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Abstract. I consider a mean-field description of the dynamia of interacting integrate-and- 
fire neumn-like units. The basic dynamical variables are the membrane potential of each 
@oint-like) ‘cell’ and the cmduetance assodated with each synaptic cmedioh both of which 
evolve discon~uosly. in time. In addilim, an intrinsic potassium conductance. also evolving 
dismntinuosly in time, can be associated to each cell in order to model firing frequency adaptation 
in real neurons. Ihc mean-field theory is exact if the units can be gmped into Nc classes. 
eaeh comprising infinitely many identical, and identically eaupled, units: and can be used as 
an approximation if, inslead, a class camprisks few or j”st one unit. The formalism yields 
both the stationary asynchronous solutions and the transients leading to thasc solutians. The 
full spctrum of time-canstants for the transients associated with one particular steady state is 
given by a single equation. imposing the vanishing of the determinant of an Nc x ~ N c  matrix. 
In the case of an associative memory, this equation can be manipalated into a simple form, 
using standard replica methods. An analysis of the qx%t” indicates that the major role in 
determining the transients time constants is played by the effective decay times of pastsynaptic 
currents. which CM be quite short. M s  suggests that local recurrent neomrlical circuits may 
pmluce B very rapid dynamics. consistent with such circuits parlicipadng in the rapid cwrse 
of information processing, evidenced by new experimental data recorded in primate temporal 
COltCX. 

1. Introduction 

Many analytical studies of the ‘collective properties of neural networks have been based 
on very crude representations of actual single neuron behaviour by means of simplied 
processing ‘units’. The specific choice of the units has been largely dictated by the nature 
of the properties to be investigated. Thus, in network models of associative memory [l, 2.31, 
in which information is supposedly carried with temporally coarse resolution by rates of 
emission of action potentials, units have been chosen in which a single output variable 
(often even binary) represented some short-time average of the neuron’s spiking rate. The 
focus then has been on studying the steady-state behaviour, i.e. the attractor s m c t m  141. 
with the dynamics either neglected altogether or artificially deEned (for example, in terms 
of ‘updatings’) merely in order to fully specify the model. In those network models [5,61 of 
early visual processing, instead, which purport to illustrate the hypothesis [7, 8,91 that the 
partial synchronization of emission times might serve to bind across the visual field features 
pertaining to single objects, units have been generally considered that have an intrinsically 
oscillatory probability of emitting spikes. 

t Present address: SISSA-Biophysics, via Beirut 24,34013 Tneste, Italy. 
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Much more realistic descriptions of the relevant biophysical processes have been used in 
modelling the dynamics of just one or a few interconnected neurons. In trying to understand 
the collective properties of large networks, though, attempts to get closer to biological 
situations have been confined to simulation studies, with all their obvious limitations. Yet 
the need to obtain an analytical grasp of the dynamics of large networks becomes urgent, as 
new experimental data 1101 is beginning to throw tight on the temporal course of information 
processing, e.g. in neocorrical association areas of primates. 

This paper aims to show that it is possible to study analytically aspects of the dynamics 
of large interconnected networks even when nenrons (and synapses) are represented more 
realistically than usually attempted. The two main ingredients, included in the present 
treatment, are an integrate-and-& description of the rime evolution of single cells membrane 
potentials, and, crucially, a description of synaptic interactions in terms of the dynamics of 
post-synaptic conductances. Moreover, frequency adaptation, a salient feahu'e of neocortical 
pyramidal cells, which affects significantly their temporal response pattems, is produced 
in the present model by an intrinsic potassium conductance driven by a cell's own 
action potentials. Wi le  these are still very simple approximations 1111 (they form the 
basis of the simplest neurophysiologically inspired simulation studies [121 and hardware 
implementations [13]) they are important steps towards addressing dynamical issues raised 
by experimental data, and which lie well beyond the scope of previous treatments. For 
example, over what rime scales can alocal Wng pattem-elicited by an incoming stimulus- 
reach a steady-state distribution? Which of the biophysical parameters at the single unit level 
conhibutes to set those time scales? Are those time scales consistent with the hypothesis 
that the steady-state disuibution is utilised in further stages of cortical processing? 

Analysing a realistic form of dynamics will also be necessary in order to study the 
basins of artrucrion of stable atmtor states [MI. Moreover, it will allow a discussion 
of some simple models which have been put forward in the context of synchronous 
oscillations 115, 161, although the description proposed here may not be complete enough 
(e.g. by not including bursting [17]) to discuss the phenomenon itself. 

This paper focusses on establishing the relationship between the time scales at the single 
unit and at the collective level. The complex question of the stability of the steady-state 
distributions is addressed in another paper [HI, while a more detailed discussion of the rime 
course of neocortical processing will also be given elsewhere 1191. The paper is organized 
as follows: the model and the notation used are defined in section 2. The mean-field analysis 
is introduced using the toy case of just two classes of identical cells. This is done first for 
cells that do not display adaptation, in section 3, followed by a discussion of the spectrum, 
and by a proof that periodic solutions are impossible in this m e .  The analysis is extended 
to cells that do adapt in section 4. A brief comment is made w the situation in which 
all cells are identical and identically coupled. Section 5 deals with more interesting cases, 
including that of an associative memory, and presents an example of the spectrum which 
includes the effects of adaptation. A brief discussion relates the analysis to experimental 
results in the section 6. 

2. Basic model 

2.1. Single cells and synapses 

In the simplest type of integrate-and-& description, the one adopted here, the 
geomehy of the neuron is reduced to a point, and the time evolution of the 
membrane potential vi of cell i during an interspike interval follows the RC equation 
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Figure 1. Model in v i m  behaviour. V (&and gK(t) in 
response to B sfep of injected current I ( r )  of 0.75 nA. 
' h e  relcvmt paramdm BIC Vo = -13 mV, V* = 
:53 mV. V* = -63 mV. V K  = -85 mV, C = 
0.375 nF, go = 25 nS, AsK = 9.315 nS, r K  = 80 ms. 
Spikes are pasted by hand at emission times for clarity 
of presentation. 

Figure 2. Cumnt-to-frequency traosduaiw. F e  top 
solid carve i s  'the firing frequMcy in the absence of 
adaptation, AgK = 0.' ?he dated curves are the 
instantanems frequencies canpuled as the inverse of 
the ith interspike intelval (top to bottom, i = 1. . . . ,6). 
The boaan solid curve is he adapted firing w e  
(i -t CO). Parameter? as in figure 1. 

where C; is the capacity of the cell membrane, gp its passive conductance, Vi" the resting 
potential, g? an active potassium conductance producing firing rate adaptation, KK the 
corresponding equilibrium potential, and g' and Vu the conductance and equilibrium 
potential of each input synapse 01. l i ( r )  is an external current injected into the cell, 
considered here solely in order to illustrate, in figures 1 and 2, the way the model would 
mimic in virro data on the response characteristics of neocortical cells. 

