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Abstract. Within the theory that describes the hippocampus as a device for the on-line storage of complex
memories, the crucial autoassociative operations are ascribed mainly to the recurrent CA3 network. The CA3-
to-CAI connections may still be important, both in completing information retrieval and in re-expanding, with
minimal information loss, the highly compressed representation retrieved in CA3. To quantify these effects, I
have defined a suitably realistic formal model of the relevant circuitry, and evaluated its performance in the sense
of information theory. Analytical estimates, calculated with mean-field, replica and saddle-point techniques, of
the amount of information present in the model CAI output, reveal how such performance depends on different
parameters characterising these connections. In particular, nearly all the stored information can be preserved if the
model Schaffer collaterals are endowed with an optimal degree of Hebbian plasticity, matching that of the CA3
recurrent collaterals.
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Introduction

Several investigators have offered their own perspec-
tive on the idea that the crucial contribution of the

hippocampus is in memory (Marr, 1971; Eichenbaum
et aI., 1992; Gaffan, 1992; Kesner and Dakis, 1992;
McClelland et aI., 1992; Squire, 1992)-in contrast to
others who have emphasised a putative role in spatial
computations (O'Keefe, 1990; Zipser, 19~5; but see
Treves et al., 1992). In particular, at least one version
of the memory theory holds that the hippocampus acts
as a sort of intermediate, buffer store, where certain
types of memories (characterized in different species
as mainly spatial, configural, relational, declarative)
are initially formed, on-line, and from where they can
be, later, retrieved, and used for recall as well as for
consolidation of neocortical long-term memory.

From an abstract, information-theoretical point of
view, one can point at the most stringent requirements
that the biological machinery performing such a mem-
ory task would have to satisfy:

1. generate,on-line,newneuronalrepresentationsfor
memories that can be very complex (Le., contain

--- - ---

very many bits of specific information)
2. store these representations (again, on-line), even on

the basis of a single exposure
3. hold very many different representations simulta-

neously in storage
4. ensure that each one can be retrieved by a partial,

occasionally very small, cue
5. make the full retrieved information available back

in the neocortex

Most of these requirements-nos. 2, 3 and 4-can
be met by an autoassociative memory network; and
Rolls (1987, 1989) has suggested that the CA3 re-
gion, with its extensive network of recurrent collaterals,
would operate precisely as an autoassociator, utilizing
the cooperative mechanisms illustrated by several theo-
retical models (Hopfield, 1982; Kohonen, 1984). This
hypothesis obviously implies that the synapses on the
recurrent collaterals be endowed with some kind of

Hebbian plasticity.
We have been investigating the computational re-

quirements imposed by the role assigned to CA3 in
quantitative detail, using the mathematical analysis
of formal network models that incorporate what we
believe are necessary elements of biological realism

- - - - -- ------
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Fig.1. Schematic overview of hippocampal circuitry, including entorhinal cortex, the dentate gyrus (DG), the CA3 and CAt regions of the
hippocampus proper, and the subiculum. CA3 receives the perforant path (pp) connections from entorhinal cortex, the mossy fibers (mf)
projections from dentate granule cells, as well as recurrent collaterals (rc) from CA3 itself. CAI also receives direct inputs from entorhinal,
alongside the Schaffer collaterals from CA3. Cells projecting efferents from entorhinal cortex are from largely non-overlapping layers, as
indicated (D stands for deep).

(Treves and Rolls, 1991). This has led us to suggest
specific roles for additional components of hippocam-
pal circuitry (Treves and Rolls, 1992), with arguments
based on a purely computational quantitative analysis.
Thus, the perforant path connections to CA3 should
help satisfy requirement 4, by relaying undegraded to
the CA3 cells the cue that initiates retrieval of a given
representation. The mossy fibers instead, and with
them the whole dentate network, might be regarded as
a device for meeting requirement 1, by setting up new
information-rich representation in CA3 with minimal
interference from previously stored memories.

We have also put forward hypotheses concerning the
operation of networks downstream in the hippocam-
pal system, including the backprojections to neocortex
(Treves and Rolls, 1994). Here, the analysis will fo-
cus on the first component to follow the putative CA3
autoassociator: the Schaffer collateral connections to

CA 1. One may wonder what the role of this additional
stage of hippocampal processing might be, if indeed the
CA3 network accomplishes most of what is required
of the hippocampus as a whole. In fact, why should
any signal be further transduced through this other net-
work, where it might be expected to only degrade (lose
information) or, at best, pass through unaffected? True,
there is a direct perforant path projection to CA 1 that

is likely to be there for some good reason, but is it
only by considering this direct projection that we shall
be able to understand what CAI might actually con-
tribute?

We have proposed (Treves and Rolls, 1994) that the
Schaffer collaterals may serve two purposes, indepen-
dently of the fact that CAI cells eventually integrate
their inputs with those carried by the perforant path.
First, the Schaffer collaterals implement a heteroasso-
ciator, that helps to complete the retrieval of a stored
representation, to the extent that this task was left un-
finished by the CA3 autoassociator. Thus, they should
be expected to contribute, in certain conditions, a net
information gain rather than an information loss. Sec-
ond, they are also the first link in the chain back to
neocortex, which has to make sure that the information
retrieved from the buffer memory is not lost on the way
(what we denoted as requirement 5). This simple re-
quirement favours expanding the CA3 representation
onto a larger number of cells (as present in CA1), so
that each cell has to code for less, and its message is
therefore more robust to noise and degradation. It is
clear that the expansion is -useful only if it can be ac-
complished while preserving the overall quality of the
signal relayed (i.e. its information content distributed

over the network).
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Fig. 2. The components included in the formal model: inputs are provided by the CA3 region, where the recurrent collateral network is
considered to store a firing pattern {l7i}and retrieve an approximate version of it, {V;}; these patterns are multiplied by the matrix of synaptic
weights Jjj on the Schaffer collaterals, added noise and thesholded, resulting in the CAI firing patterns {~j} (during storage) and {Vj} (during
retrieval). The aim is to analyse how the organization and plasticity of the Schaffer connections affect the information {Vj} carries about {7]j}.

