Non-linear Schrödinger equations with rough, non-Strichartz-controllable magnetic potentials

Alessandro Michelangeli

Presentation given on 28/11/2022 at the Maths Dept of the University of North Carolina at Greensboro

and on 6/12/2022 at the Mathematical Institute of the Silesian University in Opava

Based on

- standard techniques from non-linear dispersive PDE theory;
- several seminal contributions from other experts (cited in due time);
- a few projects of mine and with co-workers, including:
- A. Michelangeli, Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields, Nonlinearity 28 (2015) 2743-2765;
- P. Antonelli (GSSI), A. Michelangeli, R. Scandone, Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials, Z. Angew. Math Phys. (2018) 69:46;
- ongoing activity with V. Georgiev (Pisa, and Waseda, and Bulgarian Academy of Science), R. Scandone (GSSI and Naples), and K. Yajima (Tokyo Gakushuin) on point-like perturbations of (magnetic) NLS.

NLS (semi-linear Schrödinger equation) with external magnetic potentials

Class of evolution PDEs of interest:

$$\begin{split} \mathrm{i}\partial_t u &= -(\nabla - \mathrm{i}\mathbf{A})^2 u + V u + \mathcal{N}(u) \\ \mathcal{N}(u) &= \lambda_1 |u|^{\gamma - 1} u + \lambda_2 (|\cdot|^{-\alpha} * |u|^2) u + (W * |u|^2) u \quad \begin{cases} \gamma \in (1, 1 + \frac{4}{d - 2}] \\ \alpha \in (0, d) \\ \lambda_1, \lambda_2 \in \mathbb{R} \end{cases} \\ V &\equiv V(t, x) : \mathbb{R}_t \times \mathbb{R}_x^d \to \mathbb{R} \\ W &\equiv W(x) : \mathbb{R}_x^d \to \mathbb{R} \\ \mathbf{A} &\equiv \mathbf{A}(t, x) \equiv (A_1, \dots, A_d) : \mathbb{R}_t \times \mathbb{R}_x^d \to \mathbb{R}^d \\ \text{(mesurable functions)} \end{split}$$

in the unknown $u \equiv u(t,x): \mathbb{R}_t \times \mathbb{R}_x^d \to \mathbb{C}$

- NLS is a basic dispersive model that appears, among others,
- ☐ in nonlinear optics,
- in water wave theory,
- in quantum many-body dynamics;

'ordinary' version is without magnetic potential $(A \equiv 0)$:

$$i\partial_t u = -\Delta_x u + Vu + \lambda_1 |u|^{\gamma - 1} u + \lambda_2 (|\cdot|^{-\alpha} * |u|^2) u + (W * |u|^2) u$$

Hartree equation has <u>cubic</u> non-local semi-linearity:

$$i\partial_t u = -\Delta_x u + Vu + (W * |u|^2)u$$

Gross-Pitaevskii equation has <u>cubic</u> local semi-linearity:

$$\mathrm{i}\partial_t u = -\Delta_x u + Vu + \lambda |u|^2 u$$

magnetic Laplacian: $-(\nabla - iA)^2$

stemming from classical / quantum mechanics:

- \square external electric field: $\mathbf{E} = -\nabla V$,
- \square external magnetic field: $\mathbf{B} = \nabla \times \mathbf{A}$,
- \Box single particle Hamiltonian: $H=rac{1}{2m}\Big(\mathbf{p}-rac{e\mathbf{A}}{c}\Big)^2+eV$ $(\mathbf{p}=-\mathrm{i}\hbar\nabla_x)$

magnetic Sobolev space $H^1_{\mathbf{A}}(\mathbb{R}^d) := \left\{ f \in L^2(\mathbb{R}^d) \,\middle|\, (\nabla - \mathrm{i}\mathbf{A}) f \in L^2(\mathbb{R}^d) \right\}$ (for $\mathbf{A} \in L^2_{\mathrm{loc}}(\mathbb{R}^d)$) and $C^\infty_c(\mathbb{R}^d)$ is <u>dense</u> in $H^1_{\mathbf{A}}(\mathbb{R}^d)$

diamagnetism: $\left|\nabla |f|(x)\right| \leqslant \left|(\nabla - \mathrm{i}\mathbf{A})f(x)\right| \quad x\text{-a.e.} \quad \forall f \in H^1_\mathbf{A}(\mathbb{R}^d)$ removing \mathbf{A} , kinetic energy decreases by replacing f by |f| (at the same time leaving $|f|^2$ unaltered) [Kato, 1972]

observe:

- $f \in H^1_{\mathbf{A}} \Rightarrow (\nabla i\mathbf{A})f \in L^2$ $\Rightarrow -(\nabla - i\mathbf{A})^2 f$ makes sense as a *distribution*
- $f \mapsto (\nabla i\mathbf{A})f$ is a connection on a U(1) bundle over \mathbb{R}^d $(\nabla i\mathbf{A})f$ = 'covariant derivative' (w.r.t. \mathbf{A}) of f

notice two opposite rules of thumb:

expand the square

$$(\nabla - i\mathbf{A})^2 f = \Delta f - 2i\mathbf{A} \cdot \nabla f - i(\text{div}\mathbf{A})f - \mathbf{A}^2 f$$
 and treat it as a 'perturbation' of Δf

NEVER expand the square exploit operator properties of $(\nabla - iA)^2$ as a whole

gauge invariance: $A \mapsto A + \nabla \xi \Rightarrow B = \nabla \times A$ stays invariant

Coulomb gauge: $divA \equiv 0$

includes the constant-B case: $A(x) = (-x_2, 0, 0) \Rightarrow B = (0, 0, 1)$

For ordinary NLS $(A \equiv 0)$ as well as for magnetic NLS $(A \not\equiv 0)$

one standard scheme [Kato 1987, 1995; Cazenave and Weissler 1988,] to establish the existence and uniqueness of solution in an appropriate sense, e.g., in the H^1 - or H^1_A -energy space, and then also local well-posedness, is a fixed-point argument based on estimates on space-time size of the free (magnetic) propagator $e^{\mathrm{i}t\Delta}f$, or also $e^{\mathrm{i}t(\nabla-\mathrm{i}\mathbf{A})^2}f$ ('Strichartz estimates').

NEXT:

- ☐ first a quick glance at the method (for pedagogical purposes);
- goal of this talk: to go <u>beyond</u> Strichartz-controllable external magnetic fields.

