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Abstract. Potts networks, in certain conditions, hop spontaneously from one
discrete attractor state to another, a process we have calledlatching dynamics.
When continuing indefinitely, latching can serve as a model of infinite recursion,
which is nontrivial if the matrix of transition probabilities presents a structure,
i.e. a rudimentarygrammar. We show here, with computer simulations, that
latching transitions cluster in a number of distinct classes: effectively random
transitions between weakly correlated attractors; structured, history-dependent
transitions between attractors with intermediate correlations; and oscillations
between pairs of closely overlapping attractors. Each type can be described by a
reduced set of equations of motion, which, once numerically integrated, matches
simulations results. We propose that the analysis of such equations may offer
clues on how to embed meaningful grammatical structures into more realistic
models of specific recursive processes.
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1. Introduction

Complex thought processes, as well as their uniquely human expression through language,
appear to be based on the same cortical machinery that we essentially share with other
mammals, despite major variations in absolute size and relatively minor variations in internal
organization [1]–[4]. This suggests, in our view, that in order to understand cognitive capacities
that are apparently uniquely human one should consider the possibility that they may
arise ‘spontaneously’, through phase transitions induced by quantitative changes in certain
parameters of cortical organization. If so, it would not be unreasonable to utilize simple
generic models of cortical processing in order to model language processes [5], provided proper
consideration is taken of quantitative aspects.

Following a suggestion by Chomsky and colleagues [6], we have focused on the emergence
of latching dynamics in models of cortical networks, as a simplified model of a recursive
process [7]. A computational mechanism for recursion provides, as pointed out in [6], for
the generation of an infinite range of expressions of arbitrary length, out of a finite set of
elements. Such sequences of elements, if not spanning uniformly the space of all possibilities
but rather constrained by a non-trivial structure of transition probabilities at each recursion step,
in fact implement a syntax, comparable in principle to those observed in natural language or
in reasoning [8]—although in the reduced models that we can simulate such syntactic structure
is a rather abstract and apparently pointless statistical characterization of the latching transition
matrix.

A transition from finite to infinite recursion may have occurred in the human species tens
of thousands of years ago, as a sudden result of a gradually expanding cortical connectivity [7]
and it may have later been bootstrapped and refined, of course, by additional complex processes
of cultural evolution [8].
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In previous reports, we have considered a simplified model of a semantic memory system,
implemented as a Hopfield associative network with Potts variables [7, 9, 10]. We have
shown how to analyse the storage capacity of the model [11], which characterizes it even in
regions of parameter space in which no latching dynamics occurs. We have also provided a
first description of the structure of latching transitions [12], which we aim to characterize in
more detail in the present study. We refer to these earlier publications for a more extensive
introduction on semantic memory, on the representation of concepts through features and on
cortical organization, all crucial elements to motivate the analysis of the model. We also refer
to a recent paper that discusses the storage of correlated representations, a necessary trigger for
latching dynamics to occur [13].

2. The Potts–Hopfield memory model

The model can be regarded as an attractor neural network whose units represent themselves
local attractor networks, realized in small patches of cortex, and which can each converge
dynamically into one ofS local attractors. The activity of local networki can then be described
synthetically by an analog ‘Potts’ unit, i.e. a unit that can be correlated to various degrees
with any one ofS local attractor states. The state variable of the unit,σi , is thus a vector
in S dimensions, where each component of the vector measures how well the corresponding
feature is being retrieved by the local network. The possibility of no significant retrieval—no
convergence and hence no correlation with any local attractor state—can be added through an
additional ‘zero’ state. Because the local state cannot be fully correlated, simultaneously, with
all S features and with the zero state, one can use a simple normalization

∑S
k=0 σ k

i = 1. Having
introduced such Potts units as models of local network activity, in the following we will use the
terms ‘local network’ and ‘unit’ as synonyms.

The global network is comprised ofN (Potts) units connected to one another through tensor
sets of weights, which represent collections of long-range synaptic connections, between distant
patches of cortex. The network has storedp Potts activity patterns, as global attractor states that
represent concepts in semantic memory. When global patternξµ is being retrieved, the state of
the local networki is in the local attractor stateσi ≡ ξ

µ

i , retrieving featureξµ

i , a discrete value
which ranges form 0 toS (the zero value standing for no contribution of this group of features
to conceptµ). As shown in [11], such a compositional representation of concepts as sparse
constellations of features (with a global sparsity parametera measuring the average fraction of
features active in describing a concept) leads to the desired global attractor states when long
range connections have associated weightsJkl

i j

Jkl
i j =

Ci j

cMa(1− (a/S))

p∑
µ=1

(
δξ

µ
i k −

a

S

) (
δξ

µ
j l −

a

S

)
(1− δk0)(1− δl0), (1)

which can be interpreted as resulting from Hebbian learning. In this expression, each element
of the connection matrixCi j is 1 if there is a connection between unitsi and j , and 0 otherwise
(the diagonal of this matrix is filled with zeros), whilecM stands for the average number of
connections arriving to Potts uniti . In this model, the maximum number of patterns, or concepts,
which the network can store and retrieve scales roughly likecM S2/a. We refer to [11] for an
extensive analysis of the storage capacity of the Potts model.
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Figure 1. Examples of latching dynamics for the 3 values ofU : 0.5, 0.4 and
0.3 (from left to right). Top plots: the evolution of the sum of all the activity in
the network. Bottom: overlap of the state with the most relevant patterns. Each
colour corresponds to a different pattern.

