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Abstract. At the transition from early reptilian ancestors to primordial mammals, the areas of sensory cortex
that process topographic modalities acquire the laminar structure of isocortex. A prominent step in lamination is
granulation, whereby the formerly unique principal layer of pyramidal cells is split by the insertion of a new layer
of excitatory, but intrinsic, granule cells, layer IV. I consider the hypothesis that granulation, and the differentiation
between supra- and infra-granular pyramidal layers, may be advantageous to support fine topography in their
sensory maps. Fine topography implies a generic distinction between “where” information, explicitly mapped on the
cortical sheet, and “what” information, represented in a distributed fashion as a distinct firing pattern across neurons.
These patterns can be stored on recurrent collaterals in the cortex, and such memory can help substantially in the
analysis of current sensory input. The simulation of a simplified network model demonstrates that a non-laminated
patch of cortex must compromise between transmitting “where” information or retrieving “what” information.
The simulation of a modified model including differentiation of a granular layer shows a modest but significant
quantitative advantage, expressed as a less severe trade-off between “what” and “where”. The further connectivity
differentiation between infra-granular and supra-granular pyramidal layers is shown to match the mix of “what”
and “where” information optimal for their respective target structures.

Keywords: cortical layers, mammals, isocortex, neocortex, cortical organization, localization, attractor dynamics,
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Unlike the cerebral cortex of reptiles and birds, the
isocortex of mammals acquires during development a
characteristic laminar structure that, in its basic traits,
is common to different cortical areas and to different
species (Ulinski, 1990; Rockel et al., 1980). Salient
among these basic traits, especially in primary sen-
sory cortices, is a granulation: the differentiation of
a layer of granule cells sandwiched between two lay-
ers of pyramidal cells. The functional significance of
this major qualitative step in evolution, which likely
appeared at the transition from reptiles to mammals
and was retained ever since, remains mysterious. Neu-
roscientists have speculated about it for a long time

(Creutzfeldt, 1977; Szentagothai, 1978; Allman, 1990;
see also Super and Uylings, 2001), and recently com-
putational modellers have been trying to address the is-
sue with their methods (Grossberg, 1999). Common to
most proposals, however, is the hope that the new struc-
ture might be explained qualitatively, in terms of dis-
tinct functions; for example, opponent inhibition as im-
plemented by layer IV in primary visual cortex (Kayser
and Miller, 2002). I explore here the more modest pos-
sibility that some basic traits of lamination may be there
merely to produce quantitative advantages (Carroll,
1997) in carrying out certain information processing
operations. Such a quantitative approach has turned out
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to be useful in understanding another qualitative step
in the evolution of mammalian brains, the insertion of
the Dentate Gyrus at the front end of the hippocampal
loop (Treves and Rolls, 1992; see Treves and Samengo,
2002), generating predictions in agreement with recent
findings (Lassalle et al., 2000).

I focus here on the granulation of sensory cortex in
early mammals, and on the differentiation between the
connectivity of supra- and infra-granular layers, leav-
ing aside the issue of whether the hypothesis I consider
may account for cortical lamination in general. It has
long been hypothesized that isocortical lamination ap-
peared together with fine topography in cortical sen-
sory maps, pointing at a close relationship between the
two phenomena (Allman, 1990). In early mammals,
sensory cortex was likely comprised of just one topo-
graphic area for each of the somatosensory, visual and
auditory modalities (Diamond and Hall, 1969; Rowe,
1990). Each sensory map thus received its inputs di-
rectly from a corresponding portion of the thalamus,
as opposed to the network of cortico-cortical connec-
tions which has been greatly expanded (Abeles, 1991;
Braitenberg and Schuez, 1991) by the evolution of mul-
tiple, hierarchically organized cortical areas in each
sensory system (Kaas 1993; Krubitzer, 1995). In the
thalamus, a distinction has been drawn (Jones, 1998)
between its matrix and core nuclei. The matrix, the
originally prevalent system, projects diffusely to the
upper cortical layers; while the core nuclei, which spe-
cialize and become dominant in more elaborate species
(Erickson et al., 1967), project with topographic pre-
cision to layer IV, although their axons contact, there,
also the dendrites of pyramidal cells whose somata lie
in the upper and deep layers.

