Frame functions in finite-dimensional Quantum Mechanics and its Hamiltonian formulation on complex projective spaces

Valter Moretti

Department of Mathematics, University of Trento and INFN

SISSA, February 12, 2015

V.M. D. Pastorello, *Ann. Henri Poincaré 14 (2013),1435-1443* V.M. D. Pastorello, arXiv:1311.1720

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM Conclusions and
0	00	00
00	000	0000000
		00

Summary

ション ふゆ く 山 マ チャット しょうくしゃ

Classical (Hamiltonian) Mechanics

Hamiltonian formulation Classical states as probability Borel measures

Quantum States and Frame functions

Quantum states as measures Frame functions

Geometric Hamiltonian QM

Projective space as phase space Geometric Hamiltonian QM (finite dimension) C*-algebra of classical-like observables

Conclusions and open issues

Classical (Hamiltonian) Mechanics

Phase space

Classical system with *n* spatial degrees of freedom: Described in a 2n-dimensional symplectic manifold (\mathcal{M}, ω) .

Sharp state $(q^1, ..., q^n, p_1, ..., p_n) \equiv s \in \mathcal{M}$

Dynamics

 $\mathbb{R} \ni t \mapsto s(t) \in \mathcal{M}$ satisfying Hamilton equations:

$$\frac{ds}{dt} = X_H(s(t))$$

ション ふゆ く 山 マ チャット しょうくしゃ

 $H : \mathcal{M} \to \mathbb{R}$ is the Hamiltonian function. X_H is the Hamiltonian vector field: $\omega_s(X_H, \cdot) = dH_s(\cdot)$

Classical states as probability measures

Statistical description (incomplete knowlwdge) \Longrightarrow Statistical state: $\rho : \mathbb{R} \times \mathcal{M} \rightarrow [0, +\infty)$ with $\int_{\mathcal{M}} \rho d\mu = 1$

Dynamics

$$\frac{\partial \rho}{\partial t} + \{\rho, H\}_{PB} = 0$$

Expecation values

Physical quantity $f:\mathcal{M}
ightarrow \mathbb{R}$, Liouville (symplectic) volume form μ

$$\langle f \rangle_{
ho} = \int_{\mathcal{M}} f(s) \rho(t,s) d\mu(s)$$

Borel probability measure $\nu_{\rho_t} : \mathcal{B}(\mathcal{M}) \to [0, 1], \quad \nu_{\rho_t}(E) := \int_E \rho_t d\mu$

ション ふゆ アメリア メリア しょうくの

Classical states as probability measures

Propositions in Classical Mechanics

Elementary propositions (at fixed time t) on the system represented by the σ -boolean lattice $\mathcal{B}(\mathcal{M})$ of Borel subsets of \mathcal{M} . Logical connectives \cup, \cap, \subset . Tautology \mathcal{M} , contradiction \emptyset

 $A: \mathcal{M} \to \mathbb{R}$ (continuous) physical quantity \Longrightarrow $P_A := A^{-1}([a, b]) \in \mathcal{B}(\mathcal{M})$: «The value of the A, measured at time t, belongs to $[a, b] \subset \mathbb{R}$ »

State ho (at t) probability measure on $\mathfrak{B}(\mathfrak{M})$: $u_{
ho_t}(P) := \int_P
ho_t d\mu$

Propositions in Quantum Mechanics?

(elementary) incompatible observables, P, Q cannot be simultaneously measured \implies e.g. $P \cap Q$ makes no sense \implies No Boolean structure admissible

States as measures in Quantum Theories

von Neumann assumptions for QM in Hilbert space

"Quantum system associated with corresponding complex Hilbert space \mathcal{H} s.t. Quantum propositions are orthogonal projectors on \mathcal{H} and compatible propositions are commuting projectors \implies non-Boolean lattice (standard logic for commuting proj.s) \implies Observable = collection of elementary propositions labelled in $\mathcal{B}(\mathbb{R}) =$ self-adjoint operator (spectral theorem)

