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ABSTRACT

The CA3 network in the hippocampus may operate as an autoassociator, in which declarative
memories, known to be dependent on hippocampal processing, could be stored, and subsequently
retrieved, using modifiable synaptic efficacies in the CA3 recurrent collateral system. On the
basis of this hypothesis, the authors explore the computational relevance of the extrinsic afferents

. to the CA3 network. A quantitative statistical analysis of the information that may be relayed
by such afferent connections reveals the need for two distinct systems of input synapses. The
synapses of the first system need to be strong (but not associatively modifiable) in order to force,
during learning, the CA3 cells into a pattern of activity relatively independent of any inputs being
received from the recurrent collaterals, and which thus reflects sizable amounts of new infor-

mation. It is proposed that the mossy fiber system performs this function. A second system,
with a large number of associatively modifiable synapses on each receiving cell, is needed in
order to relay a signal specific enough to initiate the retrieval process. This may be identified,
we propose, with the perforant path input to CA3.
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Evidence from a number of different disciplines has in-
creasingly shed light on the role that the mammalian hippo-
campal formation plays in memory (for reviews, see Morris
et al., 1988; Squire et ai., 1990; Storm-Mathisen et al., 1990).
The hippocampus appears to be particularly implicated in the
formation of long-term episodic and semantic memories
(Squire et al., 1989; Rolls, 1989b; 1990), although it does not
seem to constitute the unique final storage site for such mem-
ories (Zola-Morgan and Squire, 1990). A number of attempts
have been made to integrate the available evidence into a
theoretical understanding and, more specifically, to relate the
hypothesized function of the hippocampal formation in mem-
ory to its anatomical and physiological characteristics. One
of us has described a theory of the hippocampus that relates
its function to the operation of the neuronal networks that
comprise it (Rolls, 1989a; 1989b; 1990). The theory assigns a
crucial role to the CA3 network in forming memories of dis-
crete events. It is postulated that any new event to be mem-
orized is given a representation as the firing pattern of CA3
pyramidal cells, and that it is the extensive intrinsic connec-
tivity formed by the axon collaterals from the CA3 cells to
other CA3 cells that allows for the retrieval of a whole rep-
resentation to be initiated by the activation of some small
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part of the same representation. The CA3 network is thus
considered to operate, in part at least, as an alitoassociative
memory, in which neuronal representations of different
events, or episodes, experienced by the organism may be
stored (on the modifiable synapses of the collateral connec-
tions), and from which they may be retrieved following a par-
tial cue. *

In addition to the extensive and numerous collateral con-
nections, another anatomically observed salient feature of
CA3 circuitry is the presence of two distinct major input sys-
tems: the perforant path (PP) and the mossy fibers (MF). The
perforant path originates in the entorhinal cortex, the struc-
ture that serves as the main input station to the hippocampal
formation, while the mossy fibers are the axonal projections
of the granule cells of the dentate gyrus. As the granule cells
receive most of their extrinsic input from the entorhinal cor-
tex, the mossy fibers appear to carry, by and large, the same
information, although relayed by the dentate gyrus, as that

* Note that while it is convenient to distinguish conceptually between
storage and retrieval, retrieval might be useful even during the storage
phase of episodic memories, because it would allow the whole of the
episodic memory to be held stable if some of its individual compo-
nents were to change. This stability could help the storage of long-
term memory elsewhere, for example in the cerebral neocortex (see
Rolls, 1989b). Note also that the theory considered here does not
require that memories be stored in the long-term in the CA3 net. The
theory is neutral on this issue.
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conveyed directly by the perlorant path. It is intriguing,
therefore, to try to understand the function of this "double"
projection. This paper attempts to show that within the theory
that regards CA3 as an autoassociative memory, a require-
ment naturally arises for two extrinsic input systems that
would have the distinct qualitative features apparently char-
acterizing the perforant path and mossy fiber connections.
This further demonstrates, in a manner that is predictive and
in principle testable, how specific elements of a given brain
structure could be associated with specific computational
subtasks that are part of the function ascribed to the structure
as a whole.

Organization of CA3 circuitry

The most distinctive feature of hippocampal circuitry is the
sequence of three unidirectional, nonreciprocated systems of
(excitatory) projections from the entorhinal cortex to the den-
tate gyrus (DG), from the DG to CA3 (the mossy fibers), and
from CA3 to CAI (the Schaeffer collaterals). The three
stages: DG, CA3, and CA1, therefore receive a sort of natural
ordering in terms of information flow, notwithstanding the
fact that other systems of projections also exist, for example,
direct entorhinal projections to both CA3 and CAI (Fig. 1).
It is noteworthy that, along this sequence, the number of cells
involved first decreases from DG to CA3 and then increases
from CA3 to CAI, in a way that is relatively consistent across
different species, as shown in Table I.

Among the three systems of projections mentioned above,
the mossy fiber projection is by far that with the smallest
degree of divergence and convergence: it has been estimated
that in the rat (Amaral et al., 1990) each granule cell could
reach of the order of 14 CA3 cells, and conversely (based on
the data in Table 1) that each CA3 cell would not receive
from more than 46 granule cells, on average. Within CA3, a
far more extensive input system is that provided by the per-
forant path connections, which, originating in entorhinal cor-

Fig. 1. Main systems of excitatory connections within the
hippocampus. Perforant path (PP) inputs from the entorhinal
cortex reach the granule cells in the dentate gyrus (DG), and
the pyramidal cells of CA3 and CA 1. The granule cells project
to CA3 via the mossy fibers (MF), while CA3 cells project
both to CAI via the Schaeffer collaterals (SC) and to other
CA3 cells via the recurrent collaterals (RC).

