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Abstract. [ comsider a mean-field description of the dynamics of interacting integrate-and-
fire neuron-like units. The basic dynamical varables are the membrane potential of each
(point-like) ‘cell” and the conductance associated with each synaptic connection, both of which
evolve discontinuosiy, in time. In addition, ant intrinsic potassium conductance, also evolving
discontinuosly in time, can be associated to each cell in order to model fining frequency adaptation
in real neurons. The mean-field theory is exact if the units can be grouped inte N¢ classes,
each comprising infinitely many identical, and identically coupled, units; and can be used as
an approximation if, instead, a class comprises few or just one unit. The formalism yields
both the stationary asynchronous solutions and the transients leading to those solutions. The
full spectrum of time-constants for the transients associated with one particular steady state is
given by a single equation, imposing the vanishing of the determinant of an Ng x Ne matrix.
In the case of an associative memory, this equation can be manipulated into a simple form,
using standard replica methods. An analysis of the spectrum indicates that the major role in
determining the transients time constants is played by the effective decay times of postsynaptic
currents, which can be quite short. This suggests that focal recurrent neocortical circuits may
produce a very rapid dynamics, consistent with such circuits participating in the rapid coarse
of information processing, evidenced by new e.xpenmenr.al data recorded in primate temporal
cortex.

1. Introduction

Many analytical studies of the collective properties of neural networks have been based
on very crude representations of actual single neuron behaviour by means of simplified
processing ‘units’. The specific choice of the units-has been largely dictated by the nature
of the properties to be investigated. Thas, in network models of associative memory [1, 2, 31,
in which information is supposedly carried with temporally coarse resolution by rates of
emission of action potentials, units have been chosen in which a single output variable
{often even binary) represented some short-time average of the neuron’s spiking rate, The
focus then has been on studying the steady-state behaviour, i.e. the attractor structure [4],
with the dynamics either neglected altogether or artificially defined (for example, in terms
of ‘updatings”) merely in order to fuily specify the model. In those network models [5, 6] of
early visual processing, instead, which purport to illestrate the hypothesis [7, 8, 9] that the
partial synchronization of emission times might serve to bind across the visual field features
pertaining to single objects, units have been generally consxdered that have an intrinsicatly
oscﬂlatory probability of emitting spikes.
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- Much more realistic descriptions of the relevant biophysical processes have been used in
modelling the dynamics of just one or a few interconnected neuarons. In trying to understand
the collective properties of large networks, thongh, attempts 1o get closer to biological
situations have been confined to simulation studies, with all their obvious limitations. Yet
the need to obtin an analytical grasp of the dynamics of large networks becomes urgent, as
new experimenial data [10] is beginning to throw light on the temporal course of information
processing, e.g. in neocortical association areas of primates. -

This paper aims to show that it is possible to study analytically aspects of the dynamics
of large interconnected networks even when neurons (and synapses) are represented more
realistically than uvsually attempted. The two main ingredients, included in the present
reatment, are an integrate-and-fire description of the time evolution of single cells membrane
potentials, and, crucially, a description of synaptic interactions in terms of the dynamics of
post-synaptic conductances. Moreover, frequency adaptation, & salient feature of neocortical
pyramidal cells, which affects significantly their temporal response patterns, is produced
in the present model by an intrinsic potassium conductance driven by a cell’s own
action potentials. While these are still very simple approximations [11] {they form the
basis of the simplest neurophysiologically inspired simulation studies [12] and hardware
implementations [13]) they are important steps towards addressing dynamical issues raised
by experimental data, and which lic well beyond the scope of previous treatments. For
example, over what time scales can a local firing pattern—elicited by an incoming stimulus—
reach a steady-state distributdon? Which of the biophysical parameters at the single unit level
contributes to set those time scales? Are those time scales consistent with the hypothesis
that the steady-state distribution is utilised in further stages of cortical processing?

Analysing a realistic form of dynamics will also be necessary in order 1o siudy the
basins of attraction of stable attractor states [14]. Moreover, it will allow a discussion
of some simple models which bhave been put forward in the comtexi of synchronous
oscillations [15, 16], although the description proposed here may not be complete enough
(¢.g. by not including bursting {171) to discuss the phenomenon itself.

This paper focusses on establishing the relationship between the ime scales af the single
unit and at the collective level. The complex question of the stability of the steady-state
distributions is addressed in another paper [18], while a more detailed discussion of the time
course of neocortical processing will also be given elsewhere [19]. The paper is organized
as follows: the model and the notation used are defined in section 2, The mean-field analysis
Is introduced using the toy case of just two classes of identical celis. This is done first for
cells that do not display adaptation, in section 3, followed by a discussion of the spectrum,
and by a proof that periodic solutions are impossible in this case. The analysis is extended
to cells that do adapt in section 4. A brief comment is-made on the situation in which
all cells are identical and identically coupled. Section 5 deals with more interesting cases,
including that of an associative memory, and presents an example of the specirum which

includes the effects of adaptation. A brief discussion relates the analysis to experimental
results in the section 6.

2. Basic model

2.1, Single cells gnd synapses

In the simplest type of integrate-and-fire description, the one adopted here, the
geometry of the neuron is reduced to a point, and the tme evoluton of the
membrane potential V; of cell i during an interspike interval follows the RC equation
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Figure 1. Model in vitro behaviour. V'(f) and g¥() in

I(nA) ) response to a step of mjected current I (z) of 0.711. nA.
The relevant parameters are V0 = —73 mV, V& =

0-75[ ~53 mV, Vo = —63 mV, VK = ~85 mV, € =
0 . 0375 oF, g° == 25 S, Ag® = 9.375 n8, =X = 80 ms.

Spikes are pasted by hand at emission times for clarity
t (ms) of presentation.
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200 Figure 2. Cument-to-frequency transduction. The top
solid curve is the firing frequency in the absence of
adaptation, AgK = 0.” The dotted curves are the
instantaneous frequencies computed as the inverse of
the ith interspike interval (top to bottom, { =1, ...,6).

-1 (nA) The bottem solid curve is the adapted firing curve

. ({ = o00). Parameters as in figure 1.
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where C; is the capacity of the cell membrane, g’ its passive conductance, V,° the resting
potential, gf‘ an active potassium conductance producing firing rate adaptation, V,-K the
corresponding  equilibrium potential, and g* and V“ the conductance and equilibrium
potential of each input synapse «. I;{¢) is an external current injected into the cell,
considered here solely in order to iliustrate, in figures 1 and 2, the way the model wouid
mimic in vitro data on the response characteristics of neocortical cells.

As V; reaches a threshold value V,™, the cell emits a spiket. Unlike the Hodgkin-Huxley
model, the integrate-and-fire model does not describe the cascade of membrane conductance
changes that accqmphny an action potential. -All these changes, instead, are supposed to
be extremely rapid, and to leave the cell repolarized at a reset potential thp, from which
the evolution resumes as in equation (1). One may introduce an absolute refractory period
lasting -2 ms, during which the cell cannot emit further spikes no matier how strongly
stimulated. Here, however, the absolute refractory period is set, for simplicity, o zero,

t Here VI-““' is takin to be constant. In other cases [12] it is assumed to vary in time, with an evolution similar
to that of g, equation 3, and then it contributes 1o firing frequency adaptation.
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although this obviously makes infinite spiking rates possible. In all situations of interest to
us, in fact, the actual rates will be determined by other mechanisms at much lower levels
than the inverse of the absolute refractory period, which will therefore be influential.