Quantum state μ as generalized probability measures $\mu : \mathfrak{P}(\mathfrak{H}) \rightarrow [0, 1] (\mathfrak{P}(\mathfrak{H}) \text{ lattice of orthogonal projectors) s.t.}$ i) $\mu(I) = 1$; ii) If $\{P_i\}_{i \in \mathbb{N}} \subset \mathfrak{P}(\mathfrak{H})$ with $P_i P_j = 0$ for $i \neq j$ then:

$$\mu\left(s-\sum_{i}P_{i}\right)=\sum_{i}\mu(P_{i})$$

States as measures in Quantum Theories

Theorem [Gleason 1957]

If dim $\mathcal{H} > 2$ separable and $\mu : \mathfrak{P}(\mathcal{H}) \to [0, 1]$ is a state, $\exists ! \sigma \in \mathfrak{B}(\mathcal{H}) \text{ s.t.}:$ i) $\sigma \geq 0$; ii) $\sigma \in \mathfrak{B}_1(\mathcal{H})$ (σ is trace-class) with $tr(\sigma) = 1$; iii) $\mu(P) = tr(\sigma P)$ for every $P \in \mathfrak{P}(\mathcal{H})$ ($\sigma \in \mathfrak{B}(\mathcal{H})$ satisfying i) and ii) defines a state $\mu(P) = tr(\sigma P)$).

Density matrices

$$\mathfrak{D}(\mathfrak{H}) = \{\sigma \in \mathfrak{B}_1(\mathfrak{H}) | \sigma \geq \mathsf{0}, tr(\sigma) = 1\}$$

- * $\mathfrak{D}(\mathcal{H})$ is closed and convex in $\mathfrak{B}_1(\mathcal{H})$.
- * extremal points said **pure states**: $|\psi\rangle\langle\psi|$ with $\psi\in \mathfrak{H}$, $\|\psi\|=1$.
- * convex combinations of pure states exhaust $\mathfrak{D}(\mathcal{H})$ (strong top.)

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM Conclusions and
0	00	00
00	000	0000000
		00

Frame functions

$$\mathbb{S}(\mathcal{H}) = \{\psi \in \mathcal{H} : \parallel \psi \parallel = 1\}, \ \mathcal{H} \ \mathsf{separable}$$

 $f: \mathbb{S}(\mathcal{H}) \to \mathbb{C}$ is a frame function if $\exists W_f \in \mathbb{C}$ s.t.

$$\sum_{\psi\in oldsymbol{N}}f(\psi)=W_{f}\qquad orall N$$
 orthonormal basis of $\mathcal H.$

Quantum states $\mu : \mathfrak{P}(\mathcal{H}) \to [0, 1]$ define real bounded frame functions: $f_{\mu}(\psi) := \mu(p_{\psi}) \in [0, 1]$ $p_{\psi} = |\psi\rangle\langle\psi|$

$$W_{f_{\mu}} = \sum_{\psi \in N} f_{\mu}(\psi) = \sum_{\psi \in N} \mu(p_{\psi}) = \mu\left(\sum_{\psi \in N} p_{\psi}\right) = \mu(I) = 1$$

Core of Gleason theorem: \forall real bounded frame function $f \exists$ a self-adjoint trace class operator A s.t. $f(\psi) = \langle \psi | A \psi \rangle$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM Conclusions and
0	00	00
00	000	0000000
		00

Frame functions

$$2 < \dim \mathfrak{H}_n = n < +\infty, \, \mathbb{S}(\mathfrak{H}) = \mathbb{S}^{2n-1}$$

$$\mathcal{L}^{2}(\mathbb{S}^{2n-1},\nu_{n}') = \left\{ f: \mathbb{S}^{2n-1} \to \mathbb{C} \mid \int_{\mathbb{S}^{2n-1}} \overline{f(x)} f(x) d\nu_{n}'(x) < +\infty \right\}$$

$$\begin{split} \nu'_n &: \mathcal{B}(\mathbb{S}^{2n-1}) \to [0,1] \text{ is the unique regular Borel measure s.t.}:\\ i) &\nu'_n(\mathbb{S}^{2n-1}) = 1;\\ ii) &\nu'_n(UE) = \nu_n(E) \quad \forall U \in U(n), \forall E \in \mathcal{B}(\mathbb{S}^{2n-1}).\\ \nu_n \text{ is obtained from the Haar measure on } U(n). \end{split}$$

