
Cogn Neurodyn (2013) manuscript No.
(will be inserted by the editor)

A modular latching chain

Sanming Song · Hongxun Yao · Alessandro Treves

Received: date / Accepted: date

Abstract Many cognitive tasks involve transitions be-

tween distinct mental processes, which may range from

discrete states to complex strategies. The ability of cor-

tical networks to combine discrete jumps with contin-

uous glides along ever changing trajectories, dubbed

latching dynamics, may be essential for the emergence

of the unique cognitive capacities of modern human-

s. Novel trajectories have to be followed in the mul-

tidimensional space of cortical activity for novel be-

haviours to be produced; yet, not everything changes:

several lines of evidence point at recurring patterns in

the sequence of activation of cortical areas in a vari-

ety of behaviours. To extend a mathematical model

of latching dynamics beyond the simple unstructured

auto-associative Potts network previously analysed, we

introduce delayed structured connectivity and hetero-
associative connection weights, and we explore their ef-

fects on the dynamics. A modular model in the small-

world (SW) regime is considered, with modules arranged

on a ring. The synaptic weights include a standard auto-

associative component, stabilizing distinct patterns of

activity, and a hetero-associative component, favoring

transitions from one pattern, expressed in one module,

to the next, in the next module. We then study, through

simulations, how structural parameters, like those regu-

lating rewiring probability, noise and feedback connec-

tions, determine sequential association dynamics.
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Strategy transitions and latching

Transitions between discrete cortical states as well as

between complex states unfolding in time, such as well-

rehearsed segments (“routines”) of action plans, or even,

at the opposite end, a stream of consciousness (James

1892), are thought to be an essential element of higher

cognition. The ability to abandon the current state, or

routine, or even schema, and jump elsewhere, can pro-

duce abstract thinking processes in an infinite variety

of combinations. Take, for example, the so-called Stam-

ma’s mate in chess. In Fig.1(a), when white moves the

knight to b4 (Nb4), black has no choice but to move

the king (Ka1). Following an automatic, well-rehearsed

cliché, white might hunt the pawn by moving the king

(Kb3), but then black could flee with its king (Kb1) and

the game would end in a draw. By jumping, instead, to

a novel strategy (the blue transition), white can move

the king to c1 (Kc1), forcing black to advance with the

pawn (a2), and then proceed to checkmate with the

knight (Nc2).

Such internally generated strategy changes can be

studied in the lab with the Hayling test (Seyed-Allaei

et al. 2010). When subjects are required to complete a

preconfigured sentence frame like “The ship sank very

close to the ...” with an arbitrary word of their choice,

but totally unrelated to the sentence and to its natu-

ral conclusion, usually they rapidly learn to shift to a

new strategy that allows them to produce an unrelated

response on most trials, such as the strategy of select-

ing an object around the lab. Supervised non-routine

operations (s-operations) can thus be latched onto one
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another, e.g S1 to S2 in Fig.1(b), in the absence of ad-

ditional external input, just like simpler routines. This

departure from a standard procedure requires a partic-

ular type of “latching” (Treves 2005), latching between

s-operations, which has been argued to be quintessen-

tial for the emergence of human intelligence (Amati and

Shallice 2007). Another manifestation of latching pro-

cesses may be seen in language generation, as suggested

in Fig.1(d). Other examples, like the subtraction game,

have been discussed by (Seyed-Allaei et al. 2010).

The latching Potts network considered by Treves

(2005) is a simple unstructured autoassociative mem-

ory model with adaptive Potts units, that each repre-

sents a patch of cortex. Beyond its in-built functional-

ity of storing and retrieving a large number of cortical

activity patterns auto-associatively, it can also, in cer-

tain conditions, given adequate connectivity, latch from

one pattern to the next in indefinitely long sequences

(Russo and Treves 2012). Such sequences are neither

random nor deterministic, rather they express an in-

termediate, complex matrix of transition probabilities

between discrete states (Kropff and Treves 2005). In-

finitely long sequences may potentially subserve the in-

finitely recursive processes at the core of the language

faculty according to (Hauser et al. 2002). In its basic as-

sumptions the Potts network, originally introduced by

(Kanter 1988) as a purely statistical physics model, is

compatible with widely held notions of cortical patch-

es as functional units (Mountcastle 1998) with discrete

activity states (Lansner et al. 2003) and sparse long

range connectivity (Braitenberg 1978), patches which

are themselves sparsely activated (Amit 1989). Discrete

Potts states may stand for different color values (Kanter

1988), or edge direction, or texture type. Potts network

models may also offer a bridge between macrolevel sym-

bolic computation and microlevel neuronal dynamics,

as increasingly invoked, e.g. in the domain of sentence

parsing (Gerth and beim Graben 1998).

