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To understand the brain mechanisms underlying language phenomena, and

sentence construction in particular, a number of approaches have been followed

that are based on artificial neural networks, where words are encoded as dis-
tributed patterns of activity. Still, issues like the distinct encoding of semantic

vs syntactic features, word binding, and the learning processes through which

words come to be encoded that way, have remained tough challenges. We ex-
plore a novel approach to address these challenges, which focuses first on en-

coding words of an artificial language of intermediate complexity (BLISS) into

a Potts attractor net. Such a network has the capability to spontaneously latch
between attractor states, offering a simplified cortical model of sentence pro-

duction. The network stores the BLISS vocabulary, and hopefully its grammar,

in its semantic and syntactic subnetworks. Function and content words are en-
coded differently on the two subnetworks, as suggested by neuropsychological

findings. We propose that a next step might describe the self-organization of a
comparable representation of words through a model of a learning process.
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1. Introduction

To understand the brain mechanisms underlying the phenomenon of lan-

guage, specifically sentence construction, many studies have been done to

implement an artificial neural network that encodes words and constructs

sentences (see e.g. 1–4). These attempts differ on how the sentence con-

stituents (parts) are represented—either locally 1,3, or in a distributed fash-

ion 5,6—and on how these constituents are bound together—through either

temporal synchrony 7, active circuits 3, or algebraic operations 8.

The local representation of each sentence constituent (either a word,

a phrase, or even a proposition) results in an exponential growth in the

number of units needed for structure representation 1; this challenge was

addressed in 3 by designing dynamic circuits between word assemblies, yet

with a highly complex and meticulously (unrealistic) organized connections.

In a fully distributed representation of words as vectors 5,6, words are bound
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(and merged) together by an algebraic operation—e.g. tensor product 8 or

circular convolution 6. Some steps have been attempted towards the neural

implementation of such operations 4. Another distributed approach was

towards implementing a simple recurrent neural network that predicts the

next word in a sentence 9. Apart from the limited language size that the

network could deal with 10, this system lacked an explicit representation

of syntactic constituents, and it is shown it leads to a lack of grammatical

knowledge in the network 11,3.

However, despite all these attempts, there remains the lack of a neural

model that addresses the challenges of language size, semantic and syntactic

distinction, word binding, and word implementation in a neurally plausible

manner. We are exploring a novel approach to address these challenges, that

involves encoding words of an artificial language of intermediate complexity

into a neural network, as a simplified cortical model of sentence production,

which stores the vocabulary and the grammar of the artificial language in

a neurally plausible manner on two components: one semantic and one

syntactic.

2. BLISS: The Training Language

As the training language of the network, we have constructed BLISS 12,

for Basic Language Incorporating Syntax and Semantics. BLISS is a scaled-

down synthetic language of intermediate complexity, which mimics natural

languages by having a vocabulary, syntax, and semantics. Importantly, the

degree of complexity of the language is designed having the size limitations

of synthetic agents in mind, so as to allow for the use of equivalent corpora

with human subjects and with computers, while aiming for reasonable lin-

guistic plausibility.

BLISS is generated by a context-free grammar of limited complexity

with about 40 production rules, with probabilities that were drawn from the

Wall Street Journal (WSJ) corpus. It contains function words, inflectional

suffixes, and some embedding structure. These grammatical features were

introduced to enable experiments to investigate the ability for abstract

pattern acquisition 13,14, the special role of function words 15, the role of

suffixes 16, and especially hierarchical structures 17,18 in humans.

The BLISS vocabulary contains about 150 words, which belong to dif-

ferent lexical categories such as noun, verb, adjective, etc., and which were

selected from the Shakespeare corpus. There are several studies investigat-

ing category learning in humans 19, and BLISS is intended to facilitate e.g.

the analysis of the representation of distinct lexical categories.
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Semantics is defined in BLISS as the statistical dependence of each word

on other words in the same sentence, as determined solely by imposing con-

straints on word choice during sentence generation. We have applied differ-

ent methods of weighing the preceding words so to determine which words

come next. This should allow using BLISS to study at least rudimentary

aspects of the emergence of semantic categories.