Theorem [V.M., D.Pastorello Ann.Henri Poincaré 2013] Let \mathcal{H} be a Hilbert space with $2 < \dim \mathcal{H}_n < +\infty$. For every frame function $f \in \mathcal{L}^2(\mathbb{S}^{2n-1}, \nu'_n)$, $\exists ! A \in \mathfrak{B}(\mathcal{H})$ s.t.: $f(\psi) = \langle \psi | A \psi \rangle \quad \forall \psi \in \mathbb{S}^{2n-1}$

 \implies extension to $n = +\infty$ alternative form. of Gleason theorem

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM Conclusions and
0	00	00
00	000	0000000
		00

Proof essentially based on Peter-Weyl theorem and Harmonic analysis on U(n).

$$\mathcal{L}^{2}(\mathbb{S}^{2n-1}, d\nu_{n}) = \bigoplus_{p,q=0}^{\infty} \mathcal{H}^{n}_{(p,q)}$$

Decomposition into orthogonal U(n)-invariant and irreducible subspaces. The elements of $\mathcal{H}^n_{(p,q)}$, called **generalized spherical** harmonics of order j = (p, q), are restrictions of homogeneous complex polynomials $h(z_1, ..., z_n)$ s.t.: i) $h(\alpha z_1, ..., \alpha z_n) = \alpha^p \overline{\alpha}^q h(z_1, ..., z_n)$ for any $\alpha \in \mathbb{C}$ ii) $\Delta h(z_1, ..., z_n) = 0$ in \mathbb{R}^{2n} If $f \in \mathcal{L}^2(\mathbb{S}^{2n-1}, \nu_n)$ is a frame function, then (via theory of zonal spherical harmonics) $f \in \mathcal{H}^n_{(0,0)} \oplus \mathcal{H}^n_{(1,1)} \Longrightarrow f(\cdot) = \langle \cdot | A \cdot \rangle$.

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	•0	
00	000	000000	
		00	

Projective space as phase space $\mathcal{P}(\mathcal{H}_n) = \frac{U(n)}{U(n-1)U(1)}$ projective space of \mathcal{H}_n . ν_n unique normalized U(n) invariant regular Borel mesure on $\mathcal{P}(\mathcal{H}_n)$. A frame function $f : \mathbb{S}(\mathcal{H}_n) \to \mathbb{C}$ is well-defined as functin on $\mathcal{P}(\mathcal{H}_n)$

$$f(\psi) = \langle \psi | A \psi \rangle = tr(A p_{\psi}) =: f(p_{\psi}) \quad p_{\psi} \in \mathcal{P}(\mathcal{H}_n)$$

Moreover

$$f \in \mathcal{L}^{2}(\mathfrak{P}(\mathfrak{H}_{n}), \nu_{n}) \text{ iff } f \in \mathcal{L}^{2}(\mathbb{S}(\mathfrak{H}_{n}), \nu'_{n})$$

Geometry of $\mathcal{P}(\mathcal{H}_n)$

 $\mathcal{P}(\mathcal{H}_n)$ real smooth (2n-2)-dimensional manifold. Tangent vectors at $p \in \mathcal{P}(\mathcal{H}_n)$:

$$v = -i[A_v, p] \in T_p \mathcal{P}(\mathcal{H}_n)$$
 for some $A_v \in i\mathfrak{u}(n)$,

 $\mathfrak{u}(n)$ is the Lie algebra of U(n).