As Vi reaches a thmhold value Vi", the cell emits a spiket. Unlike the Hodgldn-Huxley 
model, the integrate-and-lire model does not describe the cascade of membrane conductance 
changes that accompany an action potential. .All these changes, instead, are supposed to 
be exmmely rapid, and to leave the cell repolarized at a reset potential v,"', f" which 
the evolution resumes as in equation (1). One may introduce an absolute refractory period 
lasting 1-2 ms, during which the cell cannot emit further spikes no matter how strongly 
stimulated. Here, however, the absolute refractory period is set, for simplicity, to zero, 
t Here yk i s  &en to be canstant. In Mher caw [I21 it is assumed io vary in timc, with an evolution similar 
to that of g:, equation 3 ,  and then it contributes to firing frequencj adaptation. 



262 A Treves 

although this obviously makes infinite spiking rates possible. In all situations of interest to 
us, in fact, the actual rates will be determined by other mechanisms at much lower levels 
than the inverse of the absolute refractory period, which will therefore be influential. 

Some of the synaptic contacts onto a neuron are taken to be made by the mons of 
other neurons in the network, and some by external afferents, and in both cases the relative 
conductance is assumed to open instantaneously by a fixed amount following every incoming 
spike, and to relax exponentially to its closed state. Thus if ik ,  j. is the time of emission of 
the !ah spike by the neuron j, presynaptic to synapse a 

where z" is a synaptic time constant and Af summarizes axonal, synaptic and dendritic 
delays. A similar dynamics governs the potassium conductance, the only inhinsic and 
time-varying conductance included in the modelt 

i.e. when cell i Sres, g; is inueased by Ag?, and then it decays exponentially with time 
constant rK. This type of conductance dynamics is meant as a representation of the summed 
dynamics of many individual channels, and in the synaptic case it is but an approx idon  of 
the more accurate a-function representation [21], valid in the limit in which the activation 
of the conductance is much faster than its inactivation. The analysis below can in fact be 
easily extended to conductances that follow an a-function dynamics [18]. 

This level of description is obviously inadequate to reproduce complex neuronal 
behaviours, such as those related to the cell geometrid structure or to calcium dynamics, 
e.g. active dendritic processing or bursting. It is, on the other hand, sufficient in order to 
reproduce the basic features of neuronal transduction, its graded nature and, in the case of 
regular-€iring pyramidal cells, the adaptation in frequency following the Jirst few spikes. The 
behaviour observed in vitro to a step current injected into the cell body is modelled, here, 
by setting all g" 0 (figure 1). The resulting current-to-frequency transduction curves, 
illustrating the effect of adaptation, are shown in figure 2 

2.2. Nenvorks 

Equations (l), (2) and (3), together with the prescription concerning spikes, form a closed 
system, once the architecture of the network, the incoming afferents and a l l  the various 
parameters are speciEed. The cell parameters should reflect the class to which each cell 
belongs [22], with the cell classes chosen in a way appropriate to the particular brain 
structure being modeled, and the specific dynamical issue under consideration. In neocortex, 
for example, one may want to begin by separating out GABAn and GABAB inhibitory cells 
P31, layer ZP and layer 5 pyramidal cells, among the latter the ones with short and long 
apical dendrite [%I, and so on, and then hy to reproduce, maybe with h e r  subdivisions, 
experimental data concerning both cell and synapse parameters and connection probabilities. 
Here we start by illusmting the method, and the results it can produce, with a toy case, in 
which there are only two classes of neurons: excitatory and inhibitory. Further, the various 
parameters are taken to be identical within each class, and the simplest connectivity scheme 
is considered, in which all cells are connected, and the 'strength' of each synapse-i.e., the 

t Cf the multihlde d intrinsic conductances observed in real neurcns. e.& in the hippacamps [ZO]. 
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conductance Ag'+iepends only the classes of the pre- and post-synaptic cell. Later, we 
shall see how the same methods can be extended to cases in which there is variability in 
cell and synaptic parameters. or there are more than just two classes of cellsf. 

Let the subscripts F,  G, . . . index cell c lassesas  a start, they will only take the values 
E (excitatory) or I (inhibitory). Whenever, as in the case of synaptic parameters, it is 
necessary to specify also tiiepre-synaptic cell, the same letters wiU be used as superscripts. 
Each cell class will be characterized by a reset membrane potential V,"' and a threshold 
potential vp. It is convenient to express all characteristic potentials in tenns of the variable 

(4) 

measuring the excursion of the membrane potential between spikes. For example, the resting 
membrane potential for excitatory cells will be, in  these units, x i .  The equilibrium potential 
characterizing excitatory synapses onto inhibitory neurons will be XI",  and so on. 

It is also convenient to parameuize the degree to which the potassium conductance is 
open as 

K 
y = -  xi 

Ag? ' (5) 

The remaining synaptic parameters, in the simplest network considered here, are the 
set of time constants [t,"] and the set of conductances (Agg). For example, z; and A g i  
characterize any synapse from an inhibitory to an excitatory neuron. It helps to reduce aU 
conductance parameters, that in fact act as 'couplings', to the dimension of a frequency, by 
dividing them by the capacities CF.  Thus U$ will denote the inverse of the t h e  wnstant 
for passive membrane leakage in celis of class F ,  i.e. & / C F .  similarly, the quantities 
NcAgF/cF, which measure, in units of frequency, the total synaptic strengths of Cells of 
class G (of which there are Nc) onto a cell of class F ,  will be denoted as 0;. 

The simple assumptions conceming the connectivity and the synaptic efficacies are 
reflected in the fact that the inputs to any cell in the network are determined by globally 
defined quantities, namely the mean fields. These measure, as a function of time, the 
effective fraction of synaptic conductances (in units of Ag) opened on the membrane. of any 
cell of a given class (say, F )  by the action of all presynaptic cells of another given class 
(G): 

The extemal inputs, denoted as S F ( [ ) ,  are taken, again for the sake of simplicity, to be 
excitatory only. 

