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Based on

[ standard techniques from non-linear dispersive PDE theory;
[ several seminal contributions from other experts

(cited in due time);
[ a few projects of mine and with co-workers, including:

A. Michelangeli, Global well-posedness of the magnetic Hartree
equation with non-Strichartz external fields, Nonlinearity 28 (2015)
2743-2765;

P. Antonelli (GSSI), A. Michelangeli, R. Scandone, Global, finite
energy, weak solutions for the NLS with rough, time-dependent
magnetic potentials, Z. Angew. Math Phys. (2018) 69:46;

[ ongoing activity with V. Georgiev (Pisa, and Waseda, and Bul-
garian Academy of Science), R. Scandone (GSSI and Naples), and
K. Yajima (Tokyo Gakushuin) on point-like perturbations of (mag-
netic) NLS.



NLS (semi-linear Schrodinger equation)
with external magnetic potentials

Class of evolution PDEs of interest:

iou = —(V —iA)%u~+ Vu+ N(u)
N(u) = X ful " w4 X0 - |7 * [ul?)u + (W * [u])u

V=V(t,x): Ry xIR{gf—HR

W=W():R¢>R

A=A(t,z) =(A1,...,Ay) : Ry x R 5 RY
(mesurable functions)

in the unknown v = u(t,z) : Ry x RE — C .

N\

(v e (1,14 4%5]
a € (0,d)

\Al,)\QER



NLS is a basic dispersive model that appears, among others,
1 in nonlinear optics,

1 in water wave theory,
3 in quantum many-body dynamics;

‘ordinary’ version is without magnetic potential (A = 0):

iOuw = —Azu+ Vu+ Alu" a4+ Ao | 7% [u|Du+ (W * |[u?)u

Hartree equation has cubic non-local semi-linearity:

iOu = —Agu+ Vu+ (W * |[u]?)u

Gross-Pitaevskii equation has cubic local semi-linearity:

ioiu = —Agzu+ Vu+ )\|u|2u



magnetic Laplacian: —(V —iA)?
stemming from classical / quantum mechanics:

[ external electric field: E= —-VV,

[ external magnetic field: B =V x A,

1 A
[ single particle Hamiltonian: H = 2—( €
m

magnetic Sobolev space Hj (R?) := {f e L2(R%) ‘ (V—iA)f € LQ(Rd)}
(for A € L2 (RY)) and C°(RY) is dense in H} (R%)

diamagnetism: ‘V|f\(a;)‘ < ‘(V — iA)f(x)‘ z-a.e. Vf e Hx(RY)
removing A, kinetic energy decreases by replacing f by |f]
(at the same time leaving |f|2 unaltered) [Kato, 1972]



observe:
e fEHY = (V—iA)f € L?
= —(V —iA)2f makes sense as a distribution
e f— (V—iA)f is a connection on a U(1) bundle over R4
(V —iA)f = ‘covariant derivative’ (w.r.t. A) of f

notice two opposite rules of thumb:

- expand the square
(V—iA)2f = Af — 2iA-Vf—i(divA)f — A2f
and treat it as a ‘perturbation’ of Af

m NEVER expand the square
exploit operator properties of (V —iA)? as a whole

gauge invariance. A —~ A +4+V¢ = B =V x A stays invariant

Coulomb gauge: divA =0
includes the constant-B case: A(x) = (—x5,0,0) = B =(0,0,1)



For ordinary NLS (A = 0) as well as for magnetic NLS (A % 0)

\ \ \ +

one standard scheme [Kato 1987, 1995; Cazenave and Weissler
1988, ....] to establish the existence and uniqueness of solution
in an appropriate sense, e.g., in the Hl- or Hx-energy space, and
then also local well-posedness, is a fixed-point argument based on
estimates on space-time size of the free (magnetic) propagator
A or also et(V=1A)? ¢ (‘Strichartz estimates’).