3. Basic conditions for latching dynamics

Here, we are interested in studying not the storage capacity but rather the dynamics of
such a Potts model of a semantic network. Latching dynamics emerges as a consequence
of incorporating two additional crucial elements in the Potts model: neuronal adaptation and
correlation among attractors. Intuitively, latching may follow from the fact that all neurons
active in the successful retrieval of some concept tend toadapt, leading to a drop in their
activity and a consequent tendency of the corresponding Potts units to drift away from their
local attractor state. At the same time, though, the residual activity of several Potts units can
act as a cue for the retrieval of patternscorrelatedto the current global attractor. As usual with
autoassociative memory networks, however, the retrieval of a given pattern competes, through
an effective inhibition mechanism, with the retrieval of other patterns. One can then imagine
a scenario in which two conditions are fulfilled simultaneously: the global activity associated
with a decaying pattern is weak enough to release in part the inhibition preventing convergence
toward other attractors; but, as an effective cue, it is strong enough to trigger the retrieval of
a new, sufficiently correlated pattern. In such a regime of operation, after the first, externally
cued retrieval, the network state experiences the concatenation in time of successive memory
patterns, i.e. it latches from attractor to attractor (see figure1).

In a previous report [12], we have offered a first description of thecomplexityof latching
dynamics, and discussed which parameters control it. Latching transitions were seen to be
neither deterministic nor random, nor to depend solely on the correlation between consecutive
attractor states. Furthermore, a marked asymmetry was observed in the transition matrix,
controlled by a threshold parameterU .
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3.1. Introducing a model of adaptation

In retrieval dynamics without adaptation, units are updated with the rule

σ k
i =

exp(βhk
i )∑S

l=0 exp(βhl
i )

, (2)

under the influence of a tensorial local ‘current’ signal which sums the weighted inputs from
other units, with a fixed thresholdU favouring the zero state

hk
i =

N∑
j =1

S∑
l=0

Jkl
i j σ l

j +Uδk0. (3)

To model firing rate adaptation, however, we introduce a modification in the individual Potts
unit dynamics. The update rule

σ k
i =

exp(βr k
i )∑S

l=0 exp(βr l
i )

(4)

is now mediated, fork 6= 0, by the vectorsr (the ‘fields’, or ‘local potentials’, which integrate
theh ‘currents’) andθ (the dynamic thresholds specific to each state), which are integrated in
time

r k
i (t + 1) = r k

i (t) + b1[h
k
i (t) − θ k

i (t) − r k
i (t)], (5)

θk
i (t + 1) = θ k

i (t) + b2[σ
k
i (t) − θk

i (t)], (6)

where the fields are assumed to change more rapidly than the thresholds, i.e. with time constants
(b1)

−1 < (b2)
−1. We also include a nonzero local field for the zero state, driven by the (slow)

integration of the total activity of uniti in all nonzero directions, (1− σ 0
i ).

r 0
i (t + 1) = r 0

i (t) + b3[U + 1− σ 0
i (t) − r 0

i (t)], (7)

with now (b1)
−1

� (b3)
−1. The local field for the zero state, which is taken to be initially equal

to U , eventually increases towardsU + 1 for active units, down-regulating their activity and
thus preventing local ‘overheating’—and at the same time destabilizing ordinary fixed-point
attractors. Note that a fixed thresholdU of order 1 is crucial to ensure a large storage capacity
(as shown in [14]) and to enable unambiguous memory retrieval, precisely by stabilizing the
fixed-point attractors that here we destabilize over a slower timescale(b3)

−1.
A final element we include, partially correcting the effect of the field for the zero state, is

an effective self-couplingJkk
i i , constant for everyi andk 6= 0, which adds stability to the local

network.

3.2. Generating correlated distributions

A standard mathematical procedure to introduce model correlations in a group ofp patterns
is through a hierarchical algorithm, which may be parametrically varied from producing
independent to highly correlated patterns. Patterns are defined using one or more generations
of parents, from which they descend, emulating a genetic tree. Since many patterns share the
same parents, the generation process introduces correlations among descendant patterns, which
are simpler for one-parent families and more complex in the case of multiple parents. We adopt
a multi-parent scheme, in particular we allow for up to 200 parents, which we callfactors[7].
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They represent semantic category generators, relating directly the correlation between patterns
to categorization in a real semantic system, so as to preserve a possibility to link the correlational
statistics of our model to observations in the cognitive neuroscience of semantic memory, which
we pursue in a cognate report [13].