In summary, the single-neuron dynamics, for cells of class F ,  is described by the 
equations 

f i ( t )  = o F ( x F  - x i ( ( ) )  + w F ( x F  - xi(r))yi(r)  + o F ( x F  - xi ( t ) )z ,E(r )  
0 0  K K  E E  

0 

Y;(f) = -E (8) 

S E  +&x.L - x ~ o ) ) z . L ( I )  + o F ( x F  - x ~ o ) ) s F ( ~ )  

and 

zK 

The loy case is chosen to have two classes of cells in order to avoid the pathologies of the yet simpler case, in 
which all cells arc identical and identidy cwpled, d subsections 3.4 and 4.3. 
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in between spikes, with the supplementary prescription that as x ; ( f )  reaches 1, it is’reset to 
0, yj(r) is increasedby 1, and a new spike is emitted by cell i, i.e. I t , ;  = f .  

3. Dynamics, With no adaptation 

Consider first the case 05 0, so that the y-dynamics becomes irrelevant. 
Write equation (7) as 

i i ( t )  = A d z )  -Xi(f)BF(t), 

by using the notation for the rise rates of the membrane potential 
E E E  I f f  AF(t)  =&O; + X , O , Z F ( f )  +xFOFzF(t) + X F O : S F ( t )  

BF(f)  = 0; +O,%F(t) + O ~ z ~ ( t )  +O$F(t). 

Then introduce the densities 

where NF is the number of cells of class F. 
In terms of these quantities, the dynamic system can be written 

[ A d t )  - B F ( t ) I P F ( I - .  t )  = A d 0  [PF(O+. f )  - PF(O- ,  t ) ]  113) 

which correspond tn the spike prescription. The second set of equations (12) is derived 
from equations (2),(6) by noting that SO) = x(~)S(x  - x( t ) ) ,  and it brings out the role of 
the firing rates 

3.1. Stationary solutions 

If the S(t)’s are constant in time, one has stationary solutions in the form 

E [A&) - B F ( I ) ] P F ( ~ - ,  f ) )  in drivingthe conductance dynamics. 

F O -  F O  
‘G - % v F  

(O(x) being the Heaviside function) where the firing rates of each class of cells are 
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i.e. the values of U$ and U: are given by the system of equations above (for F = E ,  I ) ,  with 
A$ and Bg expressed back in terms of U: and U: according to equations (10),(14). This 
system yields finite, non-zero values for the amounts of excitation and inhibition, within an 
ample region in the space of the parameters o, x and t. U: and U: tend to i.afinity (and the 
approximation of neglecting the absolute refractory period loses meaning) beyond a certain 
hypersurface in the above space. The hypersurface is given by the system 

and it is independent of So. Conversely, the equations determining the hypersurfaces beyond 
which either U$ = 0 or U: = 0 are, respectively, A i  = E$ and A! = E:, and they do 
depend on the stimuli So. Obviously, if for example U: = 0, the dynamical system reduces 
to a homogeneous population of firing excitatory cells. 

3.2. Transienls 

Having found a stationary solution, the dynamics of the transients (keeping the same symbols 
for the subaacted quantities, e.g. A E ( I )  + A i  + AE(I ) )  is govemed by 

P F ( x ,  1 )  = B:PF(x. I )  - [A$ - xB:I-PF(x. f )  
a 

ax 
a 

+ B F ~ ) P $ ( ~ )  - -XBF@)I GP%) 

In the last equation we have assumed that after a finite time the density dishibution for any 
6ring class of cells has support on the interval (0.1). even if V o  < V*. 

One may now linearize the system. The part linear in the msients (neglecting the 
last line of each of equations (17)) describes a collection of modes, each characterised by 
a time dependence exp(At), for the transient parts of the dynamical quantities considered, 
i.e. the Nc x Nc (in OUT toy case just 4) adimensional conductances z and the Nc (here, 
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2) density functions p ( x ) .  The spectrum of all possible (inverse) time constants A of such 
collective modes is in general given by solving what is essentially an eigenvalue equation 
(but note the additional dependence on A introduced through the time delay At). Even in 
its linearized version the dynamical system may appear complicated to analyse, as part of 
the variables are really functions of x as well as I .  The number of effective variables can 
be reduced, however, to just Nc simple scalar quantities: a single manageable determinant 
equation then yields all possible A’s, and the only m e  of the reduction procedure is in 
additional A dependences of the corresponding matrix. The procedure, which does not entail 
any approximation but rather stepwise solutions, is shown here in the following. 

Consider any particular complex value A. Keeping the full set of variables z is in fact 
redundant, because they can be expressed in terms of the hring rates U&) of each class 

1 

=c 
(20) .F Zc(1 )  = - ~ Z i ( l )  + U F ( I  - AI) 

and this holds for both the unsubmcted and the transient quantities, so that 

(21) F F  F F  
U F O  - At) = (A + ~ / Z E ) Z E @ )  = (A + 1/71 121 (I) 

where each transient field z i ( r )  diverges if -A-’ equals its corresponding synaptic time 
constant 7;. a fact which will have important implications later on. 

Moreover, the Linearized equations for the P F ( x ,  1)’s are solved by transient distributions 
of the form 

and when A = 0, in which case 

These distributions satisfy the required consmints (to first order). 
One is left at this point with the system of Nc equations 

~ ( 1 )  = [A% - B;] / J F ( ~ - ,  f )  + [AFO) - B ~ ( 0 1  &(l-) 

where the A F ( I ) ’ s  and BF(I)’s are given by equations (10) in terms of the z;(t)’s, and 
those in turn by equations (21) in terms of the uG(i)’s. 
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the complex equation that sets the possible A'S reads 

p ( h )  - eAAzl  I = 0. 

CQi(h) - eAA'l[Q~(h) -eAA'] - Qk(h)Qf(h) = 0. 

(27) 

In our Nc = 2 toy case the equation is just 

(28) 

The transients decay, and the static distribution is stable. if no solution exist with 
Re(h) ? 0. For instabilities that appear continuously, the onset is at Re@) = 0. Note that 
even if at the same time ImQ) 3 0 the limit is regulai, a idone may use equation (27) 
with 

3.3..The spectrum 

A numerical solution of equation (27) yields a rich spectrum, whose main features can 
be appreciated in figures 3 and 4. In order to understand how the different zeros of 
equation (27) relate to the several parameten present in the model, within a particular 
regime, it is obviously important~to choose the parameters as realistically as possible. An 
attempt to be inside a neocortically meaningful regime is made in the examples given, with 
the limitation that pyramidal cell firing can hardly be represented realistically in the absence 
of adaptation. 