The crucial aspect of fine topography in sensory cor-
tices is the precise correspondence between the location
of a cortical neuron and the location, on the array of
sensory receptors, where a stimulus can best activate
that neuron. Some of the parameters characterizing a
stimulus, those reflected in the position of the recep-
tors it activates, are therefore represented continuously
on the cortical sheet. I define them as providing posi-
tional information. Other parameters, which contribute
to identify the stimulus, are not explicitly mapped on
the cortex. For example, the exact nature of a tactile
stimulus at a fixed spot on the skin, whether it is punc-
tuate or transient or vibrating, and to what extent, are
reflected in the exact pattern of activated receptors, and
of activated neurons in the cortex, but not directly in the
position on the cortical sheet. I define these parameters

as providing identity information. More elaborate cor-
tices, like the primary visual cortex of primates, include
complications due to the attempt to map additional pa-
rameters on the sheet, like ocular dominance or orien-
tation, in addition to position on the retina (Bosking
et al., 2002). This leads to the formation of so-called
columns, or wrapped dimensions, and to the differen-
tiation of layer IV in multiple sub-layers. They should
be regarded as specializations, which likely came much
after the basic cortical lamination scheme had been laid
out, and will not be considered here.

The sensory cortices of early mammals therefore re-
ceived from the thalamus, and had to analyze, informa-
tion about sensory stimuli of two basic kinds: positional
or “where” information, Ip, and identity or “what” in-
formation, Ii . Although I refer to Ip also as “where”
information, I stress that the shorthand means “where
on the receptor array”, not “where in the outside world”:
the cochlea exemplifies the non-equivalence of the two
meanings (Zatorre et al., 2002). These two kinds of in-
formation differ also in the extent to which cortex can
contribute to the analysis of the stimulus. Positional
information is already represented explicitly on the re-
ceptor array, and then in the thalamus, and each relay
stage can only degrade it. At best, the cortex can try to
maintain the spatial resolution with which the position
of a stimulus is specified by the activation of thalamic
neurons: if these code it inaccurately, there is no way
the cortex can reconstruct it any better using a priori
knowledge, because any other position would be just
as plausible. The identity of a stimulus, however, may
be coded inaccurately by the thalamus, with consid-
erable noise, occlusion and variability, and the cortex
can reconstruct it from such partial information. This
is made possible by the storage of previous sensory
events in terms of distributed efficacy modifications
in synaptic systems, in particular on the recurrent col-
laterals connecting pyramidal cells in sensory cortex.
Neural network models of autoassociative memories
(Marr, 1971; Hopfield, 1982) have demonstrated how
simple “Hebbian” rules modelling associative synaptic
plasticity can induce weight changes that lead to the
formation of dynamical attractors (Amit, 1995). Once
an attractor has been formed, a partial cue correspond-
ing e.g. to a noisy or occluded version of a stimulus can
take the recurrent network within its basin of attraction,
and hence lead to a pattern of activation of cortical neu-
rons, which represents the stored identity of the original
stimulus. Thus by exploiting in-homogeneities in the
input statistics—some patterns of activity, those that
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have been stored, are more “plausible” than others—
the cortex can reconstruct the identity of stimuli, over
and beyond the partial information provided by the tha-
lamus. This analysis of current sensory experience in
the light of previous experience is hypothesized here to
be the generic function of the cortex, which thus blends
perception with memory (Whitfield, 1979). Specialized
to the non-topographic olfactory sense, this function
may not require new cortical machinery to be carried
out efficiently (Haberly, 1990). I explore here the possi-
bility that a novel circuitry is instead advantageous, but
only quantitatively, when the generic function is spe-
cialized to topographic sensory systems, which have to
relay both where and what information, Ip and Ii .

Methods

The Simulated Model of an Isocortical Patch

A patch of cortex is modelled as a wafer of 3 arrays,
each with N × N units. The 3 arrays are depicted as
superimposed on each other, in Fig. 1, merely for visual
convenience: they could well be imagined interspersed
in the same layer, as my simulation does not address the
vertical position of each cortical layer, but only their
properties, and their being in spatial register with each
other. The vertical arrangement is under genetic control
(Bar and Goffinet, 2000), and to account for it is be-
yond the scope of this paper. Each unit, in all 3 arrays,

Figure 1. Scheme of the model patch. Parameters used in most of
the simulations reported: N ×N = 20×20, R = 2, Src = 8, Sff = 2–
8, Cff = 30, Crc = 150, M = 12, Niter = 10. Neural representations
are constrained to have sparsity a = 0.3 (Rolls and Treves, 1998) in
each layer.

receives Cff feedforward connections from a further ar-
ray of N × N “thalamic” units, and Crc recurrent con-
nections from other units in the patch. Both sets of con-
nections are assigned to each receiving unit at random,
with a Gaussian probability in register with the unit
itself, and of width Sff and Src, respectively. Periodic
boundary conditions are used, to limit finite size effects,
so the patch is in fact a torus. To model, initially, a uni-
form, non-laminated patch, the 3 arrays are identical in
properties and connectivity, so the Crc recurrent con-
nections each unit receives are drawn at random from
all arrays. To model a laminated patch, later, different
properties and connectivity will be introduced among
the arrays, but keeping the same number of units and
connections, to provide for a correct comparison of per-
formance. The 3 arrays will then model supra-granular,
granular and infra-granular layers of the isocortex.

