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Abstract. We study latching dynamics, i.e. the ability of a network to hop sponta-
neously from one discrete attractor state to another, which has been proposed as a

model of an infinitely recursive process in large scale cortical networks, perhaps asso-
ciated with higher cortical functions, such as language. We show that latching dynamics
can span the range from deterministic to random under the control of a threshold
parameter U. In particular, the interesting intermediate case is characterized by an

asymmetric and complex set of transitions. We also indicate how finite latching
sequences can become infinite, depending on the properties of the transition probability
matrix and of its eigenvalues.

1. Recursion and infinity

The unique capacity of humans for language has fascinated scientists
for decades. Its emergence, dated by many experts between 105 and
4� 104 years ago, does not seem to arise from the evolution of a dis-
tinct and specialized system in the human brain, though many adapta-
tions may have accompanied its progress both inside the brain (for
example the general increase in volume, in number of neurons, in con-
nectivity) and outside (for example, the specialization of the human
tongue, to facilitate more specific vocalizations). As suggested by a recent
experiment (Barsalou, 2005), it is unlikely that the structure of our
semantic system differ radically from that of other primates, who have
been separated from us by a few million years of evolutionary history.
What is it, then, that ‘‘suddenly’’ triggered in humans the capacity for
language, and for other related cognitive abilities? This is a matter of
great discussion for neurolinguistics and cognitive science, and rather
unexplored territory from the point of view of neural computation.
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A fruitful approach to this question requires, in our view, aban-
doning unequivocally the quest for brain devices specialized for lan-
guage, and directing attention instead to general cortical mechanisms
that might have evolved in humans, even independently of language,
and that may have offered novel facilities to handle information, but
within a cortical environment that has retained a similar structure. A
recent review (Hauser et al., 2002) has focused on the identification of
the components which are at the same time indispensable for lan-
guage and uniquely human. The authors reduce this set to a unique
element: a computational mechanism for recursion, which provides for
the generation of an infinite range of expressions, or sequences, of
arbitrary length, out of a finite set of elements. A related but more
general proposal (Amati and Shallice, 2006), accounts for a variety of
cognitive abilities, including language, as enabled by projectuality, a
uniquely human capacity for producing arbitrarily extended abstract
plans that obey certain complex syntactic rules, expressible in terms
of a sort of Feynman diagrams.

Thus, it seems that a transition from no recursion to recursion, or
from finite to infinite recursion, is a good candidate to be identified as
the ‘‘smoking gun’’ that has led to the explosive affirmation of lan-
guage as a uniquely human faculty. A semantic memory network
model has been introduced (Treves, 2005) as an hypothesis about
the neural basis of this transition, a model which we have begun to
describe quantitatively, from the memory capacity point of view
(Kropff and Treves, 2005). The latching dynamics characterizing this
network model, which is its essential feature as a model of recursion,
can be reduced to a complex and structured set of transitions. Our
purpose in this paper is to offer a first description of this complexity
and to investigate the parameters that control it.

2. Semantic memory

As opposed to episodic memory, which retains time-labeled informa-
tion about personally experienced episodes and events, semantic mem-
ory is responsible for retaining facts of common knowledge or general
validity, concepts and their relationships, making them available to
higher cortical functions such as language. The problem of the organi-
zation of such a system has been central to cognitive neuropsychology
since its birth. Fundamental studies like Warrington and Shallice
(1984) and Warrington and McCarthy (1987) have begun to reveal the
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functional structure of semantic memory through the analysis of
patients with different brain lesions. Due to methodological reasons
related to the paradigm of single-case studies on one side, and to the
complexity of functional imaging on the other, there has been always a
natural bias toward localization of semantic phenomena, and toward
theories with a functionally fragmented view of the operation of the
brain. A most radical one among these views is the Domain-Specific
Theory (Caramazza et al., 1998), based on the idea that rather than
one system, evolution has created in the human brain different systems
in charge of representing different concept categories. On the other
extreme, recent proposals based on featural representations of con-
cepts (McRae et al., 1997; Greer et al., 2005) tend to describe semantic
memory as a single system, where phenomena such as category specific
memory impairments arise from the inhomogeneous statistical distri-
bution of features across concepts. This view opens a new perspective
for mathematical descriptions and even quantitative predictions of
semantic phenomena, as in Sartori et al. (2005).