As it expresses transitions between simple discrete

states with no intrinsic temporal dimension, the un-

structured network, however, cannot seem to serve as

a satisfactory model of transitions between routines,

and even less between s-operations, both of which con-

tain an internal dynamics that should be considered

in the model. Moreover its connectivity, described in

purely statistical terms (Fulvi-Mari and Treves 1998)

does not produce sequences of activity patterns that

can be related to observed patterns of cortical activa-

tion, thus forfeiting a potentially fruitful dialogue with

experimental evidence. For example, episodic memory

retrieval and prospective memory, critical elements in s-

operations (Amati and Shallice 2007), appear to require

the activation of anterior dorsolateral PFC regions and

Fig. 1: Examples for strategy change. (a) A move in

chess. White has to move. If the default strategy leads

to a draw, a change in strategy is advisable. (b) Am-

ati and Shallice (2007) illustrate the processes involved

in performing the Hayling test in terms of (complex)

latching, from the execution of the error-prone and ef-

fortful s-operation S1 to that of the successfully latched

S2. G refers to the generation of a temporary goal by

the s-operation, and TP is a transitional procedure.

(c) Koechlin and Summerfield (2007) review the hier-

archical patterns of activation involved in action and

thought selection (or executive control), as seen with

fMRI. Experimental results indicate that an ordered

control signal arises along the anterior-posterior axis

of the LPC (lateral prefrontal cortex). (d) A possible

simplistic scheme for spontaneous sentence production.

The subject (S) leads to a default verb (V1) by root

association. A latching transition “localized” between

verbs brings up another verb (V2, for example) in the

absence of additional perceptual input. Similarly, fur-

ther latching at the next stage picks a non-default ob-

ject (O).

frontopolar cortex respectively. Imaging evidence (see

Fig.1(c)) illustrates cases of hierarchically organized se-

quential activation patterns, which can be described by

branching trees, with constant flow along the hierarchy

and “decisions” (or perhaps transitions) at cortically

localized branching points (Koechlin and Summerfield

2007).

Although the Potts network has an in-built small-

world structure (Treves 2005), in that each unit repre-

sents a densely interconnected local network, there are

indications from fMRI and MEG recordings (Bassett

and Bullmore 2006) that cortical networks can be re-

garded as having a small-world architecture, also at the

coarser level of connections through the white matter,
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between distinct patches. A small-world connectivity

would support stable hierarchical activation patterns,

and it would affect network dynamics in a number of

ways (Roxin et al. 2004; Guo and Li 2010), suggest-

ing that it could be incorporated in a more structured

extension of the original Potts model.

We present here an extended version of the model

based on the definition of modules, at an intermedi-

ate level between the entire network and the individ-

ual units, which still represent patches of cortex. As

a start, and to avoid issues with what happens at the

top and bottom of cortical hierarchies, we consider five

modules arranged on a ring, so that there is potential-

ly information flow along the ring, with no beginning

and no end. The connectivity between Potts units has

a small-world structure, with denser connections with-

in a module and sparser ones between modules. The

connectivity between modules is made to encode a cer-

tain number of associations between pairs of patterns,

modelling a root sequence deposited in long-term mem-

ory. Activity patterns tend to be expressed within one

module at a time, although this is not enforced, but

rather a product of the connectivity. Latching dynam-

ics within each module can then be regarded as spon-

taneous transitions (including “strategy changes”) in

each module, while hetero-associative connections (Li

and Tsuda 2013) lead the network along the routine or

s-procedure or hierarchy or branching tree or sentence,

usually activating one module after the preceding one

on the ring. A transmission delay is also introduced for

intermodular connections, to eventually approach cor-

tical plausibility.

We analyse such a modular latching chain by com-

puter simulations. We focus on two measures, to char-

acterize the basic traits of sequential association dy-

namics. One is the average latching chain length (L-

CL), i.e. the average number of sequentially recalled

patterns in each module. LCL parametizes the sponta-

neous productivity of the dynamics, that is, the number

of transitions or alternatives considered before proceed-

ing on with the next hetero-associative step. The other

is the inverse switching ratio (ISR), i.e. the percentage

of backward switching between sequential modules. IS-

R parametrizes the recourse to top-down or in general

inverse information flow, interleaved with the standard

feed-forward process. Here we report the main effects

of structural parameters, like those regulating rewiring

probability, noise and feedback connections, onto the

sequential association dynamics described by these two

measures.