A local pattern of activation is applied to the thalamic
units, fed forward to the cortical patch and circulated
for Niter time steps along the recurrent connections, and
then the activity of some of the units in the patch is read
out. To separate out “what” and “where” information,
the input activation is generated as the product of one
of a set of M predetermined global patterns, covering
the entire N × N input array, by a local focus of acti-
vation, defined as a Gaussian tuning function of width
R, centered at any one of the N 2 units. The network
operates in successive training and testing phases. In
a training phase, each of the possible M × N × N ac-
tivations is applied, in random sequence, to the input
array; activity is circulated in the output arrays, and
the resulting activation values are used to modify con-
nections weights according to a model associative rule.
In a testing phase, input activations are the product of
a focus, as for training, by a partial cue, obtained by
setting a fraction of the thalamic units at their activa-
tion in a pattern, and the rest at a random value, drawn
from the same general distribution used to generate the
patterns. The activity of a population of output units
is then fed into a decoding algorithm—external to the
cortical network—that attempts to predict the actual
focus (its center, p) and, independently, the pattern i
used to derive the partial cue. Ii is extracted from the
frequency table P(i , i ′) reporting how many times the
cue belonged to pattern i = 1, . . . , M but was decoded
as pattern i ′:

Ii =
∑

i,i ′
P(i, i ′) log2 [P(i, i ′)/P(i)P(i ′)]

and a similar formula is used for Ip.
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The exact “learning rule” used to modify connection
weights was found not to affect results substantially.
Those reported here were obtained with the rule

�wi j ∝ rpost
j • (rpre

i − 〈rpre〉)

applied, at each presentation of each training phase,
to weight wi j . Weights are originally set at a constant
value (normalized so that the total strength of afferents
equals that of recurrent collaterals), to which is added a
random component of similar mean square amplitude,
but asymmetrical, to generate an approximately expo-
nential distribution of initial weights onto each unit.
r denotes the firing rates of the pre- and postsynap-
tic units, and < · · ·> an average over the correspond-
ing array. In all the simulations shown, only recurrent
weights were modified during training, although mak-
ing feedforward weights modify as well did not affect
substantially the results. To check that the sequential
presentation of each local pattern during training was
not a crucial factor, I have also presented random com-
binations of 4 local patterns simultaneously, thereby
reducing training time by a factor of 4. Results were
unchanged.

Among the several parameters that determine the
performance of the network, I set R << Src, and con-
centrate on Sff, as it varies from Sff ≈ R up to Sff ≈ Src.
It is intuitive that if the feedforward connections are fo-
cused, Sff ≈ R, “where” information can be substan-
tially preserved, but the cortical patch is activated over a
limited, almost point-like extent, and it may fail to use
efficiently its recurrent collaterals to retrieve “what”
information. If on the other hand Sff ≈ Src, the recur-
rent collaterals can better use their attractor dynamics,
leading to higher Ii values, the spread of activity from
thalamus to cortex means degrading Ip.

Differentiation of a Granular Layer

I have explored several modifications of the “null hy-
pothesis” uniform model above, to try to find some that
could result in a combination of Ip and Ii beyond the
limit of the uniform model, exemplified in Fig. 2. A
search of this kind cannot be exhaustive, of course, so
I have tried in particular modifications that represent
rough models of a granulated patch of cortex. Thus, all
changes to the uniform model, at this stage, were de-
signed to model solely the emergence of the granular
layer, and not any further aspect of a fully laminated
cortex. The values of Ip and Ii obtained with several
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Figure 2. The combined Ii and Ip values obtained in simulations
of the uniform model. The same general curve is obtained with other
values for M , and using partial cues of different size. In this and the
next figures, stimuli determined the firing of 40% of the thalamic
units, while the remaining 60% had random activity. Nearly asymp-
totic values are reached after just 3 training phases. Error bars are
calculated as the s.d. of the mean of 10 independent runs.
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Figure 3. Ii and Ip values obtained, after 3 training epochs, with
the uniform model, and with 4 different parameter choices for the
granulated model. Note that the latter is not yet asymptotic after
3 epochs. One of the values decoded from the granular layer (circles)
falls outside the graph, at Ip = 6.66, Ii = 0.51.