Featural representations imply that concepts are represented in
the human brain mostly through the combined representation of
their associated features. Unlike concepts, thought of as complex
structures with an extended cortical representation, features are con-
ceived as more localized, perhaps to a single cortical area (e.g.
visual, or somato-sensory) and are a priori independent from one
another. As proposed in O’Kane and Treves (1992), one can model
feature retrieval as implemented in the activity of a local cortical
network, which by means of its short-range connection system con-
verges to one of its dynamical attractors, i.e. it retrieves one of
many alternative activity patterns stored locally. Once the cortex is
able to locally store and retrieve features, in different areas, it can
associate them through Hebbian plasticity in its long-range synaptic
system. Concepts are presented to the brain multi-modally, and thus
multi-modal associations are learned through an integrated version
of the Hebbian principle, reading: ‘features that are active together
wire together’. The association of features through long-range syn-
apses leads to the formation of global attractor states of activity,
which are the stable cortical representations of concepts, and which
can then be associatively retrieved. The view that the semantic sys-
tem operates through attractor dynamics in global recurrent associa-
tive networks accounts for various phenomena described in the last
few years such as, for example, the activation of motor areas
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following the presentation of different non-motor cues associated to
an action concept (Pulvermuller, 2001).

3. Potts-networks

The Hebbian learning principle appears to inform synaptic plasticity
in cortical synapses between pyramidal cells, both on short-range
and on long-range connections, making appealing the proposal by
Braitenberg and Schuz (1991), namely that to a first-order approxima-
tion the cortex can be considered as a two-level, local and global,
autoassociative memory. Furthermore, we have sketched above how
featural representations can make use of this two-level architecture in
order to articulate representations of multi-modal concepts in terms
of the compositional representation of local features. The anatomical
and cognitive perspectives can be fused into a reduced ‘‘Potts’’
network model of semantic memory (Treves, 2005).

In this model, local autoassociative-memory networks are not
described explicitly, but rather they are assumed to make use of
short-range Hebbian synapses to each retrieve one of S different and
alternative local features, corresponding to S local attractor states.
The activity of the local network i can then be described synthetically
by an analog ‘‘Potts’’ unit, i.e. a unit that can be correlated to various
degrees with any one of S local attractor states. The state variable of
the unit, ri, is thus a vector in S dimensions, where each component
of the vector measures how well the corresponding feature is being
retrieved by the local network. The possibility of no significant
retrieval—no convergence and hence no correlation with any local
attractor state—can be added through an additional ‘zero-state’
dimension. Since the local state cannot be fully correlated, simulta-
neously, with all S features and with the zero state, one can use a
simple normalization

P
k=0
S ri

k = 1. Having introduced such Potts
units as models of local network activity, in the following we will use
the terms ‘local network’ and ‘unit’ as synonyms.

The global network, which stores the representation of concepts, is
comprised of N (Potts) units connected to one another through long
range synapses. This network is intended to store p global activity
patterns, as global attractor states that represent concepts. When glo-
bal pattern nl is being retrieved, the state of the local network i is the
local attractor state ri ” ni

l, retrieving feature ni
l, a discrete value

which ranges form 0 to S (the zero value standing for no contribution
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of this group of features to concept l). As shown in Kropff and
Treves (2005), such a compositional representation of concepts as
sparse constellations of features (with a global sparsity parameter a
measuring the average fraction of features active in describing a
concept) leads to the desired global attractor states when long range
connections have associated weights Jij

kl:

Jklij ¼
Cij

cMað1� a
SÞ
Xp

l¼1

�
dnl

i
k�

a

S

��
dnl

j l
� a

S

��
1� dk0

��
1� dl0

�
ð1Þ

which can be interpreted as resulting from Hebbian learning. In this
expression each element of the connection matrix Cij is 1 if there is a
connection between units i and j, and 0 otherwise (the diagonal of
this matrix is filled with zeros), while cM stands for the average num-
ber of connections arriving to a given Potts unit (i.e. local network) i.
In this model, the maximum number of patterns, or concepts, which
the network can store and retrieve scales roughly like cMS2/a. We
refer to Kropff and Treves (2005) for an extensive analysis of the
storage capacity of the Potts model.