Table 1. Number of Cells in the Hippocampus of Rats and
Primates

DG CA3 CAl Reference

Rat (SD strain) 1.0 x 106 0.33 X 106 0.42 X 106 Boss et aI.,
1985; 1987

Rhesus 4.8 x 106 0.86 X 106 1.4 X 106 Seress, 1988
monkey

Human 8.8 x 106 2.3 X 106 4.7 X 106 Seress, 1988

The numbers are for one side of the brain, and those for CA3 in-
clude the CA2 subfield. Interestingly, it was recently reported (West
and Gundersen, 1990) that, when correcting appropriately for post-
mortem shrinkage of tissues, the numbers for humans increase to 15
x 106 :t 28% (DG), 2.7 x 106 :t 22% (CA3), and 16 x 166 :t 32%
(CAl).

tex, make synapses on the apical dendrites of CA3 pyramidal
cells. Based on the average extent of dendritic arborization
in the layer innervated by the perforant path (stratum lacu-
nosum/moleculare), it has been calculated that each CA3 py-
ramidal cell may receive up to 3750 PP synapses in the rat
(Amaral et al., 1990), possibly from as many different cells
in entorhinal cortex. The largest number of synapses (about
12,000) on the dendrites of CA3 pyramidal cells is, however,
provided by the axon collaterals of CA3 cells themselves.
(The numbers of synapses cited have been estimated for the
rat by Amaral et al. (1990), and comparable data are not yet
available for primates.) The CA3 system therefore is,
uniquely within the hippocampus, a system in which intrinsic,
recurrent excitatory connections are, at least numerically,
dominant with respect to excitatory afferents. In addition to
the above, there are also intrinsic connections with a variety
of numerically limited and mainly inhibitory populations of
interneurons, and also extrinsic connections with sub limbic
structures. These latter systems are all postulated, in the pres-
ent work, to subserve generic regulation of neural activity in
CA3, as opposed to providing signals specific to the infor-
mation being processed in the system, and their operation is
not considered in detail in the following.

The focus, then, is on the population of CA3 pyramidal
cells and on three systems of synapses they receive: those
from the recurrent collaterals (RC), of which there are rela-
tively many per cell; those from the entorhinal cortex via the
PP, of which there are also relatively many; and MF synapses
from the dentate gyrus, of which there are relatively few (Fig.
2). The ratio between the average number of PP synapses per
cell and that of RC synapses is important in determining their
relative influence on the flI"ingof CA3 cells, and will be de-
noted as K. On the basis of the information available for the
rat, it will be assumed that realistic values of K (possibly also
in the case of primates) are around, say, K = ~.

Two important features characterizing these different sets
of synapses are their relative strength and their plasticity. MF
synapses are presumed to be individually strong and to dis-
play long-term activity-dependent synaptic enhancement
(LTP). This form of enhancement appears not to be associ-
ative (Zalutsky and Nicoll, 1990). RC and PP synapses, by
contrast, are thought to be individually weak, and of the
NMDA type, implicated elsewhere in an associative type of
plasticity (Miles, 1988; Brown et al., 1990). What is meant
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Fig. 2. The CA3 network. This schematic diagram depicts
the main systems of excitatory synaptic connections to py-
ramidal cells, with the estimates, for the Sprague-Dawley rat,
of the number of synapses per cell for each system (Amaral
et aI., 1990). Inputs come from the left and outputs leave to
the right of the diagram.

here by associative and nonassociative plasticity is that in the
first case, and not in the second, the change in the efficacy
of the synapse due to a learned event depends (in a con-
junctive, nonadditive manner) on both the activity in the pre-
synaptic terminal during the event, and on the conditions pre-
vailing at the postsynaptic site, as determined by other factors
(including the activity at different synapses). A more quan-
titative definition of associative plasticity is given below.

Another potentially important feature of synaptic organi-
zation is the connectivity pattern determining the probability
of contact between any two given cells in the pre- and post-
synaptic population. Indeed, definite gradients in the topo-
graphical distribution of the contact probability have been
described, for example, in the recurrent collateral system of
the rat (lshizuka et al., 1990). Thus, the projections from CA3
cells located close to the DG may be restricted in their des-
tination to the same CA3 portion proximal to the DG and to
the same septotemporallevel of origin, whereas cells located
closer to CAI tend to have more widespread projections, both
along the DG-CAI direction and along the septotemporal
axis. The mossy fiber system, by contrast, appears to have
a much more restricted divergence, in that each granule cell
tends to contact only cells in the same septotemporal "slice"
of the CA3 field. It should be noted that some of these trends
vary considerably between different species. Thus, while in
the rat it has been observed that among the recurrent collat-
erals in CA3 the ipsilateral connections and the commissural
fibers from the contralateral hippocampus carry roughly the
Same weight, in the monkey only a quantitatively and top-
ographically limited portion of the collateral connections
comes through from the contralateral side (Amaral et aI.,
1984). These detailed connectivity patterns in CA3, however,
will not substantially affect the arguments that follow, inas-
much as the recurrent collateral connections are divergent
enough to guarantee that excitation can potentially be spread
from any given pyramidal cell to any other pyramidal cell in

CA3 within a few synaptic steps, or within a few tens of mil-
liseconds. This property seems indeed to hold, with the pos-
sible proviso that in some species that include primates, due
to the limitedcommissuralconnections mentioned above, the
CA3 fields in the two hippocampi should be more appropri-
ately regarded as distinct systems, with possibly some degree
of lateralization of function (Rolls, 1990).

Collateral connections and memory retrieval

The hippocampal theory, on which our considerations are
based, hypothesizes that the role of CA3 in the formation of
episodic memories is as follows. When the animal experi-
ences a particular episode, a multisensory constellation of
stimuli runs through and is processed along various sensory
pathways to form an ensemble of neural representations of
different elements of the episode. These highly elaborated
signals, rich in information content, reach the hippocampus
through the overlying areas of cortex and (possibly upon con-
current excitation or disinhibition by nonspecific activating
systems) elicit a definite pattern of firing responses in the CA3
pyramidal cells. This firing pattern, which constitutes a uni-
tary representation of the episode, results specifically from
the direct enthorinal input (Yeckel and Berger, 1990), from
the DG-relayed mossy fiber input and, after a brief delay,
from the detailed feedback effect of recurrent connections.
Labelling CA3 pyramidal cells 1, . . . , i, . . . , N, and as-
signing the label fL to the particular episode being repre-
sented, the set offuing rates, when averaged over some pre-
scribed period after the transient, is denoted as {TI/'"}.The
theory then postulates that, if representation {Tit} is to be
stored, modifications occur in the efficacies of different sys-
tems of synaptic connections, including the CA3 recurrent
connections, with a change in the efficacy of each particular
synapse dependent on the activity of the pre- and postsy-
naptic cell during learning. Such synaptic modifications con-
stitute a long-term memory trace and persist, superimposed
with subsequent modifications, while the system proceeds to
learn different episodes (in the way specified below). Later,
a partial cue, in the form of an afferent signal having some
correlation with the signal that reached CA3 during episode
fL,is postulated to be able, by virtue of the trace embedded
in the recurrent synapses and once activity is circulated
through, those synapses, to elicit a firing pattern {Vi} strongly
correlated with {Tit}. This cued memory retrieval may sub-
serve, among other functions, the consolidation of longer-
term forms of memory storage outside the hippocampus, as
hypothesized in the early model of Marr (l97l).t