(日)、(型)、(E)、(E)、(E)、(O)へ(C)

Projective space as phase space

Well known Kähler structure on $\mathcal{P}(\mathcal{H}_n)$

- -) Symplectic form : $\omega_p(u,v) := -ik \ tr \left(p[A_u,A_v] \right)$ k > 0
- -) Fubini-Study metric:

$$g_{p}(u,v) = -ktr(p([A_{u},p][A_{v},p] + [A_{v},p][A_{u},p]))$$

-) Almost complex form:

$$j_{p}: T_{p}\mathcal{P}(\mathcal{H}_{n}) \ni v \mapsto i[v, p] \in T_{p}\mathcal{P}(\mathcal{H}_{n})$$
$$p \mapsto j_{p} \text{ smooth, } j_{p}j_{p} = -id \text{ and } \omega_{p}(u, v) = g_{p}(u, j_{p}v).$$

 $(\mathcal{P}(\mathcal{H}_n), \omega, g, j)$ is a Kähler manifold

Essentially known with various approaches Correspondence *quantum observables* – *classical-like observables*:

$$\mathcal{O}(\mathcal{H}_n): i\mathfrak{u}(n) \ni A \quad \longmapsto \quad f_A: \mathcal{P}(\mathcal{H}_n) \to \mathbb{R}, \quad \text{s.t.}$$

Schrödinger dynamics due to H equivalent to the flow of X_{f_H} .

Kibble ('79), Ashtekar Schilling ('95), Brody-Hughston (2001) Open issues

Correspondence quantum states – Liouville densities on $\mathcal{P}(\mathcal{H}_n)$

$$\mathbb{S}:\mathfrak{D}(\mathcal{H}_n)\ni\sigma\quad\longmapsto\quad\rho_{\sigma}:\mathcal{P}(\mathcal{H}_n)\to[0,+\infty)\quad s.t.$$

$$\int_{\mathcal{P}(\mathcal{H})} \rho_{\sigma} d\nu_n = 1 \quad \text{and} \quad \langle A \rangle_{\sigma} = tr(A\sigma) = \int_{\mathcal{P}(\mathcal{H})} f_A \rho_{\sigma} d\nu_n$$

Gibbons ('92) (partially negative result)

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	00	
00	000	000000	
		00	

Physical requirements on $\mathcal{O}: i\mathfrak{u}(n) \ni A \mapsto f_A$

01) O is injective;

O2) \mathcal{O} is \mathbb{R} -linear;

O3) If $H \in i\mathfrak{u}(n)$ then $\mathfrak{O}(H) = f_H \in C^1(\mathfrak{P}(\mathfrak{H}_n))$ and X_{f_H} can be defined with

$$\dot{p}(t) = X_{f_H}(p(t)) \iff \dot{p}(t) = -i[H,p]$$

O4) U(n)-covariance: $f_A(UpU^{-1}) = f_{U^{-1}AU}(p)$ for any $U \in U(n)$;

Theorem [V.M., D.Pastorello 2014]

$$0: A \mapsto f_A \text{ satisfies } O1) - O4) \iff f_A \text{ is a frame function}$$

 $f_A(p) = k tr(Ap) + c tr(A)$

with $c \in \mathbb{R}$ and $k + nc \neq 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	00	
00	000	000000	
		00	

 $0: A \mapsto f_A \text{ satisfies } 01) - 04) \Rightarrow f_A(p) = k tr(Ap) + c tr(A)$ Sketch of proof:

O3) If $A \in i\mathfrak{u}(n)$ then X_{f_A} is well-defined: $\omega_p(X_{f_A}, u_B) = df_{Ap}(u_B)$ for $p \in \mathcal{P}(\mathcal{H}_n)$ and $u_B = -i[B, p] \in T_p\mathcal{P}(\mathcal{H}_n)$.

$$ktr(A(-i[B,p])) = df_{Ap}(-i[B,p])$$

Let $q=q(s)\in \mathfrak{P}(\mathfrak{H}_n)$ be a curve s.t. $q(s_0)=p\,,\,\dot{q}(s_0)=-i[B,p]$:

$$\frac{d}{ds}f_A(q(s)) = ktr\left(A\frac{dq}{ds}\right) \Rightarrow f_A(p) = ktr(Ap) + c_A$$

ション ふゆ く 山 マ ふ し マ うくの

O2) \bigcirc is linear $\Rightarrow A \mapsto c_A$ is linear, thus $\exists C \in i\mathfrak{u}(n)$ s.t. $tr(CA) = c_A$. O4) U(n)-covariance of $\bigcirc \Rightarrow C = c\mathbb{I} \ c \in \mathbb{R}$