4. Latching

Here we are interested in studying not the storage capacity but rather
the dynamics of such a Potts model of a semantic network. Latching
dynamics emerges as a consequence of incorporating two additional
crucial elements in the Potts model: neuronal adaptation and correla-
tion among attractors. Intuitively, latching may follow from the fact
that all neurons active in the successful retrieval of some concept tend
to adapt, leading to a drop in their activity and a consequent ten-
dency of the corresponding Potts units to drift away from their local
attractor state. At the same time, though, the residual activity of sev-
eral Potts units can act as a cue for the retrieval of patterns correlated
to the current global attractor. As usual with autoassociative memory
networks, however, the retrieval of a given pattern competes, through
an effective inhibition mechanism, with the retrieval of other patterns.
One can then imagine a scenario in which two conditions are fulfilled
simultaneously: the global activity associated with a decaying pattern
is weak enough to release in part the inhibition preventing conver-
gence toward other attractors; but, as an effective cue, it is strong
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enough to trigger the retrieval of a new, sufficiently correlated
pattern. In such a regime of operation, after the first, externally cued
retrieval, the network may latch to a new attractor, and when it
decays out of it yet to a new one, and so on, experiencing the concat-
enation in time of successive memory pattern retrievals (see Figure 3).
This concatenated spontaneous retrieval is an interesting model for
the neural basis of a simple form of infinite recursion, the process
postulated to be at the core of cognitive capacities including language.

Several interesting issues arise in trying to describe latching
dynamics. The range of parameters enabling latching is one of them,
which we will not address here, but rather leave for future communi-
cations. Here, we concentrate on a first description of the complexity
of latching dynamics, and on which parameters control it. As we
show, latching transitions are neither deterministic nor random, and
they do not depend solely on the correlation between consecutive
attractor states. Furthermore, there is strong asymmetry in the
transition matrix. These properties can be controlled by a threshold
parameter U.

5. Adaptation

In retrieval dynamics without adaptation, units are updated with the
rule:

rk
i ¼

expðbhki ÞPS
l¼0 expðbhliÞ

ð2Þ

under the influence of a tensorial local ‘‘current’’ signal which sums
the weighted inputs from other units, with a fixed threshold U favor-
ing the zero state:

hki ¼
XN

j¼1

XS

l¼0
Jklij r

l
j þUdk0: ð3Þ

To model firing rate adaptation, however, we introduce a modifica-
tion in the individual Potts unit dynamics. The update rule:

rk
i ¼

expðbrki ÞPS
l¼0 expðbrliÞ

ð4Þ
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is now mediated, for k „ 0, by the vectors r (the ‘‘fields’’ which inte-
grate the h ‘‘currents’’) and h (the dynamic thresholds specific to each
state), which are integrated in time:

rki ðtþ 1Þ ¼ rki ðtÞ þ b1½hki ðtÞ � hki ðtÞ � rki ðtÞ� ð5Þ

hki ðtþ 1Þ ¼ hki ðtÞ þ b2½ski ðtÞ � hki ðtÞ� ð6Þ

We also include a non-zero local field for the zero state, driven by the
integration of the total activity of unit i in all non-zero directions,
(1) si

0):

r0i ðtþ 1Þ ¼ r0i ðtÞ þ b3½1� s0i ðtÞ � r0i ðtÞ� ð7Þ

Together with the fixed threshold U, this local field for the zero state
regulates the unit activity in time, preventing local ‘‘overheating’’. A
fixed threshold U of order 1 is crucial to ensure a large storage
capacity (as shown in Tsodyks and Feigel’Man, 1988) and to enable
unambiguous memory retrieval.

A final element we include is an effective self-coupling Jii
kk, con-

stant for every i and k 6¼ 0, which adds stability to the local network.
For the simulations in this paper we have set the parameters

b1 = 0.1, b2 ¼ 0:005, b3 = 1 and Jii
kk = 1.8.