The crucial property in the proposed mechanism is the abil-
ity of the CA3 system to perform as an autoassociative mem-
ory in selectively retrieving a specific firing pattern among
several stored on the same set of synaptic efficacies (Gardner-
Medwin, 1976). This is a highly nontrivial property, if the
system is assumed to operate in the presence of both intrinsic

t Curiously, while Marr's view of the hippocampus has inspired much
of the later research, his own specific formal model, which is only
distantly related to actual hippocampal circuitry, does not rely:cru-
cially on the operation of recurrent collaterals, as elucidated in a
recent critique (Willshaw and Buckingham, 1990).
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sources of noise and interference effects due to the storage
of many patterns. It has been the merit of formal models of
autoassociative memory (Hopfield, 1982) to show that this
ability indeed pertains, at least, to simplified systems that
mimic networks with recurrent connections. A quantitative
analysis of such formal systems (Amit et al., 1987) shows that
the ability to retrieve persists up to a critical storage load,
the storage capacity. Extending previous analyses, which had
dealt mainly with systems of binary units, to systems whose
units represent more realistically neuronal (graded) firing be-
havior (Treves, 1990), we have elaborated quantitatively
some of the factors that may contribute to determining the
storage capacity of actual auto associative networks in the
brain, in particular in the CA3 network (Treves and Rolls,
1991).

The formal models mentioned above, by considering
steady-state input output relations, describe only the con-
ditions that enable recurrent processing through the collateral
connections to make the current firing pattern {VI}strongly
correlated with a stored pattern {Tit}. The initiation of the
retrieval process, however, and prior to that, the storage of
the patterns themselves, depend critically on the input sys-
tems to the autoassociative network, and it is on these two
problems that the present analysis is focused. The basic as-
sumption underlying our arguments is that a biologically plau-
sible solution to these two relatively simpler problems has to
be at least good enough to fully exploit the ability of the net-
work to cope with the harder problem of completing retrieval.
Thus, for example, given that it is possible to estimate the
total amount of information that can be retrieved from a given
autoassociative network, it will be considered here to be rea-
sonable to require that the network be able to store at least
that amount of information in the first place. In order to spec-
ify these requirements quantitatively, we summarize next the
results concerning retrieval in an autoassociative network
such as may be implemented by CA3 (Treves and Rolls,
1991).

Assume that p firing patterns {Tit} are stored with equal
weight, and that each pattern has the same statistical distri-
bution of firing rates, in particular that the firing rate of each
cell in each pattern follows, independently, a common prob-
ability distribution P"1' This is not necessarily a realistic sit-
uation, but serves to define a convenient framework for ca-
pacity measures. Note that the assumption that each cell
carries statistically independent signals is in line with the hy-
pothesis that the total information expressed by the firing
pattern is a quantity to be maximized with respect to the fixed
number of cells in CA3. This may involve removing redun-
dancy implicit in early sensory representations (Barlow,
1960; Rolls, 1987).

Within these assumptions, one can obtain, analytically, the
maximum value of p, above which interference effects make
retrieval impossible. Pmaxturns out to be proportional to CRC,
the number of associatively modifiable synapses per cell (on
the recurrent collaterals), and, roughly, inversely propor-
tional to the sparseness a of the neuronal representation. The
sparseness is defined as

--

where (.) denotes an average over the distribution PTJchar-
acterizing the patterns {Tit'}. Sparser distributions, a ~ 1,
imply less interference among different patterns, and there-
fore allow for higher values of p. To a first approximation
one finds

CRC .
Pmax= a In(lIa) x slowly varymg factor (2)

where the factor depends on the detailed structure of the rate
distribution, on the connectivity pattern, etc., but is broadly
speakingin the order of 0.2-0.3 (see Treves and Rolls, 1991,
for a more extensive discussion*).

Another, possibly more meaningful, measure of capacity
is Imax,the maximal amount of information (in bits per syn-
apse) that can be retrieved from the network. It is defined as
follows. Each pattern carries, with respect to the a priori
measure defined by PTJ'a certain information content (Shan-
non and Weaver, 1949) per cell, ip. During retrieval, an
amount h of information per cell will be lost, as the retrieved
pattern {VJ will have high but not full correlation with {TIlL},
due to noise effects including those derived from extensive
storage of other patterns. Multiplyingthe subtracted quantity
by p/CRC,one obtains a measure of the total retrievable in-
formation per synapse as

1==2c (ip - it).

Its maximal value Imaxwas calculated (Treves and Rolls,
1991)and found to be in several interesting cases§ around
0.2-0.3 bits per synapse, with only a mild dependency on
parameters such as the sparseness of coding a. Note that as
more patterns are stored with a fixed PTJ'obviously I grows
with p, but also goes down as i/ increases due to more and
more severe interference effects. In fact the maximum Imax

is obtained for p much below Pmax.
Here we can derive a reasonable estimate of how much

information has to be stored in each pattern for the network
to exploit its capacity Imax efficiently. Considering the net-
work to operate with p well below Pmax, in which case i/ may
not constitute a large fraction of ip, leads to the requirement
on ip:

(3)

ip > a In(1/a) (4)

that has to be satisfied, in some meaningful range of the
sparseness a, for efficient information retrieval. ip depends
on PTJ'which itself depends on the conditions prevailing dur-
ing information storage in CA3. Moreover, these conditions
determine how much of the information contained in the af-
ferent inputs to CA3 actually goes into ip, and how much of
ip, instead, is "fake" information resulting from the storage
process, as will be clear below. An analysis of the storage
process may therefore yield constraints on the inputs to CA3,
as shown in the next section.