Some of the synaptic contacts onto a neuron are taken to be made by the axons of
other neurons in the network, and some by external afferents, and in both cases the relative
conductance is assumed to open instantaneously by a fixed amount following every incoming
spike, and to relax exponentially to its closed state. Thus if #,;, is the time of emission of
the kth spike by the neuron j, presynaptic to synapse o

dg*() _ g*®)
d oz

+AgH Y B — A=) @
k

where T* is a synaptic time constant and Ar summarizes axonal, synaptic and dendritic
delays. A similar dynamics governs the potassium conductance, the only intrinsic and
time-varying conductance included in the modelf

dgi) _  gf
il -I-Ag,i{;S(I — ki) (3)

ie. when cell i fires, gf is increased by Ag’, and then it decays exponentially with time
constant 7¥. This type of conductance dynamics is meant as a representation of the summed
dynamics of many individual channels, and in the synaptic case it is but an approximation of
the more accurate o-function representation [21], valid in the limit in which the activation
of the conductance is much faster than its inactivation, The analysis below can in fact be
easily extended to conductances that follow an e-function dynamics [18].

This level of description is obviously inadequatz to reproduce compler neuronal
behaviours, such as those related to the cell geometrical structure or to calcium dynamics,
e.g.-active dendritic processing or bursting. It is, on the other hand, sufficient in order to
reproduce the basic features of neuronal transduction, its graded nature and, in the case of
regular-firing pyramidal cells, the adaptation in frequency following the first few spikes. The
behaviour observed in vitro to a step current injected into the cell body is modelled, here,
by setting all g* = 0 (figure 1). The resulting current-to-frequency transduction curves,
illpstrating the effect of adaptation, are shown in figure 2.

2.2. Networks

Equations (1), (2) and (3), together with the prescription concerning spikes, form a closed
system, conce the architecture of the network, the incoming afferents and all the various
parameters are specified. The cell parameters should reflect the class to which each cell
belongs [22), with the cell classes chosen in a way appropriate to the particular brain
structure being modeled, and the specific dynamical issue under consideration. In neocortex,
for example, one may want to begin by separating out GABA 4 and GABA p inhibitory cells
[23], layer 2f3 and Iayer 5 pyramidal cells, among the latter the ones with short and long
apical dendrite [24], and s¢ on, and then iry to reproduce, maybe with finer subdivisions,
experimental data concerning both cell and synapse parameters and connection probabilities.
Here we start by illustrating the method, and the results it can produce, with a toy case, in
which there are only two classes of neurons: excitatory and inhibitory. Further, the varions
parameters are taken (0 be identical within each class, and the simplest connectivity scheme
is considered, in which all cells are connected, and the ‘strength’ of each synapse-—i.e., the

1 Cf the multitude of intrinsic conductances observed in real neurcas, e.g. in the hippocampus [20].
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conductance Ag*—depends only the classes of the pre- and post-synaptic cefl. Later, we
_ shall see how the same methods can be extended to cases in which there is variability in
cell and synaptic parameters. or there are more than just two classes of cellsi.

Let the subscripts F, G, . .. index cell classes—as a start, they will only take the values
E (excitatory) or 7 (inhibitory). Whenever, as in the case of synaptic parameters, it is
necessary 1o specify also the pre-synaptic cell, the same letters will be used as Superscripts.
Each cell class will be characterized by a reset membrane potential VF and a threshold
potential VE". It is convenient to express all characteristic potentials in terms of the variable

ahp
V-V ;

X = ———-——u-vgr_ ;hp - @
measuring the excursion of the membrane potential between spikes. For example, the resting
membrane potential for excitatory cells will be, in these units, x%. The equilibrium potential
characterizing excitatory synapses onto inhibitory neurons will be x£, and so on.

It is also convenient to parametrize the degree to which the potassinm conductance is
open as
K
g ]
= — - 5
Y= R ©)

L

The remaining synaptlc parameters, in the simplest network considered here are the
set of time constants {tZ} and the set of conductances {AgG} For example, rE and AgE
characterize any synapse from an inhibitory to an excitatory neuron. It helps to reduce atl
conductance parameters, that in fact act as couplings to the dimension of a frequency, by
dividing them by the capacities Cz. Thus a:,,- will denote the inverse of the time constant
for pass:ve membrane ieakage in cells of class F, ie. g_,,- /Cp. Similarly, the quantities
NgAgZ/Cr, which measure, in units of frequency, the total synaptic slrengths of cells of
class G (of which there are Ng) onto a cell of class F, will be denoted as 8.

The simple assumptions concemning the conneclivity and the synaptic efficacies are
refiected in the fact that the inputs to any cell in the network are determined by globally
defined quantities, namely the mean fields. These measure, as a function of time, the
effective fraction of synaptic conductances (in units of Ag) opened on the membrane of any
cell of a given class (say, F) by the action of all presynaptic cells of another given class
G):

1 )
N G yeG AgF

The external inputs, denoted as Sg(r), are taken, again for the sake of simplicity, to be
excitatory only.

In summary, the single-neuron dynamics, for cells of class F, is described by the
equations
%:(0) = wp(xF — %) + wp(XF — NN + op(xF — G ONZFE)

+ wh(xh — xO)zE @) + W3 (xE — x: (D) SF(D) )

zp(t) =

(©)

and )
. Yi .
=-% - ®

1 The toy case is chosen to have two classes of cells in order to avoid the pathologies of the yet simpler case, in
which all cells are ideatical and identically coupled, cf subsections 3.4 and 4.3.
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m between spikes, with the supplementary prescription that as x; (z) reaches 1 it is reset to
0, y;(r) is increased by 1, and a new spike is emitted by cell i, i.e. f; =¢.

3. Dynamics, with no adaptation

Consider first the case ch = 0, so that the y-dynamics becomes irrelevant.
Write equation (7) as

%i(t) = Ap(1) — xi(1) Br (D), ®
by using the notation for the rise rates of the membrane potential

(10)
Br(t) = co,; + capzf:'(t) -+ szF(z) -!— wFSF(t).
Then introduce the densities
1
pr(x.t) = 1 Zi:ﬁ(x — x:2)) €5))
where Ny is the number of cells of class F.
. In terms of these quantities, the dynamic system can be written
. d
Pr(x,8) = Brp(Dpr(x, ) — [Ap(t) — IBF(I)]a—x-PF(X, t)
+8(x}Ar(@) [pr(0*, ©) — pr(0™, 1] 2
—5(x — DIAF() — Br(OWlor(1™, ) 12
1
B = ‘?’zg(‘) +14r(t — A1) — Br(t — AD] pr(17, 1 — AD).
G ) .
with the ‘boundary’ conditions
[Ar() — Br()or(17,8) = Ap(t) [pr (0T, ) — pr(07, )] (13)

which correspond to the spike prescription. The second set of equations (12) is derived
from equations (2),(6) by noting that §(r) = £(£)8(x — x(¢)), and it brings out the role of
the firing rates vr(t) = [Ap(?) — Bp()]or(1™, 1)) in driving the conductance dynamics.