6. Correlated distributions

Representations of concepts in the human brain are thought not to be
randomly correlated, but rather to present a correlational structure
that reflects the shared features between different concepts. In other
words, an important part of the correlation between semantic repre-
sentations may not be arbitrarily generated by the brain, but rather
‘‘imported’’ with the inputs that the semantic system receives from the
outside (the correlations in the way we sense the ‘real world’). If one
assumes that the basic mechanism underlying semantic memory is
autoassociative Hebbian learning, it remains unclear how the brain
deals with the abrupt decay in storage capacity that these correlations
would imply1. It is possible that rather than orthogonalizing the cor-
related input (Srivastava and Edwards, 2004), the strategy of the cor-
tex may be to retain the information about correlations, presumably
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to make use of it, perhaps as sketched above, to favor latching
dynamics.

A standard mathematical procedure to introduce model correla-
tions in a group of p patterns is through a hierarchical construct. Pat-
terns are defined using one or more generations of parents, from
which they descend, emulating a genetic tree. Since many patterns
share the same parents, the generation process introduces correlations
among descendant patterns, which are simpler for one-parent families
and more complex in the case of multiple parents. We adopt a multi-
parent scheme (Treves, 2005). In addition, our parents are meant to
represent semantic category generators, relating directly the correla-
tion between patterns to categorization in a real semantic system,
so as to preserve a possibility to link the correlational statistics of
our model to observations in the cognitive neuroscience of semantic
memory.

7. Quantitative description of correlations

To characterize statistically the resulting set of patterns we introduce
the two-pattern correlation distributions:

C0 ¼ hClm
0 il6¼m ¼

XN

i¼1
dnl

i n
m
i
dnnui 0

* +

l6¼m

ð8Þ

and

C1 ¼ hClm
1 il6¼m ¼

XN

i¼1
dnl

i
nm
i
ð1� dnnui 0Þ

* +

l6¼m

ð9Þ

where C0 takes into account only inactive units and C1 active units.
To estimate these distributions we now make some assumptions

about the process of generation of patterns (Treves, 2005). A set of P
parents, each active over a random assortment of f Potts units, is gen-
erated randomly. Each parent favors a particular direction in Potts
space. An important quantity for the statistical description is the
occupation number of a unit ni, namely the number of parents active
on it. All these parents struggle with varying strength in order to
determine the final value of ni

l, the state of unit i in pattern l, and
this process is repeated for every l. The occupation number can be
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thought of as deriving from a series of Bernoulli processes, resulting
in a binomial distribution:

Pðni ¼ kÞ ¼ B
�
k; P;

f

N

�
� f

N

� �k
1� f

N

� �P�k
P
k

� �

ð10Þ

where B(k; N, p) is the binomial distribution, i.e. the probability of
winning k times in N trials, with p the probability of winning in one
trial. The binomial coefficient is, as usual:

P
k

� �

� P!

k!ðP� kÞ! ð11Þ

Next we define the sparsity-by-occupation-number, ak, as the average
activity within the subset of units with a given occupation number k,
or, in other words, the fraction of active units divided by the fraction
of units (active and inactive) within this subset. The sparsity-by-
occupation-number can be modeled by noticing that Treves (2005)
assumes a process of filling the occupation levels from the highest to
the lowest. The highest occupation levels have ak�1, and the sparsity-
by-occupation-number rapidly decreases with lower occupation num-
ber. To put this description into a mathematical formulation, we can
consider g to be a constant efficiency parameter in the filling of occu-
pation levels. Then, if kmax is the highest occupied level, the model
reads:

ak ¼ a� g
Xkmax

l¼k
Pðfi ¼ lÞ ð12Þ

until k reaches kmin, defined as the value for which a ¼
g
Pkmax

l¼k Pðfi ¼ lÞ. If k< kmin or k> kmax, ak = 0. The constant kmax

can be directly estimated from Eq. 10 as the highest value of k for
which the rounded value of NP(ni = k) ‡ 1. In Figure 1 we show
actual measures and estimates using this model for the sparsity-by-
occupation-number, the distribution of the total activity by occupa-
tion number and distribution of units by occupation number. The
three graphs were constructed by fitting the single parameter g,
which is the same in all cases, and seems to be stable when varying
parameters such as P or f.

