
Classical self-adjoint extension schemes,

modern applications, and open problems.

Alessandro Michelangeli

Presentation given on 13/12/2022

at the Mathematical Institute

of the Silesian University in Opava



Start with a very, very classical question in modern mathematics

(stemming from PDE theory, operator and spectral theory, stochastic

equations theory, moment problems, theory of orthogonal polynomials,

number theory, ....)

and also in modern physics

(ergodic theory, quantum mechanics, quantum field theory, ....)

which has very, very classical and complete answers



Consider an (infinite-dim) Hilbert space H on C

scalar product: 〈·, ·〉 (anti-linear in the first entry),
norm: ‖ · ‖,

and consider a densely defined symmetric operator S acting in H,

i.e.,

à domain ≡ D(S) is a dense linear subspace of H,
à S : D(S) ⊂ H → H is a linear operator with real expectations

〈ψ, Sψ〉 ∈ R ∀ψ ∈ D(S)

equivalently (by polarisation),

〈ψ1, Sψ2〉 = 〈Sψ1, ψ2〉 ∀ψ1, ψ2 ∈ D(S)

(non-trivial case in the following: when S is unbounded)



problem:

¬ to find conditions under which S does or does not admit

self-adjoint extensions

­ in the affirmative, to identify all self-adjoint extensions of S

Recall: a linear operator S on H is self-adjoint when S = S∗

where S∗ ≡ the Hilbert adjoint of S, i.e.,

D(S∗) = {φ ∈ H | ∃ ξφ ∈ H with 〈ξφ, ψ〉 = 〈φ, Sψ〉 ∀ψ ∈ D(S)} ,
S∗φ = ξφ .



.

Symmetry is less than self-adjointness:

if S is densely defined and symmetric, then

S ⊂ S∗ , i.e.,

D(S) ⊂ D(S∗) ,

Sψ = S∗ψ ∀ψ ∈ D(S) .

Example:

à On H = L2(0,1), the operator

D(S) = C∞c (0,1)

Sf = −if ′

is symmetric, but not self-adjoint;

à the adjoint of S is

D(S∗) = H1(0,1)

S∗g = −ig′ ;

à for any θ ∈ [0,2π), the operator


D(Sθ) =

g ∈ H1(0,1) s.t.

g(1) = eiθg(0)


Sθ g = −ig′

is self-adjoint, and in fact is a self-adjoint extension of S:

S ⊂ Sθ ⊂ S∗ .



The self-adjoint extension problem has very complete, classical

answers.

It was fully understood first by von Neumann in 1928-1930

Together with precursors by [Cayley, 1846] and [Weyl, 1910],

additional results by [Calkin, 1940] and [Krasnosel’skĭı and Krĕın,

1947], and re-visitations by [Dunford and Schwartz, 1958],

it constitutes von Neumann’s theory of self-adjoint extensions.



VON NEUMANN’S EXTENSION THEORY:

¬ A densely defined and symmetric operator S on H admits
self-adjoint extensions if and only if the two cardinal numbers

d−(S) := dim ker (S∗ − z1) , d+(S) := dim ker (S∗ − z1)

are equal for one, hence for all z ∈ C+.
d±(S) → the “deficiency indices” of S,
ker (S∗ − z1), ker (S∗ − z1) → the “deficiency spaces” of S.

• If d−(S) = d+(S) = 0, then S, the operator closure of S, is
self-adjoint, and is the only self-adjoint extension of S. It satisfies

S = S∗ ,

in which case S is said to be essentially self-adjoint.

• If d−(S) = d+(S) > 1, then S is not self-adjoint (nor is S), and
S admits an infinite multiplicity of distinct self-adjoint extensions.



A quick detour: the operator closure.

A densely defined and symmetric operator S on H is always closable,

i.e., it admits closed extensions. In particular, the operator

D(S) :=

{
ψ ∈ H

∣∣∣∣∣ ∃ (ψn)n∈N ⊂ D(S) such that ψn
n→∞−−−−→ ψ

and (Sψn)n∈N converges in H

}
,

Sψ := lim
n→∞Sψn

exists, and is called operator closure of S.

S is a closed operator, it extends S, i.e., S ⊂ S, and it is

the smallest closed extension (in the sense of domain) of S.

Moreover, S = S∗∗.