NEXT:
[ first a quick glance at the method (for pedagogical purposes);

1 goal of this talk: to go beyond Strichartz-controllable external
magnetic fields.




STRICHARTZ ESTIMATES for free Schrodinger propagator e/t&
[Strichartz 1977, Ginibre and Velo 1985, Yajima 1987, Cazenave
and Weissler 1988, Keel and Tao 1998]

A pair (g,r) € [1,400] x [1,400] is admissible if:
([2,400] ifd=1,
Zzuil_l> and  rell2,+400) ifd=2,

2
[2,—d] ifd>3.
L d—1

For any admissible pairs (gq,r), (¢g,7) and interval I with 0 € I,

e (homogeneous) eitAuoHLq(RL ry ~ ||uo||L2

e (NONn-homogeneous) /Oe'(t_T)AF(s,-) dr S |F|| ~

Lq(IL ) Lq (ILT)

where ~—|—1,—1=%-|-%-



FIXED POINT ARGUMENT

- iOu = —A Au[7—1 3

for concreteness for (%) e wu—il_ |;L| w, (o) €ERXR
uw(0,-) = ug € HY(R3) v € (1,5)

For M,T >0, r:=~+4 1, and (g,r) admissible, set

v . JuerEdo, 1), HY N LU0, T], W Wa")
MTZ\ oy <M, lul gy < M
d(u,v) = T = vl oy + llu =l gy

Can see: (XM’T,d) is a complete metric space.

A H1l-solution u to (*) is a fixed point (®(u) = w) for the solution map
O (u)(t) uo—l)\/ (=)A= Ly () dr .

Goal: @ is a contraction in X, for suitable M, and T" small enough
= local existence and uniqueness of solution u € L{°([0, T], HX(R3))
which is then proved to also be in C([0,T], Hl) ncl(o, 1], H; Y
(‘strong solution’), as well as in LI([0,T], Wx "(R3)) V admissible (g,7)




® is a contraction in X

Strichartz on  ®(u)(t) 1= etByg — |>\/ (=)7L (1) dr

. t .
d(u < |leltBy + H/ el =78 17—y () dr

< Jluoll 72 + Il [ul" Y]

1,r
LiWy

/ 1,?“/
LY Wy,

since r =~ 41, then || |u[Y"1u HU < ||u||7r

Holder = | |U|7_1’UJHL§LT HUHLOOU lullpar,

Sobolev embedding (HY — L7) = || |u]""lu lpopr S HUHLOOHl lull
analogously for V(|u|7_1u>, whence || |u[7~1u ”LqW“ < ul Lt°°1H% ||UHLgle,r

this and Holder in time .=
q—q

ull gy aer S T P~

/

71 “”ng <Ta ||u||LooH1 lull oy



® is a contraction in X

Strichartz on  ®(u) (%) : uo—l)\/ (=)A= Ly (1) dr

. t .
d(u < ety + H/ el =)D 7= Lu(r) dr

Liwg"
S lluollgr + |l Iul”‘lulngfol,r/
since r = v+ 1, then || |u|7_1u||Lr < ||u||fyr
Holder = || IuI’V‘luHLgU ||u||LooLr el oz
Sobolev embedding (HY < L7) = || |u|7~ 1u||L§U ||u||LOOH1 lll o
analogously for V(|u|7_1u), whence || |u|""1u ”nga}f’ < |l L?olH% ||u||LqW1r

this and Holder in time =

/
94—q
[P~ ] ST o || ul " u

I

ST IIuIILooHl lull oy 1

/
q' vy 1, q
Liwy, Liwg"



/

Thus, Pl apy1r ||uo||H1+T Z IIuHLooH1 [l

/

and analogously, |9(u)l et  lluollgs +T 4 ul}=lyy llul

1,r
LiW;

1,r
Liw;

whence /

9—q
||<'>(u)||LqW1r+ |P(llpoopy < Clluollgy +CT o MY |||
<SAEMA4IM < M

1,r
LiW;

/

with the choice M =2C [|lugllz1 and T s.t. cT @ Mg

1
Sz
(doable, because y € (1,5) =rc (2,6) =q¢g>2=q9>4q)

= CD(U) c XM,T

and the very same reasoning vields also
d(P(u),P(w)) < kd(u,v), rK<1

a contraction.