(a)

(b)

Fig. 2: A modular network of size N = 100 and C = 20

initial connections per unit. (a) The SW network af-

ter being rewired from a C/2-nearest-neighbors regular

network with rewiring probability q = 0.01 and uni-

form reshuffling within and between modules. Symmet-

rical auto-associative connections are in green and dis-

tant asymmetrical hetero-associative connections are in

black (between neighbouring modules) or red (between

distant ones). (b) The corresponding connection ma-

trix, after adding feedback connections between mod-

ules, and making symmetric those within modules. Note

that a feedback weight is weaker than its matching for-

ward weight.

Model

It has been pointed out that a sparsely connected net-

work of cortical patches has very limited storage ca-

pacity, unless two modifications are introduced (Fulvi-

Mari and Treves 1998). The first is non-uniform long-

range connectivity. That is, connectivity is not uniform-

ly sparse across patches, but rather it is concentrated

between a patch and a subset of other patches that

strongly interact with it. The second is sparse activ-

ity, at a macroscopic scale, which means that global

activity patterns or semantic memory items are not de-

fined across all patches, but only over a subset, different

for each pattern, which tends to include strongly inter-
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acting modules. The first of these two conditions for

substantial memory capacity was not explicit in sub-

sequent studies of Potts networks (Kropff and Treves

2005; Russo et al. 2008). The reduction of the local

network in each patch to a single Potts unit, by itself,

endows the global network with a large storage capac-

ity. Here we stay with the Potts formulation, however

connectivity is explicitly structured with a small-world

(SW) scheme.

Modular Small-World architecture

To generate a modular SW network, we follow a s-

tandard (Watts and Strogatz 1998) procedure. It s-

tarts with a linear network with N Potts units ar-

ranged on a ring. Each unit is first connected to its

nearest neighbors in a radius C/2 (with periodic bound-

ary conditions), where C/N is the coefficient of “dilu-

tion” in the connectivity. Each edge or connection of

the network is then randomly rewired with probability

q. When q = 0, no rewiring occurs and the network re-

mains a C/2-nearest neighbors regular network; while

for q = 1 it becomes a globally coupled (random) net-

work, and the ring structure becomes irrelevant. For

small q, the network displays SW characteristics. Both

the average clustering coefficient and the mean short-

est path length decrease gradually, as expected, with

increasing q. With the simulation parameters in this

paper (N = 500, and C = 100), the mean shortest

path length varies by a small amount, due to the large

connection radius C/2 (from 1.8637 for q = 0 to 1.7956

for q = 1, each with 100 simulations). Nevertheless,

when q = 0.1, it is 1.7964, 1% larger than the mini-

mum value, with respect to the range above, while the

clustering coefficient (0.4000) is 67% above its minimum

value(0.2074 for q = 1) with respect to the maximum

(0.4949 for q = 0). One can therefore argue that for

q = 0.1 (and for somewhat lower values) the network is

in the small world regime.

After rewiring, the ring is partitioned into M mod-

ules, and connections within each module and between

any given pair of modules are randomly reshuffled, to

shed any dependence on the original position of the u-

nit on the ring: only membership in a module remains

relevant. The reason for this complex procedure is the

need to later compare with a network with the same

number of connections but a continuous, non modu-

lar ring structure, a comparison that will be presented

elsewhere. An example of the final modular structure is

illustrated in Fig.2(a).

The existence of a connection between a pair of

Potts units is recorded in a binary matrix C, with cij =

1 if there is a connection between units i and j, and

0 otherwise. The diagonal of the matrix is filled with

zeroes. For example, Fig.2(b) shows the binary connec-

tion matrix of Fig.2(a).

Activity patterns and connection weights

In this paper we only consider the strictly modular net-

work defined above, and in particular one with M = 5

modules. A different set of patterns are stored in each

module, and we restrict our simulations to the case

where p = 10 patterns are in each set, i.e. pM = 50

in all. Activity patterns are denoted in each module as

ξµi , with µ = 1, . . . , p and i = 1, . . . , N/M , and they

include a fraction a of the units assigned to any one of

the S Potts active states, and the remaining fraction

(1− a) assigned to the inactive state.