Recall: an operator T in H is closed when its graph

Γ(T ) := {(ψ, Tψ) ∈ H⊕H} is a closed subspace of H⊕H .

If D(T ) is dense in H, then T ∗ is always closed.

⇒ Self-adjoint operators are closed.



VON NEUMANN’S EXTENSION THEORY – CONT.

­ For a densely defined and symmetric operator S on H for

which d+(S) = d−(S), and for fixed z ∈ C+, there is a one-to-one

correspondence
self-adjoint
extensions
SU of S

 1:1←→
{

unitary maps

U : ker (S∗ − z1)
∼=−→ ker (S∗ − z1)

}
.

Each self-adjoint extension SU is of the form SU = S∗ � D(SU) with

D(SU) := D(S) u (1− U) ker (S∗ − z1)

=

{
g = f + v− − Uv−

∣∣∣∣∣ f ∈ D(S)
v− ∈ ker (S∗ − z1)

}
.

Thus,

SU
(
f + v− − Uv−

)
= S f + z v− − z Uv− .



.

Previous example continued (on H = L2(0,1)):

We picked

D(S) = C∞c (0,1)

Sf = −if ′
whose adjoint is

D(S∗) = H1(0,1)

S∗g = −ig′ .

Fix z = i (for concreteness).

• Deficiency spaces: K± := ker(S∗ ∓ i1) = span{ e∓x }
(indeed, e.g. for K+ case: −ig′ = ig is solved by g = c e−x, c ∈ C).

• Thus, deficiency indices d−(S) = d+(S) = 1.

⇒ S not essentially self-adj. and admits self-adjoint extensions.

• Generic unitary U : K+
∼=−→ K− is

√
2 e√
e2−1

e−x 7−→ eiα
√

2√
e2−1

ex

for some α ∈ [0,2π)

⇒ D(SU) =

g = f + c

√
2 e√

e2 − 1
e−x − eiα c

√
2√

e2 − 1
ex
∣∣∣∣∣ f ∈ D(S)
c ∈ C

 .



Re-write D(SU) conveniently:

D(SU) 3 g = f + c

√
2 e√

e2 − 1
e−x − eiα c

√
2√

e2 − 1
ex

⇓

g(0) =
e c
√

2√
e2 − 1

− eiα c
√

2√
e2 − 1

, g(1) =
c
√

2√
e2 − 1

− eiα c e
√

2√
e2 − 1

⇓

g(1)

g(0)
=

1− eiα e

e− eiα
⇒

∣∣∣∣g(1)

g(0)

∣∣∣∣ = 1 ⇒
g(1)

g(0)
= eiθ , θ ∈ [0,2π)

Therefore, (Sθ)θ∈[0,2π) with


D(Sθ) =

g ∈ H1(0,1) s.t.

g(1) = eiθg(0)


Sθ g = −ig′

is the family of all self-adjoint extensions of S.



VON NEUMANN’S EXTENSION THEORY – RECAP

A densely defined an symmetric S on H admits self-adjoint exten-
sions ⇔ S has equal deficiency indices, i.e.,

dim ker(S∗ − z1) = dim ker(S∗ − z1) , z ∈ C+ ,

in which case the self-adjoint extensions of S
are in one-to-one correspondence SU ↔ U

with the unitaries U : ker (S∗ − z1)
∼=−→ ker (S∗ − z1) via

D(SU) := D(S) u (1− U) ker (S∗ − z1)

=

{
g = f + v− − Uv−

∣∣∣∣∣ f ∈ D(S)
v− ∈ ker (S∗ − z1)

}

SU
(
f + v− − Uv−

)
:= S f + z v− − z Uv− .



In the two decades after [von Neumann, 1928-1930] the main focus

of self-adjoint extension theory was on the class of densely defined

and symmetric operators that are (lower) semi-bounded, i.e., with

m(S) := inf
ψ∈D(S)
ψ 6=0

〈ψ, Sψ〉
‖ψ‖2

> −∞ .

(→ crucial relevance of such operators in quantum mechanics).

[von Neumann, 1928-1930] conjectured the existence of an extension

of such S with precisely the same largest lower bound m(S),

showing that there are extensions with lower bound m(S)−ε ∀ ε > 0

[Stone, 1932]: existence of self-adjoint extension(s) with same m(S)

[Friedrichs, 1934] (and in much simplified form [Freudenthal, 1936]):

explicit construction of a s.a. extension SF of S with m(SF) = m(S)

→ the ‘Friedrichs extension’



The FRIEDRICHS EXTENSION
Inherently a quadratic form construction.

