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Classical (Hamiltonian) Mechanics

Phase space

Classical system with n spatial degrees of freedom: Described in a
2n-dimensional symplectic manifold (M, ω).

Sharp state

(q1, ..., qn, p1, ..., pn) ≡ s ∈M

Dynamics

R 3 t 7→ s(t) ∈M satisfying Hamilton equations:

ds

dt
= XH(s(t))

H : M→ R is the Hamiltonian function.
XH is the Hamiltonian vector �eld: ωs(XH , ·) = dHs(·)
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Classical states as probability measures

Statistical description (incomplete knowlwdge) =⇒
Statistical state: ρ : R×M→ [0,+∞) with

∫
M
ρdµ = 1

Dynamics
∂ρ

∂t
+ {ρ,H}PB = 0

Expecation values

Physical quantity f : M→ R , Liouville (symplectic) volume form µ

〈f 〉ρ =

∫
M

f (s)ρ(t, s)dµ(s)

Borel probability measure νρt : B(M)→ [0, 1], νρt (E ) :=

∫
E

ρtdµ
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Classical states as probability measures

Propositions in Classical Mechanics

Elementary propositions (at �xed time t) on the system
represented by the σ-boolean lattice B(M) of Borel subsets of M.
Logical connectives ∪,∩,⊂. Tautology M, contradiction ∅

A : M→ R (continuous) physical quantity =⇒
PA := A−1([a, b]) ∈ B(M): �The value of the A, measured at time
t, belongs to [a, b] ⊂ R�

State ρ (at t) probability measure on B(M): νρt (P) :=
∫
P
ρtdµ

Propositions in Quantum Mechanics?

(elementary) incompatible observables, P,Q cannot be
simultaneously measured =⇒ e.g. P ∩ Q makes no sense =⇒
No Boolean structure admissible
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States as measures in Quantum Theories

von Neumann assumptions for QM in Hilbert space

�Quantum system associated with corresponding complex Hilbert
space H s.t. Quantum propositions are orthogonal projectors
on H and compatible propositions are commuting projectors
=⇒ non-Boolean lattice (standard logic for commuting proj.s)
=⇒ Observable = collection of elementary propositions labelled in
B(R) = self-adjoint operator (spectral theorem)

Quantum state µ as generalized probability measures

µ : P(H)→ [0, 1] (P(H) lattice of orthogonal projectors) s.t.
i) µ(I ) = 1;
ii) If {Pi}i∈N ⊂ P(H) with PiPj = 0 for i 6= j then:

µ

(
s−
∑
i

Pi

)
=
∑
i

µ(Pi )
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States as measures in Quantum Theories

Theorem [Gleason 1957]

If dimH > 2 separable and µ : P(H)→ [0, 1] is a state,
∃!σ ∈ B(H) s.t.:
i) σ ≥ 0;
ii) σ ∈ B1(H) (σ is trace-class) with tr(σ) = 1;
iii) µ(P) = tr(σP) for every P ∈ P(H)
(σ ∈ B(H) satisfying i) and ii) de�nes a state µ(P) = tr(σP)).

Density matrices

D(H) = {σ ∈ B1(H)|σ ≥ 0, tr(σ) = 1}

* D(H) is closed and convex in B1(H).
* extremal points said pure states:|ψ〉〈ψ| with ψ ∈ H, ‖ ψ ‖= 1.
* convex combinations of pure states exhaust D(H) (strong top.)
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Frame functions

S(H) = {ψ ∈ H :‖ ψ ‖= 1}, H separable

f : S(H)→ C is a frame funtion if ∃Wf ∈ C s.t.∑
ψ∈N

f (ψ) = Wf ∀N orthonormal basis of H.

Quantum states µ : P(H)→ [0, 1] de�ne real bounded frame
functions: fµ(ψ) := µ(pψ) ∈ [0, 1] pψ = |ψ〉〈ψ|

Wfµ =
∑
ψ∈N

fµ(ψ) =
∑
ψ∈N

µ(pψ) = µ

∑
ψ∈N

pψ

 = µ(I ) = 1

Core of Gleason theorem: ∀ real bounded frame function f ∃ a
self-adjoint trace class operator A s.t. f (ψ) = 〈ψ|Aψ〉
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Frame functions

2 < dimHn = n < +∞ , S(H) = S2n−1

L2(S2n−1, ν ′n) =

{
f : S2n−1 → C |

∫
S2n−1

f (x)f (x)dν ′n(x) < +∞
}

ν ′n : B(S2n−1)→ [0, 1] is the unique regular Borel measure s.t.:
i) ν ′n(S2n−1) = 1;
ii) ν ′n(UE ) = νn(E ) ∀U ∈ U(n),∀E ∈ B(S2n−1).

νn is obtained from the Haar measure on U(n).