STRICHARTZ ESTIMATES for free Schrödinger propagator $e^{\mathrm{i}t\Delta}$ [Strichartz 1977, Ginibre and Velo 1985, Yajima 1987, Cazenave and Weissler 1988, Keel and Tao 1998]

A pair $(q,r) \in [1,+\infty] \times [1,+\infty]$ is admissible if: $\frac{2}{q} = d\left(\frac{1}{2} - \frac{1}{r}\right) \quad \text{and} \quad r \in \begin{cases} [2, +\infty] & \text{if } d = 1, \\ [2, +\infty) & \text{if } d = 2, \\ \left[2, \frac{2d}{d-1}\right] & \text{if } d \geqslant 3. \end{cases}$

For any admissible pairs (q,r), $(\widetilde{q},\widetilde{r})$ and interval I with $0 \in \overline{I}$,

- $\begin{array}{ll} \bullet \text{ (homogeneous)} & \left\| e^{\mathsf{i} t \Delta} u_0 \right\|_{L^q_t(\mathbb{R}, L^r_x)} \lesssim \|u_0\|_{L^2_x} \\ \bullet \text{ (non-homogeneous)} & \left\| \int_0^t e^{\mathsf{i} (t-\tau) \Delta} F(s, \cdot) \, \mathrm{d} \tau \, \right\|_{L^q_t(I, L^r_x)} \lesssim \|F\|_{L^{\widetilde{q}'}_t(I, L^{\widetilde{r}'}_x)} \\ \end{array}$

where $\frac{1}{\widetilde{g}} + \frac{1}{\widetilde{g}'} = 1 = \frac{1}{\widetilde{r}} + \frac{1}{\widetilde{r}'}$.

FIXED POINT ARGUMENT

for concreteness for
$$(\bigstar)$$

$$\begin{cases} i\partial_t u = -\Delta_x u + \lambda |u|^{\gamma - 1} u, & (t, x) \in \mathbb{R} \times \mathbb{R}^3 \\ u(0, \cdot) = u_0 \in H^1(\mathbb{R}^3) & \gamma \in (1, 5) \end{cases}$$

For
$$M,T>0$$
, $r:=\gamma+1$, and (q,r) admissible, set
$$X_{M,T}:=\left\{ \begin{aligned} u \in L^{\infty}_{t}([0,T],H^{1}_{x}) \cap L^{q}([0,T],W^{1,r}_{x}) \\ \|u\|_{L^{\infty}_{t}H^{1}_{x}} \leqslant M \ , & \|u\|_{L^{q}_{t}W^{1,r}_{x}} \leqslant M \end{aligned} \right\}$$

$$\mathbf{d}(u,v):=\|u-v\|_{L^{\infty}_{t}H^{1}_{x}}+\|u-v\|_{L^{q}_{t}W^{1,r}_{x}}$$

Can see: $(X_{M,T}, d)$ is a complete metric space.

A H^1 -solution u to (\bigstar) is a <u>fixed point</u> $(\Phi(u) = u)$ for the solution map $\Phi(u)(t) := e^{\mathrm{i}t\Delta}u_0 - \mathrm{i}\lambda \int_0^t e^{\mathrm{i}(t-\tau)\Delta}|u|^{\gamma-1}u(\tau)\,\mathrm{d}\tau\,.$

Goal: Φ is a <u>contraction</u> in $X_{M,T}$ for suitable M, and T small enough \Rightarrow **local existence and uniqueness** of solution $u \in L^{\infty}_t([0,T],H^1_x(\mathbb{R}^3))$ which is then proved to also be in $C([0,T],H^1_x)\cap C^1([0,T],H^{-1}_x)$ ('strong solution'), as well as in $L^{\widetilde{q}}([0,T],W^{1,\widetilde{r}}_x(\mathbb{R}^3))$ \forall admissible $(\widetilde{q},\widetilde{r})$

 Φ is a <u>contraction</u> in $X_{M,T}$:

Strichartz on
$$\Phi(u)(t) := e^{\mathrm{i}t\Delta}u_0 - \mathrm{i}\lambda \int_0^t e^{\mathrm{i}(t-\tau)\Delta}|u|^{\gamma-1}u(\tau)\,\mathrm{d}\tau$$

$$\|\Phi(u)\|_{L_{t}^{q}W_{x}^{1,r}} \lesssim \|e^{\mathrm{i}t\Delta}u_{0}\|_{L_{t}^{q}W_{x}^{1,r}} + \left\|\int_{0}^{t} e^{\mathrm{i}(t-\tau)\Delta}|u|^{\gamma-1}u(\tau)\,\mathrm{d}\tau\right\|_{L_{t}^{q}W_{x}^{1,r}} \lesssim \|u_{0}\|_{H_{x}^{1}} + \||u|^{\gamma-1}u\|_{L_{t}^{q'}W_{x}^{1,r'}} \lesssim \|u_{0}\|_{H_{x}^{1}} + \||u|^{\gamma-1}u\|_{L_{t}^{q'}W_{x}^{1,r'}}$$

since $r = \gamma + 1$, then $\| |u|^{\gamma - 1}u \|_{L^{r'}_x} \lesssim \| u \|_{L^r_x}^{\gamma}$ $\lesssim \| u \|_{L^r_x}^{\gamma}$ $\lesssim \| u \|_{L^r_t}^{\gamma - 1} \| u \|_{L^q_t L^r_x}$ Hölder $\Rightarrow \| |u|^{\gamma - 1}u \|_{L^q_t L^{r'}_x} \lesssim \| u \|_{L^q_t L^r_x}^{\gamma - 1} \| u \|_{L^q_t L^r_x}$ Sobolev embedding $(H^1_x \hookrightarrow L^r_x) \Rightarrow \| |u|^{\gamma - 1}u \|_{L^q_t L^r_x} \lesssim \| u \|_{L^\infty_t H^1_x}^{\gamma - 1} \| u \|_{L^q_t L^r_x}$ analogously for $\nabla \left(|u|^{\gamma - 1}u \right)$, whence $\| |u|^{\gamma - 1}u \|_{L^q_t W^{1,r'}_x} \lesssim \| u \|_{L^\infty_t H^1_x}^{\gamma - 1} \| u \|_{L^q_t W^{1,r'}_x}$ this and Hölder in time $\Rightarrow \| |u|^{\gamma - 1}u \|_{L^{q'}_t W^{1,r'}_x} \lesssim T^{\frac{q - q'}{qq'}} \| |u|^{\gamma - 1}u \|_{L^q_t W^{1,r'}_x} \lesssim T^{\frac{q - q'}{qq'}} \| u \|_{L^q_t W^{1,r'}_x}^{\gamma - 1}$

 Φ is a <u>contraction</u> in $X_{M,T}$:

Strichartz on
$$\Phi(u)(t) := e^{\mathrm{i}t\Delta}u_0 - \mathrm{i}\lambda \int_0^t e^{\mathrm{i}(t-\tau)\Delta}|u|^{\gamma-1}u(\tau)\,\mathrm{d}\tau$$

$$\|\Phi(u)\|_{L_{t}^{q}W_{x}^{1,r}} \lesssim \|e^{\mathrm{i}t\Delta}u_{0}\|_{L_{t}^{q}W_{x}^{1,r}} + \left\|\int_{0}^{t} e^{\mathrm{i}(t-\tau)\Delta}|u|^{\gamma-1}u(\tau)\,\mathrm{d}\tau\right\|_{L_{t}^{q}W_{x}^{1,r}} \lesssim \|u_{0}\|_{H_{x}^{1}} + \left\||u|^{\gamma-1}u\|_{L_{t}^{q'}W_{x}^{1,r'}}\right\|_{L_{t}^{q'}W_{x}^{1,r'}}$$

since $r=\gamma+1$, then $\||u|^{\gamma-1}u\|_{L^{r'}_x}\lesssim \|u\|_{L^r_x}^\gamma$ $\text{H\"older} \ \Rightarrow \ \| \, |u|^{\gamma-1} u \, \|_{L^q_t L^{r'}_x} \lesssim \| u \|_{L^\infty_t L^r_x}^{\gamma-1} \, \| u \|_{L^q_t L^r_x}$ Sobolev embedding $(H_x^1 \hookrightarrow L_x^r) \Rightarrow \||u|^{\gamma-1}u\|_{L_t^q L_x^{r'}} \lesssim \|u\|_{L_t^\infty H_x^1}^{\gamma-1} \|u\|_{L_t^q L_x^r}$ analogously for $\nabla \left(|u|^{\gamma-1} u \right)$, whence $\| \, |u|^{\gamma-1} u \, \|_{L^q_t W^{1,r'}_x} \lesssim \| u \|_{L^\infty_t H^1_x}^{\gamma-1} \, \| u \|_{L^q_t W^{1,r}_x}$ this and Hölder in time

this and Hölder in time
$$\Rightarrow$$

$$\| |u|^{\gamma-1}u \|_{L^{q'}_tW^{1,r'}_x} \lesssim T^{\frac{q-q'}{qq'}} \| |u|^{\gamma-1}u \|_{L^q_tW^{1,r'}_x} \lesssim T^{\frac{q-q'}{qq'}} \| u \|_{L^\infty_tH^1_x}^{\gamma-1} \| u \|_{L^q_tW^{1,r}_x}^{\gamma-1}$$

Thus,
$$\|\Phi(u)\|_{L^q_t W^{1,r}_x} \lesssim \|u_0\|_{H^1_x} + T^{\frac{q-q'}{qq'}} \|u\|_{L^\infty_t H^1_x}^{\gamma-1} \|u\|_{L^q_t W^{1,r}_x}$$
 and analogously,
$$\|\Phi(u)\|_{L^\infty_t H^1_x} \lesssim \|u_0\|_{H^1_x} + T^{\frac{q-q'}{qq'}} \|u\|_{L^\infty_t H^1_x}^{\gamma-1} \|u\|_{L^q_t W^{1,r}_x}$$

whence

$$\|\Phi(u)\|_{L_{t}^{q}W_{x}^{1,r}} + \|\Phi(u)\|_{L_{t}^{\infty}H_{x}^{1}} \leq C \|u_{0}\|_{H_{x}^{1}} + C T^{\frac{q-q'}{qq'}} M^{\gamma-1} \|u\|_{L_{t}^{q}W_{x}^{1,r}}$$

$$\leq \frac{1}{2}M + \frac{1}{4}M < M$$

with the choice $M=2\,C\,\|u_0\|_{H^1_x}$ and T s.t. $C\,T^{\frac{q-q'}{qq'}}\,M^{\gamma-1}\leqslant\frac{1}{4}$ (doable, because $\gamma\in(1,5)\Rightarrow r\in(2,6)\Rightarrow q>2\Rightarrow q>q'$) $\Rightarrow\Phi(u)\in X_{M,T}$

and the very same reasoning yields also $d(\Phi(u), \Phi(v)) \leq \kappa d(u, v), \quad \kappa < 1$

a contraction.

The above scheme for $e^{it\Delta}$ in $i\partial_t u = -\Delta_x u + \mathcal{N}(u)$ is well-established and also for $e^{-it(-\Delta+V)}$ in $i\partial_t u = -\Delta_x u + Vu + \mathcal{N}(u)$, see e.g.:

- Sulem, Sulem, Nonlinear Schrödinger equations, Springer 1999
- Cazenave, Semilinear Schrödinger equations, AMS 2003
- Tao, Nonlinear dispersive equations, CBMS 2006
- Lineares, Ponce, Introduction to nonlinear dispersive equations, Springer 2015
-

Meanwhile, aiming at repeating the same scheme for

$$\mathrm{i}\partial_t u = -(\nabla_x - \mathrm{i}\mathbf{A})^2 u + \mathcal{N}(u),$$

an industry has developed to produce magnetic Strichartz estimates for the magnetic propagator $e^{it(\nabla_x - i\mathbf{A})^2}$

MAGNETIC STRICHARTZ ESTIMATES

.

Analogous bounds on space-time size of " $e^{it(\nabla_x - i\mathbf{A})^2}f$ " two types of conditions needed on \mathbf{A} :

- ① must realise $-(\nabla_x i\mathbf{A})^2$ self-adjointly on $L^2(\mathbb{R}^d_x)$ so as to exponentiate it via functional calculus (spectral theorem) $(e^{\mathbf{i}t\Delta}$ is directly given by $e^{-\mathbf{i}tp^2}$ in Fourier transform)
- $\mathbf{A} \in L^2_{loc}(\mathbb{R}^d) \Rightarrow -(\nabla_x i\mathbf{A})^2$ is essentially self-adjoint on $C_c^{\infty}(\mathbb{R}^d)$ [Kato 1981, Leinfelder and Simader 1981]
- 2 must <u>avoid confinement</u> features of $-(\nabla_x i\mathbf{A})^2$ (e.g., eigenvalues/resonances) which would allow, <u>as $t \to \infty$ </u>, non-dispersive components in $e^{it(\nabla_x i\mathbf{A})^2}f$ (typically: <u>impose some decay</u> on \mathbf{A} and $\mathbf{B}_{tang} = \frac{x}{|x|} \times \mathbf{B}$ and bounds on local singularities)

(GLOBAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES

$$\left\|e^{\mathrm{i}t(\nabla-\mathrm{i}\mathbf{A})^2}u_0\right\|_{L^q_t(\mathbb{R},L^r_x)}\lesssim \|u_0\|_{L^2_x}$$
 (+ non-homogeneous)

for the same admissible pairs (q, r) as for $-\Delta$ (established indeed perturbatively w.r.t. $-\Delta$)

 \blacksquare By [Erdoğan, Goldberg, Schlag, 2009] for $d\geqslant 3$, requiring

$$\begin{aligned} \mathbf{A} &\in C^0(\mathbb{R}^d, \mathbb{R}^d)\,,\\ &|\mathbf{A}(x)| &\lesssim \langle x \rangle^{-(1+\delta_A)}\,, \qquad (\delta_A > \delta_{A'} > 0)\\ &\langle x \rangle^{1+\delta_A'} |\mathbf{A}(x)| &\in \dot{W}^{\frac{1}{2},2d}(\mathbb{R}^d, \mathbb{R}^d)\,,\\ &-(\nabla - \mathrm{i}\mathbf{A})^2 \quad \text{has no zero-energy resonance and only cont. spectrum} \end{aligned}$$