We consider, for the arguments that follow, that geological
evolution, in order to optimize the organization of the CA3

(1)

* As a concrete example, if a = 0.02 and eRC = 12,000, one has Pmax
= 36,000.
§ See also the discussion by Nadal (1991).

---
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network as an autoassociative memory, had at its disposal
two basic types of synapsesto use on afferent inputs. One,
identified a posteriori with the PP synapse, is taken to be an
associatively modifiable synapse with characteristics, in par-
ticular average strength similar to the RC synapse. The other
is a potentially much stronger synapse, but lacking the type
of plasticity suitable for associative learning. The conclusion
we shall arrive at is that, indeed, an autoassociator needs both
types of inputs each with a distinct role, and that these are
in roughly the same qualitative proportions as PP and MF
synapses on the dendritic tree of CA3 cells.

RESULTS

Strong specific inputs are necessary for
information storage

The first argument concerns what type of input is necessary
during storage. We will show that an input of the PP type
alone is unable to direct efficient information storage. Such
an input is too weak, it will turn out, to drive the firing of
the cells into a pattern strongly correlated with itself, as the
"dynamics" of the network is dominated by the randomizing
effect of the recurrent collaterals.

Suppose then that the mossy fiber system is not present,
or inactive, during the storage of a particular episode, and
that the only information-rich input to every CA3 cell comes
through thousands of individually weak synapses located on
the apical dendrites. Even though the efficacy of each of these
synapses may have been associatively modified while learn-
ingprevious episodes, it can be regarded asa random variable
with normal (Gaussian) distribution, provided the present dis-
tribution of activity on the axonal fibers is unrelated to those
activity distributions occurring in past learning events. More
important, due to the large number of synapses, the inte-
grated synaptic current coming down from the apical den-
drites, h/P, can also be regarded, whatever the activity dis-
tribution on the axons, asa random Gaussian variable whose
variance is proportional to the number of synapses ePP
(Table 2).

Once the response of CA3 cells has been elicited, the total
synaptic current reaching the soma will also include the con-
tribution mediated by recurrent collaterals hiRC. There will
also be contributions from nonspecific afferents and inhibi-
tory interneurons but, as these are assumed to be poor in
information content, the variance in their distributions over
different CA3 cells may be neglected. As noted above, the

Table2. Main SymbolsUsed in the FormalAnalysis

1]i'" Firing rate of cell j in the ILth stored pattern
Vi Firing rate of cell j in retrieving a pattern
p Number of patterns concurrently stored
C Number of synapses per cell
a Sparseness of a set of firing patterns (see equation I)
I Information stored in the network, per synapse
j Information content of one pattern, per cell
hi Integrated synaptic current into cell j
J Synaptic efficacy
q Cue: correlation in the afferent firing pattern
S Signal: correlation in the synaptic currents

mossy fibers are supposed, just for the sake of this argument,
not to contribute to hi during storage. Just as with hiPP, the
distribution of hlc may be taken as Gaussian, with a variance
proportional to the number of recurrent collateral synapses
eRC. This time, however, the variance may be shown to be
enhanced also by a factor originating from the feeding back
of correlations between the current firing pattern and pre-
viously learned patterns. Without further elaboration, for
which we refer to our previous work (Treves and Rolls, 1991),
we denote this enhancement factor as (l - 1\1)-2,where 0 :s;
1\1:s; I and 1\1is a measure of the degree of feedback, which
depends, e.g., on the details of the recurrent connectivity.

The total synaptic current is therefore expressed as

(5)

where Iiis the input averaged over the CA3 cell population.
The important point is that the distribution of Ah/P and AhiRC
are independent, because the distribution of efficacies on the
RC synapses reflects only previously learned activity pat-
terns, unrelated to the current one. If, moreover, the PP and
RC synapse have similar average strengths, and if the afferent
PP axons also carry similar average activity as the RC axons,
then the ratio between the variances will be determined es-
sentially by the ratio between ePP and eRC,

(6)

where

(7)

Consider now learning to occur, in that the efficacies of
both PP and RC synapses are modified. If it is a reasonable
approximation to consider the cells as point-like (and indeed
the large CA3 pyramidal cells are electrotonically quite com-
pact), then the modifications at all synapses may be taken to
reflect, in their postsynaptic dependence, the time-averaged
membrane potential. This, in turn, is reflected directly in the
time-averaged firing rate T]iof each cell (at least above thresh-
old, but on the other hand relatively large depolarizations
appear to be necessary to induce synaptic modification; Col-
lingridge and Singer, 1990); so that the information that is
being encoded on the synaptic efficacies may be taken to be
ip, the information contained in the firing pattern {T];}.Now
{T];} is determined by both h/P and hlc, but the only infor-
mation that matters is that contained in the input, and there-
fore in h/P, while hlc only adds a random distortion deter-
mined by those memory traces that preexisted at the time of
learning.1IThis is an important point: if the only purpose of
future memory retrievals were to identify the firing pattern
stored in CA3 most correlated with the cue, randomly gen-
erated representations would suffice; but if, on the other

IINote that, in the presence of spin-glass effects, in particular the spin-
glass-like multiplicity of stationary uncorrelated patterns character-
izing, for example, the standard Hopfield network (Amit, 1989), {1];}
would not be determined uniquely by external inputs and existing
synaptic efficacies. However, this type of multiplicity has been shown
not to be present when realistic features such as graded response and
inhibitory control of rates are taken into account (Treves, 1991).
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hand, the information contained in the retrieved pattern is to
be used, or in other words if the response profiles of CA3
cells are to have some meaning, then this information has to
be supplied by the input lines.