Theorem [V.M., D.Pastorello Ann.Henri Poincaré 2013]

Let H be a Hilbert space with 2 < dimHn < +∞. For every frame
function f ∈ L2(S2n−1, ν ′n), ∃! A ∈ B(H) s.t.:
f (ψ) = 〈ψ|Aψ〉 ∀ψ ∈ S2n−1

=⇒ extension to n = +∞ alternative form. of Gleason theorem
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Proof essentially based on Peter-Weyl theorem and Harmonic
analysis on U(n).

L2(S2n−1, dνn) =
∞⊕

p,q=0

Hn
(p,q)

Decomposition into orthogonal U(n)-invariant and irreducible
subspaces. The elements of Hn

(p,q), called generalized spherical

harmonics of order j = (p, q), are restrictions of homogeneous
complex polynomials h(z1, ..., zn) s.t.:
i) h(αz1, ..., αzn) = αpαqh(z1, ..., zn) for any α ∈ C
ii) ∆h(z1, ..., zn) = 0 in R2n

If f ∈ L2(S2n−1, νn) is a frame function, then (via theory of zonal
spherical harmonics) f ∈ Hn

(0,0) ⊕Hn
(1,1) =⇒ f (·) = 〈·|A·〉.
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Projective space as phase space
P(Hn) = U(n)

U(n−1)U(1) projective space of Hn. νn unique

normalized U(n) invariant regular Borel mesure on P(Hn).
A frame function f : S(Hn)→ C is well-de�ned as functin on
P(Hn)

f (ψ) = 〈ψ|Aψ〉 = tr(Apψ) =: f (pψ) pψ ∈ P(Hn)

Moreover

f ∈ L2(P(Hn), νn) i� f ∈ L2(S(Hn), ν ′n)

Geometry of P(Hn)

P(Hn) real smooth (2n − 2)-dimensional manifold.
Tangent vectors at p ∈ P(Hn):

v = −i [Av , p] ∈ TpP(Hn) for some Av ∈ iu(n),

u(n) is the Lie algebra of U(n).
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Projective space as phase space

Well known Kähler structure on P(Hn)

-) Symplectic form : ωp(u, v) := −ik tr (p[Au,Av ]) k > 0

-) Fubini-Study metric:

gp(u, v) = −ktr (p ([Au, p][Av , p] + [Av , p][Au, p]))

-) Almost complex form:

jp : TpP(Hn) 3 v 7→ i [v , p] ∈ TpP(Hn)

p 7→ jp smooth, jpjp = −id and ωp(u, v) = gp(u, jpv).

(P(Hn), ω, g , j) is a Kähler manifold
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Geometric Hamiltonian QM

Essentially known with various approaches

Correspondence quantum observables − classical-like observables:

O(Hn) : iu(n) 3 A 7−→ fA : P(Hn)→ R, s.t.

Schrödinger dynamics due to H equivalent to the �ow of XfH .

Kibble ('79), Ashtekar Schilling ('95), Brody-Hughston (2001)

Open issues

Correspondence quantum states − Liouville densities on P(Hn)

S : D(Hn) 3 σ 7−→ ρσ : P(Hn)→ [0,+∞) s.t.∫
P(H)

ρσdνn = 1 and 〈A〉σ = tr(Aσ) =

∫
P(H)

fAρσdνn

Gibbons ('92) (partially negative result)
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Geometric Hamiltonian QM

Physical requirements on O : iu(n) 3 A 7→ fA

O1) O is injective;
O2) O is R-linear;
O3) If H ∈ iu(n) then O(H) = fH ∈ C 1(P(Hn)) and XfH can be
de�ned with

ṗ(t) = XfH (p(t)) ⇐⇒ ṗ(t) = −i [H, p]

O4) U(n)-covariance: fA(UpU−1) = fU−1AU(p) for any U ∈ U(n);

Theorem [V.M., D.Pastorello 2014]

O : A 7→ fA satis�es O1) - O4) ⇐⇒ fA is a frame function
fA(p) = k tr(Ap) + c tr(A)

with c ∈ R and k + nc 6= 0.
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Geometric Hamiltonian QM

O : A 7→ fA satis�es O1) - O4) ⇒ fA(p) = k tr(Ap) + c tr(A)

Sketch of proof:

O3) If A ∈ iu(n) then XfA is well-de�ned: ωp(XfA , uB) = dfAp(uB)
for p ∈ P(Hn) and uB = −i [B, p] ∈ TpP(Hn).

ktr(A(−i [B, p])) = dfAp(−i [B, p])

Let q = q(s) ∈ P(Hn) be a curve s.t. q(s0) = p , q̇(s0) = −i [B, p]:

d

ds
fA(q(s)) = ktr

(
A
dq

ds

)
⇒ fA(p) = ktr(Ap) + cA

O2) O is linear ⇒ A 7→ cA is linear, thus ∃C ∈ iu(n) s.t.
tr(CA) = cA.