3. Potts Attractor Network: a Simplified Model of the

Cortex

We have attempted to implement a neural network which mimics the neural

mechanisms underlying sentence production. We use a Potts associative

memory network, a generalization of an auto-associative memory network,

an attractor network 20,21.

An attractor network is a collection of binary units that stores a

concept—a pattern—in a distributed fashion, remembers a concept by com-

pleting a portion of it given as a cue, and uses a Hebbian learning rule to

store a concept as an attractor at a minimum of the (free) energy of the

network.

In the Potts associative memory network—the network of our interest—

the units are not binary; instead, each can be activated in S different states.

The Potts network has been proposed as a simplified model of macroscopic

cortical dynamics 22,23, perhaps appropriate for modelling the language fac-

ulty and other high-level cognitive functions (Fig. 1(a)). The Potts network

is a simplified two-level, local and global associative memory network 24,25,

where a local network represents a patch of cortex, which locally stores fea-

tures, and the global network associates those features to store concepts (as

proposed by 26). In the Potts network, the local associative memory net-

works are not described explicitly; instead, each is encapsulated each as a

Potts unit. Thus, a Potts unit hypothetically models a patch of cortex, and

the internal neuronal dynamics of the patch is not described by the model,

rather it is subsumed into an effective description in terms of graded Potts

units with adaptation effects. A collection of Potts units, connected through

long-range synaptic connections, compose the global associative memory,

which stores the concepts.

Apart from the simplification the Potts network offers, the choice of this

network for sentence production has been mainly motivated by its ”latch-

ing” dynamics 27. Latching is an ability to jump spontaneously and in some

conditions indefinitely from an attractor state to the next, in a process that

mimics spontaneous language production. This behaviour is illustrated in
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(a) Conceptual derivation of the Potts

network

(b) An example of latching dynamics in

the Potts network

Fig. 1: (a) Conceptual derivation of the Potts network, which models the

cortex as a simplified two-level, local and global associative memory net-

work. The local dynamics of a cortical patch (sheets) are reduced to a

Potts unit with several states (here, 4). The global associative memory is

the collection of the Potts units, which are connected through long range

connections (black connections between cortical patches). (b) An example

of latching dynamics in the Potts network. The x axis is time and the y

axis is the correlation (overlap) of the network state with specific stored

patterns. Each memory pattern represents a word. In this simulation the

memory patterns are randomly correlated.

Fig. 1(b), which shows the overlap between the actual network activation

and the activation pattern that characterises the stored patterns as a func-

tion of time. Initially, an externally cued attractor leads to retrieval—a

full retrieval corresponds to an overlap of one. However, the activation of

the network does not remain in the retrieved pattern. Instead, it jumps

or latches from attractor to attractor, driven by adaptation effects. Jumps

between attractors are facilitated by an overlap between the current and

the subsequent memory pattern.

4. Implementation of Word Representation in the Potts

Network

After constructing the training language, BLISS, and implementing the

Potts network, we need to represent the BLISS words into the network.

We represented the BLISS words in a distributed fashion on 900 Potts

units, among which, 541 units express the semantic content (comprising

the semantic sub-network), and the rest, 359 units, represent the syntactic

characteristics of a word. The distinction between the semantic and syntac-
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tic characteristics of a word has been loosely inspired by neuropsychological

studies (28,29). We have also made a distinction between the representation

of function words (e.g. prepositions, determiners, and auxiliary words) and

content words (e.g. nouns, verbs, and adjectives), as suggested by several

neuropsychological findings 30,31. While the sparsity (the fraction of active

Potts units) was kept the same for all the words (a = 0.25) on all 900 units,

it is not equally distributed between semantic and syntactic sub-networks:

semantic units are less active in the case of the function words (45 active

units out of 541 units) compared to the content words (135 out of 541),

whereas syntactic units are more active for the function words (180 out of

359) than for the content words (90 out of 359).