The above scheme for 2 in i = —Agzu+N(u) is well-established
and also for e {(=A+V) in i = —Agu+ Vu+ N(u), see e.g.:

e Sulem, Sulem, Nonlinear Schrodinger equations, Springer 1999

e Cazenave, Semilinear Schrodinger equations, AMS 2003

e Tao, Nonlinear dispersive equations, CBMS 2006

e Lineares, Ponce, Introduction to nonlinear dispersive equations, Springer 2015

Meanwhile, aiming at repeating the same scheme for

i0iu = —(Vz —iA)2u 4+ N(w),
an industry has developed to produce magnetic Strichartz estimates
for the magnetic propagator ¢it(Va—iA)?



MAGNETIC STRICHARTZ ESTIMATES
Analogous bounds on space-time size of *“ eit(vfc—‘A)Qf "

two types of conditions needed on A:

@ must realise —(Vz — iA)? self-adjointly on L2(R%)
so as to exponentiate it via functional calculus (spectral theorem)

(eltD is directly given by e—*P” in Fourier transform)

AecL2 (RY) = —(Vy—iA)?is essentially self-adjoint on C°(R?)

[Kato 1981, Leinfelder and Simader 1981]

@ must avoid confinement features of — (Ve —iA)?
(e.g., eigenvalues/resonances) which would allow, as t — oo,
non-dispersive components in elt(Va—1A)? ¢
(typically: impose some decay on A and Bigpg = g—| X B
and bounds on local singularities)




(GLOBAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES

it(V—iA)?2 H < _
He uQ LIRIE) ~ ||“O||Lg (4 non-homogeneous)

for the same admissible pairs (g,r) as for —A
(established indeed perturbatively w.r.t. —A)

m By [Erdogan, Goldberg, Schlag, 2009] for d > 3, requiring
A € CORE, R,
A()] < (z)"(F) (64> 64 >0)
. 1
()1 T |A ()| € W22U(RE, RY),
—(V — iA)2 has no zero-energy resonance and only cont. spectrum

m By [D’Ancona, Fanelli, Vega, Visciglia, 2010] for d > 3
(covering also end-point case (q,r) = (2,612_—d2) for d > 4)
under condition that, practically speaking, correspond to
A(2)] < )~ (1404) B ()] < |~ (2+9B) as |z| — oo
~ e~ (2=04) AN 21208 as |zl — 0

for some d4,6p >0 when d=3, 4 =ép=0whend >4



(GLOBAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES
for (mildly) time-dependent A’s, under smallness assumption

w By [Georgiev, Stefanov, Tarulli, 2007]:

For d > 3, there is ¢ > 0 so that for any A = A(¢,z) with

+ sup 2MIA
Leerd2 sz:Z H

i0u = —(Vz —iA)2%u
u(0,-) = ug

< €

|V2A| <’fHL;>O<Loo<\:c|~2m>>

the solution u to { satisfies

lull xS lluoll 2

where |[u|%, := Z||u||§% and
k

k m
— 2 2
lullx; - (q)r)_SSlJJCPiChartz||Pku||LgL§+2 SUp 272 || Ppul| 12 1.2 (|3)~2m))

(Pou := the kth Littlewood-Paley piece of )
k



scaling critical case A(z) = |z|~1 not covered by the above results

same as criticality for —A +alz|72 (A2 < V(z) = |z|~2), for which
Strichartz estimates are proved by [Burqg, Planchon, and Stalker, 2003]
when d > 2 up to the Hardy threshold a > —%(d —2)2

at scaling criticality, magnetic dispersive estimates are available

(from which non-endpoint Strichartz estimates follow):