These factors are defined simply as distinct random subsets of the entire set of Potts units.
In the simulations, each subset includesN f units out of the totalN units, and a total of 200
such factors are generated. The overlaps in the spatial distribution of different factors therefore
are purely random, and clustered around their mean valueN f 2.

Next, global patterns are generated from the factors, which have been indexed byn in order
of decreasing mean importance. For each global pattern, the specific importance of each factor
is given by a coefficientγµn obtained by multiplying the overall factor exp(−ζn) by a random
number, taken to be 0 with probability 1− a, and otherwise drawn with a flat distribution
between 0 and 1, specifically for patternµ. A value taken by factorn, σn, is randomly drawn
among theS ‘genuine’ attractors, and a contributionγµn is added to the field onto each Potts
unit over which factorn has been defined, in the directionσn. After accumulating contributions
from all factors, the direction in which each unit received the largest field is computed, and the
Na units receiving the largest maximal fields are assigned the corresponding directionσn in
patternµ, while the remainingN(1− a) units are assigned the null state in patternµ.

With this procedure, pairs of Potts units have uncorrelated activity when averaged across
patterns (because the different patterns that both engage the pair will span nearly evenly the
different local states). Pairs of patterns, instead, can by highly correlated once averaged across
units, particularly if they share one or a few most important factors; and positively correlated if
these factors have been assigned the same direction in Potts space. Thus, correlations among
patterns will be higher if the importance of different factors decreases rapidly (e.g. in the
simulations the valueζ = 0.02 was used, equivalent to assuming of order 50 ‘important’
factors); and they will tend to vanish if all factors are equally important (ζ = 0). When
correlations are very high each pattern tends to be significantly correlated with a specific subset
of the others, those sharing the main factor that influences them, and positively correlated
with a fraction 1/S of this subset. In this scheme, the number of memory items significantly
overlapping with one recently retrieved, and which can be the target of a non-random transition,
scales up asp/S, and does not depend on the connectivity. By contrast, the storage capacity
for retrieval can still scale up as in the case of uncorrelated patterns, if a proper learning rule
is used [13].

To characterize statistically the correlations among the resulting set of patterns we
introduce for each pair of patternsµ andν the quantities

Cµν

0 = N(1− a)Cµν

0 =

N∑
i =1

δξ
µ
i ξ ν

i
δξ ν

i 0, (8)

Cµν

1 = NaCµν

1 =

N∑
i =1

δξ
µ
i ξ ν

i
(1− δξ ν

i 0), (9)

Cµν

2 = NaCµν

2 =

N∑
i =1

(1− δξ
µ
i ξ ν

i
)(1− δξ

µ
i 0)(1− δξ ν

i 0). (10)

For any two patternsµ 6= ν (in the following we drop their indices for simplicity)C0 is obviously
the number of inactive units they share,C1 the number of active units which are shared and
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in the samestate andC2, on the other hand, the number of shared active units which are in
differentstates.C0, C1 andC2 are the corresponding fractions, i.e. normalized to their respective
maximum values. In [12] it was shown how to estimate the means and variances of these
quantities, given the hierarchical algorithm for generating correlations.

4. The statistics of the latching transitions

We ran a large set of simulations using the dynamics explained in section3.1. First of all, we
created sets ofp patterns using the algorithm described in section3.2. Each simulation started by
giving an initial cue to the network (as an additional term in the local field) in order to induce the
retrieval of one of the stored patterns. The network was then left free to evolve until one of two
stop conditions was reached: either the activity decayed to zero or else each unit was updated
50 000 times—keeping track of latching events. The simulation was run 5 or 100 times for each
cued pattern, with different random seeds, and allp patterns were used as the cued pattern. In
this way, we collected datasets of latching events, with which we constructed an estimate of the
transition probability matrixM . Since we found that all statistical quantities stabilize within the
shorter simulations, the longer ones were used merely as control data. For the simulations in
this section we have set the parametersb1 = 0.1, b2 = 0.005,b3 = 1 andJkk

i i = 1.8, where the
‘latching’ time constant(b3)

−1 was made implausibly fast so as to speed up the simulations and
collect sufficient statistics.

The probability matrix is a square matrix withp + 1 rows and columns, the additional one
corresponding to the ‘null’ attractor, with each unit in the zero state. To estimate the transition
probability between stateµ andν, we counted the times a latching event between these two
attractors appeared in the dataset. We added a transition to the ‘null’ state whenever global
activity decayed to zero and assumed a probability of 1 for the transition from the null state
to itself. Finally, given thatMi j represents the probability of having a latching transition from
global attractorsi to j , the sum of matrix elements over each row was normalized to 1.