If P is large, units tend to have large occupation numbers and pro-
gressively low levels of occupation become empty. This is analytically

LATCHING TRANSITIONS IN CORTICAL NETWORKS



convenient, since higher levels of occupation are easier to treat than
lower levels, as the competition among many parents can be treated
statistically. The distributions Clm

0 and Clm
1 can be thought of as gener-

ated by the subpopulations of independent occupation levels. Inside of
each occupation level patterns can be considered as randomly corre-
lated, with ak/S being the probability of a unit to be in a given state.
In this way the mean values are

C0 ¼
X

k

NPðni ¼ kÞð1� akÞ2 ¼ Nð1� 2aÞ þ
X

k

NPðni ¼ kÞa2k

C1 ¼
X

k

NPðni ¼ kÞa2k=S: ð13Þ

It is interesting to have a complete picture of the distributions Clm
0 and

Clm
1 . They can be thought of as the combination of individual distribu-

tions:

PðCk0 ¼ nkÞ ¼ B½nk;NPðni ¼ kÞ; ðakÞ2�
PðCk1 ¼ nkÞ ¼ B½nk;NPðni ¼ kÞ; ðakÞ2=S�

ð14Þ

each corresponding to the occupation level k, where in the case of C0
a base of N(1) 2a) must be added, corresponding to units that coin-
cide in zero activity regardless of Bernoulli trials, as shown in Eq. 13.
These contributions cannot be considered as Gaussian, since
NP(ni = k) is not necessarily large. Nevertheless, they can still be
considered as independent distributions, and the sum of a large num-
ber of them can be considered as a distribution with mean given by
the sum of the individual means (as shown in Eq. 13) and variance
given by the sum of the individual variances:
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Figure 1. From left to right: sparsity-by-occupation-number, fraction of the total
activity by occupation number, fraction of units by occupation number. The parame-

ter values are N = 300, p = 200, S = 2, a = 0.25, y = 0.25, f = 50 and P = 100.
In black: simulations, in color: analytical estimates. g is set to 0.28.
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varðC0Þ ¼
X

k

NPðni ¼ kÞa2kð1� a2kÞ

varðC1Þ ¼
X

k

NPðni ¼ kÞa2k=Sð1� a2k=SÞ: ð15Þ

We show actual and estimated distributions in Figure 2. In both cases
we used the means and variances given by Eqs. 13 and 15, but while
for Clm

0 the estimate is a Gaussian distribution, for Clm
1 , which is clear-

ly non-Gaussian given the proximity of the values to zero, we used
the corresponding Binomial distribution.

8. Transitions

We ran a large set of simulations using the dynamics explained in
Section 5. First of all, we created a set of p = 50 patterns using the
algorithm described in Section 6. This set of patterns was used during
all the simulations. Each simulation started by giving an initial cue to
the network (as an additional term in the local field) in order to
induce the retrieval of one of the stored patterns. The network was
then left free to evolve until, eventually, either the activity decreased
to zero or else each unit was updated a maximum of 50,000
times—keeping track of latching events. The simulation was run 50
times for each cued pattern, with different random seeds, and all 50
patterns were used as the cued pattern. In this way, we collected a
dataset of latching events, with which we constructed the transition
probability matrix M. We calculated M for three different values of
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Figure 2. Distributions of Clm
0 (left) and Clm

1 (right) for N = 300, p = 50, S = 10,

a = 0.25, f = 50 and P = 100. In black: analytical estimates using Eqs. 10–15, and
g = 0.47.
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the threshold U = 0.5, 0.4 and 0.3. In Figure 3 we show examples of
the latching behavior in the three cases.

The probability matrix is a square matrix with p + 1 = 51 rows
and columns, the additional one corresponding to the ‘‘null’’ attrac-
tor, with each unit in the zero state. To estimate the transition proba-
bility between state l and m we counted the times a latching event
between these two attractors appeared in the dataset. We added a
transition to the ‘‘null’’ state whenever global activity decayed to
zero, and assumed a probability of 1 for the transition from the null
state to itself. Finally, given that Mij represents the probability of
having a latching transition from global attractors i and j, the sum of
matrix elements over each row was normalized to 1.

A first interesting result is the distribution of correlations between
attractors, parametrized by the numbers of units in the same state, Clm

0
and Clm

1 . We computed these distributions using: (a) the whole set of
patterns and (b) the dataset of latching events. In the first case, each
pair of patterns enters the average once and only once. In the second
case, only pairs of attractors visited one after another in a latching
event are considered, with a weight proportional to their frequency of
occurrence in the dataset. Figure 4 shows the comparison between
histograms. Notice that, while Clm

0 has a similar distribution in both
cases, Clm

1 is shifted toward greater values in the dataset of latching
events. This means that latching occurs preferentially between pat-
terns that are correlated over active units. We show this in Figure 4
(right) through the ratio of the probability obtained in (b) over the
probability obtained in (a). The resulting function is clearly
increasing with higher correlations.