Heit(v_iA)szLoo(Rg) < |t|_%||f||L1(Rgg) d=2.3

[Fanelli, Felli, Pontelos, Primo, 2013 and 2015]

beyond critical scaling: counterexamples!
e.g., for homogeneous potentials A(x) = |a:|_‘7gb(|§;’—|), o€ (0,1)
Strichartz estimates fail in d > 3 (apart from trivial case (q,7) = (o0, 2))



(LOCAL IN TIME) MAGNETIC STRICHARTZ ESTIMATES
(in fact, all what is needed for the contraction argument):

it(V—iA)?2 < : : T
He uQ HL?(I,L;) < ||“OHL§ (for any interval I with 0 € 1)

now the factors preventing global dispersion play no obstruction

at the price of requiring smoothness of A (needed for constructing
the propagator ¢t (V=iA)? directly in the form of integral operator
via semi-classical parametrix techniques), linear growth of A at
spatial infinity can be covered (thus, including constant B-field)
[Yajima, 1991], [Mizutani, 2014]



What about the vast regime in between, from A € L2 (R%), the
condition of self-adjointness for —(V—iA)Q, to the requirements for
the validity of the known (global-in-time, or also only) local-in-time
Strichartz estimates?

This includes physically relevant magnetic fields!

How to establish (local) well-posedness of magnetic NLS
beyond Strichartz-controllable magnetic potentials 7



One approach: ENERGY METHODS

Yield local well-posedness under very mild assumptions on A
when non-linearity N (w) is locally Lipschitz in the energy space
(then by conservation rules one extends local to global in time).

Theorem. [Michelangeli, 2015]
(A c L2 (RLRY)
If { WeLDO(RYR)+ L®RELR), g0 =%, and W even
| VW € La(RE,RY) + L°(RE,RY) | g1 > 4
then there exists a unique solution u € C(R, H} (R))NCL(R, H} (RY)*)
iy = —(V —iA)2u+ (W * |[u|?) u

u(0,:) =ug € H}&(Rd)

to the Hartree equation {

and such u also satisfies

sup [lu(t, )|l g1 < oo, Mlu()] = Mlug], Elu(t)] = Elug]
teR A

(M) i= [[ul|2, (mass),

1 , 1
e = /Rd(§|(V—|A)u|2—I—Z(W*|u|2)|u|2) (energy)
as well as continuous dependence on initial data.

where [




Based on the LIPSCHITZ PROPERTY of N(u) = (W * |u|?) u:
2 2
INGD) = Ny Sw (lullF + 1005 )lle = vl gy

a combination of HOlder 4+ Young 4+ Sobolev embedding HY < 7
and diamagnetic inequality |V]ul| < [(V — iA)ul.

Then FIXED POINT ARGUMENT in M-ball of L H = L*°([0,T], H})
on the solution map

. : t . .
d(u)(t) = e't(v_'A)zuO — i/() e'(t_T)(v_'A)Q(W x |ul?) w(r) dr

[ [T (W () = N @) | e

| (u) = D) ooy <
G L
2 2 _
CwT (Il ooy + 10033 ) 1o = ol ooy
1 T"7A

U — V|| 100
5 | “LT H}
choosing T = (4M?2Cy,) L.

IN N



Same approach works more generally for
iy = —(V —iA)2u+ (W x [u|?) u+Vu

under the (beyond-Strichartz) assumptions

(Ac |OC(Rd R%)

W e L9(RY R) + L>°(R% R), and W even

\ VW € L (R%,RY) 4+ L®(RE,RY) | ¢1 > §

Ve LL (R4 R)

\ V_ is A-form-bounded with relative bound <1

which are way weaker than the requirements for known Strichartz

estimates for e~ it(—(V—iA)?+V)

NI

now in the energy space
1/2
HY o= {f € IPRY[(V—iA)f € L2(RY), V/?f € L2(RD))

which can be proved to be the form domain of the closed and
lower semi-bounded quadratic form

(f.9) =~ [ ,((V=1A)F - (V—iA)g + FVg)
thus inducing a self-adjoint realisation of —(V —iA)2 4 V.
[Michelangeli, 2015]




Energy methods suited, among others, for (magnetic-)NLS where
the linear part is induced by a Schrodinger-type operator |
of physical relevance, e.qg.,

h=—(V—iA2+u2—p+V  (u>0)

(semi-relativistic Schrodinger Hamiltonian with external fields), or

h = Dirac operator with external fields,

etc.