4.1. The role of the threshold

In [12], we have studied the way latching dynamics depends on the thresholdU . We reproduce
figure1, which shows examples of the latching behaviour forU = 0.3, 0.4 and 0.5.

In terms of the transition matrixM , we have observed that, as expected, a high threshold
U selects a subset of transitions, and the matrix has a few large and many zero or vanishingly
small elements. AsU decreases, more elements ofM are nonzero, and they tend to span more
of a continuum of values. We have also found thatM is far from symmetric (even though the
correlations between patterns are symmetric by definition). As the thresholdU decreases and
randomness grows, the transition probability matrix was observed to become somewhat more
symmetric. The complexity of the transitions was also quantified with Shannon’s information
measure, computed over each row ofM

Iµ =
1

log2(p + 1)

p+1∑
ν=1

Mµν log2

(
1

Mµν

)
, (11)

so that Iµ ∼ 0 both if the attractorµ generates no latching (and thus decays to zero) or if
it latches to another fixed attractor, deterministically; if instead the process of latching is
completely random,Iµ = 1. In terms of such complexity, we have observed that decreasing
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Figure 2. The space spanned byC1 andC2 shows three distinct latching regions
(in three different colours) which correspond to different latching behaviours.
These behaviours are classified based onλ (see text). The line drawn is the one
at whichC1 = C2. The parameter values areN = 200, p = 50, S= 7, a = 0.25
andU = 0.4.

the threshold, fromU = 0.5 toU = 0.3, Iµ increases from a nearly deterministic mean value of
Iµ ' 0.03 to a largely random mean ofIµ ' 0.7, thus suggesting that raising the threshold can
effectively span the entire range from random to deterministic.

4.2. Diversity of latching dynamics

Here, we study the distinct types of latching transitions that can be observed even at a fixed
value of the thresholdU . Since correlations between patterns are obviously a major determinant
of the transitions, we considered the distribution of correlations, parametrized for eachµ andν

pair by the quantitiesCµν

0 , Cµν

1 andCµν

2 defined above. We computed these distributions using
(i) the whole set of patterns and (ii) the dataset of latching events. In the first case, each pair of
patterns enters the average once and only once. In the second case, only pairs of attractors visited
one after another in at least a latching event are considered, with a weight proportional to their
frequency of occurrence in the dataset. In [12] we found that the distribution ofC0 values does
not vary appreciably between (a) and (b) (to a large extent, quite probably, because its variance
is limited). Hence, we focus here on the distribution ofC1 andC2, which vary significantly across
pairs.

We have found three different kinds of latching behaviour in the space formed byC1 and
C2. They are as shown in figure2.

We characterize these three regions based on another variable, which is the value of the
retrieval overlap at which two consecutive latching patterns cross over each other (see e.g.
figure1). We call this new variableλ.

It is seen that when the value ofλ is high (between 0.6 and 0.8), the value ofC1 is generally
higher than that ofC2—latching occurs between patterns that are significantly correlated (note
that, for uncorrelated patterns,C1 ' C2/S). This region consists of the points shown in violet
in figure 2. The points in orange are the ones withλ small (less than 0.2) and these fall, with
the exception of a few points, into the region whereC16 C2. The lineC1 = C2 separates the two
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Table 1. Second and third largest eigenvalues ofM and the corresponding decay
timesndec, as defined in equation (13), for the 3 random number generator seeds
used in the simulations shown in the figures.

Seed λ2 λ3 nλ3 nλ3

1 >0.99 0.88 >230 18
2 >0.98 0.23 >115 1.6
3 >0.98 0.27 >115 1.7

regions. Note that no transitions are observed with intermediate values ofλ, which shows that
there is no continuous transition between these two regions.

The dichotomy can be intuitively understood because a high value ofλ is expected when
there is a large overlap between the corresponding patterns of activity (see figure1) and this
implies a high value ofC1, sinceC1 is the number of units which are shared between the two
patterns, i.e. active and in the same state.

The lone green data point falls into yet another ‘region’, since in this case the two latching
patterns oscillate among themselves in activity and meet at a very high value ofλ, of around
0.85 or more.

4.3. Eigenvalue analysis

As M is a transition probability matrix, the eigenvalues ofM can be shown to have a
modulus lower than or equal to one. Because of the construction of the matrix, the eigenvalue
corresponding to the zero pattern, which projects entirely into itself, isλ0 = 1. In the general
case, when applying the transition matrixn times to an initial patternµ, the result may as usual
be decomposed as

Mnx̂µ = ADn A−1x̂µ = A−1
0µ x̂0 +

p∑
k=1

λn
k A−1

kµvk, (12)

whereD is the diagonal matrix with the same eigenvalues asM , A is the basis change matrix
with the eigenvectors ofM as columns,λk is thekth eigenvalue ofM , vk the corresponding
eigenvector and̂xη is the unitary versor with elements(x̂η)i = δi η. Thus, we see that for large
values ofn activity will eventually decay to the ‘null’ attractor, unless some non-null eigenvector
of M has an eigenvalue of 1. Whenever this is not the case, the decay time is given by the second
largest eigenvalue ofM . More specifically, for any eigenvalueλk, the number of transitions for
its eigenspace to decay, for example, to 0.1 of its original amplitude is given by

ndec= logλk
(0.1). (13)