different simulations, all sharing the same three mod-
ifications, but differing in the values of some parame-
ters, are reported in Fig. 3. For all such values of the
parameters, the combined information values alleviate
the conflict affecting the uniform model. Of course,
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other parameter values can be found, that worsen the
conflict. It must be stressed, though, that none of these
three modifications alone, or in combination with just
one of the other two, suffices to cross the boundary. All
three together are required, at least in my experience.
The three modifications are:

(1) The thalamic afferents to the granular layer are
focused, while those to the two pyramidal layers
(still present, and still the same number, per unit)
are diffuse. In the simulations shown, with N = 20,
Sff(IV) = R = 2, while Sff(III) = Sff(V) = 8. The
reduced spread of inputs to layer IV is intended to
model the restricted dendritic arborization of spiny
stellate cells, rather than selectivity in the thalamic
axons themselves.

(2) The recurrent collateral system of the granular
units is severely restricted. In particular, in the sim-
ulations reported here, the collaterals originating
from layer IV units (and arriving at any layer) are
focused (Src(IV) = 2–3, while Src(III) = Src(V) =
8 (Bosking et al., 1997)) and non-modifiable by
training. Those arriving at layer IV units are
fewer in number (Crc(IV) = 60 while Crc(III) =
Crc(V) = 150), thus in fact decreasing the total
number of synapses in the laminated model with
respect to the uniform one.

(3) Model layer IV units are suppressed during train-
ing, and follow a non-adapting dynamics. This is
implemented in the simulations by making their
effect on postsynaptic units, whatever their layer,
scale up linearly with iteration cycle (solely in the
retrieval mode, when testing the system). Thus,
compared to the model pyramidal units, whose fir-
ing rate would adapt over the first few interspike
intervals, in reality (but is kept in constant ratio
to the input activation, in the simulations), the fir-
ing rate of granule units, to model lack of adap-
tation, is taken to actually increase in time for a
given input activation. This could also be taken
to model non-depressing short-term plasticity at
synapses originating from granule cells, an obser-
vation I owe to Prof. Haim Sompolinsky. Note that
experimental evidence on either aspect is still in-
conclusive, and the dynamics implemented in the
model has to be regarded as an assumption. Lately
non-adapting firing has been attributed to granule
cells in the hippocampus (Podlogar et al., 2001),
while earlier reports of high release probability at
synapses from spiny stellate cells (Feldmeyer et al.,

1999; Tarczy-Hornoch et al., 1999), indicative of
depressing behavior, are still controversial.

Differentiating Infra- from Supra-Granular
Connections

In addition to the difference in extrinsic projections, the
intrinsic connectivity of supra- and infragranular lay-
ers also differs, although the exact pattern has been ex-
plored quantitatively only in some special cases (Nicoll
and Blakemore, 1993). A useful summary of many ill-
determined details is provided by the “canonical” cor-
tical circuit model of Douglas and Martin (Douglas
et al., 1989), which describes activity as propagating
first to the supragranular and then to the infragranular
layers, while being regulated by inhibitory feedback.
In fact, while thalamic projections reach the dendrites
of units in all three main layers, the subsequent pref-
erential synaptic flow is IV → III → V (Lubke et al.,
2000). I have made an even cruder model of such flow
by removing, in a second version of the laminated
model, all direct projections from layer IV to layer V,
and replacing them with an equal number of projections
from layer III to layer V. All other parameters remain
as in the first laminated model. With this further mod-
ification, layer III becomes the main source of recur-
rent collaterals (Nicoll and Blakemore, 1993; Yoshioka
et al., 1992), which are spread out and synapse onto
both supra- and infra-granular units and also, to a lesser
degree, layer IV units.

Scaling with the Size of the Network

In addition to the simulations with N = 20, reported
so far, I have conducted less exhaustive simulations
with other network sizes. In particular, to explore the
effects of scaling, I have run somewhat smaller nets
(N = 15, for a total of 225 × 3 units in the patch), and
somewhat larger nets (N = 24, for a total of 576 × 3
units). The other “length” parameters were scaled lin-
early, i.e. they were given values, in the first case, R =
Sff(min) = Src(min) = 1.5, Src(max) = Sff(max) = 6,
and in the second case R = Sff(min) = Src(min) = 2.4,
Src(max) = Sff(max) = 9.6. The number of connec-
tions per unit, and the number of patterns used, were
instead scaled roughly in proportion to the number
of units, i.e. M = 7, Cff = 17, Crc = 85 with the
smaller nets, and M = 18, Cff = 45, Crc = 225
with the larger ones. CPU times scaled approximately
as 0.1:1:5, making the N = 24 simulations about the



276 Treves

largest that could be run in practice, with the required
statistics.