Figure 3. Examples of latching dynamics for the three values of U: 0.5, 0.4 and 0.3
(from left to right). Top plots: the evolution of the sum of all the activity in the net-

work. Bottom: overlap of the state with the most relevant patterns. Each color corre-
sponds to a different pattern.
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The next interesting result is that the transition probability matrix
is not symmetric, indicating that the correlation between two consecu-
tive attractors, which is itself symmetric by definition, is not the
only factor determining latching. To quantify this observation, we
introduce a norm for matrices, by adding the absolute value of all of
its elements, excluding the rows and columns related to the ‘‘null’’
attractor (which make the matrix asymmetric by construction)
kMk �

P
lm jMlmj. We then calculate kM �Mtk, which turns out to be

of the same order as kMk. We show this in Table 1. In addition, we
observe that as the threshold U diminishes and randomness grows,
the transition probability matrix gets more symmetric.

As M is a transition probability matrix, the eigenvalues of M can
be shown to have a modulus lower than or equal to 1. Due to the
construction of the matrix, the eigenvalue corresponding to the zero
pattern, which projects entirely into itself, is k0 = 1. In the general
case, when applying the transition matrix n times to an initial pattern
g, the result can be decomposed as

Mnx̂g ¼ ADnA�1x̂g ¼ A�10g x̂0 þ
Xp

k¼1
knkA

�1
kg vk ð16Þ
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Figure 4. Distribution of Clm
1 (left) and Clm

0 (center) using the whole set of patterns
(blue) and the dataset of latching events (red). Right: the ratio of the two prob-
abilities shown in the left, showing a clear tendency for latching to occur between
highly correlated attractors.

Table 1. Asymmetry of the transition probability matrix (excluding
the ‘‘null’’ attractor) measured as the norm of the difference between

M and Mt divided by the norm of M

U kM�M tk
kMk

0.3 0.9

0.4 1.1

0.5 1.1

As the threshold U diminishes, the matrix is more symmetric, due to
randomness.

LATCHING TRANSITIONS IN CORTICAL NETWORKS



where D is the diagonal matrix of eigenvalues of M, A the basis
change matrix with the eigenvectors of M as columns, kk the kth
eigenvalue of M, vk the corresponding eigenvector and x̂g is the uni-
tary vector with elements x̂g ¼ dig. From this expression we can con-
clude that, for large values of n, activity will eventually decay to the
‘‘null’’ attractor, unless some non-null eigenvector of M has an eigen-
value of 1. Whenever this is not the case, the decay time is given by
the second largest eigenvalue of M. More specifically, for any eigen-
value kk, the number of transitions for its eigenspace to decay, for
example, to 0.1 of its original amplitude is given by

ndec ¼ logkkð0:1Þ: ð17Þ

In Table 2 we show ndec for the second and the third largest eigen-
values, and for our three sample values of U. The highest number of
transitions in this figure, corresponding to U = 0.3, almost corre-
sponds to the length of our simulations (the convergence to an attrac-
tor and subsequent drift away from it take, with these parameters,
between 300 and 500 updates of each unit, which multiplied by ndec�
50 is of the same order as the 50,000 updates we set as the maximum
duration of the simulation). As a consequence, this eigenvalue might
actually be underestimated, and in fact closer to 1. The emergence of
unitary eigenvalues in the matrix, apart from the one corresponding
to the null state, is of great interest, because it would indicate the
transition from high-order (but finite) recursion to infinite recursion.
More analysis is required to understand this transition, and it will be
reported elsewhere. In particular, the threshold U seems to be more
effective in controlling the complexity of latching transitions, rather
than the order of recursion. The way the latter depends on other
parameters, like cM and S, has been sketched in Treves (2005).