The amount of information present in the input {htP} that
survives in the pattern {'Td, and is therefore storable, is easy
to quantify. If the fraction of cells that receive input between
hPPand hPP + dhPP is denoted as c-(hPP)dhPP, the fraction
of cells that fire at rates between 'TJand 'TJ+ d'TJis c - ('TJ)d'TJ,

and the fraction of cells that satisfy both conditions is
c(hPP, 'TJ)dhPPd'TJ,then the storable information per cell is (cf.
Treves, 1990)

is = II dhPPd'TJc(hPP, 'TJ)In2 [c-~~h:~~:)('TJ)l (8)

Note that c-(hPP) = f d'TJc(hPP, 'TJ) and c-('TJ) =
f dhPPc(hPP, 'TJ).If the pattern {'TJ/}is independent of the input
distribution {htP}, then c(hPP, 'TJ)= c-(hPP)c-('TJ) and no
information survives, is = O. If on the other there is one-to-
one correspondence between input and firing activity,
c-(hPP) = c(hPP, 'TJ)= c-('TJ), then all the information con-
tained in the input, io = - f dhPPC- (hPP) In2c- (hPP), is
passed on into {'TJJ.

Using expressions 5 and 6, it is easy to compute is in
the case in which a purely linear relation holds between
hi and 'TJ/:

Note that a linear relation is equivalent to having essentially
the whole (Gaussian) hi distribution above the firing thresh-
old: a situation that produces a distribution P'I1('TJi)with limited
relative variance, i.e,. tending to the limit of no sparseness,
a -+ 1 (recall equation 1). If the relation between hi and 'TJiis
more realistically considered to include a threshold nonlin-
earity within the normal range, a decreases, but also is can
only decrease. As an example, an expression is calculated in
Appendix A for is when a simple threshold-linear relation is
assumed, with threshold Thr. The result depends on the ratio
r between the mean suprathreshold current Ii - Thr and its

standard deviation (p~p + Pkc)ll2. Different values of r also
produce rate distributions P'I1('TJi)with different degrees of
sparseness a, so that what is displayed (bottom of Figure 3)
is a plot of is versus a. No matter how sparse the coding is
in the autoassociator (and the logarithmic scale of the plot
emphasizes possibly relevant ranges), is appears to be below
the range required for ip, as expressed in equation 4. There-
fore one may conclude that only an insufficient amount of
information can be stored in these circumstances. The reason
for that is clear: the information contained in {htP} is washed
away by the intervening feedback {hiRC}. The argument is
even more compelling when considering that, the PP synapse
being actually located on the apica,l dendrites further away
from the soma than the RC synapses, their effective strength
might be reduced, bringing down further the ratio of equation
6, and thus further decreasing is.

We now reintroduce the mossy fibers. Can an input of the
MF type force efficient information storage? The indications
are that it can, although it is difficult to derive a simple formal
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Fig. 3. Information encoded in the firing rate of a CA3 cell.
As a function of the resulting sparseness a of the CA3 rep-
resentation, the solid line is the amount of information per
cell that can be stored of that carried by perforant path inputs,
as given by the expression calculated in Appendix A, with K
= 0.25 and t\1= 0; the dashed lines are the amounts that can
be stored of the information carried by a binary distribution
of activity on the mossy fibers, for A.= 5.0, eMF = 50, and
aGe = 0.1 (long dash), aGe = 0.02 (medium dash), and aGe
= 0.004 (short dash). The shaded area is where not enough
information is encoded in the rate distribution, according to
the requirement of equation 4. The requirement is clearly met
by the distributions produced by the model mossy fiber inputs
and not by those produced by the model perforant path in-
puts. Note the logarithmic scales on both axes of the graph.

argument, not only because the small number of such syn-
apses invalidates the Gaussian approximation, but also be-
cause one needs to put forward more assumptions concern-
ing, for example, the DG activity carried by the mossy fibers.
A number of factors, however, may work in the right direc-
tion. The first, obvious, one is the presumed strength of MF
synapses, which could result both from their size and from
their proximity to the soma. The second factor is that the
relatively small number of synapses allows a suitably sparse
firing activity in the DG to be converted into a signal, hiMF,
whose distribution over different cells may be highly struc-
tured (far from Gaussian). This has been referred to as an
"orthogonalizing" effect, and has been proposed (Rolls,
1989a)as one functionofDG processing.' Finally, we propose
that the observed plasticity of mossy fiber synapses, both in
the formcalled post-tetanic potentiation and in that described
as nonassociative long-term enhancement (Brown et al.,
1989),might be useful because it would result in greatly in-
creased efficacy whenever several spikes are carried by the
same mossy fiber. In other words, a consistently firingmossy
fiber would, in contrast to an occasionally firingone, produce
nonlinearly amplifiedcurrents in the postsynaptic CA3 cell.

Merely as an illustration of the effects of the first and sec-
ond factor mentioned above, and not as a statement about
the nature of the mossy fiber input, consider the following
example. Let the distribution of activity among dentate gran-

, While this effect produces a sparser signal, thereby allowing more
patterns to be stored but also reducing the information content of
hjMFitself, it also enhances its variance with respect to Pke, pushing
up is.
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ule cells, during a learning event, be binary, with a fraction
aGCof the cells firing at rate 'TJGC,and the rest silent; and let
all eMF mossy fiber synapses to a given CA3 cell i have uni-
form efficacy J. Then the distribution of the input {hiMF}is
binomial, with average eMF aGcJ",GCand variance P~F =
eMFaGc(I - aGc)J2'TJbc.Adding the Gaussian spread given
by {hlC}, assuming some value for A = P~F/P~C'and ne-
glecting this time {h/P}, one can again compute is and plot
it versus the resulting a of the distribution. One sees from
the top of Figure 3 that for A = 5, eMF = 50 and a broad
range of values for aGC, is is within the range implied by re-
quirement 4, indicating that the MF inputs may produce in
the CA3 cells a pattern of activity that contains sufficient
information for learning. This is in contrast to the more ex-
tensive PP inputs, as discussed above, and shown in Figure 3.

While the latter is only an indication, the tentative conclu-
sion of the argument as a whole is that an input system with
the characteristics of the mossy fibers is essential during
learning, in that it may act as an (unsupervised) teacher, es-
tablishing a neuronal representation of the episode, in the
CA3 network, rich in information about the input itself.