Results

Non-Laminated Model

Preserving accurate coding of position conflicts with
the analysis of stimulus identity. The conflict between
Ip and Ii is depicted in Fig. 2, which reports their joint
values extracted from simulations, as a function of the
spread of the afferents, and of the training phase. What
is decoded is the activity of all units in the upper array
of the patch. Since the patch is not differentiated the
other two arrays provide statistically identical informa-
tion. Further, since information of both the what and
where kinds is extracted from a number of units already
well in the saturation regime (Treves, 2001), even de-
coding all units in all 3 arrays at the same time, or only,
say, half of the units in any single array, does not alter
the numbers of Fig. 2 significantly. Before any train-
ing occurs, little “what” information can be retrieved;
after training (which with these parameters is already
asymptotic with 3 epochs) Ii is monotonically increas-
ing with Sff. Ip, instead, decreases with Sff, and as a
result one can vary Sff to select a compromise between
what and where information, but not optimize both si-
multaneously. This conflict between what and where
persists whatever the choice of all the other parameters
of the network, although of course the exact position
of the Ip − Ii limiting boundary varies accordingly.

Differentiation of a Granular Layer

It is possible to go beyond the boundary represented
in Fig. 2. The information values reported in Fig. 3
with triangles are decoded from the supragranular layer
(layer III) in the granulated model. Decoding the activ-
ity of layer V, still at this stage statistically identical to
layer III, gives the same results. Different values (the
circles, with the same parameters as for the layer III tri-
angles) are instead obtained by decoding the activity of
layer IV, of course much more biased towards high Ip

and low Ii , but still beyond the original constraint. De-
coding the activity of all layers simultaneously yields
somewhat intermediate values (not shown).

The three modifications, combined, thus produce a
slight quantitative advantage in the joint Ip and Ii val-
ues that can be read off pyramidal cell activity. The
advantage is small, but the model cortical patch used

is also tiny (N × N = 20 × 20), and the expectation
is that the difference between uniform and laminated
patches would scale up, as the size of the patch reaches
realistic values. This issue is considered further below.

Can we understand the advantage brought about by
lamination? The modifications required in the connec-
tivity of layer IV are intuitive: they make granule units
more focused in their activation, in register with the
thalamic focus, while allowing the pyramidal units, that
receive diffuse feedforward connections, to make full
use of the recurrent collaterals. What is less intuitive
is the requirement for non-adapting dynamics in the
granule layer. It turns out that without this modification
in the dynamics, the laminated network essentially
averages linearly between the performances of uniform
networks with focused and with diffuse connectivity,
without improving at all on a case with, say, interme-
diate spread parameters for the connections. This is
because the focusing of the activation and the retrieval
of the correct identity interfere with each other, if car-
ried out simultaneously, even if the main responsibility
for each task is assigned to a different layer. Modifying
the dynamics of the model granules, instead, enables
the recurrent collaterals of the pyramidal layers to
first better identify the attractor, i.e. the stored global
pattern, to which the partial cue “belongs”, and to start
the dynamical convergence towards the bottom of the
corresponding basin of attraction (Amit, 1989). Only
later on, once this process is—in most cases—safely
underway, the granules make their focusing effect
felt by the pyramidal units. The focusing action, by
being effectively delayed after the critical choice of
the attractor, interferes with it less—hence, the non-
linear advantage of the laminated model. It should
be stressed that layer IV units are suppressed during
training, enabling the attractor structure to be stored on
the recurrent synapse without the additional constraint
of a more limited spatial focus.

Differentiating Infra- from Supra-Granular
Connections

Why does isocortex have pyramidal layers both above
and below the granule layer? In the granulated model
considered above, the supragranular and infragranular
layers are still identical in all their properties, and ex-
actly the same mix of Ip and Ii can be read off the activ-
ity of both. In the real cortex, however, the supragranu-
lar and infragranular layers differ in several ways. One
difference which likely goes back hundreds of millions
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of years is in their efferent projections. The supragranu-
lar layers (denoted here as “layer III”, without any com-
mitment about the why, how and when of the further
differentiation between layers II and III) project mainly
onward, to the next stage of processing. Layer III is
also the major source of callosal projections, those to
the other hemisphere (Innocenti, 1986), but those are
not considered here. In elaborate mammalian species,
‘onward’ means they project to the next cortical ar-
eas in the sensory or motor stream (Felleman and
Van Essen, 1991; Barbas and Rempel-Clower, 1997).
In simpler mammals, and probably in the primordial
species, which likely had only one sensory cortical area
per modality (Rowe, 1990), they project strongly to the
medial cortex, associated with multimodal integration
and memory (Gloor, 1997). The infragranular layers
(denoted here as “layer V”, again neglecting the dif-
ferentiation of V from VI) project mainly backward
(Batardiere et al., 1998), or subcortically. Among their
chief target structures are the very thalamic nuclei from
which projections arise to layer IV. It is clear that hav-
ing different preferential targets would in principle fa-
vor different mixes of what and where information. In
particular, cortical units that project back to the thala-
mus would not need to repeat to the thalamus “where” a
stimulus is, since this information is already coded, and
more accurately, in the activity of thalamic units. They
would rather report in full the genuine contribution of
cortical processing, that is, the retrieval of identity in-
formation. Thus, we expect infragranular units to max-
imize “what” information at the expense of “where”
information. Units that project to further stages of cor-
tical processing, on the other hand, should balance the
”what” added value with the preservation of positional
information—the mix that we have so far considered
optimal for pyramidal units in general.