In such settings, crucial to characterise § self-adjointly on LQ(Rd)
e.g., identifying its form domain (— the energy space)

and to check the Lipschitz property for N(u) (energy sub-critical):

interplay operator theory 4+ functional analysis.



A second approach to go beyond magnetic Strichartz,
also when N (w) is non-Lipschitz in energy space:
PARABOLIC (‘VISCOSITY') REGULARISATION

et(V=iA)? |, o(i+e)t(V—iA)? (e>0)

Requires:
[ suitable smoothing estimates for the dissipative evolution,
[ a priori estimates for mass and energy, uniform in the regularisation,
[ compactness argument to remove the regularisation
locally in time (then gluing to go global).

Pros:

A can accommodate also external fields A = A(t,z), V =V (¢, x)
that are moderately changing in time around a suitable profile,

[ highly non-Strichartz-controllable A's and V's.

However:
[ compactness argument loses information on strong solutions:
yields existence of global finite-energy weak solutions.



Parabolic regularisation procedures of sort are commonly used in
PDEs:

[ vanishing viscosity approximation in fluid dynamics,
[ or in systems of conservation laws,

[ exploited in a similar context by [Guo, Nakamitsu, Strauss, 1994]
to demonstrate the existence of finite energy weak solutions
to the Maxwell-Schrodinger system

{ O = —(V —iA)2u+ du+ |[utu, ¢=(—A)"tu?
Clu

2 (1 — VdivA~ D im@(@(V — iA)uw)
(charged quantum plasma interacting with its self-generated
electromagnetic potential (V,A)).



A fairly general model: defocusing magnetic NLS (d = 3)

iOu = —(Vz —iA)%u 4+ N ()
N () = A" tu 4 o) - [T * [ul*)u
(v e (1,5]

a € (0,3)
L A1, A2 20

7\

in the unknown u = u(t, z), t € R, z € R3
for given real-valued measurable A = A(t, x)

energy sub-critical: v € (1,5), «a € (0,3)
energy critical: ~v =5, a € (0,3)
mass sub-critical: v =(1,%), a€(0,2)

()



And

fairly general classes of magnetic potentials A’s:

y

N\

\

A=A(t,x)

A=A(t,x)

div;A =0 for a.e.t € R, )
A = A1 + A, such that, for j € {1,2},
a; .
Aje LJ (R, LbJ(IR{?’,IR{?;)) >
a; € (4,+o0], bj€ (3,6), @—l—% <1]

div;A =0 for a.e.t € R,
A = A1 + A, such that, for j € {1,2},
3b.
a,; 17—]
Aj € Ligc(R,W T (R3RY))

= {A c Ay | 8:A; € LE (R, LY (R3,R3)), j = 1,2}

= {A c Ay | 1A € L (R, L% (R3,R3)), j = 1,2}




A divzA =0 (Coulomb gauge) assumed merely for convenience

[ both classes Avl and sz contain magnetic potentials A's
for which magnetic Strichartz estimates are not known

[ local theory in energy space possible in the larger classes 2(1 or ﬂg

A mild amount of extra regularity in time (classes A1 or A»)
only needed to infer suitable a priori bounds on the solution
from estimates on the total energy (— to go global in time)

[ regularity in time not needed either for mass sub-critical regime
v =(1,%) a € (0,2), and when max{b1,bo} € (3,6) [Yajima 1987]