Inputs mediated by associative synapses are
necessary to initiate retrieval

Once a pattern !.I.has been stored, our hippocampal theory
postulates that the CA3 network is able, stimulated with a
partial cue, to retrieve the pattern. Very many other mem-
ories might have been stored in the meantime, inducing su-
perimposed synaptic modifications that might have com-
pletely changed the distribution of synaptic efficacies; but
retrieval can still occur, as formal models demonstrate, solely
on the basis of the traces encoded while learning the pattern
!.I..The partial cue takes the form of an input, which could
be carried in principle by PP or MFaxonal activity, or both,
weakly correlated with the input present during storage. The
minimal correlation q in the distribution of firing activity on
the afferent axons, between storage and retrieval, has to be
assumed weak, q ~ 1: otherwise, there would be no point in
having information stored in CA3, as a memory of the episode
would clearly already exist elsewhere, earlier on. (Marr
(1971) suggested q "" 0.3 as a reasonable value.) The corre-
lation in the input can be interpreted for example as corre-
sponding to a memory for a subset of elements of the episode,
serving as a key to access the whole stored event. The pri-
mary task of the synapses on the afferent fibers during re-
trieval is to take the axonal input and convert it into an in-
tegrated synaptic current, denoted here as h/FF. In its
distribution over different cells, h/FF has to carry a signal
specific enough to enable retrieval of pattern !.I.by the re-
current collaterals.

In formal network models that describe retrieval (Amit,
1989), h/FF is often taken to determine the initial distribution
of firing activities, from which the network then evolves
driven by recurrent connections; or, if h/FF is considered to
persist during the time it takes to complete retrieval, it is also
included as a fixed external contribution to the input current
of each cell. In any case, biologically plausible analytical
models describe, so far, only the "steady-state" distribution
of activities emerging at retrieval, rather than the full dynamic
evolution of activities leading to that retrieval state (Treves

and Rolls, 1991). The latter will require, in the future, more
sophisticated mathematical analyses and numerical simula-
tions, and a more complete appraisal of the processes in-
volved. Therefore, it is difficult to estimate how specific the
signal in h/FF has to be in order to initiate retrieval consis-
tently. It is, however, obvious that what is needed is for the
signal pointing toward pattern !.I.to stand out clearly above
any "spurious" correlations between h/FF and other stored
patterns. It is possible to put forward the following simple
argument to show that this requirement strongly favors an
input system in which very many axonal fibers contact each
CA3 cell through associatively modifiable synapses.

The aim is to estimate the correlation, or signal, S between
the distribution of the current h/FF among CA3 cells, and
that of the total synaptic current h;'"during learning of pattern
!.I..The expression obtained is then compared for the cases
of associative and nonassociative synapses, to evaluate the
role that the synapses may play in initiating retrieval. Denote
with Ai the set of factors that contribute to determine h/FF,
and with B;'" those that determine hi'". Even though some of
these factors, as they will be considered later, are common
to both sets Ai and B;"', they can to a good approximation be
taken as independent from cell to cell, because h/FF does
not reflect the activity of cells different from i, and because
at the time h;'"was produced, during learning, different cells
communicated only through effectively random synaptic ef-
ficacies. Therefore, one may consider a single CA3 cell, drop
index i, and estimate the desired correlation as

(hAFFh"")A.B- (hAFF)A(h"")B
S = Y«hAFF?)A _ (hAFF)A2Y«h,,")2)B _ (h,,")2B (10)

where (.)Adenotes an average over the distribution of values
taken by the factors included in A.

Labelling 1, . . . ,j, . . . , eAFFthe axons afferent to the
cell, their contribution to its synaptic current is written

hAFF = L JjVj
j

(11)

with Vj the firing rate in axonj at retrieval and Jj the synaptic
efficacy. If'TJj""is the firing rate while learning pattern !.I.,as-
suming that each CA3 cell effectively samples the afferent
pattern of activity means that even for one cell

(12)

The efficacy Jj is written J + Jf to include a baseline efficacy
J, plus superimposed modifications induced by learning. If
new patterns are being learned continuously, it is natural to
assume that the modifications they individually induce decay
with time. Considering a simple exponential decay (this is not
an essential assumption), and labelling patterns 1, . . . , A,
. . . from the last one backward, one may attach to each

modification a factor exp( - Alp), with p a measure of effec-
tively how many traces are stored at the same time.

If each cell is viewed as a point-like element, the factors
that determine modification at one synapse while learning
pattern A may be taken to include, for present purposes, the
presynaptic firing rate 'TJj1.and some time average of the post-
synaptic depolarization. The latter is in a one-to-one corre-
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spondence with the average synaptic current h).. An asso-
ciative modification is then defined as one that depends
multiplicatively on these two factors, i.e., of the form
F(h).)G(TI/), with F and G some unspecified functions. A
nonassociative modification, instead, may depend on one or
even both factors, but in a purely additive form, F(h).) +
G(1J/).

For simplicity, the associative synapses considered here
will be those whose efficacies are expressed by learning rules
of the type

Jf = E L e-)./PF(h).)(1J/- Tj)
).

where the form of the presynaptic term ensures that the con-
tribution of each learned pattern on average vanishes, en-
hancing the storage capacity (Rolls and Treves, 1990; Will-
shaw and Dayan, 1990). By contrast, nonassociative
synapses will be considered, in line with some current hy-
potheses on the mossy-fiber type of plasticity (Brown et al.,
1989; Johnston et aI., 1989), to undergo efficacy modifications
dependent only on postsynaptic conditions,

1/ = EL e-)./PF(h).). (14)
).

In both cases, F(h) is assumed of order 1, and the "learning
rate" prefactor E, which fixes the correct dimensions, will be
taken such as to enhance the specificity of the signal, within
the constraint that the total synaptic efficacy stays positive
(what this requirement implies in each case is clarified in Ap-
pendix B). Note that one may consider also nonassociative
synapses in which efficacy changes depend on just the pre-
synaptic rate (Zalutsky and Nicoll, 1990),

Jf = E L e-)./PG(1J/), (15)
).

but those, it is easy to realize, produce no specific signal at
all, in the limit in which CAFF is large enough to allow, as
implied by equation 12, effective sampling ofthe afferent pat-
tern by each cell.