By [D'Ancona, Fanelli, Vega, Visciglia, 2010] for $d\geqslant 3$ (covering also end-point case $(q,r)=(2,\frac{2d}{d-2})$ for $d\geqslant 4$) under condition that, practically speaking, correspond to

$$|\mathbf{A}(x)| \lesssim \begin{cases} |x|^{-(1+\delta_A)} \\ |x|^{-(1-\delta_A)} \end{cases}$$
 $|\mathbf{B}_{\mathsf{tang}}(x)| \lesssim \begin{cases} |x|^{-(2+\delta_B)} & \text{as } |x| \to \infty \\ |x|^{-(2-\delta_B)} & \text{as } |x| \to 0 \end{cases}$

for some $\delta_A, \delta_B > 0$ when d = 3, $\delta_A = \delta_B = 0$ when $d \geqslant 4$

(GLOBAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES for (mildly) time-dependent \mathbf{A} 's, under smallness assumption

By [Georgiev, Stefanov, Tarulli, 2007]:

For $d \geqslant 3$, there is $\varepsilon > 0$ so that for any $\mathbf{A} \equiv \mathbf{A}(t,x)$ with

$$\left\|\nabla_x \mathbf{A}\right\|_{L^{\infty}_t L^{d/2}_x} + \sup_k \sum_{m \in \mathbb{Z}} 2^m \left\|\mathbf{A}_{< k}\right\|_{L^{\infty}_t (L^{\infty}(|x| \sim 2^m))} \leqslant \varepsilon$$

the solution ${\pmb u}$ to $\begin{cases} {\rm i}\partial_t u = -(\nabla_x - {\rm i}{\bf A})^2 u \\ u(0,\cdot) \equiv u_0 \end{cases}$ satisfies

$$||u||_{X'} \lesssim ||u_0||_{L_x^2}$$

where $\|u\|_{X'}^2 := \sum_k \|u\|_{X'_k}^2$ and

$$\|u\|_{X_k'} := \sup_{(q,r)-\text{Strichartz}} \|P_k u\|_{L_t^q L_x^r} + 2^{\frac{k}{2}} \sup_m 2^{-\frac{m}{2}} \|P_k u\|_{L_t^2(L^2(|x| \sim 2^m))}$$

 $(P_k u := \text{the } k^{\text{th}} \text{ Littlewood-Paley piece of } u)$

scaling critical case $A(x) = |x|^{-1}$ not covered by the above results

same as criticality for $-\Delta + a|x|^{-2}$ ($A^2 \leftrightarrow V(x) = |x|^{-2}$), for which Strichartz estimates are proved by [Burq, Planchon, and Stalker, 2003] when $d \geqslant 2$ up to the Hardy threshold $a > -\frac{1}{4}(d-2)^2$

at scaling criticality, magnetic dispersive estimates are available (from which non-endpoint Strichartz estimates follow):

$$\|e^{it(\nabla - i\mathbf{A})^2}f\|_{L^{\infty}(\mathbb{R}^d_x)} \le |t|^{-\frac{d}{2}}\|f\|_{L^1(\mathbb{R}^d_x)} \qquad d = 2,3$$

[Fanelli, Felli, Pontelos, Primo, 2013 and 2015]

beyond critical scaling: counterexamples!

e.g., for homogeneous potentials $\mathbf{A}(x) = |x|^{-\sigma} \phi(\frac{x}{|x|})$, $\sigma \in (0,1)$ Strichartz estimates fail in $d \ge 3$ (apart from trivial case $(q,r) = (\infty,2)$) (LOCAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES (in fact, all what is needed for the contraction argument):

$$\|e^{\mathrm{i}t(\nabla-\mathrm{i}\mathbf{A})^2}u_0\|_{L^q_t(I,L^r_x)}\lesssim \|u_0\|_{L^2_x}$$
 (for any interval I with $0\in\overline{I}$)

now the factors preventing global dispersion play no obstruction

at the price of requiring smoothness of $\bf A$ (needed for constructing the propagator $e^{it(\nabla-i{\bf A})^2}$ directly in the form of integral operator via semi-classical parametrix techniques), linear growth of $\bf A$ at spatial infinity can be covered (thus, including constant $\bf B$ -field) [Yajima, 1991], [Mizutani, 2014]

What about the *vast* regime in between, from $\mathbf{A} \in L^2_{loc}(\mathbb{R}^d)$, the condition of self-adjointness for $-(\nabla - i\mathbf{A})^2$, to the requirements for the validity of the known (global-in-time, or also only) local-in-time Strichartz estimates?

This includes physically relevant magnetic fields!

How to establish (local) well-posedness of magnetic NLS beyond Strichartz-controllable magnetic potentials?

One approach: ENERGY METHODS

Yield local well-posedness under very mild assumptions on ${f A}$ when non-linearity $\mathcal{N}(u)$ is locally Lipschitz in the energy space (then by conservation rules one extends local to global in time).

Theorem. [Michelangeli, 2015]

If
$$\begin{cases} A \in L^2_{\text{loc}}(\mathbb{R}^d, \mathbb{R}^d) \\ W \in L^{q_0}(\mathbb{R}^d, \mathbb{R}) + L^{\infty}(\mathbb{R}^d, \mathbb{R}), \quad q_0 \geqslant \frac{d}{2}, \text{ and } W \text{ even} \\ \nabla W \in L^{q_1}(\mathbb{R}^d, \mathbb{R}^d) + L^{\infty}(\mathbb{R}^d, \mathbb{R}^d), \quad q_1 \geqslant \frac{d}{3} \end{cases}$$

then there exists a unique solution $u \in C(\mathbb{R}, H^1_{\mathbf{A}}(\mathbb{R}^d)) \cap C^1(\mathbb{R}, H^1_{\mathbf{A}}(\mathbb{R}^d)^*)$

to the Hartree equation
$$\begin{cases} \mathrm{i}\partial_t u = -(\nabla - \mathrm{i}\mathbf{A})^2 u + (W*|u|^2)\,u \\ u(0,\cdot) \equiv u_0 \in H^1_\mathbf{A}(\mathbb{R}^d) \end{cases}$$

and such u also satisfies

$$\sup_{t\in\mathbb{R}}\|u(t,\cdot)\|_{H^1_\mathbf{A}}<+\infty\ , \qquad \mathcal{M}[u(t)]=\mathcal{M}[u_0]\ , \qquad \mathcal{E}[u(t)]=\mathcal{E}[u_0]$$

where
$$\begin{cases} \mathcal{M}[u] := \|u\|_{L^2_x}^2 \text{ (mass)}, \\ \mathcal{E}[u] := \int_{\mathbb{R}^d} \left(\frac{1}{2} |(\nabla - \mathrm{i}\mathbf{A})u|^2 + \frac{1}{4} (W*|u|^2)|u|^2\right) \text{ (energy)} \end{cases}$$
 as well as continuous dependence on initial data

as well as continuous dependence on initial data.