To have a word-generating algorithm that reflects the variable degree

of correlation between words, we used an algorithm comprised of two steps
23: (1) we establish a number of vectors called factors or features. Each

factor influences the activation of some units in a word by ”suggesting” a

particular state to that unit. A word can be called a child, as it is generated

by several factors as parents. (2) The competition among these factors

through their suggestion weights determines the activation state of each

unit in a word. In each unit, the state with the strongest suggestion is the

winner. In order to maintain the desired level of sparsity, we picked the

units with stronger suggestions in their selected states, and inactivated the

remaining units by setting them to the null state.

To determine suggestion weights of a factor for its child, we used, when-

ever possible, the co-occurrence of the factor and its child in the BLISS

corpus generated by Subject-Verb model. As we generate each word cat-

egory in the next sections, we will specify our choice for the suggestion

weights.

The algorithm includes a noise term to avoid generating words with

very high correlation. We produced a number of additional factors, called

hidden factors, whose suggestion weights were randomly selected from the

distribution of the weights of the visible or main factors.

The proposed word-generating algorithm can be argued to be consistent

with the findings of recent fMRI computational studies, which attempted

to predict the neural signature of words by considering some other words as

features—the factors in our algorithm. For instance, in 32, the fMRI neural

representations of some nouns were predicted by proposing a linear model

that considered 25 verbs as features. In this study, features compete through

weights that correspond to the co-occurrence of the feature and the main

noun in a natural language. To test the ability of the model for predicting
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words by having a more diverse range of features, they considered 1000

frequent words instead of 25 as the features; the model again succeeded

in predicting the fMRI BOLD response of the nouns, though with lower

accuracy.

Generating words using the above algorithm, we quantified the correla-

tion between two words as the number of active units that are at the same

state (Nas) in both patterns. We use the notation of < Nas > to measure

the average correlation across all words of two word categories—either the

same or different categories.

If two patterns µ and ν are randomly correlated, we expect the correla-

tion measure to be Naµ a
ν

S , where aµ is the sparsity of pattern µ and S the

number of active states that a unit of this pattern may occupy. If we store

randomly correlated patterns in the semantic sub-network (Nsem = 541),

this measure reads: Nassem ' 4.8 between two words with a = 0.25, and

Nassem ' 1.5 between two words with a = 0.25 and a = 0.08; and,

<Nassem> ' 4.1, averaged over all words, if there are 134 words with

a = 0.25 and 15 words with a = 0.08. On the other hand, with randomly

correlated patterns in the syntactic sub-network (Nsyn = 359), this measure

reads: Nassyn ' 3.2 between two words with a = 0.25, and Nassyn ' 6.4

between two words with a = 0.25 and a = 0.50; and <Nassyn> ' 3.3,

averaged over all words, if there are 134 words with a = 0.25 and 15 words

with a = 0.50.

4.1. Semantic Representation

To generate the semantic units of words, first nouns were generated using

some feature norms as factors—feature norms include a list of features

for a concept (e.g. is-animal and a-mammal are the features of dog). We

then generated adjectives and verbs using nouns as factors. Finally, nouns,

adjectives, and verbs served as factors for the generation of proper nouns

and function words.

For the representation of nouns we used the feature norms in the McRae

database 33. The database was collected from an experimental study in

which 541 nouns, including 18 BLISS nouns, were associated by human

participants with a set of feature norms. In total, for all 541 nouns, 2500

features (e.g. is-made-of-metal, is-animal, a-mammal) were used; out of

2500 features, 190 features were associated to 18 BLISS nouns. We repre-

sented these features as vectors of 541 elements with a = 0.25.