It is helpful to distinguish a gross and a h e  structure in the spectrum (a hyperline 
structure be introduced later by the presence of adaptation). ~ The gross structure, 
extending in the lrHz range (and @us associated with the shortest time constants), is the 
one pomayed in figure 3. A non-zero delay Ai produces a charackristic set of zeros 
(figure 3(n)); some of these may have a positive real part and thus make the corresponding 
stationary solution unstable. The zeros with a negative real part cccw with an approximate 
A?. = i(2n)/(NcAr) periodicity along the imaginary axis, as determined by the changes 

sign of the two exp(AAr) terms. Their negative real part is determined, instead, by the 
competition between the above terms and those containing Q, and thus scales so as to satisfy 
Re(h) k ( l /At)  In[- Re(X)(A$ - B$)/(w;wgx$)].  This set of zeros is removed by seaing 
Ai = 0 (figure 3(b)).  There. may or may not remain additiond zeros with I Re(h) I large. 

Thefrne structure of the spectrum, arising from the spiking nature of the dynamics, is 
more of interest to this paper. The relevant h-scales are set by the inverse of the conductance 
time constants and by the firing frequencies characterising the stationary solutions, and 
thus cover the 1LL300 Hz range suggested here as crucial to understanding information 
processing in certain real neural systems. The~pdsition of these set of zeros can be related 
to the structure of the Q-mahix. The matrix element QS(h) has poles at A = -l/$ and 
on the imagina7y axis at A = f & r n  U$ (while we have seen it to be regular at h = -@ and 
A = 0). The poles on the imaginary axis produce in the Re@) < 0 half-plane corresponding 
zeros at approximately the same Im(A) values (figure 4). The Re@) values of the zeros are 
determined by a sharp variation in the magnitude of the matrix elements Q;, and thus in the 
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-10000 -6000 
WV0 (Hz) 

Figure 3. Gross StNEtYre of the spearum. ?he solid and shaded curves represent the vanishmg 
of, respectively. thc imaginary and real pan of equation (27). Zcms are indicated by full circles 
and poles by masked intersecfions. ?he feahlrcs close to the imaginary axis arc adifacts of the 
numerical program (sec derails in figure 4). (0) Af = 1 ms and (6) A f  = 0 ms. Exciatory 
parameters: Y O  - -73 m v ,  VP = -53 m v .  v ~ P =  -63 mv. V: = o m v .  V: = -15 mv, 

Inhibitory parameters: Vp = -70 mV, VIm = -55 m y .  VI* = -70 mV. V? = 0 mV. 
V' - = z: = 20 ms. 
Si =-cfx 50 Hz. Stationary solution with Rtes v! = 40.6 Hz, $ = 30.4 Hz. -1% in (a) 
and-contrq to the expaations fmm the naive mea-field equaticnn+tablc in (b). 

C ~ f & x I / u ~ -  51 1 5 m s , o ~ = l ~ ~ / 3 = 3 ~ ~ / 2 = o ~ , s / Z , r ~ = r ~ = ~ . S E = r ~ x 5 0 H Z .  

75 m ~ .  CI/& 3 I/*: = 5 ms, 0: = of = 40; = Z$, 

example of figure4 lie close to the &(A) = - l / zE and Re@) = - l / z '  lines where the real 
parts of the prefacm of change sign. This result, whose generality is yet unclear, has 
important implications: thefine structure of the specr", possibly away from pathological 
parameter regimes, would consist of Nc approximately armonic series of oscillatory modes, 
with decay constants determined by the conductance inactivation time constants. 

It is interesting to compare the specmm obtained here with that of a 'naive' mean-field 
theory, the one described by the systemt 

where vg(zE(r), z'(r)) is simply the stationary input-output relation, extended to be a 
function of time-varying arguments [23. In this simplified system, the dynamics of 
individual spikes is neglected, by performing some ill-defined sort of temporal average 
alongside the spatial average of the mean-field treatment it has been argued [261, though, 
that the reduction to the simplified system preserves some of the interesting dynamical 
features. The stability of stationary solutions of such naive mean-field equations 1271 
has been discussed repeatedly in the literature, and recently a more realistic form of 
v:(zE(c), z'(t)) has been suggested, that ensures inhibitory conwl of excitatory firing 

t Synaptic l ime cmsmts are mken hem to depend only m the prespaptic cell clas. 
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-250 0 250 
Ee(X) (He) 

0 

5& -250 -250 &(X)O ( H Z ) = O  

Figure 4. Fine s m c "  of the rper". Notation as in figore 3. (a) Pammeim as in figure 3 
and (b)  intraalass couplings madi8.d io satisfy ai = UJ;. = 1061;. with in bath wes 
Ar = 0. In (b)  b e  statiwary solution is again unstable (instability outside the graph) With rates 
yo - 38.0 Hz. vf = 55.3 Hz. Note how the stadonay rates ret the ima@nary put of the z?rp. 
while the real part is detemined by he inverse condudance inactivation mnstants. 

E .- 

rates [ZS]. As the simplified equations follow the dynamics of the feedback fields, while 
the firing frequencies are described as adjusting themselves instantaneously to the correct 
level, these equations could expected to yield approximately the same zeros as (and thus be 
a valid approximation of) the correct mean-field theory under two conditions: (i) each class 
of cells must be able to adjust its frequency very rapidly by firing at a high rate, and thus 
must be well above threshold, A; >> B i  and (ii) the corresponding stationary state must be 
stable. In fact, it is easy to see that the naive spectrum is given by an equatioj analogous 
to equation (28). where the matrix Q(A) is substituted by a simpliied manix Q(AL Using 
equations (30), (15). (10) and.(29) one finds 

that is, the only A-dependence left is the one in the prefactor. Obviously most of the spectrum 
is lost in the reduction to the naive theory, and therefore also the stability of the stationary 
solutions cannot be discussed in the simpliied framework, as it requires knowledge of the 
full spectrum. Again the complex question of the stability will not be mated in this paper, 
but aspects of it are considered elsewhere [181. 

3.4. Absence of periodic solutions 

Consider, now, solutions with A&). B&). A&). B , ( I )  periodic with periods T ~ ,  T~ 
respectively, as driven by periodic external stimuli SE(<), SI(<). 