3.1. Stationary solutions

If the S(t)’s are constant in ime, one has stationary solutions in the form

0

9 e) —_® 1—
Prx) = @x)y—5— B0 (1-x 14)
zgn = 1.'5 vg ‘

(&(x) being the Heaviside function) where the firing rates of each class of cells are

0 0y—1 ¢ A% -
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i.e. the values of VE and ¥ ; are given by, the system of equations above (for F = E, I}, with
A% and B} expressed back in terms of v and v¢ according to equations (10),(14). This
system yxelds finite, non-zero values for the amounts of excﬂanon and inhibition, within an

ample region in the space of the parameters o, x and z. VE and v[ tend to iafinity (and the
approximation of neglecting the absolute refractory period loses meaning) beyond a certain
hypersurface in the above space. The hypersurface is given by the sysiem

0

Vi
;’Iﬁ’-‘r_(C!JETEr'f‘OJETE)[ (

E, E_E [0l -1
XPOYTEr +XjwiT
1—(w,r,r+w,t[)[ln( = ,wng + ’?’I L [)]
(x;f — Depzir + (x; — Dot

’ -1
xEwErEr + xfwll )]
E . E T T
(xg — Dwgtgr + (xp —Dwgtg

(16)

and it is independent of §°. Conversely, the equations determining the hypersurfaces beyond
which either v§ = 0 or v? = 0 are, respectively, AS = B and A} = B?, and they do
depend on the stimuli S°. Obviously, if for example v} = 0, the dynamical system reduces
to a homogeneous population of firing excitatory cells.

3.2. Transients

Having found a stationary solutxon the dynamncs of the transients (keeping the same symbols
for the subtracted quantities, e.g. Ag(t) — A + Ag{#)) is governed by

pr(x, t) = Bhor(x, 1) — [A} — ng]é—x‘pF(xv )
d
+Br (1) 0% (x) — [Ar(t) — x Br(D)] 5?’?’(‘”

+Br()prix. 1) — [Ar(t) — xBr(1)] %pp(x, f)

(17)
. 1 ‘
i = —;zé(x) + (A% — BRlpr(17, 6 — As)
G .

+[AF(t — A1) — Bp{t — A} pr(17)

+H[AF(t — A — Br(t — Al pr(17, ¢ — Ar)
with the constraint that

1
f dx pp(x, ) =0 (18)

and that the discontinuities at x = 0, 1 satisfy

[A% — BY + Ap(r) — Br(O1(03(17) + prp(17, 1))
= [4% + Ar (D] [03(0*) + pr (0T, 1)]. (19)

In the last equation we have assumed that after a finite time the density distribution for any
firing class of cells has support on the interval (0,1), even if V° < VP,

One may now linearize the sysiem. The part linear in the wansients (neglecting the -
last line of each of equations (17)) describes a collection of modes, cach characterised by
a time dependenba exp(ir}, for the transient parts of the dynamical quantities considered,
i.e. the N¢ x N¢ (in our toy case just 4) adimensional conductances z and the N (here,
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2) density functions p(x). The spectrum of all possible (inverse) time constants A of such
collective modes is in general given by solving what is essentially an eigenvalue equation
(but note the additional dependence on A introduced through the time delay Af). Even in
its Iinearized version the dynamical system may appear complicated to analyse, as part of
the variables are really functions of x as well as ¢, The number of effective variables can
be reduced, however, to just N simple scalar quantities: a single manageable determinant
equation then yields all possible A’s, and the only trace of the reduction procedure is in
additional A dependences of the corresponding matrix. The procedure, which does not entail
any approximation but rather stepwise solutions, is shown here in the following.

Consider any particuiar complex vailue A. Keeping the full set of variables z is in fact
redundant, because they can be expressed in terms of the firing rates vr(¢) of each class

. 1 ’
iE@) = -—_C—Fzg(t) + vr(t — A : (20)
G ' .
and this holds for both the unsubtracted and the transient quantities, so that
vE(t — A = O+ /2528 @) = (0 + 12525 () 21

where each transient field z5(r) diverges if —A~! equals its corresponding synaptic time
constant 7/, a fact which will have important implications later on.

Moreover, the linearized equations-for the gr(x, 1)’s are solved by transient distributions
of the form

4]
PEE) 0 0
1) = — ALB - A
pr(x, 1) B?,—l—k[ FBr(t} — BpAp(t)]
N 0 [AD _BU]—l_[AO]—l
X [AO —XBG]"I-l- [AO __xBO]J./BF F F F 22
{ D S Vo T

except when A = —BY., in which case

PE(x) [ALBr (1) — BRAF(D]
BY (AT —x50]

Pp(x, 1) =

23

0 ) 0 0 _ po a
x [l—ln[A‘}- —xBY+ 2E0Ar — Bp) A BF}I"AF]

B
and when A = 0, in which case

pF)
B}

pF(x, 1) = [A%Br(r) — BLAF(0)] (24)

0 _ pOy—1 _ 1 407-1
x{[A‘}—xB?v]_1+[AF Brl _— Ar] }

InfA% — B} —In A%
These distributions satisfy the required constraints (to first order),
One is left at this point with the system of N¢ equations
vr(t) = [A% — Bp] pr(17, ) + [Ar(t) — Br(e)] p3(17)
: Br() + Ar(e O+2PTF — 11]

Vr
= Br(t)+ A
B} +2 { [AY — BT ~ 1]

@25)

where the Ar(t)’s and Brp(s)’s are given by equations (10) in terms of the zE(t)’s, and
those in turn by equations (21) in terms of the vg(r)’s.
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Defining : -
- ,0,.G Gra—(A+BNTY _
O+ /2B +3) [AY — BY[eTF — 1]
the complex equation that sets the possible A’s reads
|Q@) — 41| =0. : (27)

In our N¢o = 2 toy case the equation is just
[QE() — QI — %1 — RE(QF() =0. 28)

The transients decay, and the static disaibution is stable, if no solution exist with
Re(A) > 0. For instabilities that appear continuously, the onset is at Re(A} = 0. Note that
even if at the same time Im(x) — O the limit is regular, and-one may use equation (27)
with

0F(0) =

ol {1_ 1+ 28 57 ﬂ}_ 9

[A% — BT

3.3..The spectrum

A numerical solution of equation (27} yields a rich spectrum, whose main features can
be appreciated in figures 3 and 4. In order to understand how the different zeros of
equation (27) relate to the several parameters present in the model, within a particular
regime, it is obviously important to choose the parameters as realistically as possible. An
attempt io be inside a neocortically meaningful regime is made in the examples given, with
the limitation that pyramidal cell firing can hardly be represented realistically in the absence
of adaptation.

It is helpful to distinguish a gross and a fine structure in the specttum (a hyperfine
structure will be introduced later by the presence of adaptation), - The gross struciure,
extending in the kHz range (and thus associated with the shortest time constants), is the
one porayed in figure 3. A non-zero delay Ar produces a characteristic set of zeros
(figure 3(a)); some of these may have a positive real part and thus make the corresponding
stationary solution unstable. The zeros with a negative real part occur with an approximate
Ak = i(2m) /(Nc Ar) periodicity along the imaginary axis, as determined by the changes
‘in sign of the two exp(AAr) terms. Their negative real part is determined, instead, by the
competition between the above terms and those containing ), and thus scales so as to satisfy
Re(A) = (1/Af) Inf— Re(A) (A} ~ BL)/(vrwSx%)]. This set of zeros is removed by setting
At =0 (figure 3(b)). There may or may not remain additional zeros with | Re(\)| large.