To model a patch of cortex with a differentiation
bewteen supra- and infragranular layers, I have par-
tially altered the source of recurrent connections to the
infragranular layer, as described under Methods. The
effect of this differentiation can be appreciated by de-
coding the activity in the three layers, separately, as
shown in Fig. 4. From layer IV one can extract, as
before, a large Ip but limited Ii ; from layer III one ob-
tains again a balanced mix, albeit now slightly biased
towards favoring Ii —but a choice of somewhat dif-
ferent parameters would take the balance back to any
desired value. From layer V, on the other hand, one can
extract predominantly “what” information, Ii , at the
price of a rather reduced Ip content. Thus, the further
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Figure 4. Ii and Ip values obtained, after 3 training epochs, with the
uniform model, and with the 4 parameter choices of Fig. 3, but for the
fully differentiated model. 3 of the data points for the infragranular
layer (black triangles) are nearly superimposed.

connectivity change (which leaves total synaptic num-
bers unaltered), by effectively reducing the coupling
between granular and infragranular layers, has made
the latter optimize “what” information, while neglect-
ing “where” information, of limited interest to their
target structures.

Scaling

The very limited quantitative advantage produced, in
the performance of the model patch, by either granu-
lation alone or by the 3-way lamination, makes it im-
perative to consider how the advantage would scale up
with larger patch sizes. The crucial factor, in scaling,
is actually the number of recurrent connections each
unit receives, which limits the number of global activ-
ity patterns which can be stored and retrieved (Rolls
and Treves, 1998). In the simulations, Crc is some two
orders of magnitude below realistic cortical values, but
it cannot be made much bigger in a patch of limited size
N ×N—and, on the other hand, scaling up both N 2 and
C , which is in principle possible, rapidly makes simula-
tions exceedingly long. The approach I have taken is to
compare the performance of nets of three similar sizes.
To make the extrapolation somewhat less arbitrary, I
have scaled together “length” parameters, as described
in Methods, while connections and number of patterns
used have been scaled roughly with length square.
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Figure 5. Same as Fig. 4, but including simulations run with net-
works of size 15 × 15, 20 × 20 (as in Fig. 4) and 24 × 24, to show
how information values scale with network size, as discussed in the
text.

The results show that the advantage of lamination
grows in absolute value with network size, and is ap-
proximately constant in proportion to the information
value itself (it appears in fact to grow slightly even as
a percent of the information, from 3.5 to 4.5%, but the
statistics is insufficient to demonstrate this increase).
Since the fluctuations in the information measures
derived from each independent simulation do not grow
in absolute size with the size of the network (in fact
decrease), the advantage of lamination could not be
established statistically with the smaller nets (675 units
in the patch), but is significant in the intermediate size
nets (1200 units), and more clearly so in the larger
nets (1728 units).

Discussion

The Simulation Approach

I propose that a small quantitative advantage in relay-
ing combined positional and identity information may
have driven the initial evolutionary differentiation of
neocortical layers in mammals. The proposal, I stress,
concerns the function of this lamination, not the genetic
mechanisms that evolution has developed to carry it out
(Allen and Walsh, 1999).