Physical requirements on $\mathcal{S}: \mathfrak{D}(\mathcal{H}_n) \ni \sigma \mapsto \rho_{\sigma}$

S1) $\rho_{\sigma} \geq 0$ for every $\sigma \in \mathfrak{D}(\mathcal{H}_{n})$; S2) S is convex-linear; S3) $\rho_{\sigma} \in \mathcal{L}^{2}(\mathcal{P}(\mathcal{H}), \nu_{n})$ (and thus $\rho_{\sigma} \in \mathcal{L}^{1}$) and

$$\int_{\mathcal{P}(\mathcal{H})}
ho_{\sigma} d
u_n = 1;$$

S4) $\rho_{\sigma}(UpU^{-1}) = \rho_{U^{-1}\sigma U}(p)$ S5) If $A \in i\mathfrak{u}(n)$ and $f_A = \mathfrak{O}(A)$ then:

$$tr(A\sigma) = \int_{\mathcal{P}(\mathcal{H}_n)} f_A \rho_\sigma d\nu_n$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 - のへで

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	00	
00	000	0000000	
		00	

Theorem [V.M., D.Pastorello 2014]

 $S: \sigma \mapsto
ho_{\sigma} \text{ satisfies S2} - S5) \iff
ho_{\sigma}(p) = k' tr(Ap) + c'$

with
$$k' = \frac{n(n+1)}{k}$$
, $c' = \frac{k - (n+1)}{k}$, $c = \frac{1-k}{n}$

S1) holds iff $k \in [n + 1, +\infty)$. k is the only degree of freedom of the construction.

The proof relies on this key result [V.M., D.Pastorello 2014] Consider $\mathfrak{G} : \mathfrak{D}(\mathcal{H}_n) \ni \sigma \mapsto f_{\sigma}$ where $f_{\sigma} : \mathfrak{P}(\mathcal{H}_n) \to \mathbb{C}$. **Proposition:** If \mathfrak{G} is U(n)-covariant [i.e. $f_{\sigma}(UpU^{-1}) = f_{U\sigma U^{-1}}(p)$] and convex-linear then:

$$\mathfrak{G}(\mathfrak{D}(\mathfrak{H}_n)) \subset \mathfrak{F}^2(\mathfrak{H}_n),$$

where $\mathfrak{F}^{2}(\mathfrak{H}) = \left\{ f \in \mathcal{L}^{2}(\mathfrak{P}(\mathfrak{H}), \nu_{n}) | f \text{ is a frame function} \right\}$.

Physical requirements on $\mathcal{S}: \mathfrak{D}(\mathcal{H}_n) \ni \sigma \mapsto \rho_{\sigma}$

S2) S is convex-linear and S4) $\rho_{\sigma}(UpU^{-1}) = \rho_{U^{-1}\sigma U}(p)$ imply ρ_{σ} is a \mathcal{L}^2 -frame function! $\Rightarrow \exists T \in i\mathfrak{u}^*(n) \text{ s.t. } \rho_{\sigma}(p) = tr(Tp) \text{ and } \int \rho_{\sigma} d\nu_n = n^{-1}tr(T).$ S3) $\int \rho_{\sigma} d\nu_n = 1 \Rightarrow tr(T) = n$ S5) $tr(\sigma A) = \int tr(Tp)f_A d\nu_n$ with $f_A(p) = ktr(Ap) + ctr(A).$ $\Rightarrow T = k'\sigma + c'I$

$$\rho_{\sigma}(p) = tr(Tp) = k'tr(\sigma p) + c'.$$

Classical (Hamiltonian) Mechanics Quantum States and Frame functions Geometric Hamiltonian QM Conclusions and