Take an arbitrary density dishibution pi (x0)  at a given time ro, continuous for 
0 5 xo < 1, vanishing outside this interval, normalized and satisfying the boundary condition 

s s  
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of equation (13) at f = f o ;  then theequations for &(x ,  f )  are solved by the simple evolution 

P p ( X ( X 0 ,  1). f )  = P~(Xo)(RF(fi))- '"- ' ' )  exP (l dt 'BF(f ' ) )  (32) 

where, apart from the exponential modulation, the density just banslates along the membrane 
potential axis according to 

x(xo. f )  = xo exp 
. 

until it reaches x = 1 at r = fl (xo),  and after that onwards: 

until it reaches again xo at time to + ( U F ( X O ,  fO))- l .  The reset factor 

ensures that the boundary condition is satisfied for f z to. 

with period z,$ only if ( U F ( X O ,  f o ) ) - l  = z& and if in addition 
The most general distribution pi (x0)  generates a density PF(X(XO, t ) .  f )  periodic in time 

I+$ 

&(I) = eXP j! df' BF(f') E R; is COIIStant. (36) 

A periodic pp(x(x0, I ) ,  I )  would in tum generate functions z g ( t )  periodic with the same 
periods, and this leads to conwadictions on two grounds: (i) the two frequencies, -ci and zf, 
would be mixed up back in the A E ( ~ ) ,  B&), A { ( ( ) ,  E l ( ( ) ;  (ii) even if x i  = rf = x s ,  this 
would imply l / rS  = UE = uf, violating the equations that UE and U, must satisfy, and that 
can be derived e.g. from equation (36). by Fourier expanding all the relevant quantities. 

The particular disttibution given by 

makes 

[ M r )  - B.401 P F ( ~ - ,  t )  = UF (38) 
a constant, and thus it wouid seem to produce constant fields zz(f), offering a way to 
avoid the above contradictions. Such a distribution does not, however, satisfy the boundary 
condition, because that would require that 

(39) 
Wexp [-Lo 

Adto )  - B A o )  A F ( f o )  
which is incompatible with the time course of A&), &(I) being determined, in its non 
constant components, solely by S&). 

Therefore, provided more than one class of cells is included, there exist no stationary or 
periodic responses, in the long time limit, to a periodic input the behaviour of the system 
is more complex, possibly quasiperiodic or chaotic. 

9+(vF)- '  ~ ~ ( f ) ]  
A&O) - BF(fO) - - V F  

A d f o  + (VF)- ' )  - B d f o  + ( ~ ~ 1 - 9  
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4. Dynamics with a&ptation 

Consider now the more general situation with 05 f 0. 
It is now convenient to write equation (7) as 

k ( t )  = A F ( t )  - X i ( f ) B F ( I )  + Y i ( r ) c F  - x i ( t ) y i ( I ) D F  

by introducing the additional notation 
D F = o ~ .  K CF = X F O F  

Instead of p F ( x ,  t), one should now consider a density I -CF(X,  y, f). If, however, the 
conditions imply that 

X ~ X ,  y ,  IO)  = U F ( Y .  r M x  - x o @ ) )  
.- 

(40) 

(4 1) 

initial 

then it is easy to see that x will remain linked to y throughout the dynamical evolution. 
With this restriction on the initial conditions (which will be kelevant anyway later on, in 
extending the formalism to the CGS$ NC + m), we,consider the evolution of the densities 

In other words, the dynamics of the single cell is followed by monitoring the potassium 
conductance rather than the membrane potential, which is now considered just for analytical 
convenience, a variable dependent on y i ( r )  (and t ) .  The relatiomhip between x and y is 
obtained by integrating 

between spikes. The additional restriction that 0 < x < 1, valid after a finite time, shall 
also be applied for simplicity, snaight away. 

In terms of U&. I ) ,  the dynamic system becomes 

with the boundary conditions 

[?F(z )  + 1 + r F $ F ( l ) ]  UF(?F( f )  + 1 , ~ r )  = [?F(f) +-CFK~F(t)]uFF(jjFF(t),~t) (45) 

where ~ F ( O  is the y-value at which cek  of class F emit a spike, depending on previous 
history, as defined implicitly, integrating equation (43). by 
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while the instantaneous period T F ( I )  satisfies 

The simpler form of the dynamic system stems from the simplicity of the y-dynamics, while 
the complex x-dynamics remains hidden in y ~ ( t ) .  

4.1. Stationary solutions 

If thc S(t)'s are constant in time, one has stationary solutions in the form 

where the firing rates of each class of cells are 

and 

me values of U: and U! can be. obtained by solving the equations numerically having chosen 
values for the parameters. 

The limiting hypersurface beyond which E and I tend to inlinity is given now by 

The S-dependent planes beyond which either cy;. = 0 or cy: = 0 are given, as for = 0, 
by the conditions A: = E: and A; = E:. The C and D terms are irrelevant, because 
y; N 0 most of the time when cell i fires at very low frequency. 

4.2. Transients 

The dynamics of the nansients around a stable stationary solution can be analyzed along 
the same lies as previously. The only difference is that among the transient quantities 
(denoted, again, by keeping the same symbols, i.e. U&, t )  -+ uE(y) +UF(Y, I ) )  one has 
to include now the fluctuation in the potassium conductance at spike emission, J ' F ( I ) .  In 
expanding to 6rst order in the transients the dynamic system equations (a), one finds that 
away from the singular points on the y-axis, the (submcted) densities follow the simple 
equations of motion 

a 
T:UF(.(Y, 1 )  = UF(YI 1) f Y-uF(Y. t )  (53) ay 
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while for the feedback fields one has 

The simplicity of equation (53). due to the simple relaxation dynamics of the potassium 
conductance, is compounded by the presence of discontinuities at y = ?;, 7: + j d ) ,  7: + 
1.j: + j , ( t )  + 1, and by the necessity to include among the deviations from the 
equilibrium densities, i.e. U,&, t ) ,  alongside a term of transient amplitude on the interval 
(7: + j&), + ? d e )  + I), a finite term -&y)sign(?F(t)) on the transient intervals 
(9:. j$ + jF(c)) and (7: + 1, j ~ :  +jF(e) + 1) at the boundaries. Taken together these three 
contributions satisfy 

Considering again transients with a time dependence exp(hr), one finds solutions for 
the deviations in the densities of the type 

on top of the finite. terms just mentioned. j F ( t )  can in turn be related to the transient rise 
rates A. B through equation (46) 

x {A; - B; + &CF - DF) 
-1 - e-T.(A+B'+'/':'-DF7:[A0, + CF( l  +?:)I} . (57) 

These equations yield a relation between the transient amplitudes of the fields & ( I ) .  
finally resulting, with the same derivations as above, into an equation for h formally identical 
to equation (27). but with Q'$) now defined as 
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It can be checked that Qg(A) reduces to the previous delinition of equation (26) as 
CF. DF -+ 0. 