Based on the LIPSCHITZ PROPERTY of
$$\mathcal{N}(u) = (W*|u|^2)u$$
:
$$\|\mathcal{N}(u) - \mathcal{N}(v)\|_{H^1_\mathbf{A}} \lesssim_W \left(\|u\|_{H^1_\mathbf{A}}^2 + \|v\|_{H^1_\mathbf{A}}^2\right) \|u - v\|_{H^1_\mathbf{A}}$$

a combination of Hölder + Young + Sobolev embedding $H^1 \hookrightarrow L^r$ and diamagnetic inequality $\left|\nabla |u|\right| \leqslant |(\nabla - \mathrm{i}\mathbf{A})u|$.

Then FIXED POINT ARGUMENT in M-ball of $L_T^{\infty}H_{\mathbf{A}}^1 \equiv L^{\infty}([0,T],H_{\mathbf{A}}^1)$ on the solution map

$$\Phi(u)(t) := e^{\mathrm{i}t(\nabla - \mathrm{i}\mathbf{A})^2} u_0 - \mathrm{i} \int_0^t e^{\mathrm{i}(t-\tau)(\nabla - \mathrm{i}\mathbf{A})^2} (W * |u|^2) u(\tau) d\tau$$

$$\begin{split} \| \Phi(u) - \Phi(v) \|_{L^\infty_T H^1_\mathbf{A}} & \leqslant \left\| \int_0^t \left\| e^{\mathrm{i}(t-\tau)(\nabla - \mathrm{i}\mathbf{A})^2} \left(\mathcal{N}(u(\tau)) - \mathcal{N}(v(\tau)) \right) \right\|_{H^1_\mathbf{A}} \mathrm{d}\tau \right\|_{L^\infty_T} \\ & \leqslant C_W T \left(\| u \|_{L^\infty_T H^1_\mathbf{A}}^2 + \| v \|_{H^1_\mathbf{A}}^2 \right) \| u - v \|_{L^\infty_T H^1_\mathbf{A}} \\ & \leqslant 2 M^2 C_W T \| u - v \|_{L^\infty_T H^1_\mathbf{A}} \\ & = \frac{1}{2} \| u - v \|_{L^\infty_T H^1_\mathbf{A}} \\ & \text{choosing } T = (4 M^2 C_W)^{-1} \,. \end{split}$$

Same approach works more generally for

$$i\partial_t u = -(\nabla - i\mathbf{A})^2 u + (W * |u|^2) u + Vu$$

.

under the (beyond-Strichartz) assumptions

$$\begin{cases} A \in L^2_{\text{loc}}(\mathbb{R}^d, \mathbb{R}^d) \\ W \in L^{q_0}(\mathbb{R}^d, \mathbb{R}) + L^{\infty}(\mathbb{R}^d, \mathbb{R}) \,, \ q_0 \geqslant \frac{d}{2} \,, \ \text{and} \ W \text{ even} \\ \nabla W \in L^{q_1}(\mathbb{R}^d, \mathbb{R}^d) + L^{\infty}(\mathbb{R}^d, \mathbb{R}^d) \,, \ q_1 \geqslant \frac{d}{3} \\ V \in L^1_{\text{loc}}(\mathbb{R}^d, \mathbb{R}) \\ V_{-} \text{ is } \Delta\text{-form-bounded with relative bound} < 1 \end{cases}$$

which are way weaker than the requirements for known Strichartz estimates for $e^{-it(-(\nabla - i\mathbf{A})^2 + V)}$

now in the energy space

$$H^1_{\mathbf{A},V} := \left\{ f \in L^2(\mathbb{R}^d) \,\middle|\, (\nabla - \mathsf{i}\mathbf{A}) f \in L^2(\mathbb{R}^d) \,,\, V^{1/2}_+ f \in L^2(\mathbb{R}^d) \right\}$$

which can be proved to be the form domain of the <u>closed</u> and <u>lower semi-bounded</u> quadratic form

$$(f,g) \mapsto \int_{\mathbb{R}^d} \left(\overline{(\nabla - i\mathbf{A})f} \cdot (\nabla - i\mathbf{A})g + \overline{f} V g \right)$$

thus inducing a self-adjoint realisation of $-(\nabla - i\mathbf{A})^2 + V$. [Michelangeli, 2015]

Energy methods suited, among others, for (magnetic-)NLS where the linear part is induced by a Schrödinger-type operator \mathfrak{h} of physical relevance, e.g.,

$$\mathfrak{h} = \sqrt{-(\nabla - i\mathbf{A})^2 + \mu^2} - \mu + V \qquad (\mu \geqslant 0)$$

(semi-relativistic Schrödinger Hamiltonian with external fields), or

 $\mathfrak{h} = \text{Dirac operator with external fields},$

etc.

In such settings, crucial to characterise \mathfrak{h} self-adjointly on $L^2(\mathbb{R}^d)$ e.g., identifying its form domain (\longrightarrow the energy space)

and to check the Lipschitz property for $\mathcal{N}(u)$ (energy sub-critical):

interplay operator theory + functional analysis.

A second approach to go beyond magnetic Strichartz, also when $\mathcal{N}(u)$ is non-Lipschitz in energy space: PARABOLIC ('VISCOSITY') REGULARISATION $e^{\mathrm{i}t(\nabla-\mathrm{i}\mathbf{A})^2} \longmapsto e^{(\mathrm{i}+\varepsilon)t(\nabla-\mathrm{i}\mathbf{A})^2} \qquad (\varepsilon>0)$

Requires:

- suitable smoothing estimates for the dissipative evolution,
- a priori estimates for mass and energy, uniform in the regularisation,
- compactness argument to remove the regularisation locally in time (then gluing to go global).

Pros:

- \square can accommodate also external fields $\mathbf{A} \equiv \mathbf{A}(t,x)$, $V \equiv V(t,x)$ that are moderately changing in time around a suitable profile,
- \square highly non-Strichartz-controllable **A**'s and *V*'s.

However:

compactness argument loses information on strong solutions: yields existence of global finite-energy weak solutions.

Parabolic regularisation procedures of sort are commonly used in PDEs:

- vanishing viscosity approximation in fluid dynamics,
- or in systems of conservation laws,
- exploited in a similar context by [Guo, Nakamitsu, Strauss, 1994] to demonstrate the existence of finite energy weak solutions to the Maxwell-Schrödinger system

$$\begin{cases} i\partial_t u = -(\nabla - i\mathbf{A})^2 u + \phi u + |u|^{\gamma - 1} u, & \phi \equiv (-\Delta)^{-1} |u|^2 \\ \Box u = 2 \left(1 - \nabla \operatorname{div} \Delta^{-1}\right) \Im \mathfrak{m} (\overline{u} (\nabla - i\mathbf{A}) u) \end{cases}$$

(charged quantum plasma interacting with its self-generated electromagnetic potential (V, \mathbf{A})).