Translation of a Quantum theory into a Classical-like theory * From *quantum observables* to *classical-like observables*:

$$f_A(p) = k tr(Ap) - \frac{1-k}{n} tr(A)$$

* From denisty matrices to Liouville densities (positive iff $k \in [n + 1, \infty)$:

$$\rho_{\sigma}(p) = \frac{n(n+1)}{k} tr(\sigma p) + \frac{k - (n+1)}{k}$$

Characterization of classical-like observables $f : \mathcal{P}(\mathcal{H}_n) \to \mathbb{R}$ in $\mathcal{L}^2(\mathcal{P}(\mathcal{H}_n), \nu_n)$) satisfies $f = \mathcal{O}(A)$ for some $A \in i\mathfrak{u}(n)$) iff

$$\int_{\mathcal{P}(\mathcal{H}_n)} \rho_{p_0} f d\nu_n = \alpha f(p_0) + \beta \qquad \forall \text{pure states } p_0.$$

= 900

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	00	
00	000	000000	
		•0	

C*-algebra of classical-like observables

 $\begin{aligned} \mathbb{O} : i\mathfrak{u}(n) \ni A \mapsto f_A & \text{linear extension} & \mathbb{O} : \mathfrak{B}(\mathcal{H}) \to \mathfrak{F}^2(\mathcal{H}) \\ \mathbb{F}^2(\mathcal{H}) = \left\{ f \in \mathcal{L}^2(\mathfrak{P}(\mathcal{H}), \nu_n) | f \text{ is a frame function} \right\} \end{aligned}$

 $\mathcal{F}^2(\mathcal{H})$ as C*-algebra of observables

-) Involution:
$$A = \mathcal{O}(f), A^* = \mathcal{O}(\overline{f});$$

-) \star - product: $f \star g = \mathcal{O}\left(\mathcal{O}^{-1}(f)\mathcal{O}^{-1}(g)\right)$:

$$f \star g = \frac{1}{2} \{f, g\}_{PB} + \frac{1}{2} G(df, dg) + fg \qquad k =$$

(more complicated form for $k \neq 1$) -) Norm: $|||f||| = || \mathbb{O}^{-1}(f) ||$

$$|||f||| = \frac{1}{k} \left\| f - \frac{1-k}{n} \int_{\mathcal{P}(\mathcal{H})} f \, d\nu_n \right\|_{\infty} \qquad k > 0$$

Re-quantization of classical-like picture

Observable algebra: $\mathcal{F}^{2}(\mathcal{H})$.

Inverse of the map $\mathfrak{O} : i\mathfrak{u}(n) \ni A \mapsto f_A \in \mathfrak{F}^2(\mathfrak{H})$ Define $\mathfrak{O} : \mathfrak{P}(\mathfrak{H}) \to \mathfrak{B}(\mathfrak{H})$ s.t.

$$\mathfrak{O}(p) := rac{n+1}{k} p - \left(rac{n+1-k}{kn}
ight) \mathbb{I}$$

If $f: \mathcal{P}(\mathcal{H}) \to \mathbb{R}$ belongs to the image of \mathcal{O} , the associated operator is

$$A = \int_{\mathfrak{P}(\mathfrak{H})} f(p)\mathfrak{O}(p)d\nu(p).$$

The integral is computed in weak sense. For k = n + 1: $A = \int f(p)pd\nu$.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Classical (Hamiltonian) Mechanics Quantum States and Frame functions Geometric Hamiltonian QM Conclusions and

Some conclusions and open issues

- Square-integrable frame functions on projective (finite dimensonal) Hilbert space are an interesting tool to characterize quantum objects (both states and observables) as scalar functions.
- Finite-dimensional QM can be formulated as a proper Hamiltonian in the complex projective space with its Kähler structure. The formulation concerns both observables and states. Maps associating quantum objects to classical like objects finxed. Positivity issue completely clarified.
- **Open issue 1**. Description of composite fineite -dimensional quantum systems within this geometric Hamiltonian framework (cartesian product vs tensor product, D.Pastorello, arXiv:1408.1839, in print.)
- Open issue 2. Infnite dimensional case, there is no unitarily invariant measure on the projective space (work in progress with S. Mazzucchi and D. Pastorello).

Classical (Hamiltonian) Mechanics	Quantum States and Frame functions	Geometric Hamiltonian QM	Conclusions and
0	00	00	
00	000	0000000	

Thank you for your attention!

(□) (@) (E) (E) [E]