As a way of elucidating these constraints in a quan-
titative form, I propose to consider, as a basic index
of performance, the amount of information present in
the activity of CA1 cells. The calculation estimating
the information in the CA1 representation is what is
reported in this paper.

Methods

Model

The information content of a 'CA1' firing pattern has
been evaluated analytically using a formal model. The
model describes, in simplified form, only the Schaffer
collateral connections from the N pyramidal cells of
CA3 to the M pyramidal cells of CA 1, as in the scheme
of Fig. 2. It considers the effect of inhibitory interneu-
rons only insofar as they exert a general regulation of
pyramidal cells activity, and it neglects altogether the
weak (Amaral and Witter, 1989) CAlrecurrent collat-
eral system as well as other minor connections. More-
over, it does not include the direct perforant path to
CA1, in order to dissociate its contribution from the
effects that, as discussed in the Introduction, are to be
quantified here. Two distinct modes of operation of
the system are envisioned: storage and retrieval. Dur-
ing storage the synaptic efficacies on the Schaffer col-
laterals are modified in a Hebbian way reflecting the
conjunction of pre- and post-synaptic activity-but the
modification is not immediate and thus does not in-

fluence the current CA1 output. During retrieval, the

- - - -- - --

Schaffer collateral relay a pattern of activity retrieved
from CA3, and their synaptic efficacies, while not being
presently modified, reflect all previous storage events.
Four different patterns of neuronal firing are then con-
sidered (Table 1)

. {1]i}are the firing rates of each cell i of CA3, which
together codefor the informationto be stored, for
one particular memory, in the CA3 network. Sta-
tistically, the probability density of finding a given
firing pattern is taken to be a product, for each cell,
of a certain firing rate distribution

P({1]i})nd1]i =nP7j(1]i)d1]i (1)

This assumption means that each cell in CA3 is taken
to code for independent information, an idealized
version of the idea that by this stage most of the re-
dundancy present in earlier representations has been
removed.

. {Vi} are the firing rates in the pattern retrieved
from CA3, and they are taken to reproduce the {1]d
with some Gaussian distortion (noise), followed by

Table 1. The foiJr different firing patterns appearing in the analy-
sis. Each symbol denotes the firing rate of the cell indexed by the
subscript.

CA3 CAI

Storage
Retrieval

{1];}
{V; }

---- --
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rectification

Vi = [1]i + 8;]+

{(8i)2)= ai (2)

(the rectifying function [x]+ = x for x > 0, and
o otherwise, ensures that a firing rate is a positive
quantity). ao can be related to several effects, such
as interference due to the loading of other memory
patterns in CA3 (see below and Treves and Rolls,
1991). This and the following noise terms are all
taken to have zero means.

. {~j} are the firing rates produced in each cell j of
CA1, during the storage of the CA3 representa-
tion; they are determined by the matrix multipli-
cation of the pattern {1]i}with the synaptic weights
Jij-of zero mean, as explained below, and variance
aJ-followed by Gaussian distortion, (inhibition-
dependent) thresholding and rectification

/;) = [to +~CijJi~~i+ <Jr
((€f)2) = a;s

((1i~)2)= aJ (3)

The synaptic matrix is very sparse as each CAI cell
receives inputs from only Cj (say, 104)cells in CA3.
The averageof Cj acrosscells is denotedas C

Cij E {O;I}

(cij)N = Cj (C =(Cj)) (4)

. {Uj} are the firing rates produced in CAI by the
pattern{Vi}retrievedin CA3

Uj = [uo+~CiJi7V, +<fr
((€f)2)= a;~

((Ji7)2)= aJ (5)

Each weight of the synaptic matrix during retrieval
of a specific pattern,

Ji7 = COS(OIL)Ji~ + yl/2(OIL)H(1]i, ~j) + sin(OIL)JiJ

(6)
consists of

1. the original weight during storage, Ji7' damped
by a factor COS(OIL)'where 0 < OIL < 7r12

parametrizes the time elapsed between the stor-
age and retrieval of pattern /-L(/-Lis a shorthand

for the pattern quadruplet {1]i, Vi, ~j, Uj n.
2. the modification due to the storage of /-Litself, rep-

resentedbyaHebbianterm H (1]i,~j )-reflecting
the association of patterns {1]d and {~j}-also
taken to havezeromean, and normalizedso that

(7)

y measures the degree of plasticity, i.e. the mean
square contribution of the modification induced
by one pattern, over the overall variance, across
time, of the synaptic weight.