To represent these 190 features as vectors with 541 elements we followed

several steps: (1) we sorted the features, f1...fi...f190, in descending order,
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by the number of concepts (or nouns) that are associated per feature, ωfi ,

in the database (e.g. ωan−animal = 90); (2) in an orderly fashion, we picked

a feature in the list, randomly selected some units of its 541-element vector,

then assigned their states by considering the previous features in the list as

their factors. The number of randomly selected units was 3∗ (33 +ωfi), be-

cause <ωfi> = 12 and we needed to maintain the average sparsity around

a = 0.25 (135 active units). As the first feature in the list did not have any

preceding feature, we randomly assigned the states of its units. The sug-

gestion weight was the co-occurrence frequency of features in the database;

hence, the features that are more often associated with the same nouns will

have higher correlation.

After the representation of the features of the McRae database, we

used these 190 features as factors for the generation of the nouns. For a

given noun, the features that are associated with that noun in the McRae

database suggest the activation state of the units, with the weight of
1

3∗(33+ωfi )
, to strengthen the uniqueness of the features. Hence the fea-

tures that are more distinct in the database (e.g. a-baby-cow with ω = 1)

because of their smaller ω give more distinctive, stronger suggestions to

a noun than popular features (e.g. an-animal with ω = 90). The features

that suggest the states of a noun and are associated with that noun in the

database are likely to suggest other nouns that belong to the same seman-

tic category; thus we expect higher correlations between words of the same

semantic category.

After generating the semantic units of the nouns, we produced the se-

mantic representation of the 37 verbs and the 18 adjectives of BLISS by

using the nouns as factors. The suggestion weight of a noun for a verb or

an adjective is determined by the co-occurrence probability of the noun

and the corresponding word (either verb or adjective) in the BLISS corpus;

hence the representation of a verb or an adjective tends to be more corre-

lated with the nouns that appear more frequently with it in the corpus. For

the generation of verbs and adjectives we added about 400 hidden factors

in addition to their main factors, to avoid high correlations between these

words. High correlations would have interfered with the dynamics of the

semantic network.

After generating the semantic representation of nouns, verbs, and ad-

jectives, we used these content words as factors—together with 400 hidden

factors—to generate 6 proper nouns and then 15 function words.

As for the singular and plural form of words, we assumed that the

meaning (the semantic part) should be the same for both numeral forms,
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and the only distinction should be in syntactic representation. Therefore,

the plural and singular forms of nouns and verbs (e.g. dog and dogs, or kill

and kills) are stored as identical in the semantic sub-network.

In the semantic representation, a generating factor influences the repre-

sentation of a word by a weight that is proportional to the joint probability

of the factor and the word. We have thus compared the correlation of some

factors with the generated word in the Potts network and in the training

BLISS corpus, generated by the Subject-Verb model (Fig. 2). This correla-

tion was measured as <Nas > in the Potts network, and as joint probability

in the BLISS corpus (the joint probabilities between a word and its factors

were normalized to 1). Although in the generation of the words, a very

high noise level—about 400 hidden factors—was used to decrease the cor-

relation between words, Fig. 2 demonstrates that a highly frequent word

pair in the BLISS corpus still has a high correlation (Nas) in the seman-

tic sub-network. These high Nas correlations indicate a deviation from the

regime of randomly correlated patterns (<Nas> ' 4.8, between content

words).

(a) Verbs and Nouns (b) Adjectives and Nouns

Fig. 2: Comparison of the correlation between words and their factors in

their semantic representation (<Nas> on y-axis) versus their joint proba-

bilities in the BLISS corpus produced by the Subject-Verb model (x-axis)

(the joint probabilities between a word and its factors have been normal-

ized to 1). Each dot indicates a pair of a word and its generating factor. (a)

The correlation between verbs and nouns (the generating factors of verbs)

in their semantic representation vs. the joint probability between the verbs

and the nouns in the BLISS corpus (e.g. kill sword); Likewise, for (b) ad-

jectives and nouns (adjectives’ generating factors) (e.g. bloody sword).
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4.2. Syntactic Representation

For the syntactic representation of words, we first generated function words

using a limited set of somewhat arbitrarily designed syntactic features. Us-

ing function words as factors together with those syntactic features, we gen-

erated the syntactic representation of nouns, verbs, adjectives, and proper

nouns.