A fairly general model: defocusing magnetic NLS (d = 3)

$$i\partial_t u = -(\nabla_x - i\mathbf{A})^2 u + \mathcal{N}(u)$$

$$\mathcal{N}(u) = \lambda_1 |u|^{\gamma - 1} u + \lambda_2 (|\cdot|^{-\alpha} * |u|^2) u$$

$$\begin{cases} \gamma \in (1, 5] \\ \alpha \in (0, 3) \\ \lambda_1, \lambda_2 \geqslant 0 \end{cases}$$

$$(\clubsuit)$$

in the unknown $u \equiv u(t,x)$, $t \in \mathbb{R}$, $x \in \mathbb{R}^3$ for given real-valued measurable $\mathbf{A} \equiv \mathbf{A}(t,x)$

energy sub-critical: $\gamma \in (1,5), \quad \alpha \in (0,3)$ energy critical: $\gamma = 5, \quad \alpha \in (0,3)$ mass sub-critical: $\gamma = (1,\frac{7}{3}), \quad \alpha \in (0,2)$ And fairly general classes of magnetic potentials A's:

$$\widetilde{\mathcal{A}}_{1} := \left\{ \mathbf{A} \equiv \mathbf{A}(t,x) \middle| \begin{array}{l} \operatorname{div}_{x} \mathbf{A} = 0 \text{ for a.e. } t \in \mathbb{R}, \\ \mathbf{A} = \mathbf{A}_{1} + \mathbf{A}_{2} \text{ such that, for } j \in \{1,2\}, \\ \mathbf{A}_{j} \in L_{\operatorname{loc}}^{a_{j}}(\mathbb{R}, L^{b_{j}}(\mathbb{R}^{3}, \mathbb{R}^{3})) \\ a_{j} \in (4,+\infty], \quad b_{j} \in (3,6), \quad \frac{2}{a_{j}} + \frac{3}{b_{j}} < 1 \end{array} \right\}$$

$$\tilde{\mathcal{A}}_{2} := \left\{ \mathbf{A} \equiv \mathbf{A}(t,x) \middle| \begin{array}{l} \operatorname{div}_{x} \mathbf{A} = 0 \text{ for a.e. } t \in \mathbb{R}, \\ \mathbf{A} = \mathbf{A}_{1} + \mathbf{A}_{2} \text{ such that, for } j \in \{1,2\}, \\ \mathbf{A}_{j} \in L_{\operatorname{loc}}^{a_{j}}(\mathbb{R}, W^{1,\frac{3b_{j}}{3+b_{j}}}(\mathbb{R}^{3}, \mathbb{R}^{3})) \\ a_{j} \in (2,+\infty], \quad b_{j} \in (3,+\infty], \quad \frac{2}{a_{j}} + \frac{3}{b_{j}} < 1 \end{array} \right\}$$

$$\mathcal{A}_1 := \left\{ \mathbf{A} \in \widetilde{\mathcal{A}}_1 \mid \partial_t \mathbf{A}_j \in L^1_{\mathsf{loc}}(\mathbb{R}, L^{b_j}(\mathbb{R}^3, \mathbb{R}^3)), j = 1, 2 \right\}$$

$$\mathcal{A}_2 := \left\{ \mathbf{A} \in \widetilde{\mathcal{A}}_2 \mid \partial_t \mathbf{A}_j \in L^1_{\mathsf{loc}}(\mathbb{R}, L^{b_j}(\mathbb{R}^3, \mathbb{R}^3)), j = 1, 2 \right\}$$

- \Box div_xA \equiv 0 (Coulomb gauge) assumed merely for convenience
- \blacksquare both classes $\widetilde{\mathcal{A}}_1$ and $\widetilde{\mathcal{A}}_2$ contain magnetic potentials A 's for which magnetic Strichartz estimates are not known
- \square <u>local theory</u> in energy space possible in the larger classes $\widetilde{\mathcal{A}}_1$ or $\widetilde{\mathcal{A}}_2$
- \square mild amount of extra regularity in time (classes \mathcal{A}_1 or \mathcal{A}_2) only needed to infer suitable a priori bounds on the solution from estimates on the total energy (\longrightarrow to go global in time)
- regularity in time not needed either for mass sub-critical regime $\gamma=(1,\frac{7}{3})\ \alpha\in(0,2)$, and when $\max\{b_1,b_2\}\in(3,6)$ [Yajima 1987]
- additional integrability of $\nabla_x \mathbf{A}$ in \mathcal{A}_2 needed to cover slow decay of \mathbf{A} at spatial infinity, way slower than the critical $|x|^{-1}$ (even L_x^{∞})

EXISTENCE OF GLOBAL, FINITE ENERGY, WEAK SOLUTIONS

Theorem. [Antonelli, Michelangeli, Scandone, 2018] If $A \in \mathcal{A}_1$ or $A \in \mathcal{A}_2$, then for any initial datum $u_0 \in H^1(\mathbb{R}^3)$ the initial value problem for (\clubsuit) , i.e.,

$$\begin{cases} i\partial_t u = -(\nabla_x - i\mathbf{A})^2 u + |u|^{\gamma - 1} u + (|\cdot|^{-\alpha} * |u|^2) u, \\ u(0, \cdot) \equiv u_0, & (\gamma \in (1, 5], \ \alpha \in (0, 3)) \end{cases}$$
 (**)

admits a global weak H^1 -solution

$$u \in L^{\infty}_{loc}([0,+\infty), H^{1}(\mathbb{R}^{3})) \cap W^{1,\infty}_{loc}([0,+\infty), H^{-1}(\mathbb{R}^{3})),$$

and moreover the energy

$$\mathcal{E}[u(t)] := \int_{\mathbb{R}^3} \left(\frac{1}{2} |(\nabla - i\mathbf{A}(t)) u|^2 + \frac{1}{\gamma + 1} |u|^{\gamma + 1} + \frac{1}{4} (|x|^{-\alpha} * |u|^2) |u|^2 \right) dx$$

is finite and bounded on compact time intervals.

Main ideas of the technique.

1 Introduce a small dissipation term in the equation

$$i\partial_t u_{\varepsilon} = -(1 - i\varepsilon)(\nabla - iA)^2 u_{\varepsilon} + \mathcal{N}(u_{\varepsilon}) \qquad (\varepsilon > 0)$$

and treat the approximated problem 'perturbatively'

$$i\partial_t u_{\varepsilon} = -(1 - i\varepsilon)\Delta_x u_{\varepsilon} + (1 - i\varepsilon)(2iA \cdot \nabla u_{\varepsilon} + A^2 u) + \mathcal{N}(u_{\varepsilon})$$

(not doable in the Hamiltonian case $\varepsilon = 0$: $\mathbf{A} \cdot \nabla$ is *not* a Kato-small perturbation of $-\Delta$).