3. the superimposed modifications J N reflecting the
successive storage of new intervening patterns,
again normalized such that

(8)

The mean value of each synaptic weight has been taken
to be equal across synapses, and, since it would m,ulti-
ply the average over all input cells of the firing rates,
which is fairly constant, it has been collapsed with the
threshold term (Treves, 1990). Indeed, Eq. 1 implies
that fluctuations in those averaged CA3 rates are small,
of order I/JC, during storage, and Eq. 2 implies the
same for retrieval. Formulas aside, the approxima-
tion is likely to be valid when the mean firing levels
are strictly regulated by inhibition. The gain of the
threshold-linear transfer function (see Treves, 1990)
has been set to one by rescaling the weights. It is con-
venient also to set for the Hebbian term the specific
form

where the parameter h ensures the normalization given
in Eq. 7; similar forms for H would yield similar re-
sults. Note that the firing rates of the presynaptic CA3
cell i and of the postsynaptic CAI cell j are taken to
vary independently across memory patterns, up to very
small correlations, because of the extensive conver-
gence of the Schaffer collaterals; this implies that the
variance in the synaptic weights is just a sum of terms
from each memory pattern, and justifies the interpreta-
tion of 11y as the effective number of memory patterns
in storage.

The aim is to measure how much, on average, of the

information present in a given original pattern {1];}is
still present in the effective output of the system at the



time v is retrieved, i.e. in the pattern {U}}, that is, to
average 1 the mutual information

i({1]r}, {ui})=f0 d1]r f n dUi p({1]r}, {Ui})
I J

p({ 1]n, {Ui})

x In p({1]r})p({ Ui}) (10)

over the quenched variables Cij, Ji~, JiJ (quenched here
means independent of the specific distribution real-
ized in pattern v, which they are, as the connectivity
Cij is taken to be independent of all memory patterns,

whereas the synaptic strengths Ji~ and JiJ depend on
all other patterns but v, which has been singled out in
Eq. 6; for the origin of the term quenched see Mezard
et al., 1987).

The calculation yields the expression reported in the
Appendix, and which depends on a number of param-
eters, as explained in the following.

Parameters

A very important parameter included in the model is y,
which represents, as stated above, the degree of plastic-
ity of the Schaffer connections, expressed as the ratio
between the mean square change in synaptic strength
due to the storage of one memory pattern, and the over-
all variance in synaptic strength. If such variance is
entirely due to memory storage, one can say, inversely,
that the memory holds of the order of y -I patterns
at anyone time. This is only a rough measure, as in
fact patterns are not necessarily ever completely ef-
faced in the model, but rather their traces may be only
gradually overwritten by other intervening patterns, de-
pending on the chosen dependence of () on real time,
as parametrized by the factor cos«()). The role of y

Table 2. Meaning of the parameters affecting the amount of infor-
mation available in CAI, as evaluated here.

y degree of (Schaffer collaterals) synaptic plasticity
a sparseness of the patterns stored in CA3
ar sparseness of the patterns stored in CAI
C mean convergence of the Schaffer collaterals
N number of CA3 pyramidal cells
M number ofCAI pyramidal cells
UJ variance in the distribution of synaptic efficacies
U. noise level in CA3 (during retrieval)
uEs noise level in CAI (during storage)
UER noise level in CAI (during retrieval)
'0 mean non-specific contributions (thresholds) to
Uo the firing of CAI cells during storage and retrieval
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and () is discussed explicitly in the Results section,
while most other parameters are fixed once for all as
follows.

The evaluation has been carried out for an arbitrary

distribution PTf'For simplicity, to get numerical results
this is now given a binary form, in which a cell is firing
at a rate 1]*with probability a, and silent otherwise

PTf(1])= (1 - a)8(1])+ a8(1]- 1]*) (11)

where the firing rate of all CA3 active cells has been
set to 1]*,and a is a sparse coding parameter (in gen-
eral a = (1])2/(1]2),cf. Treves, 1990). An alternative
(ternary) form for PTfwill be briefly considered later.

U~is measured on the 1]*scale (Le., as a frequency),
and is chosen to account both for actual noise in re-

trieval from CA3 (which corresponds to the standard
deviation in the rates recorded during successive trials
of an already learned task, as e.g. in Rolls et aI., 1989;
fast noise in thermodynamics jargon), and for interfer-
ence (the so-called quenched noise) caused by memory
loading (which would be observable by comparing re-
sponses during and after one-shot learning, and which
most theoretical models would predict to grow with the
square root of the load; Treves, 1990).

The variance in the synaptic efficacies is set to
uJ = 1/C, which is consistent with the gain of the
threshold-linear transfer function having been set to 1,
as the variance in the CA3 firing rates contributes, in
the linear range, an equal variance to the rates in CA 1.
Note that this is purely a condition of internal consis-
tency in the formal model, that has to do with the nor-
malization adopted for synaptic weights and transfer
functions, and has no import on the results; a quan-
tity, instead, that would be in principle accessible to
experiments, is the ratio of standard deviation to mean
synaptic strength, and this quantity is not even defined
in the present model because the mean baseline strength
has been subtracted away.

Moreover, CA1 rates are sensitive to fast noise of
s.d. U€s,U€R,again measured in HZ2. The threshold
terms ~o,Uo, also measured as frequencies (given the
unit gain), are given negative values such as to produce
activity distributions in CA1 with a given sparseness
(e.g., roughly matching the sparseness of those in CA3,
or slightly more distributed; Barnes et aI., 1990).

Finally, C is set to 104(similar to the estimates avail-
able for the rat; Amaral et aI., 1990) and the ratio M I N
of CA1 to CA3 cells, which is higher than 1 in all
species studied (Seress, 1988), is here given the value
M IN = 2. The number of CA3 cells is itself irrelevant

- -- - - - -- ---



264 Treves

if one considers only the amount of information per
CA3 cell.