The fine structure of the spectrum, arising from the spiking nature of the dynamics, is
more of interest to this paper. The relevant A-scales are set by the inverse of the conductance
time constants and by the firing frequencies characterising the stationary solutions, and
thus cover the 10-300 Hz range suggested here as crucial to understanding information
processing in certain real neural systems. The -position of these set of zeros can be related
to the structure of the (-matrix, The matrix element Q_ﬁ(l) has poles at L = —I/r};" and
on the imaginary axis at A = +i2znv? (while we have seen it to be regular at A = —B% and
A = 0). The poles on the imaginary axis produce in the Re()) < 0 half-plane comesponding
zeros at approximately the same Im(X) values (figure 4}, The Re()) values of the zeros are
determined by a sharp variation in the magnitude of the matrix elements G%, and thus in the
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—IOIOOO 0 —10I000 -5600 6

Re(h)  (Hz) Re(d)  (Hz)
Figure 3. Gross structure of the spectrum, The solid and shaded curves represent the vanishing
of, respectively, the imaginary and real part of equation (27). Zeros are indicated by full circles
and poles by masked intersections. The features close to the imaginary azis are anifacts of the
numerical progmm (see details in figure 4). (@) Af = 1 ms and () Az = 0 ms. Excitatory

pa.rameters 4= _73mV, VE = =53 mV, VEP——63 mV VE =0mV, V{ =~75mV,
Ce/gl = ljw} = 15ms, "-‘E = 100§ /3 = 3wl/2 = 0}/2, "E =7F =ms, §¥ = tEx50Hz
lnh:bnory parameters: VP = —70 mV, V& = —55 mV, V, = -70 mV, V, =0 mV,
! _——'ISmV C;/g,al/m,—-Sms w?—a:, = 4o} = wa,rgzr, = 20 ms,

= rf % 50 Hz. Stationary solution with rates v§ = 40.6 Hz, v{ = 30.4 Hz, vusteble i ()
and—contrary to the expectations from the naive mean-field equations—stable in (&).

example of figure 4 lie close to the Re(A) = —1/7% and Re(A) = —1/z/ lines where the real
patts of the prefactors of Q'f- change sign. This result, whose generality is yet unclear, has
important implications: the fine structure of the spectrum, possibly away from pathological
parameter regimes, would consist of Nc approximately armonic series of oscillatory modes,
with decay constants determined by the conductance inactivation time constanls.

It is interesting to compare the spectrum obtained here with that of a ‘naive’ mean-field
theory, the one described by the systemf

FE(1) = — 525 () +13EE 0, 2 ) -
‘; (30)
= _.szm + B, 2 (1)

where v(zE(1), z/ (7)) is simply the stationary input-output relation, extended to be a
function of time-varying arguments [25]. In this simplified system, the dynamics of
individual spikes is neglected, by performing some ill-defined sort of temporal average
alongside the spatial average of the mean-field treatment; it has been argued [26], though,
that the reduction to the simplified system preserves some of the interesting dynamical
featres, The stability of stationary solutions of such naive mean-field equations [27]
has been discussed repeatedly in the literature, and recently a more realistic form of
vi(zE(r), 2/ (1)) has been suggested, that ensures inhibitory control of excitatory firing

{ Synaptic time constants are taken here to depend only on the presynaptic cell class.
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Figure 4. Fine structure of the spectram. Notation as in ﬁgm'e 3 {a) Parameters as in figure 3
and (&) mtraclass couplings modified to satisfy wE = mg a.;[ = IOcu,, with in both cases
At =0. In(b) lhe stationary solution is again unstable (instability outside the graph) with rates
v) =38.0 Hz, u, = 55.3 Hz. Note how the stationary rates set the imaginary part of the zeros,
while the real part is determined by the inverse conductance inactivation constants,

rates [28]. As the simplified equations follow the dynamics of the feedback fields, while
the firing frequencies are described as adjusting themselves instantaneously to the correct
level, these equations could expected to yield approximately the same zeros as (and thus be
a valid approximation of) the correct mean-field theory under two conditions: (i) each class
of cells must be able to adjust its frequency very rapidly by firing at a high rate, and thus
must be well above threshold, A?l.- > BE- and (i) the corresponding stationary state must be
stable. In fact, it is easy 1o see that the naive spectrum is given by an equation analogous
to equation (28), where the matrix Q(A) is substituted by a simplified matrix- Q(x). Using
equations (30, (15), (10) and (29) one finds

1 vl
A+ 1/z8 850

1/?F

= A+ 1/iC QF O (C1Y)
that is, the only A-dependence left is the one in the prefactor. -Obviously most of the spectrum
is Jost in the reduction to the paive theory, and therefore also the stability of the stationary
solutions cannot be discussed in the simplified framework, as it requires knowledge of the
full spectrum. Again the complex question of the stability will not be treated in this paper,
but aspects of it are considered elsewhere {18].

gso) =

3.4. Absence of periodic solutions

Consider, now, solutions with Ag(z), Be(t), A;(r), B;(s) periodic with periods ¢}, 7}
respectively, as driven by periodic external stimuli Sg(¢), S:(z).

Take an arbitrary density distribution p%(xo) at a given time fg, continuous for
0 < xg < 1, vanishing outside this interval, normalized and satisfying the boundary condition
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of equation (13) at s = #; .then the equations for sz (x. t} are solved by the simpie evolution
4
or(x(%0, 1), 1) = pR(xo)(Rp(1)) ™24 exp ( f ar' BF(r')) (32)
o .

where, apart from the exponential modulation, the density just translates along the membrane
potential axis according to

H } !
x(xy, 1) = Xg exp (— f dr’ BF(t’)) + f dar’ [AF(t’) exp (— [ ar”’ Bp(t”))] (33)

until it reaches x = 1 at 7 = ¢ (xg), and after that onwards:

t }
x(x, 1) = f di’ [Ap(t’)exp (— [ dr” Bp(t”))] (34

until it reaches again x at time 7p 4 (vr(xp, 1)) ~1. The reset factor
Ary

Arp(f) — Br(r)

ensures that the boundary condition is satisfied for ¢ > .

The most general distribution pF(xa) generates a density pg(x(xo; 1), t) pericdic in time
with period =7 only if (vr(xo, 10))~! = 73, and if in addition

RE(r) = : 3

!+ :
Rp(t) = exp f ’ dr Br(th = RE- is constant, (36)
1

A periodic pp(x(xo, £), £) would in tumn generate functions z; i) periodic with the same

periods, and this leads to coniradictions on two grounds: (i} the two frequenc:es, 5 and 1:, ,

would be mixed up back in the Ag(i), Be(r), A; (), Bi({1); (1) even 1f1:E = 1:1 = 1%, this

would imply 1/7% = vg = vy, violating the equations that vg and v; must satisfy, and that

can be derived e.g. from equation (36), by Fourier expanding all the relevant quantities.
The particular distribution given by

vpexp— [ dt' Bp(r)
Ar(21(x0)) — Br(#i(xp)) o7

Py =
makes

[Ar(r) = BrO] pr(17,0) = v (38)

a constant, and thus it would seem to produce constant ficlds zé(t), offering a way to
avoid the above contradictions. Such a distribution does not, however, satisfy the boundary
condition, because that would require that

o UeY ! 1 s
vE ArGo) = Bro) VPP L dr Bes )]_
Ar(to) — Brltp) Ar{to) © Ar(to+ (ve)™) — Br(to + (vp) ™)
which is incompatible with the time course of Az(¢), Br(¢) being determined, in its non
constant components, solely by Sr{r). '
Therefore, provided more than one class of cells is included, there exist no stationary or

pericdic responses, in the long time lmit, to a periodic input: the behaviour of the system
is more complex, possibly quasiperiodic or chaotic.