[ additional integrability of VA in A->
needed to cover slow decay of A at spatial infinity,
way slower than the critical |z|~! (even L2°)



EXISTENCE OF GLOBAL, FINITE ENERGY, WEAK SOLUTIONS

Theorem. [Antonelli, Michelangeli, Scandone, 2018]
If A€ Ay or A € Ay, then for any initial datum ug € H1(R3)
the initial value problem for (&) , i.e.,

u(0,-) = ug, (v € (1,5], a € (0,3)) (%)

{ O = —(Va — iA)2u~+ [u " Lu4 (|- |7 [ul>)u,
admits a global weak Hl-solution
u € LS ([0, +00), HL(R®)) N W52 ([0, +00), H~H(R?)),
and moreover the energy
Eu®)] = [ | (%Kv—iA(t))u|2+7$1|u|7+1+£<|x|—a*|u|2>|u|2) dz

is finite and bounded on compact time intervals.



Main ideas of the technique.

@ 1Introduce a small dissipation term in the equation

iOiue = —(1 —ie)(V —iA)%ue + N (ue) (e > 0)
and treat the approximated problem ‘perturbatively’
iOiue = —(1 —ie)Ague + (1 —ie)(2iA - Vue + A%0) + N (ue)

(not doable in the Hamiltonian case e = 0: A-V is not a Kato-small
perturbation of —A).

@ For e(Fe)tA — clAGitA compine space-time (Strichartz) bounds
for heat and for Schrodinger propagator and obtain spacetime es-
timates for the heat-Schrodinger flow.



For £ >0, T > 0, and admissible pair (q,r) <i.e., 2=3-3re¢ [2,6]) :
homogeneous Strichartz estimates
' AN
|eli+e)t flracororwsyy S 1fllr2msy

inhomogeneous retarded Strichartz estimates

| [ 40200y ar

Se TPl (o1, Lr(e3))

La([0,7],L7(R3))

2<r<3
= — (_1_ 3
3<r<6 and@._4 2p>O

S

<1
<1I4

NI~ N—
V/ANV/AN
N IRS =

WIN

e 2,3 7
vvlth§—|—5<§, {

and, if in addition (gq,7) # (2,6) (non-endpoint case),

V[ +CD2 () ar

<e 1Y 1E M s (10,17, 20 (R3))

La([0,T],L"(R3))

2 1 1 ._5 1 3
with —|— <2, 5 S 5< —|—3, andH.—Z———2—p>O

S



©) Exploit the above bounds to establish the existence of the
linear magnetic viscous propagator for

iOue = —(1 —ie)Dgue + (1 —ie)(21 A - Vue + A%u.) + N (ue)

namely the family {U/. o (t,7)}; - of operators on H(R?3) satisfying
o U A(t,8) U A(5,7) = U A(E,7) TOr any 7 < s <t,

° Z/[E,A(t,t) =1,

e the map (¢,7) — U. A(t,7) is strongly continuous in H(R3),
such that the regularised IVP is equivalent to the integral problem

us(t) = Ue A (,0)ug — 1 [ U AGTIN (u) (1) dr

(for time-independent A, 1. A (t,0) would just be e(i+e)t(V—iA)?y

and derive Strichartz-type estimates

HZ/IS’A(tjT)fHLq([T,T],Wl’T(R3)) Sé,A,T ||f||H1(R3)
(4 retarded ones).



@ Perform a standard (Strichartz-based) contraction argument for

uet) = Uy A(4,0 o — 1 [ U AT N (ue)(7) dr

under the assumption A € A; U A5

= local well-posedness of the regularised magnetic NLS
in C([0,Tmax), H1(R3))

in the energy sub-critical regime v € (1,5), a € (0, 3).

For the energy critical case v = 5:

F = |ul*u not covered by the above heat-Schrddinger Strichartz
bounds (would require p =2, s = 0 therein, 79 = 70 = 1).

Yet, can treat it a la [Cazenave, Weissler, 1990]

using energy dissipation

= existence and uniqueness in C([0, Tmax), H1(R3)).