Results

I haveevaluatednumericallythe expressiongivingthe
amount of informationin the CA1 output, for several
choices of the parameters. Two representative cases are
reported here, that exemplify fairly different situations.
In both, the result is given as a function of the plasticity
y, and is expressed as a fraction (denoted as I) of the
total information present in the representation stored in
CA3. This maximal information, given the choice of a
binary probability distribution, is just

i(l7) = -a Ina - (l-a)ln(1-a) (12)

I have compared (i) (or, rather, the fraction of the
stored information that can be extracted, during re-
trieval, attheCAl stage, ICAI(y) = (i) / i (17»with two
relevant quantities. The first is the fraction of informa-
tion ICA3 = i (17,V) / i (17)already retrieved at the CA3
stage, as determined by the noise level in CA3. This al-
lows us to quantify any improvement (ICAI-ICA3) due
to the refining of the retrieval operation at the CA3-to-
CA1 stage. The second is the fraction of information3
ICAI(y = 0) containedin the CA1outputin the ab-
sence of plasticity in the Schaffer connections. It is in-
teresting that this can be a substantial fraction of i (17),
indicating that even fixed connections would produce
an output that reflects, to some extent, the information
retrieved in CA3. At the same time, the difference

ICAI(Y) - ICAI (0) quantifies the effect of plasticity on
the amount of information.

The possible effects of the peculiar one-layer ar-
rangement of pyramidal cells in the CA regions (in-
cluding CA1) have been studied by manipulating, in
the model, the pattern of convergence, given by the
distribution Cj of the number of CA3 cells projecting
to each cell j of CAl. In one case, Cl, intended to ap-
proximate the real situation, Cj = C for all j, whereas
a second hypotetical case C2has been designed to cor-
respond to a two-layer arrangement of principal cells,
with the two layers differing widely in the number of
synaptic contacts each cell in CA1 receives: Cj = C/2
for half the cells, C j = 3C /2 for the other half. 4.

The first parameter set chosen (Fig. 3) corresponds
to a very accurate retrieval operation carried out by
the CA3 net, which is imagined to operate well be-
low its memory loading capacity. The sparseness of

the {17;}representation is a = 0.1 and the noise level
is set at af = 0.04 x (17*)2. CA1 is taken to oper-
ate under more noisy conditions, and with more dis-
tributed representations, a2s = a2R = 0.2 x (17*)2,and€ €

~o = Uo = -0.117*, which results in a{ = 0.267.
Moreover, a model of plasticity is chosen in which
eachpatternJ is encodedwiththe samemean strength
onto synaptic efficacies, y «(h) =Yo, until it is can-
celled abruptly, at (3)..= n /2, by some active forgetting
mechanism; as for the specific pattern v under consid-
eration cos(8v) = 0.8, corresponding to more than 2/5
(~ 2arccos(0.8)/n) of the memory patterns already
in storage when storing v having been forgotten, and
substituted with new ones, by the time v is retrieved.

One sees from Fig. 3 that, while retrieval in CA3 is
good (ICA3 is close to 1) given the low noise level
in CA3 itself, in CA1 it is worse, i.e. ICAI (y)
is only around 3/4; further, it grows monotonically
with increasing plasticity. The solid curve, for the
convergence model CI, corresponding to unimodal
distribution of number of inputs per CA 1 cell, shows a
peculiar feature at around y = 0.0002. This feature is
a remnant of the phase transition, or abrupt failure in
retrieval performance, occurring in either feedback or
multilayer feedforward associative memories when the
number of patterns stored exceeds a critical value (see
e.g. Treves and Rolls, 1991). With these parameters the
critical value would apparently be around Pc = l/y =
5000 patterns. In our single-layer feedforward network
performance degrades only gradually (or, conversely,
improves only gradually as y grows), but still one de-
tects vestiges of the transition in a sensitive enough
indicator such as the information content. The dashed
curve, for model C2, is smoother, because the feature
occurs at different y values for the two classes of cells
(Pc is proportional to the convergence Cj) and is thus
spread over. Apart from such tiny details, differences
between the two models of the connectivity pattern, Cl
and C2,are minimal, of the order of 1%. Cl is slightly
superior for high plasticity but, contrary to my own
early findings (Treves and Rolls, 1993), this trend can
be reversed, e.g. at low plasticity (see also Fig. 4).

For y = 0 the information that survives in the CA1

output is less than half, for this choice of parameters.
On the other hand, Ic AI(y) would continue to grow
with y up to Y = 1 - which corresponds to a single
memory pattern and is thus outside the range mean-
ingful to this analysis. One can summarize Fig. 3
by saying that the CA3-to-CA1 connections act, with
these parameters, as a relay dissipating information.
The dissipation is contained if an elevated plasticity
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Fig. 3. The fraction of CA3 information preserved in CAl when retrieval in CA3 is very accurate, and the plasticity model assumes abrupt
forgetting and moderate memory loading. The solid curve is for the 'one layer' connectivity model (Cl), the dashed curve for the 'two layers'
one (C2). The result for nonmodifiable connections y = 0 is indicated at the left, and the dotted line stands for the fraction of information
retrieved in CA3.

level endows the connections with some memory abil-

ity, which serves to enhance, essentially, the signal-
to-noise ratio; however, the high noise levels in CA1
prevent it from ever attaining the retrieval performance
of CA3, where the noise level is (with the particular
arbitrary choice of parameters of Fig. 3) much lower.

The second parameter set is chosen to correspond to
probably more realistic conditions. a = 0.05 and the
noise level in CA3 is set at o} = 0.09 X (TJ*)2, which is
meant to include actual noise as well as interference
from extensive memory storage, of roughly equal
weights. The noise level in CA1, instead, is set to a
level similar to only one component (the actual noise)
of that CA3, a2s = a2R = 0.04 x (TJ*)2,and the thresh-€ €

olds ~o = Uo = -O.4TJ*,are chosen to result in a
sparseness, in CA1, a~ = 0.052, i.e. also the sparse-
ness is similar to the CA3 value.