39
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4. Dynamics with adaptation

Consider now the more general situation with % 5 0.
It is now convenient to write equation (7) as

8 = Ar() —xi()Br() + % (OCr —x(N¥(DF (40
by introducing the additional notation

Cr =xpog Dp =ok. (41)
Instead of pp(x, t), one should now consider a density mr(x, y, t). If, however, the initial
conditions imply that

7E (%, 3, 10) = op (3, )3 = 20OY)

then it is easy (o see that x will remain linked to y throughout the dynamical évolntion.
With this restriction on the initial conditions (which will be irrelevant anyway later on, in
extending the formalism to the case Ne — oo), we consider the evolution of the densities

1 _ N
or(y, 1) = o Z_jso: — 3. 42

In other words, the dynamics of the single céll is followed by monitoring the potassinm
conductance rather than the membrane potential, which is now considered, just for analytical
convenience, a variable dependent on ¥ {r) (and t) The relationship between x and y is
obtained by integrating :

dx % ’

dy y o :
between spikes. The additional restriction that 0 < x < 1, valid after a finite time, shall
also be applied, for simplicity, straight away.

In terms of or(y, ¢), the dynamic system becomes

_ 3
TRGR(y, £) = op(y, ) + ygcrp(y, 3)

+3(y — Fr(®) — 1) [Fr(0) + 1 + t5 520 orGr(0) + 1, 1)

. 44
—8(y = £ () [Fr® + tE5 ()] orGr(D), 1) @0
LAGES —ing(t) + [M +¥rlt — Ar)] or(yr(t — At), £ — A
- T 13
~ with the boundary conditions
[Pr@) + 1+ tF 5 p @] 0 Fr() + 1,8) = [r@ + 5 5] o5 Fr(©), ) (45)

where $x(t) is the y-value at which cells of class F emit a spike, depending on previous
history, as defined implicitly, integrating equation (43), by

L= Tr) ) [ Ar(t — EIn(y/ ) ]
¥

1= r dy

¥rit)
« exp (_ f d & dyr)[BF(t - 'L'Fyi-ﬂ(y’/J’F)) F] 46
e )
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while the instantaneous period Tr(r) satisfies

yp(t Tp()) +1
¥r ()

The simpler form of the dynamic system stems from the simplicity of the y-dynamics, while
the complex x-dynamics remains hidden in g (s).

Tr(t) =75 In @n

4.1. Stationary solutions

If the 5(z)"s are constant in time, one has stationary solutions in the form

0 ”?r'f}c FO F @
op(y) = e Ig =TgVr (48)

where the firing rates of each class of cells are

- + 1
O =10 = FmE S @9
%
and
1+35 34
l_f I: F -{—C :I(y ) e~ DetFy-38) (50)
» y

The values of v% and u? can be obtained by sclving the equations numerically having chosen
values for the parameters.

The limiting hypersurface beyond which E and I tend to infinity is given now by

vg e m§t§r+w§r£+w§r§r - wfrf "5“”1"71 + ok 51
vy In R (r) In R}(r)
with e.g
E _E_E It LK K K
~ Xfortrr+xjort +Xre)T
R{}(r)= | e 4 |t 4 | [ St e ) (52)

(cf — Defrfr + (xf — Dolt] + aF — Doz

The S-dependent planes beyond whlch elther v) =0 orv{ = 0 are given, as for wf = 0,
by the conditions A} = B} and A} = B). The C and D terms are irrelevant, because
¥ = 0 most of the time when cell / fires at very low frequency.

4.2, Transienis

The dynamics of the transients around a stable stationary solution can be analyzed along
the same lines as previously. The only difference is that among the transient quantities
{denoted, again, by keeping the same symbols, ie. or(y, ) = g0(y) +or(p, £)) one has
to include now the fluctuation in the potassium conductance at spike emission, ¥r(¢). In
expanding to first order in the transients the dynamic system equations (44), one finds that

away from the singular points on the y-axis, the (subtracted) densities follow the simple
equations of motion

; b
TRGR(Y, 1) = or(y, 1) +y5-);crp(y. £) (53)
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while for the feedback fields one has
0
@) = —--zG Fo+ —ap(yp t—AD
% tF

G
I:yp(z‘ — AD
+ w—_r

+ ¥t = A:)] o250
'L‘F .

=0 | V
“‘E“[Ug(?p + ¥r(t ~A:})-ag@0 1. 54)

The simplicity of equauon (53), due to the simple relaxation dynamlcs of the potassmm
conductance, is compounded by the presence of discontinuities at y = y%, 3§ + yr (1), 7%+
1,¥% + $r() + 1, and by the necessity -to include among the deviations from the
equlhbnum densmes, i.e. or(y, 1), alongside a term of transient amplitude on the interval
{y,,- + yp(:) 3+ }'F(I) + 1}, a finite term —o 2 (y)sign(¥r(¢)) on the transient intervals
(yp. yF -+ ¥g(£)) and ( +1, y,,- + $7(1) + 1) at the boundaries. Taken together these three
contributions satisfy

f dyor(y, 1) = 0. 5%

Considering again transients with a time dependence exp(At), one finds solutions for
the deviations in the densities of the type

rtEod (y)y*eF [ 1 1 ]
a, (y! t) = - 73 — -0 }' (t) (56)
F 5% + DF — G 5T 3 +1L7T

on top of the finite terms just mentidned. ?}(t) can in turn be related to the transient rise
rates A, B through equation (45)

1+%% ¥ (A +BHE+
Jr(t) = [0 dy ( ;') e—DFT (52}

Yr
0 Al
x {Ap‘(t) + B2 Y] [1 ~ (—%—) ]}
A Yr

x { A% — B} + 7p(Cr — Dp)
_e—Tg(l+Hg+l!t§)-Dpt§ [A +Cr(1+ F)]} . (57

These equations yield a relation between the transient amplitudes of the fields Fg ),
finally resulting, with the same derivations as above, into an equation for A formally identical
to equation (27), but with Q%(A) now defined as :

¢ VFWF 1
A\ = +
G = oD [ (1 + 3T — 1)]
L430 ) G 750 N GBI
X {f oK dy[A—” +Cp o+ ﬁ](”—‘") T e prto-a _ 1}
7 y y I\y
x {4% ~ B} + 72(Cr - D)

0 -1 7
— g TR0 B =D [0 +CF(1+F2~)]I : ' (58)
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It can be checked that Qﬁ(l) reduces to the previous definition of equation (26) as
CF, DF — 0.

4.3. The peculiar case of a homogeneous network of identical excitatory cells

If all cells are identical, excitatory and fully interconnected with synapses of uniform
strength, and if the net receives uniform external stimuli constant in time, then—and only in
this artificially simple case—it may go into a mode of periodic oscillations. In fact one can
write down, in this particular case, long-time solutions of the dynamics cormresponding to
fully synchronized spiking by all the cells. One can then find the limiting conditions (phase
boundaries, or instability lines) beyond which such synchronized solutions destabilize into
staric solutions, or vice versa the limit beyond which static solutions destabilize and begin
to synchronize. Note that there may exist different periodic solutions, e.g. corresponding to
several groups comprising an equal number of cells, cach firing synchronously at equally
spaced intervals {29], but it is likely that the fully synchronous solutions be the most robust
of all these, and it may be convenient to consider them first.