As factors for generating the function words, we arbitrarily designed

19 syntactic features: 7 lexical categories (noun, verb, adj, conjunction,

preposition, pronoun, adverb); 2 numbers (singular, plural); 1 negation; 3

determiners (indefinite, definite, properNoun); 2 locations (close, far); and

4 directions (from, towards, samePlace, above).

We represented the above syntactic features as vectors of 359 elements

with a = 0.25 (90 active units), while keeping the representation of features

within each of the above categories orthogonal to each other. For instance,

for the first item, lexical categories: (1) we generated the representation

of lxc/noun, by randomly selecting 90 units and arbitrarily assigning their

activation states; (2) for lxc/verb, we activated the same units as in the

lxc/noun but assigning different states; (3) for the rest of the members

(i.e. lxc/adj, . . . ), we used the same procedure as in (2) while keeping all

these features completely orthogonal. We took the same steps (1)–(3) for

other categories listed above while keeping the features within a category

uncorrelated.

Since these syntactic features will be used as the factors for all the words,

we arbitrarily set their suggestion weights for the generation of different

word categories, either function words or content words (see Table 1 for

some examples).

We used the above 19 syntactic features, together with 20 hidden factors,

as the factors for the syntactic representation of 15 function words. Using

the function words and the syntactic features, together with 20 hidden

factors, we generated the syntactic representation of 36 nouns (singular and

plural), 74 verbs (singular and plural), 18 adjectives, and 6 proper nouns

(singular and plural). The suggestion weights of the function words for the

generation of a content word are determined by the joint probability of the

two corresponding words in the BLISS corpus. Thus, if a content word has a

higher co-occurrence with a function word in the corpus, the representations

of these two words tend to be more correlated.

Generating the syntactic representation of all the words, we measured

their correlations within and across different syntactic categories (singular

and plural nouns, singular and plural verbs, adjectives, singular and plural
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proper nouns, and function words), as shown in Fig. 3. As expected, the

correlations between relevant syntactic categories highly deviate from the

regime of randomly correlated patterns in the syntactic sub-network; for

randomly correlated patterns, <Nas> ' 3.2, between content words, and

<Nas> ' 6.4, between content words and function words. As shown in

Fig. 3(a), singular nouns (Nsg) have higher correlations with other noun

categories (i.e. plural nouns and proper nouns) and also with other singu-

lar words (i.e. singular verbs), than with plural verbs or with adjectives.

Though function words (Fwd) participate as factors in the generation of

all the content words, their correlations with other categories are relatively

small, even within the function words themselves, because of their high

sparsity (afwdsyn = 0.50) compared to other words and to their syntactic

features.

Using auto- and hetro-associative learning rules 34, we stored the im-

plemented words into the network. Fig. 4 shows a preliminary result of

interaction between the semantic (with randomly correlated patterns) and

syntactic sub-networks. The detailed description of how we store the BLISS

words and the grammar into the Potts network will appear elsewhere.

Table 1: Suggestion weights of some of the syntactic features, served as

factors for the syntactic representation of words. Each element indicates

the suggestion weight of a syntactic feature (labelled on the columns) for

the generation of a word or words of a category (labelled on the rows).

noun verb adj conj prep pron adv sg pl neg indf def propn
thatc 0 0 0 1 0 0 0 0 0 0 0 0 0
of 0 0 0 0 1 0 0 0 0 0 0 0 0
in 0 0 0 0 1 0 0.4 0 0 0 0 0 0

with 0 0 0 0 1 0 0 0.3 0 0 0 0 0
on 0 0 0.3 0 1 0 0.4 0 0 0 0 0 0
to 0 0 0 0 1 0 0.1 0 0 0 0 0 0
for 0 0 0 0.1 1 0 0 0 0 0 0 0 0

doesn’t 0 1 0 0 0 0 0 1 0 1 0 0 0
don’t 0 1 0 0 0 0 0 0.3 1 1 0 0 0
the 0 0 1 0 0 0 0 0.5 0.5 0 0 1 0
a 0 0 1 0 0 0 0 1 0 0 1 0 0