® Establish uniform-in-¢ a priori bounds for the solution to

ue(t) = U p(t,0)ug — | /O tug, A, )N (ue)(7) dr

provided that A € A; U A5 («~ need a bit of time-regularity for A(t,x)):

sSup M[Ug] S./ 1 ,
te[0,7T]

sSup 8[“’5] rSA,T 1)
te[0,T7]

luell Looro,1), 51 (®3)) Sar 1
constants depending on

||atAj(t7.)HLl([O,T],Lbj(R:B))’ ||Aj(t’.)”Ll([O,T],Lbj(R:S))’ .] S {172}

(hence non-uniformity in T' of the above bounds only due to the

fact that A,9:A € L} _ in time, i.e., A € AC|o¢ in time).

Observe: due to the defocusing structure of the regularised problem,

”“e(“”%@ < Mluel(®) + Eluel(®), te€[0,T).



® (standard:) under the assumptions A € A U A>

GLOBAL EXISTENCE
AND UNIQUENESS
of strong solution wue
to the regularised magnetic NLS

uniform-in-¢
a priori bounds =
for the solution wue

For the energy sub-critical exponent v € (1,5), also complete GWP.

For mass sub-critical exponents ~ € (1,%), a € (0,2)

can actually assume just A € A7 U A5

an proceed through this simpler, alternative path:

m [ \WP in L2(R3) for e-NLS by fixed point argument
using space-time estimates for the heat-Schrodinger flow;

m extend solution ue globally using mass (LQ) conservation:

> mass sub-critical nonlinearity = convenient commutator estimate
on [V, (Ve —iA)?] = global persistence of Hl-regularity for ue.



@ Remove the regularisation (e L 0) locally in time

from Qe = —(1 —ie)(V —iA)%ue + N(ue), wue(t, ') =ug

to 0w = —(V—-iA)2u+N(), u(t,") =ug, (&)
via compactness argument, extracting a subsequence from (un),eN
(with up = ue,, en = ;- — 0, solutions to regularised problems).

First, by uniform-in-¢ a priori bounds, and up to subsequence,

n—oo

Uup ——C g weakly-x in L>®([0,T], HY(R3) .

for some u to be identified as solution to (&).

Next, exploit uniform-in-¢ a priori bounds so as to prove, up to subseq.,
A; - Vun = X; weakly-* in L>([0, T], LPi(R3)),
A Ajun — Y weakly-x in L>®([0, T], LPii (R3)),
lun|" " tun = N7 weakly-* in LOO(:O,T:,LP(’V)(IR{:%)),
(7% % [un|?)un — No weakly-* in L2([0, T], LP{®) (R3))

for 4,5 € {1,2} and suitable exponents p;, p;;, p(7), p(c).



and identify pointwise the above limits as the counterparts for «

AZVun%AZV’UJ,
wn] Y™ty = 7,
(17 funyun = |17 Jul*)u,

proceeding this way:

e Vup — Vu weakly-* in L7L2 by compactness,
Ajn € L2L2 for any n € LQLQ;”, with 1 =i+ b

because A; € LfOL " and 1 —|— B; 1 therefore

T
/o RgAi-(Vun—Vu)ﬁd:cdt - /O/Rg(Vun—Vu)-Amdxdt -0
whence A; - Vu, — A; - Vu  weakly-* in L>([0, T], LPi(R3)) :

e Aubin-Lions compactness lemma, whence
un‘Q oy u|Q strongly in LM([0,T],L*(2)), M €[1,+oc]

for every open bounded Q C R3.



Final refinement of (un),cy Such that its limit v is a weak
H1l-solution to (&) for all times in [0, N], and iterating over N

= global weak Hl-solution with finite energy for a.e. t € R.

Had we assumed A € AC globally in time, this step not needed:;
must do it here because A € AC|5c in time
so the uniform-in-e a priori bounds are T-dependent.