In studying a net of identical excitatory cells one may determine how the available long-
term solutions of its dynamics vary with the parameters, e.g. by singling out as independent
variables w®, measuring the coupling, and w®, proportional to the size of the potassium
conductance (with a single cell class subscripts may be dropped). For o above a given
wE,, the firing rate in the static, asynchronous solution goes to infinity, invalidating the
approximation of neglecting the absolute refractory period. wgax can be easily found from
equation (16} (by climinating inhibitory terms) as the solution of

1 xEzE wﬁax + xEgK K
T 1ERE 4 KeKk T (xF — Drfwl,  + K — Dekek’

(59)

The asynchronous solution, however, destabilizes already when the first transient cigenvalue
appears, with Re(A) > 0. If Im(A) = 0, this would occur at the transition line O ©O—-1=0,
or in terms of the parameters of the static solution

0y2,ELE p147° E 0 - N L
M‘% f ’ Edy [x_ - (f— + C)rK In —lo] (L) e D (-7
1+ Jyp y y ¥y y
X {A"F — B} +5%(Cr — D)

-1
— e TROIEDrE A 4 Cr 4+ 3]] =1 60)

However, both the nature of the instability (and hence how it arises in A-space) and whether it
prodnoces a flow towards a stable synchronous solution or towards something else, represent
in general extremely complex issues, which may have very different answers in different

parameter regimes. Therefore these issued will not be pursued here any further, but will be
addressed in another paper [18].

5. Extensions to more interesting cases

5.1. Variability within classes

A slightly more complex case, which may be considered next, is that of a network in which
excitation and inhibition can still be described exactly by just two macroscopic fields, but
there is now variability within each class of cells, both in their intrinsic parameters and in
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the way they are affected by the macroscopic fields. In other words, the rise rates of the
membrane potential for each cell can still be expressed in terms of the fields zg (1}, but each
cell is now characterized by its own set of ‘coupling’ parameters w;. One deals with such
a case by inroducing w-dependent densities pr(w, x, 1) sach, that

1= [ awore) = [ I:fdxpp(w,x,t)] 61)

if we take, for simplicity, the situation with no adaptation, »* = 0. The above methods can
easily be extended to cover this case, and, for example, the static solutions are now given
by the equations

Vi (W)
A% (w) —xBp(w)
where the firing rates of each class of cells are

Y (w) T
Ag(w) — BR(w)

polw, x) = pr(w)  Fg= f dw 7 Vi (W) or(w) (62)

vi(w) = Ba(w) [m 63)

5.2. More than rwo classes

A more general and straightforward approach, however, is to consider directly the case
in which there is a large number N of different classes of cells, each having its own
independent synaptic coupling with each other class. Some of the parameters characterising
different classes may of course be equal, for example the synaptic time constants may be
common 10 many pre- and post-synaptic pairs of classes.

Again, it i§ easy to generalize the previous formulas. One should note that there are
several possible static solutions, that correspond, in particular, to different combinations of
classes of cells being quiescent in the long-time limit. Non-firing classes produce no fields,
and therefore the corresponding equations drop out and are replaced by inequalities (ensuring
that the membrane potentials for cells of those classes are kept below threshold), while the
coupled system takes a different form with each combination of surviving équations. If N
out of Ne classes comprise cells that fire in a particular static solution, the solution itself,
in the general case of & # 0, is given by equations (48), with the firing rates determined
by the system of 2 x N equations

(Ug-)_l = Tg = 'C;;-( In IE + 1

= (64)
Yr
and
145 T A0 <0\ BrF
1= f * 'c§ dy {é_’:‘l + CF} (y_F) o e—DFfﬁ(}'—F?v). (65)
i Y Y. ,
Here the rise raies stand for
N
A} =l + Exfwgrgvg + xfewls2
G=l1
(66)

N
0 0 c
By =wp+ E w3TEVE + wiSh.
G=1
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Stable static solutions comespond to attractors, and the spectrum of time constants
characterising the transient behaviour converging to the attractor is given again by the
single equation

@y — e =0 (67

where the matrix elements of Q are given again by equations (58).

A patticular case 10 which the above meament can be applied, is when the number
of classes N¢ is not much larger than, or it is even equal o, the namber of cells. In
that case, the method is not exact (it would be only in the lumit of very many cells per
class), but may be regarded as a mean-field approximation, in which each cell is replaced
by a continuous distribution of cells of equal characteristics and couplings, spread over
different values of x (or y). Note that this is nor equivalent to the approximation, discussed
above, in which the discontinuous nature of the spiking dynamics is neglected in favour of
& continuous description in terms of average rates. Here, every ingredient of the original
integrate-and-fire dynamics is preserved, with its full dependence of the different time
and coupling parameters. The present approximation is, rather, equivalent to assuming an
effective indeterminacy in the establishment of initial conditions (namely, the value of the
membrane potential) for each cell in the network; however, different evolution histories are
not simply superimposed, because they interact with each other.

5.3. Associative memory

One type of network in which cells are grouped into a large number of classes (possibly as
large as the number of cells) on the basis of the strengihs of their mutual connections is an
autoassociative memory. Consider for example the case of a network of N¢ interconnected
excitatory cells, of identical characteristics, with couplings given by the matrix

€ w) =) ny
w;,-:kN—C+kN—CZ(7’—1) - = (68)

=l

where k, wo and w; are given parameters, and the #;° are normalized firing rates assigned,
independently for each p and i, from a common probability distribution F;, such that
a={n), = (;32)]1 (@ is then a sparse coding parameter, see [30]). These connections
endow the network with a set of attractor states correlated each with one of the p “stored
patterns’ {n}‘}. One could try to analyse the attractor structure emerging from the integrate-
and-fire model. In this model, however, the resulting current-to-frequency transduction
function characterizing single cells in the long-time limit is rather similar, as shown in
figure 2, to a simpie threshold-linear function; a similarity enhanced by the adaptation
effect of the potassium conductance. One can expect, therefore, the attractor states to be
close to those obtained with a static treatment based on the use of threshold-linear units, as
I have presented elsewhere [31]. The new, dynamical, results that emerge from the present
treatment, instead, are those concerning’ the transients and their time constants, and these
are the ones described in the following.

The transient time constants are given by the the inverse of the values A which satisfy

A=[QR) -] =0 (69)
with QL) a N x N matrix of the form

0;; (M) = wi;q; (M) (70)
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which results from the assumptions that all cells (classes) have identical characteristics but
“for the couplings w;;. The form of g,(A) can be extracted from equation (58). N is the
number of active cells (quiescent ones drop out of the transient equations as well) and it is
convenient to set k = Ng/N.

The zeros of the determinant could be obtained by expanding the inverse of the
determinant (for fixed A close but not equal to one of the critical values) into a Gaussian
integral, evaluating it at the saddle point, and checking when it diverges as A varics. One
has to keep in mind, however, that the location of the zeros will depend on the (quenched)’
assignment of patterns {#}}. In order to obtain a quenched average, based on the assumption
that the extensive, self-averaging, quantity is In A, one uses the standard trick of considering
n-replicas and then letting n — O:

1 2
f=—5nA), = Iim - [(A™), - 1]. 71
A replica-symmetric evaluation of f is presented in the appendlx The result is
51 T
F==n 222 4G I in(rogi () — 640) + O(1/N) 72
ro Tow

where the order parameter r; is determined by the saddle pomt equation
ro ( rogi(A) ) ‘

Tow;  \rogi(A) —e*™

and where o = (p — 1)/N must satisfy & < @* (see the appendix).