The network is constructed in the following way.

Each module is defined as a standard auto-associative

network (with Potts units), while across modules there

are hetero-associative connections between pattern pairs,

that facilitate transitions from one to the next, in a sim-

ple model of routines that have been deposited in long

term memory. Note though that each pattern belongs

to more than one routine. If pattern µ in module M
and pattern ν in module N have been memorized as

temporally consequent, they are called a “pattern pair”

(Mµ,Nν), or simply (µ, ν). There are Ωp pairs between

any two neighboring modules, that is, each pattern can

lead through hetero-association to Ω other patterns in

the next module. Given the periodic boundary condi-

tions defining the ring (Fig.2), the “last” module is ad-
jacent to the “first”.

We introduce these two kinds of synapses in the fol-

lowing two subsections. Auto-associative synapses are

used to store patterns, in order to then enable com-

pletion of the correct pattern according to the input

cues. And hetero-associative synapses are used to store

associations between patterns in adjacent modules.

Auto-associative weights

Each Potts unit can be partially activated in a number

S of distinct active states (a priori, with equal proba-

bility a/S) or else, in an inactive state (a priori, with

probability 1 − a). Activation levels in each state are

graded, and at any time, their sum is normalized to 1,∑S
k=0 σ

k
i = 1.

The Potts equivalent of the “Hebbian learning rule”,

is written as a connection strength between unit i in
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active state k and unit j in active state l (i, j = 1, · · · , N
while k, l = 1, · · · , S) (Kropff and Treves 2005)

J klij =
cij

Ca(1−a/S) (1− δk0) (1− δl0)
p∑

µ=1

(
δξµ
i
k − a

S

)(
δξµ
j
l − a

S

)
(1)

where C is the number of connections arriving to Potts

unit i (including those from other modules). δ is the

Kronecker function, δkl = 1 when k = l and 0 otherwise.

Hetero-associative weights

Similar to the auto-association rule in Eq. (1), and to

hetero-associative synapses in standard networks of bi-

nary units (Amit 1989), the hetero-association Hebbian

learning rule when unit i in module Mµ is in state k

and unit j in module Nν is in state l can be written as

Kklij = γ
cij

2Ca(1−a/S) (1− δk0) (1− δl0)∑
(µ,ν)

(
δξµ
i
k − a

S

)(
δξν
j
l − a

S

)(
1− δξµ

i
0

)(
1− δξν

j
0

)
. (2)

where the last two factors denote the absence of con-

tributions from patterns in the inactive state in either

the pre- or post-synaptic unit. The factor γ regulates

the strength of hetero- versus auto-associative weights.

Feedback connections of relative strength η are in-

cluded, in order to assess their effect on network dynam-

ics, chosen proportional to the forward connections,

Klkji = η · Kklij . (3)

and 0 ≤ η ≤ 1.

Another element that we aim to assess is the p-

resence of associations between non-neighbouring mod-

ules, which we call “noise pattern pairs”. The degree

to which they are present, on average for each pattern,

is denoted by ε, that is, a total εpM pattern pairs are

encoded in the weights between distant modules.

Uncorrelated patterns

A procedure to introduce model correlations in a group

of p patterns is through a hierarchical algorithm, which

may be parametrically varied from producing indepen-

dent to highly correlated patterns (Treves 2005). In

such a procedure, patterns are defined using a set of

parents, from which they descend, emulating a genetic

tree. These parents are defined simply as distinct ran-

dom subsets of the entire set of N Potts units. In our

simulations, however, for the sake of simplicity we have

used only uncorrelated patterns. Each pattern is de-

fined by randomly selecting a fraction a (see Formula

(1)) of the units in a module, and randomly assigning

one of the S active state to the unit in the pattern. The

remaining fraction (1 − a) of the units are left in the

inactive state. According to the estimation in Kropff

and Treves (2005) (see their Fig.4), the theoretical s-

torage capacity of each module for randomly correlated

patterns is approximately pc ≈ 0.035CmS
2/a ≈ 350 for

Cm ≈ 70, S = 6 and a = 0.25, i.e. the parameters used

in the simulations (Cm would be the final number of

auto-associative connections within a module), so for

any p < 100 each module should be well within its ca-

pacity. Due to the limited size of each module, howev-

er, even correlations between random patterns are very

high, because of finite size fluctuations, so the actual

capacity is far smaller than the theoretic bound. Con-

sidering also the limited computation resource, in the

simulations we use only p = 10 patterns in each module.