One measure of the complexity of transitions is Shannon’s infor-
mation measure, computed over each row of M. We define:

Table 2. Second and third largest eigenvalues of M and the corresponding decay times
ndec, as defined in Eq. 17, calculated for the 3 values of U

U k2 k3 nk2 nk3

0.3 0.96 0.57 56.4 4.1

0.4 0.62 0.47 4.8 3.0

0.5 0.4 0.36 2.5 2.3
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Il ¼
1

log2ðpþ 1Þ
Xpþ1

m¼1
Mlm log2

� 1

Mlm

�
: ð18Þ

Then Il� 0 both if the attractor l generates no latching (and thus
decays to zero) or if it latches to another fixed attractor, deterministi-
cally. On the other hand, if the process of latching is completely ran-
dom, Il = 1. Figure 5 shows an histogram with the distribution of Il
for U = 0.4, and the mean of this distribution for our three values of U.

9. Discussion

During the last years, a tendency has been established in cognitive
neuroscience toward analyzing semantic phenomena in terms of the
distribution of correlations in the featural representation of concepts.
This emerging perspective has opened a new domain for the quantita-
tive modeling of higher-order processes, that has so far been only par-
tially explored. Here, following up on our previous reports (Kropff
and Treves, 2005; Treves, 2005), we have attempted to sketch a math-
ematical framework to help better understand latching dynamics in
the context of the reduced Potts model. The model itself is based on
the idea that associative memory retrieval operates throughout the
cortex at two levels (Braitenberg and Schuz, 1991), and as a generic
functional mechanism rather than as a separate dedicated system
(Fuster, 1999). In this spirit, we have suggested a rough description of
how attractor dynamics in the network model gives rise to a complex
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Figure 5. Left: distribution of Il for U = 0.4. Right: mean and quartiles of Il (con-
taining the central half of the data) for the three sample values of U (right). The val-

ues chosen for the threshold span a large range between determinism (I = 0) and
randomness (I = 1).
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and structured set of transitions, that could be regarded as a model of
infinite recursion. This complexity, grounded in the correlation be-
tween patterns, is controlled mainly by the threshold, that also sets
the global activity in the network. An appropriate value of the thresh-
old ensures the transient coexistence of decaying and newly emerging
attractors at critical points in the retrieval process, when latching be-
tween attractors takes place.

Two additional aspects of latching dynamics, which are only weakly
related to the control parameter studied here, still need to be studied in
detail: differences between non-recurrent and recurrent networks on
the one hand; and the cross-over from finite to infinite recursion on the
other. These two issues are of a very dissimilar nature. While the latter,
amounting to a percolation phase transition, can be described with the
tools presented here, as sketched in Section 7, the former requires a
better comprehension of single retrieval dynamics. Both studies are in
progress, and will be the object of future communications.

Though complexity and recursion are both aspects of latching
dynamics, as described above, they are independent, as the following
example can clarify. When correlations are very strong, and the con-
trol parameters set a low level of activity, the dynamics can show a
tendency toward determinism, not in the sense of converging to the
null attractor, but rather as a sustained cyclic activity involving small
groups of patterns. Ideally, one could even find several eigenvalues of
the transition probability matrix equal to 1 (associated with infinite
recursion), and still a low complexity < Il > in the transitions. This
kind of behavior does not seem to be interesting, though, in relation to
the phenomena we want to model. The inverse pattern of behavior,
corresponding to high complexity of transitions but low recursion, has
not yet been observed by us. The interesting regime to study language,
we predict, is that of chaotic dynamics, where the divergence between
neighboring trajectories can be controlled by subtle cognitive factors.

Finally, though the control of complexity was presented here as
involving the manipulation of a single parameter (the threshold U),
which is actually enough to span the whole space of dynamical
network behaviors, this control relies in fact on balancing U with
other parameters, the most important of which is the self- interaction
term of the Potts units, Jii

kk. If Jii
kk increases, it tends to stabilize the

current attractor, adding rigidity to the system. This balance between
threshold and self-interaction is of major importance in order to con-
sider, in the future, the dynamics of the complete network, without

EMILIO KROPFF AND ALESSANDRO TREVES



the reduction to Potts units. The self-interaction of Potts units is
related to the capacity of local networks to maintain specific ‘‘delay’’
activity in the face of external input or, in other words, to the ratio of
strengths between long- and short-range synaptic connections, in a
full model including single neurons.

Note

1
We are studying possible solutions to this issue, which will be discussed elsewhere.
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