Let S be densely defined and symmetric, with m(S) > −∞.
Then, the completion of D(S) w.r.t. the norm

ψ 7→
√
〈ψ, Sψ〉+ (1− m(S))‖ψ‖2 (> ‖ψ‖ )

is a subspace D[S] ⊂ H, and it is non-ambiguous to set, ∀ψ,ϕ ∈ D[S],

S[ψ,ϕ] := lim
n→∞〈ψn, Sϕn〉 , S[ψ] := S[ψ,ψ]

irrespectively on the approximants D(S) 3 ψn → ψ, D(S) 3 ϕn → ϕ.

The quadratic form (S[·],D[S]) is lower semi-bounded and closed
⇒ there exists a unique self-adjoint operator (SF,D(SF)) such that

S[ϕ,ψ] = 〈ϕ, SFψ〉 ∀ϕ ∈ D[S] , , ∀ψ ∈ D(SF)

By construction, 〈ϕ, SFψ〉 = 〈ϕ, Sψ〉 ∀ψ,ϕ ∈ D(S), meaning that S ⊂ SF.
SF ≡ the Friedrichs extension of S.



.

The FRIEDRICHS EXTENSION – distinguished properties:

à m(SF) = m(S)

à SF is the only self-adjoint extension of S

whose operator domain D(SF) is contained in D[S]

à For any other self-adjoint extension S̃ of S: SF > S̃

in the usual sense of expectations, i.e.,

D[SF] ⊂ D[S̃] and SF[ϕ] > S̃[ϕ] ∀ψ,ϕ ∈ D[SF] .

à S only having the self-adjoint extension SF

is equivalent to S being essentially self-adjoint (S = S
∗ = S∗)



The FRIEDRICHS EXTENSION – Two examples.

1. On H := L2(R) consider

D(S) = C∞c (R)

Sf = −f ′′ .

S is symmetric and positive, and

D(SF) = H2(R)

SFf = −f ′′ .

2. On H := L2(0,1) consider

D(S) = C∞c (0,1)

Sf = −f ′′

S is symmetric (integration by parts), with m(S) = π2, indeed:

Poincaré inequality:
∫ 1

0
|f ′(x)|2 dx > π2

∫ 1

0
|f(x)|2 dx ∀f ∈ C∞c (0,1) .

Its Friedrichs extension is


D(SF) =

f ∈ H2(0,1) with

f(0) = 0 = f(1)


SFf = −f ′′ ,

i.e., SF is the Dirichlet Laplacian.



Thus, densely defined symmetric operators S on H
that are lower semi-bounded always admit self-adjoint extensions

(they at least have the highest one, SF)

and actually ([Krasnosel’skĭı and Krĕın, 1947])

dim ker(S∗ − z1) = constant ∀z ∈ C \ [m(S),+∞)

whence indeed d−(S) = d+(S).



.

The study of the family of self-adjoint extensions of a

lower semi-bounded S was completed in three seminal works by

[Krĕın, 1946] The theory of self-adjoint extensions of semi-

bounded Hermitian transformations and its applications. I,

Rec. Math. [Mat. Sbornik] N.S., 20(62) (1947), pp. 431-49

→ limited to the case of finite d±(S)

[Vǐsik, 1952] On general boundary problems for elliptic differential equations,

Trudy Moskov. Mat. Obšc̆., 1 (1952), pp. 187-246

→ applied to elliptic boundary value problems on domain

→ focus, more gen., on closed extensions of a closed operator

[Birman, 1954] On the theory of self-adjoint extensions of positive

definite operators, Mat. Sb. N.S., 38(80) (1956), pp. 431450.

→ full generality, d−(S) = d+(S) 6 +∞

à The Krĕın-Vǐsik-Birman (KVB) self-adjoint extension theory.