Modular Latching Chain

Latching dynamics emerges as a consequence of incor-

porating two crucial elements in the Potts model: neu-

ronal adaptation and correlation among attractors. In-

tuitively, latching may follow from the fact that all neu-

rons active in the successful retrieval of some concept

tend to adapt, leading to a drop in their activity and

a consequent tendency of the corresponding Potts u-

nits to drift away from their local attractor state. At

the same time, though, the residual activity of sev-

eral Potts units can act as a cue for the retrieval of

patterns correlated to the current global attractor. As

usual with auto-associative memory networks, howev-

er, the retrieval of a given pattern competes, through

an effective inhibition mechanism, with the retrieval of

other patterns.In such a scenario, two conditions are

fulfilled simultaneously, the global activity associated

with a decaying pattern is weak enough to release in

part the inhibition preventing convergence toward oth-

er attractors; but, as an effective cue, it is strong enough

to trigger the retrieval of a new, sufficiently correlated

pattern. In such a regime of operation, after the first,

externally cued retrieval, the network concatenates in

time successive memory patterns, i.e. it latches from

attractor to attractor (Treves 2005).

In an auto-associative network without neural adap-

tation, the Potts states can be defined to be updated

according to the heat bath rule,

σki (t+ 1) =
exp

(
βhki (t)

)
S∑
l=0

exp
(
βhli (t)

) (4)

where hki (t) is a tensorial local “current” signal which

sums the weighted inputs from other units, including
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immediate auto-associative inputs and delayed hetero-

associative inputs,

hki (t) =
∑

j∈Mi

S∑
l=0

J klij σlj (t) +
∑

j /∈Mi

S∑
l=0

Kklijσlj (t− τ)

+Uδk0 (t) + w

(
σki (t)− 1

S

S∑
l=1

σki (t)

)
,

(5)

where in turn U is a threshold favoring the null state

and τ is time delay between modules. The last term is

a self-reinforcement term with coefficient w, which fa-

cilitates the convergence towards the more active state.

In our adapting network, instead, first we choose a

very short numerical integration time, and then we set

σki (t) =
exp

(
βrki (t)

)
S∑
l=0

exp
(
βrli (t)

) (6)

which is now mediated, for k 6= 0, by the vectors rki (t)

(the “fields” which integrate the hki (t) “currents”) and

by θki (t), the dynamic thresholds specific to each state,

which are integrated in time

rki (t+ 1) = rki (t) + b1
[
hki (t)− rki (t)− θki (t)

]
(7)

and

θki (t+ 1) = θki (t) + b2
[
σki (t)− θki (t)

]
. (8)

While θk averages to σk in a typical time of b−12

steps, rk averages to hk − θk in a typical time of b−11

steps. We also include an overall threshold, i.e. effec-

tively a non zero local field for the null state, driven

by the integration of the total activity of unit i in all

active directions,

r0i (t+ 1) = θ0i (t) + b3
[
U + 1− σ0

i (t)− r0i (t)
]
. (9)

Together with the threshold U , this local field for

the null state regulates the unit activity in time, pre-

venting local “overheating”. A threshold U of order 1

is crucial to ensure a large storage capacity (as shown

by Tsodyks and Feigelman (1998)) and to enable un-

ambiguous memory retrieval.

Results

All numerical simulations are performed in the MAT-

LAB environment. In each run, a randomly chosen pat-

tern is distorted by 20% noise (20% of the Potts units

are set in a random state) and fed to the network as a

partial cue. The initial “current” signal is used to ini-

tialize the local potential. The initial thresholds are set

to zero.

When examining the effects of a parameter, we vary

its value while keeping all others constant. The charac-

teristics of the latching chains observed are measured

here by the average latching chain length (LCL) in each

module (averaged across both modules and runs) and

by the inverse switching ratio (ISR) of activity between

modules. All values are calculated by averaging results

of 20 successful independent simulations.