The proposal, while in line with speculations aris-
ing of traditional comparative neuroanatomy, is sup-
ported by the simulation of a very simplified neural
network model—a methodology that requires justifica-
tion. Connectionist models have a reputation for being

adaptive, which often means they can be designed ad
hoc to demonstrate the validity of whatever hypothe-
sis. Indeed, the plethora of parameters that have to be
specified in even a simplified neural network model,
like the one simulated here, is so large as to make ex-
haustive analysis impossible, and independent valida-
tion difficult. In the case of my simulations, not only
the analysis of parameter space, but even most of the
details of the model could not be reported here, for
lack of space, and will be described in full elsewhere.
The code used may be obtained from my website
http://www.sissa.it/∼ale/limbo.html. The truly impor-
tant elements, however, are (i) the mutual constraint be-
tween relaying where information and retrieving what
information, evident in the uniform model, and (ii) the
quantitative comparison with a laminated model with
no more units and/or connections. The what/where
conflict is manifest also in rather different models,
like those developed independently by Hamish Meffin
(2000), and, essentially, it requires only the separate
measurability of Ii and Ip to be demonstrated, whatever
the remaining details of the model. The quantitative
comparison is taken to be fair, here, since the lami-
nated model remains identical to the uniform original,
except for the modifications discussed, and in particu-
lar has the same number of units. The overall number
of synapses in fact decreases slightly, to allow layer IV
units, which receive only 2/5 of the original recurrent
collaterals, to be more influenced by thalamic inputs
in the laminated version. In the real cortex, which de-
votes most of its volume to synapses (Braitenberg and
Schuez, 1991), it is likely that synaptic density per mm2

is a true constraint to evolutionary expansion; it is also
possible that the number of synaptic inputs on a pyra-
midal cell may be limited by biophysical constraints, to
keep the effective electrotonic length of the dendrites
short, and allow efficient integration by the cell. What
might limit, instead, the number of cells per cortical
mm2, in other words what could be the cost of adding
layers ad libitum, is less clear. In the absence of any
reasonable argument to estimate such cost, the proce-
dure of keeping numbers fixed, as done here, ensures a
conservative comparison: it controls the advantage of
differentiating the properties of the different layers for
the more trivial effects of adding more layers, or more
units, or more connections.

The small advantage of the laminated patch appears
to scale up, as described above, when the model, and
in particular synaptic numbers, are scaled up towards
realistic values. It should be considered, however, that
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even a slight quantitative advantage may be selected
for, once replicated over millions of sensory experi-
ences per individuals, and over millions of generations
in the course of mammalian evolution. Such a quanti-
tative advantage can obviously be demonstrated only
with computer simulations, which are precise and can
also be replicated millions of times. It remains inac-
cessible to experimental observation, either in vivo or
in vitro, even if it where possible to devise prepara-
tions that approximated laminated and uniform cortical
patches with similar quantitative characteristics.

Experimental Falsifiability

The early differentiation among layers, discussed here,
occurred in mammalian ancestors long extinct, and no
present-day species, however primitive or rather re-
garded as primitive, will ever ensure an experimental
check of the hypothesis under identical boundary con-
ditions. In elaborate species, moreover, sensory cor-
tices tend to have specialized much further at later
stages in evolution, while higher-order cortices have
become positioned in a much more complex network
of cortico-cortical connections. With neocortical ex-
pansion, the divergence on the way from sensory re-
ceptors through the thalamus and up to the cortex has
also been altered considerably among species, possibly
favoring novel information processing operations. For
example, it has been suggested that hyperacuity might
rely also on temporal variability (tremor) at the receptor
stage, to be then expressed as a pure spatial pattern on
a much finer grid of cortical units (Hennig et al., 2001).

What are nevertheless the predictions arising from
the proposal, that could be checked experimentally?
Essentially, differences in the information content of
the activity of populations of cells in different layers.
With an appropriate experimental design, Ip and Ii can
be measured in vivo from populations of tens of units
(Treves, 2001) recorded in well-identified layers. While
the relative values of Ip and Ii depend on the design
and are not comparable, the model does predict that,
very much as in Fig. 4, when separate measures are
extracted from populations of equal size, Ip(V) <<

Ip(III) ≤ Ip(IV), while Ii (V) ≥ Ii (III) >> Ii (IV). The
differences in Ii should be manifest in cortical areas
crucial in the processing of the stimuli to be discrimi-
nated, and the testing should involve the use of rather
noisy stimuli (partial cues to retrieval).

One system in which a suitable experiment may
be conducted is the barrel cortex in the rat. Taking

advantage of the neat topographical arrangement of
neurons responding to the stimulation of different
whiskers (Welker, 1971), the plan is to apply stimuli
that involve groups of whiskers, at different, partially
overlapping locations. This makes the coding of posi-
tion nontrivial, and requires the decoding of the activity
of an extended population, which is the one sampled
by a fixed microelectrode array. Independently from
variations in position, the stimulus can be varied in its
temporal dimension, e.g. by using textures which the
animal has been trained to discriminate well (Mathew
Diamond, personal communication). This would rep-
resent stimulus identity in this particular preparation.