In table1, we showndec for the second and the third largest eigenvalues, and for three different
random number seeds. For each of the three seeds, the second largest eigenvalue corresponds to
modes that do not decay over the entire length of the simulation (the convergence to an attractor
and subsequent drift away from it take, with our parameters, between 300 and 500 updates of
each unit, which multiplied byndec> 100 is of the same order as the 50 000 updates we set
as the maximum duration of the simulation). So in each of the three examples, some sort of
latching dynamics did occur indefinitely, although in the case of the first seed it was clearly of a
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peculiar type. The third largest eigenvalue, when also close to 1, indicates that there are at least
two groups of states that dominate the long term behaviour, and are dynamically kept separate
for a long time.

In general, the emergence of unitary eigenvalues in the matrix, apart from the one
corresponding to the null state, is of great interest, because it indicates the transition from
high-order (but finite) recursion to infinite recursion. More analysis is obviously required to
understand this phase transition, but it appears from our simulations that quenched disorder
(the random seed generator, determining the exact realization of correlated attractors) can bring
the system into either phase, even when all parameters take the same values. It remains to be
seen whether in a large enough system the variability due to quenched disorder progressively
vanishes. The way the probability of observing indefinite latching depends on connectivity
parameters, likecM and S (which is indirectly a connectivity parameter in the local cortical
network interpretation of each Potts unit) has been sketched in [7].

4.4. Non-ergodicity appears as distinct latching behaviours

In the case of a particular seed (seed 1), latching was dominated by two patterns which fell in the
green region of figure2. This can be taken to be a somewhat pathological case, determined in
part by the high correlation between the two patterns, and in part by the lack of a suitable ‘escape
route’ from the limit cycle they effectively comprise. For the other two seeds, the latching
patterns ranged through all the values ofC1 (note that we ran the simulations twice, one for
5 cycles with each external cue and the other for 100 cycles with each external cue, without
noting any appreciable difference).

These results are shown in figure3.
The interesting feature to note in these three examples is that the frequencies ofC1 values

over latching pairs, relative to the general distribution, show an initial dip, beyond values of
C1 of 0 and 1: there are fewer transitions between pairs withC1 = 2 and onward, than with
C1 = 0 or 1. Though this decreased frequency is a small effect, it stands in contrast with the
notion, suggested by previous analyses, that the latching transition probability simply increases
monotonically with correlation, i.e. withC1 [12], an effect that is still valid for high values ofC1.
The dip is seen from the graphs to be due to the many transitions that haveλ very small, i.e. the
random transitions, that fall in the orange region of figure2. Such transitions occur preferentially
at very low correlation,C1 = 0 or 1, and relatively less frequently between pairs of patterns with
higher values ofC1. This observation motivates the study of the detailed dynamics of individual
transitions, both in the low- and in the intermediate-correlation regimes.

5. Transition dynamics

In order to study the dynamical behaviour of the system during a single latching transition, we
may complement the simulation approach with an analytical one. Simulations were performed
following the same updating rules defined in section3.1, but on larger networks (N = 10 000)
and with parameters more appropriate to follow the detailed dynamics of individual transitions.
The analytical approach considers the field affecting each unit as a sum of ‘signal’ and ‘noise’
terms, as described in the following, and derives differential equations that govern the dynamics
of each subgroup of units which receive the same signal.
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Figure 3. In columns organized from left to right, histograms describing the
results of three sets of simulations with different seeds. Inside each of these
columns, the top graph shows a histogram of the eigenvalues of the transition
matrix, while the centre and bottom graphs show, respectively, the distributions
of C1 for all pairs of patterns and for pairs of patterns participating in latching. In
the bottom graphs the bars are subdivided in regions of different colour indicating
theλ value at what the corresponding transition occured. For the column in the
left, the behaviour is dominated by transitions which occur for a very high value
of C1 (andλ). As indicated by the colour of the bar, it is due to the transitions
that fall in the green region of figure2. This pathological case is not present in
the simulations in the centre and right column. The parameter values are, again,
N = 200, p = 50, S= 7, a = 0.25 andU = 0.4.