The general parameters setting is: network size N =

500, number of Potts states S = 6 , number of mod-

ules M = 5 and sparsity parameter a = 0.25. Num-

ber of initial connections per unit C = 100, number

of patterns in each module p = 10, number of pat-

tern paired to each pattern Ω = 3 and relative hetero-

associative strength γ = 0.1666. Other parameters are

temperature β = 10 , self-reinforcement term w = 1.8,

time delay τ = 1000 steps. The time constants are

b1 = 0.01, b2 = 0.002, b3 = 0.02, with b3 much larger

than in the “slowly adapting” condition of (Kropff and

Treves 2007), and consistent instead with the “rapid-

ly adapting regime” discussed in (Russo and Treves

2012), chosen here primarily to accelerate the simula-

tions. Note that the network remains in the resting s-

tate before external inputs arrive, because spontaneous

activity is not introduced here.

Latching along the ring

A typical latching chain is shown in Fig.3 (a) and the

corresponding pattern transition graph is displayed in

Fig.3 (b). As we can see, in the example most of the

time activity is concentrated in a single pattern in one

module, and after lingering within the module for some

time, possibly with transitions to other patterns, activ-

ity propagates to the next module.

Although it occurs for all practical purposes in con-

tinuous time (the integration time step is 50 times short-

er than the shortest time constant), the propagation

can be informally divided into several periods (marked

by the dotted arrows). Module M1 receives a partial

cue A
′

at t = t0, before which the global network is in

the resting state. Then pattern A is retrieved as in a

standard Hopfield auto-associative network. During the

period t0 < t ≤ t0 + τ, other modules are still in rest-

ing states because of the synaptic transmission delay τ .

Once the wave reaches module M2 at t = t0 + τ, in

M1 activity attenuates, while it grows in M2. If M2

becomes active at t1, we can call [t0 + τ, t1] the activity

transition period. In t1 < t ≤ t1 + τ , Potts units in

module M2 receive both auto-associative inputs from

the same module and delayed hetero-associative inputs

from M1. Competitive effects drive the network either

to latch to another pattern, following a correlation a-

mong patterns in M2, or to proceed to a pattern in

M3 by hetero-association, as illustrated in Fig.3 (a). If



A modular latching chain 7

(a) (b)

Fig. 3: (a) An example of a modular latching sequence. For easier visualization, the latching sequence is plotted

along a circular time axis, with the network structure at the center. Purple dotted arrows mark the dynamical

boundaries between modules. Red and blue arrows stand for hetero-associative and auto-associative (latching)

transitions, respectively. (b) The corresponding pattern transition graph. Grey dotted lines are the stored pattern

pairs.

latching occurs within a module, sometimes the hetero-

association to the next module proceeds from the pat-

tern latched to, as in M3 and M4 in Fig.3 (a); and

sometimes (caseM1) from the earlier pattern, especial-

ly when latching occurs well into the transition period,

the outcome of which is already largely determined.

In Fig.3(a), the number of retrieved patterns in each

module is not the same. Occasionally, a latching transi-

tion is aborted, as the one to pattern D inM2. There is

constant competition between latching transitions and

hetero-association. The result is mainly determined by

the relative strength of pattern correlations. Latching

transitions tend to occur when patterns exist strong-

ly correlated with the current one. Otherwise, the next

module is activated. Thus, correlations play the cru-

cial role, within the limits set, essentially, by the delay

parameter τ .

One should note that the number of patterns that

may be activated by A is Ω = 3, i.e. p24, p25 and p29. Only

pattern C (p24) is activated in the end. The choice may

be due to small fluctuations, effectively to noise.

No inverse transmission occurs in the case illustrat-

ed in the figure, so ISR= 0. As for LCL, in this sequence

LCL= (2 + 1 + 2 + 2)/4−1 = 0.75 (one should subtract

1, to count only the number of genuine latching steps).

With changes in the parameters, both LCL and ISR

can change widely. This is what we discuss in the last

subsection of the Results.

Raising the threshold, and lowering it

One should appreciate that the relatively clean exam-

ple illustrated in Fig.3 requires setting the appropriate

parameters, and in particular setting the threshold U .

There is no latching when U is raised to too large a

value. The pattern correlated with the input cue can be

retrieved, if the cue is effective, but then the patterns

itself is insufficient as a cue to overcome the threshold

for the activation of another pattern, e.g. in the nex-

t module. In the example of Fig.4(a), with U = 0.1

and q = 0.3, it almost makes it, but not quite, and all

activity stops on the ring after about 3000 steps.

An appropriate threshold value is illustrated in Fig.4(b),

where U = 0.075 and q = 0.3. Then activity propagates

along the ring, from module 2 to 1 to 5 to 4 to 3, raising

one or a few patterns in each module.