‘The zeros of the determinant correspond to the logarithmic singularities in equation (72).
Note that there are. N sets of potential singularities associated with the N conditions
rogi(M) — &3 = 0, yielding the decay rates of the transient activity of each cell, plus
p — 1 degenerate sets associated with the condition aTpw;/ro = 0, yielding the decay
rates of wansients correlations with pattems not being retrieved. The most interesting set
of singularities, however, is the one associated with the transients in the comrelation with
the pattern being retrieved, and this has remained hidden in the O(1/N) corrections to
equation (72), Going back to equation (86) one finds that this additional set of singularities
is given by a vanishing argument of the logarithm in the last three lines of that equauon
which reads

g (\) :
[(1 * wo( rogi (A) — e+ )) 79
N @)
) (1 +w1((—ﬂ_ - l) rogi(A) — et )) ' o @)

e (51 ) ] =0
0N\ 2 rogi(h) —erdtf |

in the replica-symmetric solution. This condition vields the A-values which are probably
most interesting from the point of view of the time course of information processing,

A simple case in which the calculation can be brought forward analytically, is that of a
retrieval state in which all active cells fire at the same (normalized) rate n = 1 in the stored
pattern, and also (neglecting fast and quenched sources of noise) receive the same input,
and hence fire at the same rate, in the retrieved pattern, implying g;(A) = g(A) for all i.
Then ry is given by ‘

A7 qaril
=2 [eA +(‘~1)Tow1:| 1—\/1—[ toe " Towng() (76)

x =

(73

») e+ + (@ — DTowrg(M)]?
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(the correct solution of the guadratic equation being determined by the requirement that, in
the & — O limit, rq o< &). Note also that averaging over active cells only (n/a—1)) =T
{cf the appendix). Substituting for ro, one finds that the first two types of singularity both
correspond to the condition g(i) = 0, that & = {1 & [e**/ Taw1g(M)]*/*}?, and that the
decay times of the transients in the overap with the remrieved pattern are given by the
equation, algebraically derived from equation {75)

(W) (o + Towi)leo + (o + & — D Towr] — oo + To(To — Dyt =0. an
Finally, as « — 0, the condition giving the last set of A’s reduces to

g e + Tier) — e =0. (78)

5.4. The spectrum with adap:ation

Adaptation has a marked effect on the A-spectrum, and in order to Mustrate it, it is convenient
to use, rather than the equation for the network of excitatory and inhibitory cells, with its
double sets of time scales, the formulas just derived for the associative memory net, where
we have assamed all cells to share the same time parameters. These- formulas have very
limited applicability, because of the several simplificatory assumptions made. Thus, having
neglected to inciude inhibitory cells that contro} the overall firing rate [31, 28], for example,
renders a discussion of the gross structure of the spectrum, and its implications on the
stability of stationary solution, rather academic. On the other hand, these formulas, in their
simplicity, serve to bring out the features implicit in the new form of the Q-matrix (the one
including adaptation, equation (58)) and in particular the emergence of a new set of very
long transient time constant, which may be called the Ayperfine structure of the spectrum.
Figure 5(aq) shows, for one particular numerical example, the zeros of the g(A) factor.
These have been related above to the transients in the overlap between the state of an
antoassociative net and previously stored firing patterns not being retrieved. As in figure 4,
there is a string of poles on the imaginary axis at i = i2znv°, n # 0, a pole on the
real axis at A = —1/7%, and a set of zeros (the fine structure) approximately allineated
with the string of poles in the Im{i) dimension, and with a negative real component of the
same order (the inverse conductance decay time) as the pole on the real axis. In addition,
however, one observes a new set of poles and correspondingly, a new set of zeros, both
occurring with the same periodicity AA = i27v7, and this time with one of each on the real
axis as well. The zeros have real part Re(A) = —1/7% and correspond to the vanishing of
the term in square brackets in the first line of equation (58), while the poles have real part

A+ T+
0 — B0+ 3%(C — D)

1
Re(r) =1° [m i - DtK] -8 =

K
and correspond to the vanishing of the denominator (i.e. the last two lines) of equation {58).
Such poles and zeros are superimposed at Re(A) = —1/7K, and therefore cancel each
other, in the absence of the potassium conductance, «® = 0 (as can be checked by setting
C = D = 0), but decouple and get farther apart as «* grows. As soon, then, as adaptation
effect enter the game, of the type produced by the single (slow) potassium conductance
considered here, a set of slow transients arise, including one non-oscillatory and an harmonic
set of oscillatory modes.

One may consider now an equation of the form g(A\)&f —1 = 0, which has been related
above to the transients in the overlap between the state of an autoasscciative net and the
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one firing pattern being reirieved. in the case of zero transmission delayi (@® denotes the
renormalized coupling resulting from the replica calculation). As can be seen in figure 5(5),
the subtraction of the constant term, while obviously leaving the poles fixed, also preserves
the essential structure the spectrum. One notes that the imaginary parts of both sets of zero,
of the fine and hyperfine structure, are slightly reduced (preserving the basic periodicity),
while the real parts are also reduced, and tend to approach the nearest pole. the faster the
farther apart they are from the real axis. The single zero on the real axis, which was at
A = —1/7% is now displaced, in the particular example in figure 5(b), into the positive
real axis, making the stationary state considered unstable to a very slow purely exponential
decay. In the example of figure 5(c), the parameter o® is reduced to 2/5 of what it was in
figure 5(b). As a result of the reduced adaptation, the firing rate increases (and therefore
the distance between the zeros in the imaginary dimension, roughly 2mv°, increases), and
also the new set of poles is closer in the real dimension to the corresponding zeros of the
hyperfine structure (onto which the poles would superimpose for ® = 0). Again, the zeros
of the fing structure start off near the real axis with a real part close to that of the pole at
—1/7%, and tend to have a smaller (less negative) real part as their imaginary part increases.
The single zero on the real axis remains, in this particular case, on the left {(negative) side
of the origin, leaving the solution stable to slow instabilities.

750 - 750 - 750
) Q |

@ ©

500 — 500 | 500 —

) @ g . %"\o

250 — % 6 290 — 250 —
Sm(A)
(Hz) ||
o + o -
-250 — 250
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Re( ) ] {Hz) Re() (Bz) %e().) (Hz)

Figure 5. Fine and hyperfine stmucture of the spectrum, with adaptation effects included. {g),
(b) t* = 50 ms and ©¥ = 12.5 Hz; (¢) & = 5 Hz. Notation as in figare 3, with the shaded
and solid curves curves giving the zeros of, respectively, the real and imaginary part of (@) ¢(3)
and of (b), (¢) ¢(A)EE — 1, with & = 60 Hza Other voltage and coupling pzu‘ametcrs as in
figure t and figure 3 (excitatory cells) except for: (i) the mhlbttory rate is fixed at v, =50 Hz
(ii) the exmtatmy coupling is set a pastermn at 1/wf = 15 ms (»}/50 Hz). Stationary firing
rates (a), (b) ”E = 23.5 Hz and (¢) vE = 43.4 Hz, reduced from ug =92.1 Hz in the absence
of adaptation. In (a) the zeros of the hyperfine structure have real part —20 Hz = —~1/t¥,

t Having At 5 0 would alter the stability of the stationary solution and the gross stracture of the spectrum, but
not the fine and hyperfine structure.
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6. Implications for neocortical processing

An aimn of this paper is to suggest a particular level of neuronal modelling as both amenable
1o anatytical exploration and relevant to a discussion of reak neuronal dynamics in the cortex.
An obvious set of issues to which the method seems applicable is temporal encoding. In
this direction, all the work has still to be done, but one result produced here may serve as
a reminder, Whereas several interesting results on the problem of synchronicity have been
obtzined in extremely simplified conditions [15, 16, 3], these may easily not survive in a
more realistic dynamics of the type introduced here; moreover, just including inhibitory
alongside excitatory cells, or even a nonhomogeneous set of excitatory cells, is enough to
prevent any type of synchronous periodic solution, The problem, then, becomes, in any
minimally realistic context, one of characterising chaotic behaviour in a computationally
meaningful way and with a reasonable dynamics, a programme that is still in its infancy [32].