② For $e^{(i+\varepsilon)t\Delta} = e^{\varepsilon t\Delta}e^{it\Delta}$ combine space-time (Strichartz) bounds for heat and for Schrödinger propagator and obtain spacetime estimates for the heat-Schrödinger flow.

For
$$\varepsilon > 0$$
, $T > 0$, and admissible pair (q, r) (i.e., $\frac{2}{q} = \frac{3}{2} - \frac{3}{r}$, $r \in [2, 6]$):

homogeneous Strichartz estimates

$$\|e^{(\mathbf{i}+\varepsilon)t\Delta}f\|_{L^q([0,T],L^r(\mathbb{R}^3))} \lesssim \|f\|_{L^2(\mathbb{R}^3)}$$

inhomogeneous retarded Strichartz estimates

$$\left\| \int_0^t e^{(\mathsf{i} + \varepsilon)(t - \tau) \Delta} F(\tau) \, \, \mathrm{d}\tau \, \right\|_{L^q([0,T],L^r(\mathbb{R}^3))} \lesssim_\varepsilon T^\theta \|F\|_{L^s([0,T],L^p(\mathbb{R}^3))}$$

with
$$\frac{2}{s} + \frac{3}{p} < \frac{7}{2}$$
, $\begin{cases} \frac{1}{2} \leqslant \frac{1}{p} \leqslant 1 & 2 \leqslant r < 3 \\ \frac{1}{2} \leqslant \frac{1}{p} < \frac{1}{r} + \frac{2}{3} & 3 \leqslant r \leqslant 6 \end{cases}$ and $\theta := \frac{7}{4} - \frac{1}{s} - \frac{3}{2p} > 0$

and, if in addition $(q,r) \neq (2,6)$ (non-endpoint case),

$$\left\| \nabla \!\! \int_0^t e^{(\mathsf{i} + \varepsilon)(t - \tau) \Delta} F(\tau) \, \, \mathrm{d}\tau \, \right\|_{L^q([0,T],L^r(\mathbb{R}^3))} \lesssim_\varepsilon T^\theta \| F \|_{L^s([0,T],L^p(\mathbb{R}^3))}$$

with
$$\frac{2}{s} + \frac{3}{p} < \frac{5}{2}$$
, $\frac{1}{2} \leqslant \frac{1}{p} < \frac{1}{r} + \frac{1}{3}$, and $\theta := \frac{5}{4} - \frac{1}{s} - \frac{3}{2p} > 0$

3 Exploit the above bounds to establish the existence of the linear magnetic viscous propagator for

$$i\partial_t u_{\varepsilon} = -(1 - i\varepsilon)\Delta_x u_{\varepsilon} + (1 - i\varepsilon)(2i\mathbf{A} \cdot \nabla u_{\varepsilon} + \mathbf{A}^2 u_{\varepsilon}) + \mathcal{N}(u_{\varepsilon})$$

namely the family $\{\mathcal{U}_{\varepsilon,\mathbf{A}}(t, au)\}_{t, au}$ of operators on $H^1(\mathbb{R}^3)$ satisfying

- $ullet \ \mathcal{U}_{arepsilon,\mathbf{A}}(t,s)\,\mathcal{U}_{arepsilon,\mathbf{A}}(s, au) = \mathcal{U}_{arepsilon,\mathbf{A}}(t, au) \ ext{for any } au < s < t \ ,$
- $ullet \ \mathcal{U}_{arepsilon,\mathbf{A}}(t,t)=\mathbb{1}$,
- ullet the map $(t, au)\mapsto \mathcal{U}_{arepsilon,\mathbf{A}}(t, au)$ is strongly continuous in $H^1(\mathbb{R}^3)$, such that the regularised IVP is equivalent to the integral problem

$$u_{\varepsilon}(t) = \mathcal{U}_{\varepsilon,\mathbf{A}}(t,0)u_0 - \mathrm{i} \int_0^t \mathcal{U}_{\varepsilon,\mathbf{A}}(t,\tau) \mathcal{N}(u_{\varepsilon})(\tau) \,\mathrm{d}\tau$$

(for time-independent A, $\mathcal{U}_{\varepsilon,\mathbf{A}}(t,0)$ would just be $e^{(\mathbf{i}+\varepsilon)t(\nabla-\mathbf{i}\mathbf{A})^2}$)

and derive Strichartz-type estimates

$$\left\| \mathcal{U}_{\varepsilon,A}(t,\tau) f \right\|_{L^q([\tau,T],W^{1,r}(\mathbb{R}^3))} \lesssim_{\varepsilon,\mathbf{A},T} \|f\|_{H^1(\mathbb{R}^3)}$$

(+ retarded ones).

4 Perform a standard (Strichartz-based) contraction argument for

$$u_{\varepsilon}(t) = \mathcal{U}_{\varepsilon,\mathbf{A}}(t,0) u_0 - \mathrm{i} \int_0^t \mathcal{U}_{\varepsilon,\mathbf{A}}(t,\tau) \mathcal{N}(u_{\varepsilon})(\tau) d\tau$$

under the assumption $A \in \widetilde{\mathcal{A}}_1 \cup \widetilde{\mathcal{A}}_2$

 \Rightarrow local well-posedness of the regularised magnetic NLS in $C([0, T_{\text{max}}), H^1(\mathbb{R}^3))$

in the energy sub-critical regime $\gamma \in (1,5)$, $\alpha \in (0,3)$.

For the energy critical case $\gamma = 5$:

 $F\equiv |u|^4u$ not covered by the above heat-Schrödinger Strichartz bounds (would require $p=\frac{6}{5},\ s=0$ therein, $T^\theta=T^0=1$).

Yet, can treat it a la [Cazenave, Weissler, 1990] using energy dissipation

 \Rightarrow existence and uniqueness in $C([0, T_{\text{max}}), H^1(\mathbb{R}^3))$.

 \circ Establish uniform-in- ε a priori bounds for the solution to

$$u_{\varepsilon}(t) = \mathcal{U}_{\varepsilon,\mathbf{A}}(t,0) u_0 - i \int_0^t \mathcal{U}_{\varepsilon,\mathbf{A}}(t,\tau) \mathcal{N}(u_{\varepsilon})(\tau) d\tau,$$

provided that $A \in A_1 \cup A_2$ (\leftarrow need a bit of time-regularity for A(t,x)):

$$\sup_{t \in [0,T]} \mathcal{M}[u_arepsilon] \lesssim 1\,, \ \sup_{t \in [0,T]} \mathcal{E}[u_arepsilon] \lesssim_{A,T} 1\,, \ \|u_arepsilon\|_{L^\infty([0,T),H^1(\mathbb{R}^3))} \lesssim_{A,T} 1\,,$$

constants depending on

$$\|\partial_t \mathbf{A}_j(t,\cdot)\|_{L^1([0,T],L^{b_j}(\mathbb{R}^3))}, \quad \|\mathbf{A}_j(t,\cdot)\|_{L^1([0,T],L^{b_j}(\mathbb{R}^3))}, \quad j \in \{1,2\}.$$

(hence non-uniformity in T of the above bounds only due to the fact that $\mathbf{A}, \partial_t \mathbf{A} \in L^1_{loc}$ in time, i.e., $\mathbf{A} \in AC_{loc}$ in time).