If the threshold is lowered much further (and in or-

der to show a clear example, we also slightly lower the

rewiring probability, U = 0.0375 and q = 0.2), a new

behaviour emerges, i.e. the activation of patterns in sev-

eral modules at the same time. If the former can be de-

noted sL, or single-module latching, this would be mL
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(a)

(b)

(c)

(d)

(e)

Fig. 4: Latching sequences from top to bottom, in the

NoL (a), sL (b), mL (c), InfL (d) and SA (e) phases,

respectively. The location of these simulations in the

phase diagram is displayed in Fig.5. Note that here η =

0 and ε = 0.5. The unit for the time axis is 103steps.

Fig. 5: The U − q phase space, with approximate

phase boundaries (solid curves) and, in false colors, con-

tours of interpolated LCL values. In these simulations,

ε = 0.5, η = 0. NoL: No latching; sL: singular modu-

lar latching; mL: multi-modular latching; infL: infinite

latching; SA: indefinitely stable attractors.

(for multi-module latching; Fig.4(c)). It is effectively

a different phase for the system, in which the notion

of propagation flow eventually loses meaning, and one

can conceptualize it as a multiplicity of sequences in-

tertwined in a sort of spaghetti.

When (U, q) are small, as in Fig.4(d), where U =

0.025 and q = 0.2, not only multiple modules are active

at the same time, and multiple patterns are retrieved

simultaneously in the same module, but also latching

can carry on indefinitely, thus reproducing the infinite

latching region (infL) of Russo and Treves (2012). With

our parameters this occurs at lower U values than those

yielding the (putative) transition from the sL to the

mL phase, but whether this may be true in general is

an open question.

As in the Russo and Treves (2012) analysis of a non-

structured network, further facilitating retrieval, either

by strengthening the local feedback w, as done there,

or by lowering U further, as here, the system can get

stuck in a steady attractor state (usually a mixture of

many pure states). In the example of Fig.4(e), when

U = 0 (and q = 0.2), the network shows simultaneously

the alternation of some patterns and the permanence of

others.

U-q phase diagram

The regions in parameter space where the different be-

haviours occur can be synthesized in a phase diagram.

Two dimensional phase diagrams can be drawn by choos-

ing different pairs of parameters, such as w and the
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noise level T in Russo and Treves (2012). Here we choose

the threshold U and the rewiring probability q, which

is what parametrizes the connectivity range from a reg-

ular network to a random one. As a dependent variable

we choose LCL, which largely covaries with the char-

acteristics of the different phases of the system. Fig.5

shows that the different types of dynamics illustrat-

ed in Fig.4 occur in distinct regions of the phase di-

agram, which we draw, as for Fig. 4, after setting η = 0

(no feedback, for simplicity), and ε = 0.5 (intermediate

number of noise pairs).

To understand how network structure determines

the dynamics, we set the threshold at a relatively high

level, since for lower values structure becomes progres-

sively irrelevant.

Rewiring probability

How does rewiring probability affect latching sequences?

Since we see in Fig.5 that no latching occurs when q

is large, we focus on its low values, by considering a

logarithmic scale. We then assess, together with q, the

effect of noise pairs, parametrized by ε and of feedback,

parametrized by η. The average values of LCL and IS-

R for latching chains with different rewiring probabil-

ity, and the four possible combinations of no feedback

(η = 0) or moderate feedback (η = 0.5), and no noise

(ε = 0) or moderate noise (ε = 0.5), are plotted in

Fig.6. It appears from the plot that LCL values are rel-

atively robust to noise and feedback, as long as either is

present, whereas ISR is significantly enhanced, especial-

ly for quasi-regular networks (q → 0) only when both

are present. As a function of q, LCL is substantially en-

hanced at the center of the SW range, 10−2 ≈ q ≈ 10−1,

while ISR is suppressed in the same range. The values

of both measures reduce to zero for essentially random

networks, q > 0.2.