(+ previous, unpublished translation by S. Albeverio in the 1970’s)



KVB EXTENSION THEORY – I

For a densely defined, lower semi-bounded (symmetric) S on H,

conventionally with m(S) > 0, there is a one-to-one correspondence


self-adjoint
extensions
ST of S

 1:1←→
{

self-adjoint operators T : D(T ) ⊂ K → K
acting in Hilbert subspaces K ⊂ ker S∗

}

with

ST := S∗ � D(ST )

D(ST ) :=

{
f + S−1

F (Tv + w) + v

∣∣∣∣∣ f ∈ D(S) , v ∈ D(T )
w ∈ ker S∗ ∩ D(T )⊥

}
.

The Friedrichs extension corresponds to the choice K = D(T ) = {0}
(i.e., “T =∞”): explicitly, D(SF) = D(S) u S−1

F ker S∗.



.

Example. On H := L2(R+) consider

D(S) = C∞c (R+)

S = − d2

dx2 + 1 .
Then:

m(S) = 1 ,

D(S∗) = H2(R+) , S∗ = −
d2

dx2
+ 1 ,

D(S) = H2
0(R+) = {f ∈ H2(R) | f(0) = f ′(0) = 0} ,

D(SF) = H2(R+) ∩H1
0(R+) = {f ∈ H2(R) | f(0) = 0} ,

ker S∗ = span{e−x} , i.e., d±(S) = 1 ,

S−1
F e−x =

1

2
x e−x .

⇒ The generic s.a. extension ST is of the form Sβ, β ∈ R, with

D(Sβ) =

{
g = f + S−1

F (β c e−x) + c e−x
∣∣∣∣∣ f ∈ H2

0(R+)
c ∈ C

}

=

{
g

∣∣∣∣∣ g(x) = f(x) + c (1
2βx+ 1) e−x

x ∈ [0,1] , f ∈ H2
0(R+) , c ∈ C

}
.

Since, for D(Sβ) 3 g, g(0) = c, g′(0) = c(1
2β − 1), can re-write

D(Sβ) = {g ∈ H2(R+) | g′(0) = (1
2β − 1)g(0)} .



KVB EXTENSION THEORY (cont.)

For the s.a. extension

ST := S∗ � D(ST )

D(ST ) :=

{
f + S−1

F (Tv + w) + v

∣∣∣∣∣ f ∈ D(S) , v ∈ D(T )
w ∈ ker S∗ ∩ D(T )⊥

}
,

à m(T ) > m(ST ) ,

à ST > O ⇔ T > O ,

à ST1
> ST2

⇔ T1 > T2 ,

à ST is injective/surjective/invertible ⇔ so is T ,

à if S−1
F is compact, then ST is lower semi-bdd ⇔ so is T .



KVB EXTENSION THEORY (cont.) – negative spectrum:

σ−(ST ) := σ(ST ) ∩ (−∞,0) ,

σ−(T ) := σ(T ) ∩ (−∞,0) .

à σ−(ST ) consists of a bounded below set of finite-rank eigenvalues
of ST whose only possible accumulation point is 0
if and only if σ−(T ) has the same property.

à When the latter is the case, and λ1 6 λ2 6 · · · < 0
and t1 6 t2 6 · · · < 0 are the ordered sequences of negative
eigenvalues (counted with multiplicity) of ST and of T , then

λk 6 tk for k = 1,2, . . .

à In particular, if d±(S) < +∞, then any s.a. extension of S has
finite (possibly empty) negative spectrum, with finite-dim EV’s.
Same for all those ST with dimD(T ) < +∞.



KVB EXTENSION THEORY (cont.) – resolvents:

For any s.a. extension ST of S such that S−1
T is everywhere defined

and bounded on H,

S−1
T = S−1

F + PT T
−1 PT (Krĕın-type formula) ,

where PT : H → H is the orthogonal projection

onto the subspace D(T ).



.

Remarks:

• von Neumann theory historically more widespread, owing to the
limited scientific exchange West/East in second half of XX century.

• KVB theory naturally extended by [Grubb, 1968] in application
to closed extensions of closed operators: the structure of the ex-
tension scheme is the very same.

• Crucial results by Krĕın beautifully revisited and reproduced by
[Ando and Nishio, 1970]

• Boundary triplets theory is a modern self-adjoint extension scheme
conceptually equivalent to and indirectly modelled on the old KVB
scheme. → Puts emphasis on the extension mechanism induced by
abstract boundary conditions expressed by certain boundary maps
that implement the abstract Green identity of the considered sym-
metric operator, much in analogy to the role of the Birman exten-
sion parameter T .
(By Arlinskĭı, Behrndt, Derkach, Hassi, Kurasov, Malamud, Sebestyén, de Snoo,

Tsekanovskĭı, initially introduced by Kočubĕı and Bruk in the mid 1970’s.)