4.3. The peculiar case of a homogeneous network of identical excitatory cells 

If alf cells are identical, excitatory and fully interconnected with synapses of uniform 
strength, and if the net receives uniform external stimuli constant in time, then-and only in 
this artificially simple case-it may go into a mode of periodic oscillations. In fact one can 
write down, in this particular case, long-time solutions of the dynamics corresponding to 
fully synchronized spiking by all the cells. One can then find the limiting conditions (phase 
boundaries, or instability lines) beyond which such synchronized solutions destabiie into 
staric solutions, or vice versa the limit beyond which static solutions destabilize and begin 
to synchronize. Note that there may exist different periodic solutions, e.g. corresponding to 
several groups comprising an qual number of cells, each firing synchronously at equally 
spaced intervals 1291, but it is likely that the fully synchronous solutions be the most robust 
of all these, and it may be convenient to consider them firSt. 

In studying a net of identical excitatory cells one may determine how the available long- 
term solutions of its dynamics vary with the parameters, e.g. by singling out as independent 
variables oE, measuring the coupling, and 3, proportional to the size of the potassium 
conductance (with a single cell class subscripts may be dropped). For oE above a given 
ofa, the firing rate. in the static, asynchronous solution goes to Mnity, invalidating the 
approximation of neglecting the absolute refractory period. 0:- can be easily found from 
equation (16) (by eliminating inhibitory t m s )  as the solution of 

The asynchronous solution, however, destabilizes already when the first k s i e n t  eigenvalue 
appears, with Re(A) > 0. IfIm(A) = 0, this wouldoccuratthetransitionline QE(0)-1 = 0, 
or in terms of the parameters of the static solution 

x {A: - B: + $(CF - DF) 

- e-r~(A+B~+l/T~)-D~d[[A~ + CF(I + $)I} = 1, 
-1 

(60) 

However, both the nature of the instability (and hence how it arises in Lspace) and whether it 
produces a flow towards a stable synchronous solution or towards something else, represent 
in geneml extremely complex issues, which may have very different answers in different 
parameter regimes. Therefore these issuedwill not be pursued here any further, but will be 
addressed in another paper 1181. 

5. Extensions to more interesting cases 

5.1. Variabiliry within classes 

A slightly more complex case, which may be considered next, is that of a network in which 
excitation and inhibition can still be described exactly by just two macroscopic fields, but 
there is now variability within each class of cells, both in their intrinsic parameters and in 
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the way they are affected by the macroscopic fields. In other words, the rise rates of the 
membrane potential for each cell can still be expressed in terms of the fields &?), but each 
cell is now characterized by its own set of 'coupling' parameters w;. One deals with such 
a case by innoducing o-dependent densities p ~ ( w ,  x, f )  such, that 

1 = / P F ( 4  = 1 dw [/dx PF(W, x, I ) ]  (61) 

if we take, for simplicity, the situation with no adaptation, oK = 0. The above methods can 
easily be extended to cover this case, and, for example, the static solutions are now given 
by the equations 

where the hing rates of each class of cells are 

5.2. More than two classes 

A more general and straightforward approach, however, is to consider directly the case 
in which there is a large number NC of different classes of cells, each having its own 
independent synaptic coupling with each other class. Some of the parameters characterising 
different classes may of c o m e  be equal, for example the synaptic time constants may be 
common to many pre- and post-synaptic pairs of classes. 

Again. it is easy to generalize the previous formulas. One should note that there are 
several possible static solutions, that correspond, in pmicular, b different combinations of 
classes of cells being quiescent in the long-time limit. Non-liring classes produce no fields, 
and therefore the corresponding equations drop out and are replaced by inequalities (ensuring 
that the membrane potentials for cells of those classes are kept below threshold), while the 
coupled system takes a different form with each combination of surviving equations. If N 
out of NC classes comprise cells that fire in a particular static solution, the solution itself, 
in the general case of a$ # 0, is given by equations (48), with the firing rates determined 
by the system of 2 x N equations 

and 

Here the rise rates stand fur 
N 
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Stable static solutions correspond to m c t o r s ,  and the spectrum of time constants 
characterising the transient behaviour converging to the auractor is given again by the 
single equation 

(67) 

where the matrix elements of Q are given again by equations (58). 
A particular case to which the abwe meament can be applied, is when the number 

of classes NC is not much larger than, or it is even equal to, the number of cells. In 
that case, the method is not exact (it would be only in the limit of very many cells per 
class), but may be regarded as a mean-field approximation, in which each cell is replaced 
by a continuous distribution of cells of equal characteristics and couplings, spead over 
different values of x (or y ) .  Note that this is nor equivalent to the approximation, discussed 
above, in which the discontinuous ~ f u r e  of the spiking dynamics is neglected in favour of 
a continuous description in terms of average rates. Here, every ingredient of the original 
integrate-and-fire dynamics is preserved, with its full dependence of the different time 
and coupling parameters. The present approximation is, rather, quivalent to assuming an 
effective indeterminacy in the establishment of initial conditions (namely, the value of the 
membrane potential) for each cell in the network; however, different evolution histones are 
not simply superimposed, because they interact with each other. 

5.3. Associative memory 

One type of network in which cells are grouped into a large number of classes (possibly as 
large as the number of cells) on the basis of the saengths of their mutual connections is an 
autoassociative memory. Consider for example the case of a network of NC interconnected 
excitatory cells, of identical characteristics, with couplings given by the mahix 

IQ(A) - &*‘I [ = o 

where k, 00 and 01 are given parameters, and the qy are normalized Ering rates assigned, 
independently for each p and i ,  from a common probability distribution Pq9 such that 
a = (q)? = (q’), (a is then a sparse coding parameter, see [30]). These connections 
endow the network with a set of auractor states correlated each with one of the p ‘stored 
patterns’ {$). One could ay to analyse the amactor structure emerging from the integrate- 
and-fire model. In this model, however, the resulting current-to-frequency transduction 
function characterizing single cells in the long-time limit is rather similar, as shown in 
figure 2, to a simple threshold-linear function; a similarity enhanced by the adaptation 
effect of the potassium conductance. One can expect, therefore, the attractor states to be 
close to those obtained with a static aeatment based on the use of threshold-hear units, as 
I have presented elsewhere [311. The new, dynamical, results that emerge from the present 
treatment, instead, are those concerning. the transients and their time constants, and these 
are the ones described in the following. 

The transient time constants are given by the the inverse of the values A which satisfy 

A = [ Q(A) - eAAf 1 I = O  (69) 

with Q(A) a N x N matrix of the form 
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which results from the assumptions that all cells (classes) have identical characteristics but 
for the couplings oXi. The form of q,(A) can be extracted from equation (58). N is the 
number of active cells (quiescent ones drop out of the transient equations as well) and it is 
convenient to set k = N c / N .  