Discussion

In conclusion, we have extended the notion of latching

sequences to modular networks, with a prevailing direc-

tion of information flow determined by hetero-associative

connectivity, and we have begun the study, through

simulations, of how network parameters like rewiring

probability, noise pattern pairs, feedback connections

and thresholds affect latching dynamics. After linger-

ing on a module for some time, with several latches,

activity usually propagates to another module sponta-

neously. Auto-associative connections support free asso-

ciative latching dynamics, while hetero-associative con-

Fig. 6: The average LCL and ISR values as a func-

tion of rewiring probability q for four different levels of

noise and feedback (and with U = 0.09). LCL is robust

to the exact level of noise and feedback, as long as ei-

ther is present. From the finite value, below one, that

it takes for quasi regular networks, LCL is enhanced

above one (provided noise or feedback are present) in

the SW range, before reducing to zero when the network

approaches random connectivity. Large ISR values in-

stead appear to require both noise and feedback: when

either is absent, there is only a limited region (closer to

random than the SW range with nonzero probability

of switching in the opposite direction), whereas when

both are present the switching frequency has a trough

in the SW range, before rising to a large value as the

network approaches quasi-regular connectivity.

nections provide the pathways for attractor transitions

between modules.

By varying the rewiring probability while keeping

other system parameters fixed, the length of latching

chains shows an inverted-U shape, indicating that a

suitable rewiring probability, in the small-world range,

enhances latching within modules. In approximately

the same range, the probability of inverting the flow of

activation, which is substantial only when both noise

and feedback are present, has a relative minimum. Fur-

ther, we find that both the LCL and ISR measures are

to a certain degree insensitive, each in its own way, to

the exact level of noise and feedback. We conclude that

in a regime of high threshold, close to the maximum

threshold for latching to occur, the network executes

clean hetero-associative transitions along the ring, with
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extensive latching transitions at each stage, when its

connectivity is in the small-world regime.

To observe and analyze the neuronal network mech-

anism underlying strategy change, solely by experimen-

tal recordings (Seyed-Allaei et al. 2010), is highly non-

trivial. Given the challenge, the use of computation-

al models, while no replacement for experiments, may

help guide thinking and stimulate new paradigms. An

example close in spirit to our modular latching chain

is the model put forward by Wennekers and Gunther

(2009). Like our model, it uses hetero-associative con-

nections to promote transitions between activity pat-

terns. There are at least three important differences,

though, between this work and their model. First, Wen-

nekers’ model is restricted to a single module while our

model is comprised of several modules. Second, activity

propagates solely following hetero-associative connec-

tions in their model, whereas auto-associative ones also

exist, in ours, allowing it to execute both intra-class

and inter-class pattern transitions. Third, the paradig-

m envisaged for Wennekers’ model is to retrieve a fixed

pattern sequence, albeit at a variable and manipulable

pace, while our model generates an abundance of novel

latching sequences at each run. Intra-modular latching

dynamics, with their intrinsic productivity, generate se-

quences with no fixed order (Kropff and Treves 2007),

while at the same time the “1− to−n” ordering of the

hetero-connections provides a sketch of reproducible re-

gional activation patterns in a variety of real-life tasks.

It is worth mentioning that Abeles (1982) has long

ago proposed a “synfire-chain” model, which includes

neuron pools similar to our modules. His model was o-

riginally intended to account mainly for the highly pre-

cise temporal patterns in neural firing times, that he

had observed in macaque cortex. Constructed, again,

with hetero-associative connections alone, it is likewise

only able to retrieve a (stored) fixed pattern series, and

it cannot be used to explain the strategy change phe-

nomenon. In a sense, our modular latching chain inte-

grates the merits of both “synfire-chains” and latching

dynamics.

Sequential patterns of activity have indeed been wide-

ly observed in the mammalian cortex, and they have

attracted considerable attention by scholars in recen-

t years. The modular latching chains presented here

are an attempt to simulate the generation mechanisms

underlying complex cognitive processes. Further work

on this topic is obviously needed, including at least

the following three aspects. 1) Though we have be-

gun to discuss the relationship between network struc-

ture and dynamics, choosing a parameter regime that

closely relates to real cortical networks is an endur-

ing endeavor, because dramatic changes may occur, vi-

a phase transitions, when parameters are only slightly

tuned. 2) One goal of studying latching dynamics is to

explore the mechanisms underlying infinite recursion

and rule generalization in language(Pulvermüller and

Knoblauch 2009). Russo et al. (2010) have pointed out

that the dependence between successive patterns in a

latching sequence approximates a second-order Markov

chain, with a similar kinetics in a reduced artificial mod-

el of a natural language. So, on the one hand, we in-

tend to study generalization in latching chains when

a Hebb learning rule is adopted. On the other hand,

it is important to analyse any analogy between latch-

ing chains and natural languages. 3) Strategy change

appears to be a goal-guided behaviour. In this report,

we have limited our analysis to the generation of free

associative modular latching chains. How to control the

latching process is waiting for future studies.
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