5.1. Signal-to-noise analysis

We start by writing the expression of the field affecting each nonzero state of uniti , from
section3.1

hk
i =

N∑
j =1

S∑
l=0

Jkl
i j σ l

j , (14)

in terms of theoverlapsbetween the state of the system and each patternµ, defined as

mµ ≡
1

Na(1− (a/S))

N∑
j 6=i

S∑
l 6=0

(
δξ

µ
j l −

a

S

)
σ l

j (15)
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and neglecting both the self interaction terms and the quenched disorder implied by the sparse
connectivity among Potts units; the mean-field expression for the field becomes

hk
i '

p∑
µ

mµ

(
δξ

µ
j k −

a

S

)
+Uδk0. (16)

The signal-to-noise analysis [11] proceeds by singling out any pattern with macroscopic
overlap with the current state, and treating other patterns as contributing only to the noise. For
example, when focusing on a latching transition between two patternsµ = 1 andν = 2, one
may write

hk
i ' m1

(
δξ1

j k −
a

S

)
+ m2

(
δξ2

j k −
a

S

)
+

√
αa

S2
qη +Uδk0, (17)

where the noise amplitudeq reflects the global activity of the network, defined as follows

q ≡
1

Na(1− (a/S))

N∑
j 6=i

 S∑
l 6=0

σ l
j
2
−

a

S
(1− σ 0

j )
2

 , (18)

α = p/cM parametrizes the storage load and the Gaussian variableη has zero mean and
unitary variance [11]. Note that the description in terms of equations (17) and (18), which is a
reasonable approximation when patterns are uncorrelated, is much more delicate in the presence
of correlations. Even whenp � cM the effect of the ‘noise’ term may remain important, due to
correlations with other patterns, that make equation (17) inappropriate.

Choosing an asynchronous updating procedure, in which a uniti is randomly selected and
all relevant dynamical variables (its ownhi , r i andθi , plus the globalm andq) are updated
at each micro-step, the update of the network takes of orderN single updates. We take this
timescale as the unitary (macroscopic) time step, and we focus on the equations detailing the
changes occurring within a micro-step of duration1t = 1/N.

Considering the definition ofm, we can write the overlap value at timet +1t in terms of
the old value

mµ(t +1t) = mµ(t) +
1

Na(1− (a/S))

S∑
l 6=0

(
δξ

µ
j l −

a

S

)
(σ l

i (t +1t) − σ l
i (t))

and from this, we derive the differential equation for the overlaps as
dmµ(t)

dt
=

mµ(t +1t) − mµ(t)

(1/N)

=
1

a(1− (a/S))

S∑
l 6=0

(
δξ

µ
i l −

a

S

)
(σ l

i (t +1t) − σ l
i (t)),

where uniti was randomly chosen to be updated at timet . Averaging over such random choices
we write

dmµ(t)

dt
=

1

Na(1− (a/S))

N∑
i

S∑
l 6=0

(
δξ

µ
i l −

a

S

)
(σ l

i (t +1t) − σ l
i (t))

' − mµ(t) +
1

a(1− (a/S)

〈
S∑

l 6=0

(
δξµl −

a

S

)
σ l (t+)

〉
all units

, (19)
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where the notationt+ means after updating the whole network. A similar procedure can be
followed for the variableq to derive the equation

dq(t)

dt
= −q(t) +

1

a(1− (a/S))

〈 S∑
l 6=0

σ l 2(t+) −
a

S
(1− σ 0(t+))2

〉
all units

. (20)

Together with equation (19) and the updating of individual units in terms of current values
of m andq, the above equation describes completely the dynamics of the system. For example,
if we focus on a transition between two patterns with macroscopic overlap at timet , we may
write

dm1(t)

dt
= −m1(t) +

1

a(1− (a/S))

〈
S∑

k 6=0

(
δξ1k −

a

S

) exp(βr k)∑S
l=0 exp(βr l )

〉
all units

,

dm2(t)

dt
= −m2(t) +

1

a(1− (a/S))

〈
S∑

k 6=0

(
δξ2k −

a

S

) exp(βr k)∑S
l=0 exp(βr l )

〉
all units

,

dq(t)

dt
= −q(t) +

1

a(1− (a/S))

〈 S∑
k 6=0

(
exp(βr k)∑S
l=0 exp(βr l )

)2

−
a

S

(
1−

exp(βr 0)∑S
l=0 exp(βr l )

)2
〉

all units

,

dr k
i (t)

dt
= b1[h

k
i (t) − θk

i (t) − r k
i (t)],

dθk
i (t)

dt
= b2[σ

k
i (t) − θk

i (t)],

dr 0
i (t)

dt
= b3[U + 1− σ 0

i (t) − r 0
i (t)].

The information we have about the patterns is only statistical, as explained in section3.2. Thus,
the key to using the above equations is to group the last three sets (which comprise(2S+ 1) × N
individual equations) for units and states that receive the same signal.

5.2. Memory retrieval dynamics

As a simple example, we may consider the retrieval of a single memory pattern by an external
cue. In this case, we have to follow separately the dynamics of units which are active or
quiescent in the memory pattern to be retrieved, by tracking the fields affecting their quiescent
and active states.