O4) U(n)-covariance of O ⇒ C = cI c ∈ R
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Geometric Hamiltonian QM

Physical requirements on S : D(Hn) 3 σ 7→ ρσ

S1) ρσ ≥ 0 for every σ ∈ D(Hn);
S2) S is convex-linear;
S3) ρσ ∈ L2(P(H), νn) (and thus ρσ ∈ L1) and∫

P(H)
ρσdνn = 1;

S4) ρσ(UpU−1) = ρU−1σU(p)
S5) If A ∈ iu(n) and fA = O(A) then:

tr(Aσ) =

∫
P(Hn)

fAρσdνn
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Geometric Hamiltonian QM

Theorem [V.M., D.Pastorello 2014]

S : σ 7→ ρσ satis�es S2) - S5) ⇐⇒ ρσ(p) = k ′tr(Ap) + c ′

with k ′ =
n(n + 1)

k
, c ′ =

k − (n + 1)

k
, c =

1− k

n
.

S1) holds i� k ∈ [n + 1,+∞).
k is the only degree of freedom of the construction.

The proof relies on this key result [V.M., D.Pastorello 2014]

Consider G : D(Hn) 3 σ 7→ fσ where fσ : P(Hn)→ C.
Proposition: If G is U(n)-covariant [i.e. fσ(UpU−1) = fUσU−1(p)]
and convex-linear then:

G(D(Hn)) ⊂ F2(Hn),

where F2(H) =
{
f ∈ L2(P(H), νn)|f is a frame function

}
.
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Geometric Hamiltonian QM

Physical requirements on S : D(Hn) 3 σ 7→ ρσ

S2) S is convex-linear and S4) ρσ(UpU−1) = ρU−1σU(p)

imply ρσ is a L2-frame function!
⇒ ∃T ∈ iu∗(n) s.t. ρσ(p) = tr(Tp) and

∫
ρσdνn = n−1tr(T ).

S3)
∫
ρσdνn = 1 ⇒ tr(T ) = n

S5) tr(σA) =
∫
tr(Tp)fAdνn with fA(p) = ktr(Ap) + ctr(A).

⇒ T = k ′σ + c ′I

ρσ(p) = tr(Tp) = k ′tr(σp) + c ′.
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Translation of a Quantum theory into a Classical-like theory

* From quantum observables to classical-like observables:

fA(p) = k tr(Ap)− 1− k

n
tr(A)

* From denisty matrices to Liouville densities (positive i�

k ∈ [n + 1,∞):

ρσ(p) =
n(n + 1)

k
tr(σp) +

k − (n + 1)

k

Characterization of classical-like observables
f : P(Hn)→ R in L2(P(Hn), νn)) satis�es f = O(A) for some
A ∈ iu(n)) i�∫

P(Hn)
ρp0 fdνn = αf (p0) + β ∀pure states p0.
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C*-algebra of classical-like observables

O : iu(n) 3 A 7→ fA linear extension O : B(H)→ F2(H)

F2(H) =
{
f ∈ L2(P(H), νn)|f is a frame function

}
F2(H) as C*-algebra of observables

-) Involution: A = O(f ), A∗ = O(f );
-) ? - product: f ? g = O

(
O−1(f )O−1(g)

)
:

f ? g =
i

2
{f , g}PB +

1

2
G (df , dg) + fg k = 1

(more complicated form for k 6= 1)
-) Norm: |||f ||| =‖ O−1(f ) ‖

|||f ||| =
1

k

∣∣∣∣∣
∣∣∣∣∣f − 1− k

n

∫
P(H)

f dνn

∣∣∣∣∣
∣∣∣∣∣
∞

k > 0
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Re-quantization of classical-like picture

Observable algebra: F2(H).

Inverse of the map O : iu(n) 3 A 7→ fA ∈ F2(H)

De�ne O : P(H)→ B(H) s.t.

O(p) :=
n + 1

k
p −

(
n + 1− k

kn

)
I.

If f : P(H)→ R belongs to the image of O, the associated
operator is

A =

∫
P(H)

f (p)O(p)dν(p).

The integral is computed in weak sense. For k = n + 1:
A =

∫
f (p)pdν.
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Some conclusions and open issues
• Square-integrable frame functions on projective (�nite
dimensonal) Hilbert space are an interesting tool to
characterize quantum objects (both states and observables) as
scalar functions.

• Finite-dimensional QM can be formulated as a proper
Hamiltonian in the complex projective space with its Kähler
structure. The formulation concerns both observables and
states. Maps associating quantum objects to classical like
objects �nxed. Positivity issue completely clari�ed.

• Open issue 1. Description of composite �neite -dimensional
quantum systems within this geometric Hamiltonian
framework (cartesian product vs tensor product, D.Pastorello,
arXiv:1408.1839, in print. )

• Open issue 2. Infnite dimensional case, there is no unitarily

invariant measure on the projective space (work in progress
with S. Mazzucchi and D. Pastorello).
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Thank you for your attention!
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