Another suitable system may be the auditory cortex
of the cat. Here, position in the cortex means sound fre-
quency (in one dimension, what is mapped in the other
dimension is not quite clear (Rauschecker et al., 1995)).
The plan is to apply stimuli that are superpositions of
an extensive number of different narrow bandwidths,
fixed at equally spaced intervals on a logarithmic scale
(Israel Nelken, personal communication). Each combi-
nation of amplitudes would comprise a “pattern”, with
which the animal would be trained. Different patterns
would realize different stimulus identities, while differ-
ent “positions” would be obtained by multiplying each
pattern with a broader Gaussian filter centered at one of
several positions on the frequency scale. Again, using
randomly sampled populations of units in the different
layers, with the total number of units per layer fixed and
each population extending over the relevant frequency
range, should yield the 3-way inequalities above.

In addition, the time course of Ip(III) is expected
to be delayed with respect to that of Ii (III). This is a
more delicate point to be checked experimentally, as it
requires analysis of the time course of information mea-
sures which, to be meaningful, require sampling spikes
for a minimum time inversely proportional to the size
of the population (Treves, 2001). Since the simplified
model used here cannot give a reliable indication of
the size of the expected delay, it is important that the
minimum time required by the measurement be small
enough to be within what may turn to be a relatively
rapid local network dynamics, e.g. 10–20 ms (Thorpe
and Imbert, 1989; Treves, 1993). Recording from tens
of units at a time should ensure both reasonable sam-
pling and reliable measurements of the information in
spike patterns extending over 5 ms periods.

A different approach involves the observation of be-
havior in individuals with genetic or acquired malde-
velopments of cortical circuitry (Noctor et al., 2001).
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Such observation may indirectly help assess the hy-
pothesis considered here, e.g. the lack of a layer IV
may result in poorer behavioral discrimination of stim-
ulus position. Nevertheless, animal preparations do not
allow, obviously, a fair comparison between laminated
and non-laminated cortices, keeping everything else
the same. Therefore any behavioral testing is bound to
be even more indirect than physiological experiments,
where at least the information content of neural activity
can be contrasted among different layers in the same
animal.

Relation to Other Proposals

How does the present proposal relate to alternative ac-
counts of the significance of neocortical lamination?
Essentially, it does not interfere nor cooperate with the
few accounts that, to my knowledge, have been pro-
posed. For example, the ‘RULER’ model (McComas
and Cupido, 1999) emphasizes the dynamics of activa-
tion in the different layers, in line with the “canonical”
model (Douglas et al., 1989), but it does not attempt to
really quantify function, or performance. The present
model, which is extremely simplified in its dynamics,
should be entirely compatible with a more accurate
dynamical description. At the same time certain purely
dynamical aspects, such as the exact time course of
feedforward and feedback inhibition that provides op-
timal control of excitatory activity, may be important
but only tangentially related to the informational prop-
erties considered here.

Other points of view, like the one convincingly re-
viewed by Super and Uylings (2001) contemplate “me-
chanical” advantages that radial thalamic projections
offer over the earlier horizontally running afferents.
Among these advantages may be the ease of generat-
ing, during development, layers with different proper-
ties; but what is the goal of differentiating layers is not
addressed. Similar points of view are thus important
and complementary to the one adopted here, in that
they do not quantitate information processing, but dis-
cuss how the appropriate anatomical arrangement may
be wired up.

A number of papers have been produced by Stephen
Grossberg and collaborators (see e.g. Grossberg, 1999)
that as a whole relate neural interactions between the
various layers to mechanisms of visual perceptions, e.g.
to promote the grouping together of V1 cells with sim-
ilar orientation and disparity selectivity, or of V2 cells
that represent similar edges, texture or shading. Similar

in spirit is the recent proposal by Kayser and Miller
(2001). The mechanisms described are fairly complex
and difficult to assess with quantitative comparisons be-
tween laminated and uniform models. While it remains
possible that some of these mechanisms might be spe-
cific implementations of my generic account, or at least
might be compatible with it, the perspective is clearly
very different. It seems to me difficult to disentangle,
from the sophisticated mechanisms that have evolved
in visually advanced species, such as cats or monkeys,
the primitive ones that may have been associated with
the emergence of lamination, hundreds of millions of
years before. Advanced species have evolved “what”
and “where” streams, for example. This later improve-
ment would make it much more difficult to relate po-
sitional and identity information to granulation, if one
neglected to consider that granulation first occurred, in
all likelihood, in species which had no separate sensory
streams, or no streams at all.

A simpler strategy seems to be the one pursued here,
of considering generic aspects of sensory information
processing, pertinent to each topographic modality and
to primitive species, and which lend themselves easily
to accurate quantification, at least in terms of computer
models.
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