The model of plasticity is chosen to correspond to
gradual decay of memory traces. Numbering differ-
ent memory patterns from the most recent backwards,
1, . . . , A, . . . , 00, one way to model gradual decay is
by setting cos(/h) = exp -AYo/2 (Nadal et al., 1986;
cf. Treves and Rolls, 1992) and y(B>..)= Yoexp -AYO.

that is, the strength of encoding for older memories

fades exponentially with the number of intervening
memories. Within this plasticity model, high plasticity
automatically implies rapid forgetting. Although all
memories leave their traces on indefinitely, the num-
ber of memories that at any moment in time have
traces of substantial strength is effectively of order
l/yo. Here I consider this plasticity model for the
Schaffer collaterals, and obviously I also assume it to
be valid within CA3, for the recurrent collaterals. In
fact, for an autoassociative network of the type sup-
posedly implemented in CA3, one could analyse the
retrieval capacity (Treves and Rolls, 1991). With the
same plasticity model yCA3(B).)= yiA3 exp -AyiA3
and the same parameters-including the sparseness-
as here, one would find (details to be published else-
where) that to allow retrieval of only the very most
recent patterns, yiA3 has to. be higher than a critical
value Yc ::::::: O.7C-I. Above this value, a higher plastic-
ity allows more of the last patterns to be retrieved, i.e. a
total of [l/yiA3] In[1.4CyiA3]. This number reaches
a maximum of precisely 1/yiA3 for 1/yocA3::::::: O.SC.

For even higher plasticity, the effect of rapid forgetting
dominates and the number of retrievable patterns de-
creases. Let us now turn to quantifying the effect of
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Fig. 4. The fraction of CA3 information preserved in CAI when the noise levels in CA3 and CAI are comparable. and the plasticity model
assumes gradual forgetting and nearly maximal memory loading. Notation as in Fig. 3.

exponential forgetting on the combined CA3 and CAl
model.

A similar behaviour to that of the isolated CA3 net-

work, with a performance maximum for an optimal
degree of plasticity, appears to characterise the model
CA3-to-CAl network when analysed in terms of infor-
mation content, as shown in Fig. 4. There, the plasticity
in CA3 has been chosen close to optimal, YoCA3~ 2/ C,
and the pattern v to be retrieved has been chosen such
that v = l/yiA3 ~ D.SC, i.e. close to the limits
of retrieval capacity by the CA3 network (C denotes
here both the mean convergence of recurrent collater-
als in CA3 and of Schaffer collaterals in CAl, taken

to be roughly equal). As Yo, (that is, yiAI) grows, one
spots, in the solid curve for model Cl, a slight feature
corresponding to the remnant of the phase transition.
Past this feature, the fraction of information retriev'-
able reaches a maximum (in both connectivity models
Cl and C2). For even higher plasticity, the exp -)..y~
forgetting term dominates, and performance, in terms
of information, degrades rapidly. Not surprisingly, the
optimaL pLasticity roughLy matches the pLasticity as-
sumed in the CA3 recurrent connections. The two-

layer model C2performs better than the one-layer one
CI, in this case (because of the way the two classes

of cells with different number of inputs are affected
by the forgetting term), but again by relatively small
amounts. It is interesting to note that, given the com-
parable noise levels set for CA3 and CAt, ICAI(y)
exceeds ICA3 within a certain plasticity range, i.e. one
can extract more information from CA 1cells than from

CA3 cells, indicating that in this case the contribution
of the Schaffer connections to memory retrieval more
than compensates for the dissipation in information
content they cause. One may generalise the results
exemplified in Fig. 4 by concluding that, at least for
some plasticity models that include forgetting effects,

. there is an optimal degree of plasticity that is close
to the degree of plasticity in the preceding autoasso-
ciator. Moreover,

. the feedforwardnetworkcan not only, if appropri-
ately designed, limit the loss of information retrieved
in the autoassociator, but also further improve the
quality of retrieval.

The behaviours exemplified in Figs. 3 and 4 are quite
general. At a quantitative level, the efficacy with which
plasticity in the Schaffer connections enhances signal-
to-noise, and thereby the information content in the
firing pattern, depends substantially on the reference
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levels set by ICA3 (how much information can be
retrieved already from CA3) and ICAI(0) (how much
information results in the CAI output in the absence
of plasticity). These levels depend in turn on the dif-
ferent parameters of the model. To get a feeling for
such relationships, Table 3 presents the values of ICA3
and ICAI(0) resulting from different choices of the set
of parameters. To simplify matters, only some of the
parameters have been varied independently of others.
The table refers to the one-layer connectivity model CI,
and shows the following quantitative effects. The first
line corresponds to Fig: 3. The second line shows that
increasing the noise affecting CA3 from the very low
level assumed in Fig. 3 up to the same level as in CA1,
almost halves both ICA3 and ICAI(0). The CAI repre-
sentation is still much more distributed than the CA3

one (a{ > a,,). In the third line, the CAI representa-
tion is made sparser by acting on the threshold, thereby
moving the operating regime of CA 1 cells deeper in
the subthreshold region. This reduces ICAI(0) as more
cells remain silent. In the fourth line, the ratio of CAI
cells to CA3 cells is reduced to 1.5, and this further
decreases ICAI(0) (which, let us remember, is the in-
formation extracted from the whole CAI population).
In the fifth line the noise levels in both CA3 and CAI

are lowered, taking values as in Fig. 4. This obviously
enhances ICA3, but it also enhances ICAI(0), despite
lowering the CAI sparseness a{ which would tend,
in itself, to degrade the information content in CAI
(cf. the third versus the second line). The sixth line
corresponds to Fig. 4, as also the sparseness in CA3
has been brought to a" = 0.05. This implies a lower
absolute value for i (17),but in relative terms the dif-
ferences with the line aboveare minor. In the seventh
line. the noise in CA3 has been decreased to model a
situation of low memory loading, and correspondingly

no quenched contribution to the noise. Information
ratios go up markedly.Finally,in the last line the case
is considered, the only instance in this analysis, of a
non-binarydistributionof firingrates for the memories
stored in CA3. In particularthe ternaryform