Observe: due to the defocusing structure of the regularised problem,

$$||u_{\varepsilon}(t)||_{H^{1}_{\mathbf{A}(t)}}^{2} \leqslant \mathcal{M}[u_{\varepsilon}](t) + \mathcal{E}[u_{\varepsilon}](t), \quad t \in [0,T).$$

6 (standard:) under the assumptions $A \in \mathcal{A}_1 \cup \mathcal{A}_2$

$$\left.\begin{array}{c} \text{uniform-in-}\varepsilon\\ \text{a priori bounds}\\ \text{for the solution }u_\varepsilon\end{array}\right\} \Rightarrow \begin{array}{c} \text{GLOBAL EXISTENCE}\\ \text{AND UNIQUENESS}\\ \text{of $strong$ solution }u_\varepsilon\\ \text{to the regularised magnetic NLS} \end{array}$$

For the energy sub-critical exponent $\gamma \in (1,5)$, also complete GWP.

For mass sub-critical exponents $\gamma \in (1, \frac{7}{3})$, $\alpha \in (0, 2)$ can actually assume just $\mathbf{A} \in \widetilde{\mathcal{A}}_1 \cup \widetilde{\mathcal{A}}_2$ an proceed through this simpler, alternative path:

- LWP in $L^2(\mathbb{R}^3)$ for ε -NLS by fixed point argument using space-time estimates for the heat-Schrödinger flow;
- extend solution u_{ε} globally using mass (L^2) conservation;
- mass sub-critical nonlinearity \Rightarrow convenient commutator estimate on $[\nabla_x, (\nabla_x i\mathbf{A})^2] \Rightarrow global$ persistence of H_x^1 -regularity for u_{ε} .

 \bigcirc Remove the regularisation $(\varepsilon \downarrow 0)$ locally in time

from
$$i\partial_t u_{\varepsilon} = -(1 - i\varepsilon)(\nabla - i\mathbf{A})^2 u_{\varepsilon} + \mathcal{N}(u_{\varepsilon}), \quad u_{\varepsilon}(t, \cdot) \equiv u_0$$

to $i\partial_t u = -(\nabla - i\mathbf{A})^2 u + \mathcal{N}(u), \quad u(t, \cdot) \equiv u_0, \quad (\clubsuit)$

via compactness argument, extracting a subsequence from $(u_n)_{n\in\mathbb{N}}$ (with $u_n \equiv u_{\varepsilon_n}$, $\varepsilon_n \equiv \frac{1}{n} \to 0$, solutions to regularised problems).

First, by uniform-in- ε a priori bounds, and up to subsequence,

$$u_n \xrightarrow{n \to \infty} u$$
 weakly-* in $L^{\infty}([0,T], H^1(\mathbb{R}^3)$.

for some u to be identified as solution to (\clubsuit) .

Next, exploit uniform-in- ε a priori bounds so as to prove, up to subseq.,

$$\mathbf{A}_{i} \cdot \nabla u_{n} \to X_{i} \qquad \text{weakly-* in } L^{\infty}([0,T],L^{p_{i}}(\mathbb{R}^{3})),$$

$$\mathbf{A}_{i} \cdot \mathbf{A}_{j}u_{n} \to Y_{ij} \qquad \text{weakly-* in } L^{\infty}([0,T],L^{p_{ij}}(\mathbb{R}^{3})),$$

$$|u_{n}|^{\gamma-1}u_{n} \to \mathcal{N}_{1} \qquad \text{weakly-* in } L^{\infty}([0,T],L^{p(\gamma)}(\mathbb{R}^{3})),$$

$$(|\cdot|^{-\alpha} * |u_{n}|^{2})u_{n} \to \mathcal{N}_{2} \qquad \text{weakly-* in } L^{\infty}([0,T],L^{\widetilde{p}(\alpha)}(\mathbb{R}^{3}))$$

for $i, j \in \{1, 2\}$ and suitable exponents $p_i, p_{ij}, p(\gamma), \widetilde{p}(\alpha)$.

.....and identify pointwise the above limits as the counterparts for u

.

$$\mathbf{A}_{i} \cdot \nabla u_{n} \to \mathbf{A}_{i} \cdot \nabla u,$$

$$\mathbf{A}_{i} \cdot \mathbf{A}_{j} u_{n} \to \mathbf{A}_{i} \cdot \mathbf{A}_{j} u,$$

$$|u_{n}|^{\gamma - 1} u_{n} \to |u|^{\gamma - 1} u,$$

$$(|\cdot|^{-\alpha} * |u_{n}|^{2}) u_{n} \to |\cdot|^{-\alpha} * |u|^{2}) u,$$

proceeding this way:

- $\nabla u_n \to \nabla u$ weakly-* in $L_t^2 L_x^2$ by compactness, $\mathbf{A}_j \eta \in L_t^2 L_x^2$ for any $\eta \in L_t^2 L_x^{p_j'}$, with $\frac{1}{p_j} = \frac{1}{2} + \frac{1}{b_j}$, because $\mathbf{A}_j \in L_t^\infty L_x^{b_j}$ and $\frac{1}{p_j'} + \frac{1}{b_j} = \frac{1}{2}$, therefore $\int_0^T \! \int_{\mathbb{R}^3} \mathbf{A}_i \cdot (\nabla u_n \nabla u) \overline{\eta} \, \mathrm{d}x \, \mathrm{d}t \ = \int_0^T \! \int_{\mathbb{R}^3} (\nabla u_n \nabla u) \cdot \mathbf{A}_i \overline{\eta} \, \mathrm{d}x \, \mathrm{d}t \ \to \ 0$ whence $\mathbf{A}_i \cdot \nabla u_n \to \mathbf{A}_i \cdot \nabla u$ weakly-* in $L^\infty([0,T], L^{p_i}(\mathbb{R}^3))$;
- Aubin-Lions compactness lemma, whence $u_n \Big|_{\Omega} \to u \Big|_{\Omega}$ strongly in $L^M([0,T],L^4(\Omega))$, $M \in [1,+\infty]$ for every open bounded $\Omega \subset \mathbb{R}^3$.

- **8** Final refinement of $(u_n)_{n\in\mathbb{N}}$ such that its limit u is a weak H^1 -solution to (\clubsuit) for all times in [0,N], and iterating over N
- \Rightarrow global weak H^1 -solution with finite energy for a.e. $t \in \mathbb{R}$.

Had we assumed $\mathbf{A} \in AC$ globally in time, this step not needed; must do it here because $\mathbf{A} \in AC_{\mathsf{loc}}$ in time so the uniform-in- ε a priori bounds are T-dependent.