The zeros of the determinant could be obtained by expanding the inverse of the 
determinant (for fixed A close but not equal to one of the critical values) into a Gaussian 
integral, evaluating it at the sadde point, and checking when it diverges as A varies. One 
has to keep in mind, however, that the location of the zeros will depend on the (quenched) 
assignment of patterns [ q r } .  In order to obtain a quenched average, based on the assumption 
that the extensive, self-averaging, quantity is In A, one uses the standard trick of considering 
n-replicas and then letting n + 0 

(71) 
1 2 

N n-o Nn 
f = --(lnA)n = l i  - [(A-nfl), - 11. 

A replica-symmetric evaluation of f is presented in the appendix. The result is 

where the order parameter ro is determined by the saddle p i n t  equation 

and where E = ( p  - 1)/N must satisfy Z e Z* (see the appendix). 
The zeros of the determinant correspond to the logarithmic singularities in equation (72). 

Note that there are N sets of potential singularities associated with the N conditions 
roq,(A) - $*' = 0, yielding the decay rates of the transient activity of each cell, plus 
p - 1 degenerate sets associated with the condition ETool/ro = 0, yielding the decay 
rates of transients correlations with patterns not being retrieved. The most interesting set 
of singularities, however, is the one associated with the transients in the correlation with 
the pattern being retrieved, and this has remained hidden in the U ( l / N )  corrections m 
equation (72). Going back to equation (86), one finds that this additional set of singularities 
is given by a vanishing argument of the logarithm in the last three lines of that equation, 
which reads 

in the replica-symmetric solution. This condition yields the A-values which are probably 
most interesting from the point of view of the time course of information processing. 

A simple case in which the calculation can be brought forward analytically, is that of a 
retrieval state in which all active cells lire at the same (normalized) rate 0 = 1 in the stored 
pattern, and also (neglecting fast and quenched sources of noise) receive the Same input, 
and hence fire at the same me, in the retrieved pattern, implying q i ( A )  = q ( A )  for all i. 
Then ro is given by 
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(the correct solution of the quadratic equation being determined by the requirement that, in 
the P -+ 0 limit, ro M 3. Note also that averaging over active cells only ( (q/u - 1)) = To 
(cf the appendix). Substituting for ro, one finds that the first two types of singularity both 
correspond to the conhtion q(A) = 0, that Z* = (1 & [e*A'/~olq(A)J1D)2, and that the 
decay times of the h'ansients in the overlap with the retrieved pattern are given by the 
equation, algebraically derived from equation (75) 

(77) ~ ( A ) ( ~ + T , ~ ~ ) I ~ ~ + ( T O O ~ - ~ ~ ) T ~ ~ ~ J - I [ O O + T O ( T O -  2 l ) o ~ l e ~ ~ ' = O .  

Finally, as a + 0, the condition giving the last set of A's reduces to 

q(A)(oo + T t o i )  -&*I = 0. (78) 

5.4. The spectrum with adaptution 

Adaptation has a marked effect on theX-spectrum, and in order to illushate it, it is convenient 
to use, rather than the equation for the network of excitatory and inhibitory cells, with its 
double sets of time scales, the formulas just derived for the associative memory net, where 
we have assumed all cells to share the same time parameters. Tnese formulas have very 
limited applicability, because of the several simpliticatory assumptions made. Thus, having 
neglected to include inhibitory cells that control the overall firing rate [31,28], for example, 
renders a discussion of the gross structure of the spectrum, and its implications on the 
stability of stationary solution, rather academic. On the other hand, these formulas, in their 
simplicity, serve to bring out the features implicit in the new form of the Q-matrix (the one 
including adaptation, equation (58)) and in panicular the emergence of a new set of very 
long transient time constant, which may be called the hypeq5ne structure of the spectrum. 

Figure 5(u) shows, for one particular numerical example, the zeros of the q(h) factor. 
These have k e n  related above to the transients in the overlap between the state of an 
autoassociative net and previously stored firing patterns not being retrieved. As in figure 4, 
there is a shing of poles on the imaginary axis at A = fi2xnu0, n # 0, a pole on the 
real axis at A = - l / r E ,  and a set of zeros (the fine smcture) approximately allieated 
with the string of poles in the Im(A) dimension, and with a negative real component of the 
same order (the inverse conductance decay time) as the pole on the real axis. In addition, 
however, one observes a new set of poles and correspondingly, a new set of zeros, both 
occurring with the same periodicity AA = i2nuo,  and this time with one of each on the real 
axis as well. The zeros have real part Re@) = -l/rK and correspond to the vanishing of 
the term in square brackets in the first line of equation (58). while the poles have real part 

and correspond to the vanishing of the denominator (ie. the last two lines) of equation (58). 
Such poles and zeros are superimposed at Re(A) = -I/@, and therefore cancel each 
other, in the absence of the potassium conductance, wK = 0 (as can be checked by sening 
C = D = 0), but decouple and get farther apart'as oK grows. As soon, then, as adaptation 
effect enter the game, of the type produced by the single (slow) potassium conductance 
considered here, a set of slow transients arise, including one nonilscillatory and an harmonic 
set of oscillatory modes. 

One may consider now an equation of the form 4(A)ZE - 1 = 0, which has been related 
above to the transients in the overlap between the state of an autoassociative net and the 
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one Bring pattem Wig reUieved. in the case of zero transmission delayt (.ZE denotes the 
renormalied coupling resulting from the replica calculation). As can be seen in figure 5(b), 
the subtraction of the constant term, while obviously leaving the poles fixed, also preserves 
the essential structure the spectrum. One notes that the imaginary paas of both sets of zero, 
of the fine and hyperline structure, are slightly reduced (preserving the basic periodicity), 
while the real parts are also reduced, and tend to approach the nearest pole. the faster the 
farther apart they are from the real axis. The single zero on the real axis, which was at 
h = -l/zK is now displaced, in the particular example in figure 5(b),  into the positive 
real axis, makiig the stationary state considered unstable to a very slow purely exponential 
decay. In the example of figure 5(c), the parameter mK is reduced to U5 of what it was in 
figure 5@). As a result of the reduced adaptation, the firing rate increases (and therefore 
the distance between the zeros in the imaginary dimension, roughly 2rruo, increases), and 
also the new set of poles is closw in the real dimension to the corresponding zeros of ¶he 
hypefine structure (onto which the poles would superimpose for oK = 0). Again, the zems 
of the fine structure s m  off near the real axis with a real part close to that of the pole at 
-l/tE, and tend to have a smaller (less negative) real part as their imaginary part increases. 
The single zero on the real axis remains. in this uarticular case. on the left (negative) side - . -  
of the origin, leaving . the solution stable to slow instabilities. 
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Figure 5. Fine and hyperfine stmmre of the spectnun, with adaptation eEe& included (a), 
(b) cK = 50 ms and uK = 125 Hz; (c)  uK = 5 Hz. Nolation as in figure 3, with the shaded 
and solid mwes N W ~ S  giving the zems of, rerpedively, the real and imaginary part of (a) q (A) 
and of (b). (c)  q(A))ijE - 1, with Z E  = 60 Hz Other voltage and coupling parameters as in 
figure 1 and figure 3 (excitatory cells) except for: (i) the inhibitory rafe is fixed at = 50 Hz 
(ii) the excitatoy coupling is set n posleriori at I/ue = 15 ms (v0/50 Hz). Stationary fiiing 
rates (a), (b) vg = 23.5 Hz and (c)  v i  = 43.4 Hz, reduced f m  vf = 92.1 Hz in the absence 
of adaptation. Io ( a )  the zems of the hprfioe stmmre have real pan -20 Hi = -l/rK. 