The synaptic current h"" is determined only in part by the
afferent system under consideration, the remaining compo-
nent being due to other classes of synapses; it is written

h"" = h""'o + L J/"")'I\}""
j

where J/"">,the efficacy at the time of learning pattern 11,
includes only the modifications produced by previously
learned patterns, A ~ 11+ 1.

A simple statistical analysis, sketched in Appendix B, al-
lows estimation of the size of the specific signal that systems
of synapses of the two types are able to produce:

y~FF e-,.Jp q
SASS - _ I q SNONASS - YCAFF' (17)

Synapses of type 13 can produce a signal of essentially the
same order of the cue, provided that CAFFis itselfof the same
order of p, and storage did not occur too long ago (the trace
decay factor e-,.JP). With synapses of type 14, instead, the
cue is transformed into a much smaller signal, inversely pro-
portional to the square root of the number of synapses in-

- -

(13)

volved-accurate sampling of the input is actually counter-
productive in this case, just as with synapses of type 15.

Associative synapses appear thus to be essential in order
to relay a sizable signal, and therefore initiate retrieval;
moreover, the signal grows proportionally to the square root
of the number of such synapses.

If the total number of associatively modifiable synapses on
a given cell is constrained, for example by the necessity to
keep the cell electrotonically short, one may envisage a sort
of competition between allocating synapses to the input sys-
tem initiating retrieval and to the recurrent collaterals ef-
fecting it. Increasing the number of synapses on the former
allows the same signal to be produced by smaller and smaller
cues, while the capacity for retrieval is proportional to the
number of recurrent collateral synapses. It may be possible
to try to understand the factor K in these terms.

DISCUSSION

(16)

The arguments we have presented indicate that, on com-
putational grounds, it is advantageous for a recurrent collat-
eral autoassociative memory to have two input systems avail-
able. One, mediated by very strong but not necessarily plastic
synapses, has to drive information storage, while the second,
mediated by an extensive number of associatively modifiable
synapses, conveys the signals initiating memory retrieval. In
CA3, it is tempting to identify the first system with the mossy
fibers and the second with the perforant path. When consid-
ering the validity of both the arguments and the identifica-
tions, it is important to be clear about their implications.

One implication is that during retrieval, or at least while
initiating retrieval, the mossy fiber input should be absent or
strongly reduced with respect to its amplitude during learn-
ing, in order not to blur the signal relayed by the perforant
path. The "opposite" is not true: the perforant path input
does not have to be inactive during storage. In fact, the above
hypothesis requires it to be active, to enable associative
modifications to take place at its synapses.

Another implication is that CA3 cells should be compact
enough to allow synaptic modification on the distal dendrites
to reflect depolarizations produced close to the soma by the
mossy synapses. Conversely, active dendritic processes are
useful, in this picture, only insofar as they balance the at-
tenuation associated with passive cable conduction. No spe-
cific function is ascribed here to highly local processing at
selected dendritic sites.

A third implication is that the time scale for information
storage, Le., for the depolarizations produced by mossy fiber
inputs, be consistent with the time scale for associative plas-
ticity at recurrent collateral and perforant path synapses.
These two time scales are, in principle, independent from a
third time scale, that for retrieval, which itself has to be such
as to allow sufficient circulation of activity through the col-
laterals-a requirement that has to be explored by studying
the dynamics of retrieval, but which is likely to be strongly
dependent on the size of the available cue.

An appealing feature of the proposed scheme is its falsi-
fiability. Clearly, the above arguments would immediately be
shown to be wrong or irrelevant if it were found that the
synapses on the perforant path to CA3 are not modifiable in
an associative manner. The whole autoassociative memory

--
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theory would be invalidated if the synapses on the collaterals
were found not to be associative.

Moreover, to the extent that a degree of specialization, in
the sense indicated above, does exist between the two input
systems, our arguments predict selective behavioral impair-
ments to result from temporary inactivation of the two path-
ways. Thus, temporary inactivation of the mossy fibers could
later result, barring generic dysfunctions, in amnesia specific
to events stored during the time window of inactivation. This
suggests an experimental testing procedure that might be fea-
sible in the immediate future (R. G. M. Morris, personal com-
munication, 1991). Similar effects should be produced by tem-
porary'selective blocking of associative plasticity at perforant
path synapses, or, in fact, at recurrent collateral synapses.
Alongside this later impairment, inactivation of the terminal
portion '(following DG) of the perforant path, if it were to be
technically feasible, might be also expressed immediately as
an impairment in the performance of certain computationally
demanding memory tasks of the type for which the hippo-
campus is required (Rolls, 1990; 1991), due to a failure at
retrieving previously stored information.

The roles we propose for the input systems to CA3 are
consistent with the general hypothesis (Rolls, 1989a) that one
of the functions of the processing occurring in the dentate
gyrus is to transform certain neuronal representations into
convenient inputs for the autoassociative memory assumed
to be implemented in the CA3 network. They are also con-
sistent with experimental data concerning the effects of de-
stroying dentate granule cells (McNaughton et aI., 1989).

The scheme presented here is neutral, it should be noted,
with respect to a number of hypotheses that have been put
forward as part of various hippocampal theories. These con-
cern, for example, the nature of the information processed
in the hippocampus as a whole (Kesner, 1990; Rolls, 1990),
and the question of whether it is predominantly spatial or
contextual (O'Keefe and Nadel, 1978), related to working
(Olton et aI., 1979) or personal (Gaffan, 1987) memory, to
object-place associations (Parkinson et aI., 1988), relational
(Eichenbaum and Cohen, 1988), more generally associatively
supramodal (McNaughton and Nadel, 1990), or even repre-
senting an "index" of neocortical locations** (Teyler and
DiScenna, 1986). The scheme is also essentially neutral with
respect to the detailed temporal features of hippocampal ac-
tivity during different behaviors, and the hypotheses they
have suggested, based in particular on the study of those spe-
cies that display a-rhythmicity, (Buzsaki, 1989). It is neutral,
moreover, with respect to ideas concerning the role of CAI
in the memory processes (Levy, 1989) and the important
question of the return projections to neocortex (Rolls, 1989a;
1989b).