.

VON NEUMANN vs KVB – a comparison:

vN

1. Applies to any symmetric operator.

2. Provides ‘absolute’ and ‘non-canonical’ extension classification.

3. No spectral information on SU can be a read out of U .

4. No ordering of the SU ’s in terms of the corresponding U ’s.

5. No canonical expression of resolvent of SU in terms of U .

6. No extension classification of quadratic forms (in terms of U).

KVB

1. Only applicable to (lower) semi-bounded S’s

or, more generally, to symmetric S such that ρ(S) ∩ R 6= ∅.
2. ‘Relative’, and ‘canonical’: parametrises each extension ST

in terms of the reference extension SF (which has “T =∞”).

3. Lower semi-boundedness and features of σ(ST ) below m(S)

can be read out from the (simpler!) T .

4. ST1
> ST2

⇔ T1 > T2.

5. Krĕın-type formulas for resolvent of ST in terms of T .

6. Has a natural counterpart extension scheme for quadratic forms.



Clearly, both are powerful tools.

In certain physical contexts a clever synergy of both vN and KVB is
needed: A. Michelangeli, Models of zero-range interaction for the
bosonic trimer at unitarity, Rev. Math. Phys. 33 2150010 (2021)

Both are classical and well established schemes:
• Dunford and Schwartz, Linear operators (1958)

• Reed and Simon, Methods of modern mathematical physics. II (1975)

• Weidmann, Linear operators in Hilbert space (1980)

• Schmüdgen, Unbounded self-adjoint operators on Hilbert space (2012)

A recent thorough discussion from the original sources:
M. Gallone, A. Michelangeli, A. Ottolini Kren-Viik-Birman self-
adjoint extension theory revisited, INdAM-Springer series, vol. 42,
239-304 (2020)





.
Application to Hydrogenoid atoms with ‘central perturbations’

Models for valence electron of hydrogenoid atoms

HHydr = −
~2

2me
∆−

Ze2

|x|
(on L2(R3))

further subject to a point-like perturbation supported at x = 0.

Long lasting mathematical investigation: [Zorbas, 1980], [Albeverio,

Gesztesy, Høegh-Krohn, Streit, 1983], [Bulla and Gesztesy, 1985].

Renewed physical interest in photoionisation microscopy with exci-

tation of a quasi-bound Stark state in Hydrogen atoms [Stodolna

et al, Phys. Rev. Lett. 2013]:



The point-like perturbation is supported at x = 0,
⇒ search for self-adjoint realisations of(

−
~2

2me
∆−

Ze2

|x|

)∣∣∣∣
C∞c (R3\{0})

Upon exploiting spherical symmetry, and in suitable units, problem
boils down to the search of self-adjoint extensions in L2(R+) of

S := −
d2

dr2
−
ν

r
+

ν2

4κ2
1 , D(S) := C∞0 (R+)

→ observe the shift by ν2

4κ2 so as to make m(S) > 0 (0 < κ < 1
2)

and to make it suited for the KVB extension scheme.

Self-adjoint extension problem for S within the KVB scheme solved by
M. Gallone, A. Michelangeli, Hydrogenoid spectra with central per-
turbations, Rep. Math. Phys. 84, 215-243 (2019).
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Run the KVB machinery:

D(S∗) =
{
g ∈ L2(R+)

∣∣∣∣ − g′′ − νr g +
ν2

4κ2
∈ L2(R+)

}
,

S∗g = 0 ⇒ a Wittaker equation for g ,

ker S∗ = span{Φκ} , Φκ(r) := W
κ,12

(νκr) (a Tricomi function),

D(S) = H2
0(R+) ,

S−1
F Φκ =: Ψκ ,

D(SF) = D(S) u S−1
F ker S∗ = H2

0(R+) + span{Ψκ}= H2(R+) ∩H1
0(R+).

Thus, the family (Sβ)β∈R∪{∞} of self-adjoint extensions of S:

D(Sβ) :=
{
f+βc0Ψκ+c0Φκ

∣∣∣ f ∈ H2
0(R+) , c0 ∈ C

}
, Sβ := S∗ � D(Sβ) .