P,,(17)= (1 - 4a/3)8(1]) + a8(17- 1]*/2)

+ (a/3)8(1]- 317*/2) (13)

has been chosen (cf. the cases considered in Treves,
1990), that maintains the same first two moments and
the same sparseness as the binary form, and allows
isolating the effects of a non-binary (and in particular
multimodal) distribution of firing rates. These are very
relevant, as real distributions of firing rates in CA3,
however they may be defined and measured, are cer-
tainly far from binary. Table 3 shows that, while the
stored information I (17)grows (cf. with the sixth line),
the information content that can be retrieved goes down
both in CA3 and CAI (at y = 0), in fact not only rel-
ative to how much was stored (i(17)) but even in ab-
solute terms. This is a manifestation of the difficulty
with which a network of simple threshold-linear units
can discriminate among multiple firing levels in the in-
put units. It is consistent with (i) the observation that
the total information retrievable from an autoassociator

does not exceed the value attained when the stored pat-
terns are in binary form (Treves, 1990) and (ii) the fact
that even non-binary patterns storedjn a model CA3
net are estimated to convey not much more mutual in-
formation about their inputs than binary ones (Treves
and Rolls, 1992), the rest being just noise. For compar-
ison, the maximum value of the information in CA 1for. .

the non-binary form of encoding in CA3 has also been
evaluated. with the plasticity turned on and set to its
optimal level, yielding an information kAI (y) = 0.49

---

Table 3. The effect ofvarying different parameters on 1CA3and 1CAI(0). U. uls. UlR. o and Uoare expressed in units of 1/*,i (1/)in bits and
theotherquantitiesarepurenumbers.Boldfacevaluesarethosethatdifferfromtheonesin thelinejust above.The* denotesthe representation
storedas a ternarydistributionof rates.

M/N u2 u2 - u2 o = Uo a'l i(1/) 1CA3 aC ZCAI(0)lS - lR

2.0 0.04 0.20 -0.1 0.1 0.469N 0.97 0.267 0.49
2.0 0.20 0.20 -0.1 0.1 0.469N 0.51 0.267 0.28
2.0 0.20 0.20 -0.4 0.1 0.469N 0.51 0.138 0.24

. 1.5 0.20 0.20 -0.4 0.1 0.469N 0.51 0.138 0.20
2.0 0.09 0.04 -0.4 0.1 0.469N 0.79 0.082 0.51
2.0 0.09 0.04 -0.4 0.05 0.286N 0.77 0.052 0.47
2.0 0.04 0.04 -0.4 0.05 0.286N 0.97 0.052 0.60
2.0 0.09 0.04 -0.4 0.05* 0.407N 0.48 0.052 0.30
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to be compared with ICAI(Y) = 0.83 in the binary case
of Fig. 4.

Discussion

Level of Abstraction of the Mathematical Model

Can simplified network models produce meaningful
quantitative results? It is obvious that a reasonable an-
swer to this general question depends entirely on the
properties investigated. For example, network models
made up of units described by simple transfer functions
(which approximate some kind of neuronal steady rate
response to a steady current input) are of course in-
appropriate to study dynamical issues (Treves, 1992,
1993). Nevertheless, they may be useful in other con-
texts; possibly even when the notion of 'steady re-
sponse' to 'steady inputs' is intrinsically ill-defined, as
it appears to be when modelling complex-spike cells,
and in a region such as the hippocampus prone in some
species to temporal modulation (Bland, 1986). The
analysis presented here is based on the hypothesis,
which can be checked e.g. through extensive computer
simulation, that, in fact, basic information-theoretic

properties, as the ones studied here, characterizing the
network in its simplified abstract form, carryover to
more realistic descriptions. .

Accepting the quantitative validity of simplified for-
mal models is further complicated, in the case of the
hippocampus, by the precedent of the hippocampal the-
ory of the late David Marr (1971). As in his other
early papers, but much more so in the one on the hip-
pocampus, Marr originated, organized or summarized
many of the system-level ideas to which a majority
of current views subscribe. Yet the mathematical ap-

paratus on which he built his formal model-which
could have been thought to be his prime contribution-
was perforce crude and rudimentary. Both his model
neurons and his model synapses are represented as bi-
nary elements, the only ones that could be handled by
the semianalytic methods available at the time. His
'neurophysiological' predictions, based therefore on a
scheme at gross variance with the real structure, are
groundless at a quantitative level (Brown, 1990). Al-
though for curious historical reasons neural modelling
based on binary elements is still a cherished practice,
the advent of modern analytical techniques (mainly de-
rived from statistical physics; Amit, 1989) has maddt
possible to consider mathematical models considerably
closer to their neurobiological counterparts (Treves and

Rolls, 1991). The utility of such models has to be now
reevaluated.