, 

t Having AI # 0 would alter the stability of the stationary solution and the gmss stmcme of the sped", but 
not ¶he h e  and hyperfine structure. 
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6. Implications for neocortical processing 

An aim of t h i s  paper is to suggest a particular level of neuronal modelling as both amenable 
to analytical exploration and relevant to a discussion of real neuronal dynamics in the cortex. 
An obvious set of issues to which the method seems applicable is temporal encoding. In 
this direction, all the work has still to be done, but one result produced here may serve as 
a reminder. Whereas several interesting resuits on the problem of synchronicity have been 
obtained in extremely simplified conditions [15, 16, 51, these may easily not survive in a 
more realistic dynamics of the type introduced here; moreover, just including inhiiitory 
alongside excitatory cells, or even a nonhomogeneous set of excitatoq cells, is enough to 
prevent any type of synchronous periodic solution, The problem, then, becomes, in any 
minimally realistic context, one of characterising chaotic behaviour in a computationally 
meaningful way and with a reasonable dynamics, a programme that is still in its infancy [321. 

In discussing transients towards stationary solutions, instead, therefore in situations in 
which it is a good approximation to consider those solutions as both relevant and stable, 
and external inputs as fixed in time after onset, the method already yields a way of relating 
the transient time scales to the biophysical parameters introduced in the. model. Fast time 
parameters, such as axonal conduction times and synaptic delays, may have an important 
effect on stability but, within a stable solution, only result in extremely rapid transients-the 
gross structure of the specr”. Conductance inactivation times have been shown to play the 
main role: those corresponding to synaptic conductances in determining the relatively fast 
transients of the fine stmcture, and that of the inbinsic (adapting) potassium conductance in 
determining the slow tr;lnsients of the hyperfine shucture. The very many other pamneters 
present are crucial in determining the stationary firing rate of the cells, but have only a 
marginal influence on the transients-e.g. in setting, through the firing rate, the frequencies 
of the oscillatory modes. 

In recent experiments in the inferotemporal cortex of primates 1101, the temporal course 
of single cells reponses to complex visual stimuli (faces) was analysed, in particular with 
regard to the information content of the responses. One of the results was that most of the 
information content present in the full temporal aain of responses was already expressed by 
the simple firing rate; further, most of the information in the firing rate could be exfracted 
even by computing it over very short (%-50 ms) time intervals after response onset. In 
suggesting that the response relevant to furlher stages of cortical processing is attained very 
rapidly, these results raise the issue of whether there is enough time for local cortical circuits 
operating through recurrent (as opposed to feedforward) connections, to intervene (as the 
stimulus anives locally) and affect the response. The analysis presented here. indicates 
that recurrent processing may indeed very rapidly affect the response, because part of 
the uansient modes, resulting from recurrent processing, ~IC those whose time scales are 
determined by the rather rapid (is: 5-10 ms) excitatory conductance inactivation timet. 
Adaptation effects instead, which here have been modelled with a single conductance, but 
which in reality result from a complex set of conductances with time scales extending over 
hundreds of milliseconds result in transients which seem to be too slow. The question then 
becomes that of understanding how the information carried by the neuronal responses reflects 
the time course of different modes: a question that can be addressed in a formal model, by 
extending the dynamics of firing rates into considering the dynamics of information. 

t A more canplete discussion of the impkCatiQnS of ihe results presented here. and of their needngly 
ccunterintuitive name. will be given elsewhere [19]. 
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Appendix 

In evaluating equation (71). one notes that the values of A. may be found after changing the 
vectors upon which Q operates 

6; + uli = &;(A.iZz.i (79) 

so that Q is nansformed into the symmetric mahix fii(A.))oijflj(X). f i i ( A . )  depends 
on the integrated inputs to unit i, through A;(r) and B;(r) ,  and hence on the quenched 
assignment of the [7$']. Considering however an amactor state correlated with a single 
pattem q',  we shall neglect the residual dependence on the other p - 1 patterns, and think 
of ,,@;(A.) as dependent only on q,!. Then, labelling y. 6,. . . the different replicas 

Substituting for )o;j and inserting the order parameters 

through &functions, one obtains 

Performing a quenched average (.)q over the distribution Po of stored patterns, leaving 
out one pattem correlated with the attractor state (labelled paaem l), the last exponent in 
the t h i i  l i e  is replaced by 
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where To = ((q2),, - (q):)/ (q): = (1 - a)/a 1311. Having introduced as a further order 
parameter the It x n matrix s of elements 

one may perform the Gaussian integrals over up. tp  for /L > 1, yielding 

At this point, one can do the Gaussian wr integrals, followed by the Gaussian integrals 
over uy,  U:, t y ,  r:. Rotating and rescPig variables i r Y 6  + ry6/2  one has 

in + (Try h(rq;(A) -eAAfl)) 

where Z = ( p -  1)/N (Z is used rather than a in order to keep in mind that N is the number 
of active cells (classes), not the total number) and (.) denotes averages over the N cells. 
Note that A is a complex quantity, defined in general by analytic continuation, and that a 
certain number of rotations of variables in the complex plane may be required to evaluate 
the integrals for a given A. Considering a replica-symmeuic solution 

ry" = ro s y y  =so 
s ~ 6  - 

-SI  ( V f 6 )  r ~ 6  - - rl 
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and taking the n + 0 limit leads to 

plus corrections of order 0(1/N). The saddle point equations for rl ,  SI imply rl =SI = 0 
for all Z below a critical value Z*, which in fact reveals that, in that a"-range, the replica 
treatment was redundant, as different replicas turn out to be uncorrelated. Eliminating SO as 
well leads to equation (72). where Z* is given by an analysis of the Jacobian as 

The meaning of a"' is stiU unclear. 
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