 i 0 .2 4 & B 1

Normalized distance

Normalized distance

Figare 13. Predicted retinal kernel K°% in the R and G basis in the goldfish regime
r = 0.2 and for the same pamameters as those in figure 12. These cells can be termed

double opponency cells.

adaptation conditions (Mullen 1985), this is not how the primate retina transmits in-
formation down the optic nerve (Derrington ef a/ 1984). One reason why the primate
retina may choose not to use the G + R basis is that the representation of informa-
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tion in chromatic and Juminance channels has one undesirable consequence. If we
compute the signal-to-noise ratio as a function of frequency in the chromatic channel,
given by (S/N)? = K2 M2*R_/[K2(MZ2N?+ 1)}, and compare it with the corre-
sponding ratio in the lumirance channel we find that the ratic (S/N)_/(S/N). « 1
because (1 — r) /(1 4+ r) <« 1. So for primates, transmitting information in the lu-
minance and chromatic basis would result in one channel with very low S/N, or
equivalently one channel that does not carry much information. Transmitting infor-
mation at fow S/N down the optic nerve could be dangerous, especially since the
optic nerve introduces intrinsic noise of its own; it also may be wasteful of optic nerve
hardware. What we propose here is to use the remaining symmetry of multiplication
by the rotation matrix U, to mix the two channels so they carry the same amount of
information, i.e. such that they have the same S/N at each frequency. Keep in mind
that this does not affect the decorrelated nature of the two signals.

In the case of primates, where the hierarchy in S/N between the two channels
is large the mixing of the two channels is significantt. In fact it is not hard to show
that the angle of rotation needed is approximately 45 deprees A 45 degree rotation
leads finally to the following solutions for the two optimally decorrelated channels
with equalized S/N ratios

Z, =(G+R) K,M, +(G-R) K_M_
=R(KE,M, +K_M.)+G (K M, ~K_M_)
Z,=—(G-R) K_LM_+(G+R) K, M,
=R(K,M, - K_M_)+G (K M, +K_M_).

(5.29)

Since for primates, K (f)M_ (f) and K_{Ff)M_(f) are very different, the end
result is a dramatic mixing of space and colour. For example, cell type no. 1 at low
frequency has K_(f)M_(f) > K (f)M_(f) so it performs an opponent R — G
processing. As the frequency is increased, however, K_(f)M_(f) becomes smaller
than K, (f)M_(f) and the cell makes a transition to a smoothing G + R type
processing (Derrington et af 1984). In figure 14, we show the filters in frequency
space, in the R and G basis. These filters are in principle directly measurable in
contrast sensitivity experiments. We view the zero crossing at some frequency as a
generic prediction of this theory.

In figure 15 (dashed line), we show how the solutions look for a typical set
of parameters after Fourier transforming back to space, We can see cell type no. 1
summates red mostly from its centre and an opponent green mostly from its surround,
while for type 2 the red and green are reversed. These cells can be termed single
opponency cells, as seen in primates (Derrington ef 2/ 1984)., One might object that
the segregation of the red and green in the centre is not very dramatic. Actually, this
is due to the simplified model we have taken. Compiete segregation can be achieved
if one allows the synaptic noise parameter N, which was set to 1 for the dashed
line, to be different for the two channels. A difference of 1/2 between the two noises
produces the solutions shown by the solid curves in figure 15.

We hope the results of this and the previous section have convinced the reader that
the application of information theory to neural systems merits further investigation.

T A rotation could have been done in the goldfish case also, but there the two channeis (5.28) Z; and
Z; already have approximately equal S/N so the degree of mixing is very small or ignorable.
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Appendix

Another useful concept in information theory is that of mutual information of two
events or variables, O and L defined as

1(0; L) = H(O) + H(L) - H(O,L)

where H{O, L) is the joint information; H(O, L) = —Eo . P(O,L)log P(O,L).
This quantity has some interesting properties. For example if the events O and L are
completely statistically independent then P(O,L) = P(O)P(L} and H(O, L) =
H(O)+ H(L) making I(O; L) = 0. On the other hand, if the two events are
completely dependent then H(O,L) = H(L) = H(O) and [{O; L) is the same
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Figure 15. Predicted retinal kerne! K% in the R and G basis in the primate regime
v = 0.85 and for the same parameters as those in figure {2 are shown by the dashed
curves, The solid curves use the same parameters except that the parameter Ny was
aflowed to be different in the luminance and chromatic channels by a factor of two. This
was done to illusirate that complete colour segregation in the cell’s centre can easily be
achieved.

as H(O) (or equivalently H(L)). Thus, I(O; L} in general is a measure of the
interdependence of the two events. In fact, it can be thought of as the information
carried by O about the event L. If O = L + n where n is some additive noise
and if all the variables are Gaussian distributed with some variance, then I{(O; L) =
H(O) — noise entropy, a fact that we needed in our analysis in section 5.2.
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