Model Parameters and Experimental Quantities

Although there is admittedly a lot of scope for im-
provements, models of the type considered here are
distinctive in the way their parameters can be related
to experimentally observed quantities. In practice this
may require resolving some ambiguities, but in princi-
ple it is straightforward. Thus, the degree of plasticity
may be measurable, although a direct measure would
have to be both at the single synapse level, and inter-
leaved with behaviour in vivo, a combination which

is beyond present techniques. Note that this parame-
ter, which plays a crucial role in the present analysis,
and which emphasizes the obviously graded nature of
synaptic plasticity, does not even have a meaning in
binary models a la Marr. Likewise, the various noise
parameters have direct experimental correlates, once
an appropriate way of measuring firing rates is clar-
ified (in the sense of unmasking hidden correlates of
firing variability, that could otherwise be interpreted
as noise). Other parameters, such as the thresholds,
which summarize a variety of effects and have no im-
mediate correlate, can be given appropriate values in-
ferred indirectly from such measurable parameters as
the sparseness (Skaggs and McNaughton, 1992).

Quantitative Results and Experimental Quantities

Similar considerations apply to the output of the' anal-
ysis: in this case, essentially, the information values.
Information is a difficult quantity to extract from mam-
malian cell recordings (Optican et aI., 1991; Tovee et
aI., 1993; Treves and Panzeri, 1995), and special care
must be taken to define it correctly in terms of ade-
quate a priori conditions. Nevertheless, experimen-
tal estimates of the information content of neuronal

responses are starting to become available, even for
quite large populations of hippocampal cells recorded
simultaneously (Wilson and McNaughton, 1993). Es-
timates of the information, in bits per cell, that can be
deduced from these large scale recordings (e.g. roughly
0.05 bits for firing rates measured over 500 ms) are
broadly compatible, at least in order of magnitude,
with the observed sparseness and noise of the firing
patterns (quantitative comparisons will be published
separately). Much finer measurements will likely be
made in the near future, together with an elucidation
of how information values depend on factors, such as



aging, that modulate sparseness (Barnes et al., 1983,
1995; Mizumori et al. 1993) and plasticity (Barnes and
McNaughton, 1985). ConcuITent refinements of the
present formal model may enable us to account explic-
itly for factors not included here, such as the role of the
direct perforant path projection to CAls, more detailed
connectivity patterns (Amaral and Witter, 1989), and
so on. It is possible to envisage a situation, therefore, in
which the formal analysis will become, through the si-
multaneous tuning of the experimental techniques and
of the models, relevant in its full quantitative import.

System Level Overview

Already in the present situation, however, a quantita-
tive analysis is important, and that is because a qualiti-
tative feature-plasticity of the Schaffer connections-
produces what is only a quantitative effect-
essentially, enhancement of the signal-to-noise ratio in
memory retrieval. To dissect the phenomenon, a math-
ematically formalised model is needed6. The signal-to-
noise enhancement depends on the degree of plasticity.
When the plasticity model ('learning rule') that in-
corporates gradual forgetting is assumed, the model
explicitly indicates that there is an optimal degree of
associative plasticity of the Schaffer collaterals, Le. the
degree that matches that of the reCUITentcollaterals in
CA3 (as the case would presumably be if they shared
similar mechanisms). It is easy to see, however, that
even with more general plasticity models it is optimal
to have matching degrees of plasticity in CA3 and CA 1.
For example, in the simplest situation considered first
in this analysis, although it is true that the information
in one stored pattern increases monotonically with in-
creasing CAI plasticity, it is also true that if the plastic-
ity in CAI is higher than in CA3, not all of the patterns
retrievable from CA3 will be retrievable, or at least
benefit from the signal-to-noise enhancement, in CAl.

At the system level, the enhancement of the signal-
to-noise ratio at the CA3-to-CAI stage can, depending
on such conditions as the noise levels, result in either
a minimization of information loss (if the CAI repre-
sentation ends up containing less than the one retrieved
from CA3) or even an actual improvement, or refine-
ment, of the information retrieved by the CA3 autoas-
sociator. These appear to be two qualitatively different
outcomes, but in fact are only two different regimes
in the competition between signal and noise. Indepen-
dently of which of the two may happen to be the oper-
ating regime, the role of CA 1, formulated in this way,
seems to overlap greatly with that ascribed to CA3.
After all, we have ourselves (Treves and Rolls, 1991)

-----

Information Relayed by the Schaffer Collaterals 269

described the CA3 type of reCUITentcollateral autoas-
sociator as an information efficient device for content-

addressed memory retrieval (Hopfield, 1982). One
may wonder then, why add a further feedforward stage.

What is crucial to note, here, is the larger number of
pyramidal cells in CAI. Estimates of the ratio M / N
between the number of pyramidal cells in CA 1 and in
CA3 vary from 1.4 in rats (Amaral et aI., 1990) to 5.9
in humans (West and Gundersen, 1990). Assuming
the same information content in the whole representa-
tion retrieved from CAI as in the one from CA3, the

average information content per cell would be much
reduced in CAl. It is important to realize that even a
reduction of, say, a factor 2 is quite remarkable. If, for
example, CA3 cells coded information independently,
each by firing at one of 9 distinct, equiprobable rates
(which clearly they do not, but it is a conveniently visu-
alizable example), then a double number of CAI cells
could convey the same information each by firing at
one of just 3 different rates, making the CAI repre-
sentation very much more robust to various forms of
noise. This effect is a simple recoding by expansion,
but it may be precisely what is required in order to make
the hippocampal memory output ready to be backpro-
jected into the mere complex circuitry of the neocortex
(Treves and Rolls, 1994) and to be interfaced, already
in the subiculum and entorhinal cortex, with different
information channels.
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Appendix

Replica Evaluation

P({ryd, (Uj}) is written (simplifying the notation) as

P(ry, U) = P(U I ry)P(ry)

= Iv idV d~ P(U IV,~, ry)

x P(V I ry)P(~ I ry)P(ry) (14)

where the different probability densities implement the
model defined above.