In the simulation shown in figure4, the network is prepared at time 0 in a quiescent activity
state, with zero fields and thresholds for the active states andr 0

= 1.5. An external cue arrives at
time stept = 200, providing a signal term pointing at patternµ = 1 in the field to each unit. We
usedp = 5 patterns, hence a low memory load regime, in which the noise due to interference
with other patterns, which were constructed without correlations, may be safely neglected in
the analytical treatment; thus we neglect the variableq. Other parameters wereS= 3, a = 0.1,
U = 1.5,b1 = b2 = 0.01 andb3 = 0.0 (for simplicity we thus omit also the evolution of the field
affecting the zero state).
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Figure 4. Evolution of the overlap with a single cued pattern (left) and of the
fields (middle) and thresholds (right) to five groups of units receiving each
the same mean-field signal, as explained in the text. Colour data points are
extracted from the simulations, upon the updating of successive units, whereas
black curves are obtained by numerical integration of approximate dynamical
equations.

Even in this simple situation, we need to distinguish:

1. units that are active inξ1 and their corresponding fields in the statek = ξ1 (magenta), in
other active statesl 6= ξ1 (blue dots, slightly distinguishable) and in the zero state (light
blue);

2. units that are inactive inξ1 and their corresponding fields in active states (green, not
distinguishable) and in the zero state (orange).

In figure 4, the variables that we identify as ‘not distinguishable’ do not contribute to the
dynamics since their values remain close to zero.

With these simplifications, we are left with five differential equations to integrate for the
fields, five for the thresholds, and one for the single relevant overlap. Their integration leads to
a time evolution of the different quantities (fields and thresholds are shown as black curves in
figure 4) in excellent agreement with the simulations (the data points in colour—a data point
corresponds to a unit being updated). The latter show some unit-to-unit variability, which can
be reduced by taking a moving average over units updated at similar times (not shown). After
retrieving the cued pattern, in this simulation the network relapses into the quiescent state.

5.3. Quasi-random transitions

One can extend the analysis above to the more interesting case of latching transitions between
pairs of patterns. The grouping of units and states into coherent mean-field ensembles is much
more tedious, however. We focus here on the relatively simple case of only two correlated
patterns, between which we may observe latching, givenC1 units that share the same active
state in both patterns, and we neglect to consider any other pattern. TheC1 units may be expected
to be active during the retrieval of the first pattern and to remain active and in the same state
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during the retrieval of the second one. In any case, this group of units obviously follows its
own dynamics, that differs from the one followed by other groups of units. In total, we need to
consider five distinct groups of units, that correspond to:

1. units active inξ1 and inξ2, and in the same state;

2. units active inξ1 and inξ2, but in a different state;

3. units active inξ1 but not inξ2;

4. units inactive inξ1 but active inξ2;

5. units inactive both inξ1 and inξ2;

and for these different groups, to distinguish the relevant states (amongS+ 1 ones), and consider
their evolution separately; including equations for two overlaps and for the variableq, even in
this most simplified situation we obtain 28 integrable differential equations, that we do not write
down here (see Eleonora Russo, unpublished MSc Thesis, for the full derivation).

In the simulation shown in figure5(b), we identified an example of a latching transition
characterized by a low correlation between the two patterns (in fact, an anticorrelation: they
share in the same state onlyC1 = 25 out of their 2500 active units, and anotherC2 = 25 in
different states). At time 0 all network units have the value1

S+1 for all the states, with threshold
θi = σi , and an external cue arrives at time stept = 500, providing a signal term pointing at
patternµ = 1 in the field to each unit. Other parameters werep = 2 (hence a single other
pattern is present, to simplify the analysis of the noise),S= 3, a = 0.25, U = 0.1, b1 = 0.05,
b2 = 0.001 andb3 = 0.0005.

The figure shows the overlaps with the two successive patterns crossing over at a
vanishingly small value ofλ (slightly negative, in fact), characteristic of a random transition.
Remarkably, the fields in the direction of the second pattern build up slowly, in that the decaying
first pattern does not provide any useful cue in the direction of the second. Once the fields reach
a given effective value, however, a self-regenerating process is initiated and the second overlap
rises very rapidly towards 1 (without fully reaching it).

5.4. Transitions between correlated attractors

In another simulation (figure5(a)), we identified a high-crossover latching transition between
two substantially correlated patterns, which were constructed to shareC1 = 475 out of their 2500
active units. Again, network units have at time 0 the value1

S+1 for all the states, with threshold
θi = σi , and an external cue arrives at time stept = 500, providing a signal term pointing at
patternµ = 1 in the field to each unit. Other parameters werep = 2 (again, a single other pattern
is present),S= 3, a = 0.25,U = 0.1, b1 = 0.005,b2 = 0.001 andb3 = 0.0001.