Exploiting asymptotics of Ψκ and Φκ as r ↓ 0 and setting for g ∈ D(Sβ)

g0 := lim
r↓0

g(r) , g1 := lim
r↓0

r−1
(
g(r)−g0(1−νr ln r)

)
, αβ ≡ α(β)

(in fact, g(r) = g0(1− νr ln r) + g1r + o(r3/2)), one re-writes

D(Sβ) :=
{
g ∈ D(S∗)

∣∣∣ g1 = (4παβ) g0

}
.



Spectral analysis (consistent with KVB general results):

Negative spectrum of Sα − ν2

4κ21

consists of simple eigenvalues

E
(ν,α)
n , n ∈ N

(E(ν,α)
n and eigenfunctions explicit!).

The choice α =∞ (i.e. β =∞)

selects the Friedrichs extension

→ the ordinary Hydrogenoid Hamiltonian

E
(ν,α=∞)
n = −

ν2

4n2

Details in [Gallone, Michelangeli (2019)].



.
A glance on recent activity [Caruso, Michelangeli, Ottolini (2022)]:

links between the vN and the KVB extension parametrisations

For a densely defined and symmetric S with, say, m(S) > 0

each one s.a. extension S̃ of S is both S̃ = SU and S̃ = ST :

what correspondence U(S̃) ↔ T (S̃)?

Key idea: the vN deficiency spaces converge

to the KVB one when they are taken at a

spectral point on C that converges to a point

in R:

ker(S∗ ∓ i ε 1)
ε↓0−−−→ ker S∗

in the gap metric for closed subspaces of H
(projection→projection).



.
Theorem. [Caruso, Michelangeli, Ottolini (2022)]

Let S be densely defined and symmetric on H with m(S) > 0.

Assume further the non-trivial case d−(S) = d+(S) > 1

(⇒ S admits non-trivial self-adjoint extensions).

Let S̃ be any such extension,

and w.r.t. the deficiency spaces ker(S∗ ∓ i ε 1), resp., ker S∗

let Uε, resp., T be the vN and the KVB extension parameters.

Decompose an arbitrary g ∈ D(S̃) accordingly:

f(g) + S−1
F (Tv(g) + w(g)) + v(g) = g = f

(g)
ε + v

(g)
ε − Uεv(g)

ε .

v
(g)
ε = (2 i ε)−1Pker(S∗−iε1)(S̃ + iε1)ggg ,

Uεv
(g)
ε = (2 i ε)−1Pker(S∗+iε1)(S̃ − iε1)ggg ,

Explicitly: v(g) = (1− S−1
F S̃)ggg ,

f(g) = S−1
F (1− Pker S∗)S̃ggg ,

Tv(g) + w(g) = Pker S∗S̃ggg .



Theorem (cont.)

Then, for each g ∈ D(S̃),

f(g) + S−1
F (Tv(g) + w(g)) + v(g) = g = f

(g)
ε + v

(g)
ε − Uεv(g)

ε ,

one has

v
(g)
ε − Uεv(g)

ε
ε↓0
= S−1

F (Tv(g) + w(g)) + v(g) +O(ε) ,

f
(g)
ε

ε↓0
= f(g) +O(ε)

in the graph norm of S∗. Thus, in the H-norm,

fε
ε↓0−−−→ f ,

Sfε
ε↓0−−−→ Sf ,

v
(g)
ε − Uεv(g)

ε
ε↓0−−−→ S−1

F (Tv(g) + w(g)) + v(g) ,

i ε v(g)
ε + i εUεv

(g)
ε

ε↓0−−−→ Tv(g) + w(g) .



Allows to recover T from Uε:

Corollary. [Caruso, Michelangeli, Ottolini (2022)]

D(T ) =

v(g) ∈ ker S∗

∣∣∣∣∣∣∣
v(g) := lim

ε↓0
(1− S−1

F S̃)(v(g)
ε − Uεv(g)

ε ) g

for some g ∈ D(S̃)

 ,
(provides the domain of T )

〈v(g), T v(g)〉H = lim
ε↓0

i ε
〈
(1− S−1

F S̃)(v(g)
ε − Uεv(g)

ε ) , (v(g)
ε + Uεv

(g)
ε )

〉
H
.

(provides the matrix elements of T , hence its action)