this 0 0 1 0 0 0.5 0 1 0 0 0 1 0
that 0 0 1 0 0 0.5 0 1 0 0 0 1 0
those 0 0 1 0 0 0.5 0 0 1 0 0 1 0
these 0 0 1 0 0 0.5 0 0 1 0 0 1 0

noun/sg 1 0 0 0 0 0 0 1 0 0 0 0 0
noun/pl 1 0 0 0 0 0 0 0 1 0 0 0 0
propn/sg 1 0 0 0 0 0 0 1 0 0 0 0 1
propn/pl 1 0 0 0 0 0 0 0 1 0 0 0 1
verb/sg 0 1 0 0 0 0 0 1 0 0 0 0 0
verb/pl 0 1 0 0 0 0 0 0 1 0 0 0 0
adjective 0 0 1 0 0 0 0.3 0 0 0 0 0 0
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(a) Singular nouns (b) Singular verbs

(c) Adjectives

Fig. 3: The average correlation <Nas> of the syntactic representation of

the words belonging to the same or different syntactic categories. (a) The

correlation between the words that belong to singular nouns (Nsg) with

themselves or with other word categories; likewise, for (b) singular verbs

(Vsg), and (c) adjectives (Adj ). The dashed lines indicate the expected cor-

relations of randomly correlated patterns (' 3.2, between content words).
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church trusts holds sweet heavy Zarathustra holds pearl stands heavy Zarathustra, pearl stands great

noun verb adj [noun] verb noun verb adj noun verb adj

Sem

Syn

0.00.2

Fig. 4: The syntactic sub-network (bottom) influences the semantic sub-

network (top) with the weight 0.2. The sentences produced by the interac-

tion of these two sub-networks are written on the top. The parameters

were set at w = 1.6, β = 5, U = 0.0; for the semantic sub-network,

Csem = 100, τ1 sem = 10, τ2 sem = 200, τ2 sem = 10000; for the syntactic

sub-network, Csyn = 58, τ1 syn = 5, τ2 syn = 100, τ3 syn = 5000, cauto = 1.0,

and chetero = 0.1.
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5. Discussion

We have encoded words of BLISS, our artificial language of intermediate

complexity, into a Potts attractor neural network, a simplified model of the

cortex with large storage capacity that includes two components, semantic

and syntactic.

The distinction between semantic and syntactic representations of words

is inspired by neuropyschological findings 28,29. We have also made a dis-

tinction between the encoding of function words and content words, as

suggested by several studies 30,31. While we keep the overall activity for

these two categories the same over the network, semantic units are less ac-

tive for the function words than for the content words, while syntactic units

are more active for the function words than for the content words.

By distributing a word on a network, we stayed away from extreme

localized approaches in which the sentence constructs are represented on

distinct set of units 1,3; on the other hand, by having a sparse representa-

tion of the words, which are implemented as a set of features localized on

Potts units, we did not follow extreme distributed approaches 5. Further,

by making a distinction between semantic and syntactic characteristics of

a word, we embedded grammar knowledge in the Potts network, unlike the

case of a simple recurrent neural network 10.

In spite of the considerations we gave for word representation, there

remain limitations and future questions that need to be answered. A word,

beside semantic and syntactic properties, is also associated to a sound struc-

ture, a property that needs to be considered in future representations of

the words. The current implementation of BLISS, the training language of

the network, does not contain pronouns, interrogative sentences, or embed-

ding structure. To investigate the ability of the network to produce such

sentences, one needs to first examine the length of dependences that the

Potts network can handle. For randomly correlated patterns, the sequences

stretch beyond a first-order Markov chain 35; however, this measure needs

to be investigated with sentences generated by the semantic and syntactic

sub-networks, given that these sub-networks can be trained with different

statistics of word transitions derived from BLISS corpora generated by the

different semantics models.
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