--- --
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The (average) amount of information is evaluated
using the replica trick (Nadal and Parga, 1993) as

(i(17, U))c,JS,JN

= lim .!.
( 1 d17 dUP(17, U)

n-On

X
{[ P(17'~) ]

n _ [p(u)]n
} )

(15)
P(17 C,JS,JN

where one needs to introduce n + 1 replicas of the

variables Oi,lEf, lEf. Vi, ~j and, for the second term in
curly brackets only, 17;.

The calculationis a standard,if tedious,mean-field
exercise,'and leads to the expression

(i) =extr",j, { ~r(YA, wo,zo, Cj, Y) - ~ YAYA

+ N 1 DS1(F(SI, 0,17, JA, 0, 0)

x In FCr!,0, ~,YA, 0, 0», }
- extr - - -YB,YB,WB,WB,ZB,ZB

x { ~r(YB, WB, ZB, C}, y)

N
(

- 2
- -

)-- YBYB + WBWB+ZBZB2

+ N 1 Ds1Ds2(F(SI, S2, 17,YB, WB, ZB))T/

x In(F(s!, S2, ~,YB, WB, ZB)), } (16)

where taking the extremum means evaluating each of
the two terms, separately, at a saddle-point over the
variables indicated (and dividing by In 2 to yield a result
in bits). The notation is as follows. N is the number
of CA3 cells, whereas the sum over j is over M CAI
cells. F is given by

F(SI, S2, 17,Y, w, z)

{ [

17+0}(S+-W17)

]

1
= ifJ x-

(8) 1+ alY !1+ aly

[17+al(s+-w17)]2

[
-17

]
172

}
x exp + ifJ - exp-

2a1(1 + aly) a8 2al

x exp
[

17S-'- 1]22(1 + alz)
]

(17)
2a8

and has to be averaged over PT/(a quenched average in
the second line of Eq. 16, an annealed average in the
last line), and over the Gaussian variables of zero mean
and unit variance Sl, S2.

ifJ(x) =1:00 Ds
(18)

y, wand zare saddle-point parameters, and s+, L are
linear combinations of Sl, S2:

2

S:f:= L(=F1)(k-l)
k=l

x [,J (ji_Z)2+4w2'f( -l)k (ji-Z)](jiz-w2) -
[ji+H( _1)k,J (ji_Z)2+4w2],J (ji-Z)2+4w2 sk

(19)

(notice that in the second line of Eq. 16 one has s+ =
Sl;y;., s_ = 0).

r is effectivelyan entropytermfor the CAI activity
distribution,givenby

r(y, w, Z,Cj, y)

_
1

dSI dS2 (T'.)-l

(
1

)_
p;

exp -(Sl S2) ] S
2:rr det T'. 2 s2]

x [I: dUG(U)In i: dU'G(U')

+ 100 dUG(U)lnG(U)]
(20)

where

G(U)

=G(U; Sl, S2, Y, W, z, Cj, y)

x 1

27r(Tyj+2gjTwj+g;Tzj)

(U -UO+Sl +gjS2)2

X exp 2(Tyj+2gjTwj+g;Tzj)
(21)

(22)



and

Tyj = a-;R + a}Cj(yO- y)

Twj = a}Cj(wo - w) cos((j)

Tzj = a-;s + aJCj(zo - z) (23)

T'. = a2C. ( y WCOS(O»)J J J W cos(O) Z

are effective noise terms.

C. /
gj =h-Lxo(1])TJV Cy(O)C

(24)

y, W, Zare saddle-point parameters (conjugated to y, W
and z), and xO, yO,wo, ZOare corresponding single-
replica parameters fixed as

xO = 2-L (
(1]i - (1])TJ)Vi

)
=

(
(1] - (1])TJ)

N i (1])TJ (1])TJ

X [1]<P(!!...)+ ~ x exp_~ (!!...)
2

])a&,J2ii 2 a&
TJ

(25)

Notes

1. An average is sought, because no meaning could possibly be

assigned to a result specific to certain values of each Cjj, Jj~

and Jj7, and because extensive quantities like information are
expected anyway to coincide with their average.

2. Data on trial totrial variability in firing rates in CA3 and CA 1
are presently too scarce to allow a systematic analysis; but these
model parameters can be set to reproduce experimental data as
it becomes available.

3. This is given by a much simpler expression derivable from Eq. 16
for y = O.

4. This was conceived as an idealization. of the arrangement in
supragranular and infragranular layers of pyramidal cells in neo-
cortical areas; in order to check whether it affected significantly
the informational property considered here.

- - ----
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5. In very general terms, the direct perforant path input may allow
CAI to integrate the complete but compressed representation
retrieved from the CA3 memory, with the partial but information-
richer representation, available in entorhinal cortex, of only those
elements of the memory that served as the cue. It has even been
proposed (Levy, 1989) that the two representation may be time-
shifted, so that information can be associated together across
time.

6. The fact that the information estimate is obtained analytically (as
allowed by the relative abstractedness of the model) permits us
to determine directly the effect of varying several model param-
eters. The insight gained through an analytical procedure cannot
be matched by that affordable with the computer simulation of
more realistic model systems.
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