In discussing transients towards stationary solutions, instead, therefore in situations in
which it is a good approximation to consider those solutions as both relevant and stable,
and external inputs as fixed in time after onset, the method already yields a way of relating
the transient time scales to the biophysical parameters introduced in the model. Fast time
parameters, such as axcnal conduction times and synaptic delays, may have an important
effect on stability but, within a stable solutior, only result in exiremely rapid transients—the
gross structure of the spectrum. Conductance inactivation times have been shown to play the
main role: those corresponding to synaptic conductances in determining the relatively fast
transients of the fine structure, and that of the intrinsic (adapting) potassium conductance in
determining the slow transients of the hyperfine stucture. The very many other parameters
present are crucial in determining the stationary firing rate of the cells, but have only a
marginal infiuence on the transients—e.g. in setting, through the firing rate, the frequencies
of the oscillatory modes.

In recent experiments in the inferotemporal cortex of primates [10], the temporal course
of single cells reponses to complex visual stimuli (faces) was analysed, in particular with
regard to the information content of the responses. One of the results was that most of the
information content present in the full temporal train of responses was already expressed by
the simple firing rate; further, most of the information in the firing rate could be extracted
even by computing it over very short (2050 ms) time intervals after response onset. In
suggesting that the response relevant to further stages of cortical processing is attained very
rapidly, these results raise the issue of whether there i enough time for local cortical circuits
operating through recurrent (as opposed to feedforward) connections, to intervene (as the
stimulus arrives locally) and affect the response. The analysis presented here indicates
that recurrent processing may indeed very rapidly affect the response, because part of
the transient modes, resuliing from recurrent processing, are those whose time scales are
determined by the rather rapid (= 5-10 ms)} excitatory conductance inactivation timef.
Adaptation effects instead, which here have been modelled with a single conductance, but
which in reality result from a complex set of conductances with time scales extending over
hundreds of milliseconds result in transients which seem to be too slow. The question then
becomes that of understanding how the information carried by the newronal responses reflects
the time course of different modes; a question that can be addressed in a formal model, by
extending the dynamics of firing rates into considering the dynamics of information.

t A more complete discussion of the implications of the results presented here, and of their seomingly
counterintuitive nature, will be given elsewhere [19].
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Appendix

In evaluating equation (71), one notes that the values of A may be found after changing the
vectors upon which Q operates

W — w; = ./q,(A0 (79)

50 that Q is transformed into the symmetric matrix ,/7;(Me; ;«/_ ). /g,()) depends
on the iniegrated inputs to unit i, through A; (¢} and B;(r), and hience on the guenched
ass:gnment of the {5}, Considering however an aitractor state correlated with a single
patiern 7', we shall neglect the residual dependence on the other p — I patterns, and think
of ./g,(») as dependent only on ni. Then, labelling y, 5, .. . the different replicas

A= [ 1_[ (2::)1/2 exp — gzwy[f q;(Mwij/q;(0) = Mr‘su]w (80)

Y

Substituting for «;; and inserting the order parameters

1 #
W= S VGOw! W= 3 hygmu @

through &-functions, one obtains
A2 fH du¥adry du};dzjin dw!
2nN # 2zN 21 @2m)2

X exp [ 1 > [Nmo(w’)2 + N Z(ur)2 i Z(w"){“

¥

X exp {12 [z" (Nu" - E \/E‘-(x)w}’)
+ > (Nu; - Z (1; - ) ,/Ei(l)w,?’)i| } . 82)

Performing a quenched average (), over the distribution P, of stored patterns, leaving
out one pattern correlated with the aftractor state (labelled pattern 1), the last exponent in
the third line is replaced by

exp—— 2 3 g(w]wf (83)

¥é u»l




282 A Treves

where Tp = ((ﬂz)q —{m2)/ (2 = (1 —a)/a [31). Having introduced as a further order
parameter the n x n matrix § of elements

1
s¥ = 5 Z qi(Mw! !, : (84)
i

one may perform the Gaussian integrals over u,,, ¢, for o > 1, yielding

(A = fl_[ du? dr? duldr} dw! l-[ds?’*sdr?"5
A 2N 22N Llam2 A0 2nN

IS

Y
X eXp [-% [(p — 1)Tr, In(1 + ThwS) — ¥ Z(w}')z] }

iy

X exp lNi [Z(t"u”+ tul) + Zs"‘sr”] }

4 yh

1

X exp I]:—i lz [:J’\/z};()vu)w! +1f (1—' — 1) Jé}(l)wf]

iy

+ 2 rré g ()wl wl H] . (85)

iyé

At this point, one can do the Gaussian w; integrals, followed by the Gaussian integrals
over u¥, ul,t?, 1] . Rotating and rescaling variables ir*® — r7¥/2 one has

ds7?dr?? N |
=7 =TI A - 5y
(A= = f %% exp[[ > {a'ny In(1 + TheS) Eﬂ:sr rt

+ (Tr, In(rg; () — e*41)) H]

1 (A
X exp [-5 Te, In [(1 oo (_u_—rq; - — ))
A e
X (l-l-w] <(?-—1) —_—rq.-(l)-e’“ﬁ'1>)

n! g ? -
-t ((? B 1) rg: (L) — e"“) ]} (©9)

where & = (p—1)/N (@ is used rather than « in order to keep in mind that N is the number
of active cells (classes), no¢ the total number) and (-} denotes averages over the N cells.
Note that A is a complex quantity, defined in general by analytic continuation, and that a
certain number of rotations of variables in the complex plane may be required to evaluate
the integrals for a given A. Considering a replica-symmetric solution

Y =ry s = s,
¥l e=r =5 (r#9



Mean-field analysis of neuronal spike dynamics 283

and taking the n — 0 limit leads to

Toen 51
1+ Towr (50 — 51)

f=-d [111(1 + Toan (S0 — 51)) + ]-FroSo—rtS1

_ RPNy r1gi(A) |
(In((rg gy — s + (ro—n)q; o e"A') &7

plus corrections of order O(1 /N }. The saddle pomt equatlons for ry, 51 imply r1 =5 =0
for all & below a critical value &*, which in fact reveals that, in that &-range, the replica
treatment was redundant, as different replicas tum out to be uncorrelated. Eliminating sq as
well leads to equation (72), where &* is given by an analysis of the Jacobian as

o r@)gt) V-
o _<(rg(&'*)q,-(l)—e“') ) (88)

The meaning of &* is still unclear.
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