One observes in figure6 the latching transition occurring at a fairly high cross-over
value λ ' 0.68. In fact, the overlap with the second pattern starts effectively at a nonzero
values already imposed by the cue to the first pattern, with which it is significantly correlated.
Its overlap then builds up gradually, eventually reaching the self-regeneration threshold.
Interestingly, its accrual appears to sustain the overlap with the first patterns, rather than
speeding up its demise. The overlap with the second patterns rises relatively slowly even after
the self-regeneration process has started, and does not reach particularly high values either.
Clearly, much more extensive work is required, in order to confirm the generality of these
observations.
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Figure 5. Two examples of simulations that represent the interesting regions
shown in figure2: a latching transition between largely correlated patterns (left
column) and a random latching transition between uncorrelated patterns (right
column). The three panels show, as in figure4, the overlaps with the two patterns
(top) and the fields (but only on the active states; middle) and thresholds (bottom)
of various groups of units, as they are updated.

Finally, to meet the results of section4, we perform a search of latching dynamics for the
solution of the differential equations in the region of parameters spanned by all possible values
of C1 andC2. To achieve this complete search we chose two combinations of these parameters
that span between 0 and 1. Figure6 shows the regions of latching for 06 (C1 +C2)/(aN)6 1
on they-axis and 06 C1/(C1 +C2)6 1 on thex-axis.

The regionL1 shows the latching guided byC1, or, in other words, shared active units
in the same state. It appears when the total amount of shared unitsC1 +C2 is rather small in
comparison withaN and at the same timeC1 is larger thanC2. The pathologicalL2 region is
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Figure 6. Three latching regions are found, parallel to the ones described in
section4. The axes show the two described combinations ofC1 andC1, chosen
in such a way to have a range spanning between 0 and 1. For each combination
of parameters, a numerical integration of the dynamical equations, similar to
those shown in figure5, was performed. The colour at each point indicates the
maximum value ofm2 during this integration. RegionL1 corresponds to the kind
of transition shown in the violet points in figure2, while regionL2 corresponds
to the green point and regionL3 to the orange points. In each of the marked
regions,m1 < m2 at the time in whichm2 reaches its maximum, but not in the
area betweenL1 andL2, that could otherwise be regarded as a latching region
itself.

associated toC1 ∼ (aN), i.e. the number of shared units in the same active state is close to its
saturation value. Finally, the regionL3 corresponds to the conditionC1 � C2 (uncorrelated or
anti-correlated patterns). This picture fits exactly what has been described in figure2 through a
completely different approach, suggesting a strategy to follow in future developments. While the
dynamical equations can give a mechanistic description of latching in ‘noiseless’ situations with
only two patterns, the observations can therefore be extrapolated to more general simulations
for which only a statistical approach is possible, given the high dimensionality.

6. Discussion

The notion of dynamical attractors has recently emerged, in cognitive neuroscience, as having
the potential to bridge the gap between the analog processing performed by individual
neural elements and the digital operations subsumed in cognitive descriptions. In this context,
dynamics which take place largely in the neighbourhood of ‘quasi-attractor’ states (of states that
would be stable attractors were it not for a simple mechanism that destabilizes them, such as
firing rate fatigue) offer a model for free associations in semantic space [15], perhaps including
the highly constrained trajectories expressed in natural language. This emerging view calls for
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a quantitative, first principles modelling of higher order attractor-based processes, that has so
far been only partially explored. Here, following up on our previous reports [7, 11, 12], we
have begun to analyse the transitions between attractor states demonstrated by a simple Potts
associative memory model, in the region of parameter space where it shows latching dynamics.

The model itself is based on the idea that associative memory retrieval operates throughout
the cortex at two levels [16], and as a generic functional mechanism rather than as a separate
dedicated system [17]. In this spirit, we have earlier suggested a rough description of how
attractor dynamics in the network model gives rise to a complex and structured set of transitions,
that could be regarded as a model of infinite recursion. This complexity, grounded in the
correlation between patterns, was shown to be controlled mainly by the threshold, that also sets
the global activity in the network. An appropriate value of the threshold ensures the transient
coexistence of decaying and newly emerging attractors at critical points in the retrieval process,
when latching between attractors takes place.

Here, we show that even for a given value of the threshold, one observes a considerable
diversity of latching transitions. Apart from the extreme case of oscillations between nearly
overlapping attractors, latching transitions can be roughly categorized between random ones,
and those driven by positive correlations. It appears that the latter are responsible for embedding
structure of a potentially usable form into the dynamics. There might, however, be finer structure
also in the random transitions, as suggested by the prevalence, among those, of transitions
between anticorrelated patterns (C1 = 0 or 1). Understanding such finer structure is essential,
if one aims at embedding real syntactic or semantic constraints in latching dynamics. Features
that require continuity between successive elements, like number or gender in the syntax of
predicates, or topic in semantic concatenation, have to be engineered to sustain their activation
across latching events, while features like subject markers, if any, have to be engineered to be
terminated at latching, and maybe to activate complementary markers as distinct local states of
the same units. These aspects obviously require massive additional study, preliminary to which
is a much more complete analysis of latching dynamics, that we could only begin to sketch here.
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