On the other hand, what has been presented here is a fur-

** It should be noted, though, that a very reductive interpretation of
the "index" hypothesis views the retrieval operation considered in
this paper solely as a way to identify one pattern among those stored
in CAJ, and to use it as a pointer to a memory stored elsewhere. In
that case, the CA3 patterns, which would not be true memories,
would not need to contain more than the small amount of information

is = (ln2 p)/N necessary for identification, and our arguments based
on informationwould not be valid.

ther development of the hypothesis that one of the functions
of CA3 is that of an autoassociative memory. An autoasso-
ciative memory implemented in CA3 would be useful within
the context of a number of different theories of hippocampal
function. Whatever the overall function of the hippocampus,
we believe that such detailed quantitative analyses of how
parts of it might operate are important complements to em-
pirical investigations.
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APPENDIX A

In a threshold-linear unit the output firing rate is deter-
mined as

(18)

with g a gain parameter, possibly dependent on the overall
network activity.

From their definitions, one has the probability densities

c -(hPP) = (]'(i1hPP/ppp)
PPP

e-(1]) = JdhPPc(hPP,1])

where

(19)

1] Ii + i1hPP - Thr=--
gPRC PRC

(20)

and

e -x2/2 Ix e -y212

(]'(x) = vz:; <t>(x)= _00VI.; dy,

(and B(x) is Dirac's Hunction).

(21)
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Then, defining r = (ii - Thr)/(phc+ p~p)ll2,and carrying
out the integrals in Eq. 8, one finds

. I 2 I K(1 - ,W
'$ = 2<1>(r)ln2[1 + K(1 - 1\1)] - 2In2ra(r) 1 + K(1 _ 1\1)2

f
+~

+ _~ dS<1(s)<I>(-r(s»ln2<1>(-F(s»-<I>(-r)ln2<1>(-r),

(22)

where r(s) == rVI + K(1 - 1\1)2 + sVK(1 _ 1\1)2.
To compute a, one notes that

(1]) = g(phc + p~p)1I2[r<l>(r)+ <1(r)]

(1]2) = g2(phc + p~p)[(1 + r2)<I>(r)+ r<1(r)].

A similar treatment can be applied to the example involving
h .MF

I .

APPENDIXB

Consider the signal pointing to pattern 1-'-,provided by a
system of synapses of the type of eq. 13. Among the factors
included in set A, that determine hAFF, those whose distri-
bution is correlated with that of h"" include Vj and h"" itself,
which enters in the corresponding modification term. More-
over, h""depends on J}""),which includes terms surviving in
the efficacy value Jj determining, later, hAFF. Using the lin-
earity of eqs. 13, 16 one estimates the numerator of S as

(hAFFh"")A.B - (hAFF)A(h"")B

= (~ Jk Vk ~ J}"")TIi"")A.B- (~Jk Vk)A (~ J}"")TIi"")B
k j k j

+ ee-.up{(F(h,,") [~(1]k,," -1j)Vk]h,,")A.B

- (F(h"") [~ (1]k"" - 1j)Vk J>A(h"")B }

(24)

where J does not include the contribution of pattern 1-'-,and
minor sources of correlation have been neglected. As differ-
ent axons carry independent information, the first line in the
r.h.s. contributes

1 {(ijJ}""»(VjTli"") - (ij)(J}""»(Vj)(TIi"")} = CAFF

X [J2«V1],,") - Vi) + e2e-.up ~ (F(h)2)(1]2- i)2)(V1]"")J.

(25)

while the second line yields

CAFFee-.uP[(hF(h» - h(F(h»]«V1]"")- V1j). (26)

An exam of expressions (25-26) shows that the general
requirement on e impliesin this case that the size of the modi-
fications be such as to fully exploit the available synaptic
range J. This results in an estimate for e:

while h, which includes other currents, has to be at least of
order

(23)

h - CAFFJi). (28)

U sing these two estimates, one can see that the term (26)
dominates by a factor of order CAFF/vp the other ones (25),
which are therefore discarded.

Similarly, one can evaluate the quantity appearing in the
denominator

«hAFFf)A _ (hAFF)A2

= ~{<[JjVj + ee-.uPF(h"")(TIi""- 1j)Vj] [JkVk

+ ee-.uPF(h"")(1]k""- 1j)VkJ>A - (Jjvj + ee-.uPF(h"")

x (TIi""- 1j)Vj)A(Jk Vk + ee -.upF(h"")(1]k""- 1j)Vk)A} (29)

and find that the dominant terms when} = k are, now, those
involvingthe products of }c's, but there are also nonnegligible
terms with} "#k, to yield

CAFF [J2 (V2 _V2) + e2~ (F(h)2)( 1]2_ :rj2)V2]

+ CAFF(CAFF _ l)e2 e - 2.up

x [(F(h)2) - (F(h»2]«V1]"") - Vi)2.

Putting pieces together, and considering q to be small enough
that the first line of (30) dominates over the second, one finds
that the signal mediated by associative synapses is, discarding
factors of 0(1),

(30)

(31)

When this procedure is repeated for nonassociative effi-
cacies of the type of eq. 14, the term corresponding to the
second line of eq. 24 is now independent of q, i.e. it is the
same if pattern I-'-is substituted with some other pattern un-
correlated with {Vi} (this is precisely the result of nonasso-
ciativity, of course). The first line of eq. 24 does, however,
produce terms proportional to q, as well as others propor-
tional only to V:rj. Ensuring that the former terms, carrying
the specificity to 1-'-,dominate in size (a) the others from the
same line and (b) that from the second, can be translated into
requirements for e:
CAFF(J + ep(F(h)))2 (32)

{
( CAFFe)2p«F(h)2) - (F(h»2) (a)

~ CAFFe«hF(h» - h(F(h)))/:rj (b)

which are both satisfied if e is sufficiently small (for fixed J).

Using then the estimate, equivalent to (28),

h - CAFF(J + ep(F(h))):rj (33)

one may evaluate the maximum signal that can be obtained
in this case as

(27)

SNONASS

_ CAFF(J + ep(F(h)))2«V1]"")- V:rj)
- (h2 _ h2)II2[CAFF(J + ep(F(h)))2(V2 _ y2)]1/2

discarding again factors of 0(1).

(34)


