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Quantum systems of particles

with zero-range (‘contact’) interaction

and their spectra

two modern motivations:

1) astrophysics: neutron scattering in neutron stars

2) cold atom physics: Fermi gases ‘at unitarity’, BCS/BEC crossover



.

Quantum systems of particles

with zero-range (‘contact’) interaction

and their spectra

motivations from the past:

1930’s: jump from atomic to nuclear physics (tritium): Wigner,
Bethe, Peierls, Thomas, Fermi, Breit
1950’s: models theoretical nuclear physics: Landau, Ter-Martirosyan,
Skornyakov, Danilov, Gribov, ...
1960’s: maths playgrounds for renormalisation and extension the-
ory: Berezin, Faddeev, Birman, Minlos, ...
1960’s-1970’s: non-relativistic limit of QFT, ϕ4

2, ϕ4
3: Lee, Di-

mock, Hepp, Albeverio, Høegh-Krohn, ...
1970’s: idealised solvable models (explicit computations / numer-
ics): Demkov, Ostrovskii, Faddeev, Efimov, ...
1970’s-1980’s: universal low energy behaviour, renormalisation,
resolvent approximation: Albeverio, Høegh-Krohn, Gesztesy, ...

(and others)
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Quantum systems of particles
with zero-range (‘contact’) interaction
and their spectra

two modern motivations:

1) astrophysics: neutron scattering in neutron stars
2) cold atom physics: Fermi gases ‘at unitarity’, BCS/BEC crossover

for cold atoms close to Feshbach resonance, possible to tune
p scattering length → ∞
p effective range → 0
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Feshbach resonance in 87Rb

O’Hara et al., Science 298, 2179 (2002)
Rempe et al., PRA 68 010702 (2003)
Regal et al., Nature 424, 47 (2003)
Bourdel et al., PRL 91, 020402 (2003)

expected: a = abg

(
1−

∆B

B −Bpeak

)
abgabgabg =“background” scattering length

∆B∆B∆B =“width” of the Feshbach resonance
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Quantum systems of particles

with zero-range (‘contact’) interaction

and their spectra

Preliminary issue:

how to construct models that be

p mathematically unambiguous

p physically meaningful/realistic
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Quantum systems of particles

with zero-range (‘contact’) interaction

and their spectra

Hamiltonians are not ordinary Schrödinger operators:

H =
N∑
j=1

( ~2

2mj
(−∆xj) + Utrap(xj)

)
+

N∑
j<k

V (xj − xk)

H =
N∑
j=1

( ~2

2mj
(−∆xj) + Utrap(xj)

)
+

N∑
j<k

[
interaction

only when xj = xk

]
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the zero-range interaction is modelled by boundary conditions

dictated from physical heuristics at the coincidence hyperplanes

for low-energy (s-wave) two-body scattering, require:

−
1

rΨ

∂

∂r
(rΨ)

r↓0−−→
1

a
i.e., Ψ

r↓0
≈

e−r/a

r
≈
(

1

r
−

1

a

)
Ψ ≡ Ψ(x1, . . . , xN), r = |xj − xk|,
a = two-body scattering length in the channel (j, k)

Bethe and Peierls, “The quantum theory of diplon”, Proc. R. Soc. Lond. A
1935 148, 146-156 (“diplon” = nucleus of Deuterium 2H, i.e., p-n)



⇒ general idea: the multi-particle Hamiltonian is basically the
free Hamiltonian, except that it acts on wave-functions displaying
the appropriate physical asymptotics in each two-body channel

notice: these are particle-particle boundary conditions of high-
codimension; conceptually analogous to, but deeply different than,
the b.c. in the modelling discussed in the talks by
→ Exner,
→ Stenzel,
→ Holzmann,
→ Stelzer,
and others, which are instead one-particle conditions relative to
a fixed locus where the singular interaction is supported at (and
with codim=1 or 2)

beside, those were implementation of 1dim Dirac δ(1) distribution,
no 3dim analogue here: particle-particle contact interaction is NOT δ(3)



.
many approaches to define
multi-particle Hamiltonians with two-body zero-range interaction

¬ operator extensions (of free models away from coincidence)
(Berezin, Minlos, Faddeev, ...)

­ nonstandard analysis
(Nelson, Alonso, Albeverio, Fenstad, Høegh-Krohn, ...)

® Dirichlet forms
(Albeverio, Høegh-Krohn, Streit, ...)

¯ approximation by finite range interactions + renormalisation
(Albeverio, Høegh-Krohn, Gesztesy, ...)

° analysis of resolvents
(Grossmann, Høegh-Krohn, Mebkhout, ...)

± quadratic forms
(Dell’Antonio, Figari, Teta, ...)

(here I mean: initiated by ... + epigones + new explorers)

today primarily ¬, ¯, ±



two general complications
affecting the definition of the model and its spectral analysis:

−
1

rΨ

∂

∂r
(rΨ)

r↓0−−→
1

a

1) where/how to impose the Bethe-Peierls ‘contact condition’ ?
• for all wave-functions in the Hamiltonian’s operator/form domain?
• or just for eigenfunctions in the eigenvalue problem?
(second option customary in physics)
• impose it point-wise or in suitable functional sense?
(→ like for the ‘radiation condition’ in D. Mitrea’s talk)

2) upon imposing the Bethe-Peierls ‘contact condition’,
is the resulting operator unambiguous? (i.e., self-adjoint)



Bethe-Peierls ‘contact condition’
?⇒ H self-adjoint

two historical examples (paradigmatic, instructive):

• need of additional (‘three-body’) parameter in certain cases,

in order to resolve the ambiguity (→ Cacciapuoti’s talk)

Ter-Martirosyan, Skornyakov Sov. Phys. JETP (1956)
Gribov, Sov. Phys. JETP (1960)
Danilov, Sov. Phys. JETP (1961)
Minlos, Faddeev, Sov. Phys. JETP (1962)

• BP-condition imposed for a too small domain yielded, for (2+1)-

fermionic models, the wrong mass threshold for stability (lower

semi-boundedness of the spectrum)

Minlos, LNP (1987)
Minlos, Mosc. Math. J. (2011,2012)
Minlos, Uspekhi Mat. Nauk (2014)
Correggi, Dell’Antonio, Finco, Michelangeli, Teta, MPAG (2015)
Michelangeli, Ottolini, Rep. Math. Phys (2017,2018)
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Observe: no need of additional three-body parameters for finite range

interactions: ordinary Utrap and V give rise to essentially self-adjoint

Hfinite range =
N∑
j=1

( ~2

2mj
(−∆xj) + Utrap(xj)

)
+

N∑
j<k

V (xj − xk)

and its spectral analysis is unambiguous. Hzero range, instead,

might have multiple self-adjoint realisations.

Example (2 body): for V ∈ L
3
2(R3) + L∞(R3),

(# negative EV’s of −∆ + V w.r.t. L2(R3)) 6 CLT

∫
R3
V

3/2
− (x) dx

Example (3 body): for |V (x)| . 〈x〉−2, with −∆ + V > O
and zero-energy resonant

H =
∑3
j=1(−∆xj) + V (x1 − x2) + V (x1 − x3) + V (x2 − x3)

(# negative EV’s of H and 6 −E) ∼ C0 logE as E ↓ 0

(‘Efimov effect’)
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Popular particle systems with zero-range interaction
and with non-trivial spectral problems (many are open):

unitary Fermi gases

‘unitary limit’, ‘unitary regime’:

p effective range reff = 0

p two-body scattering length a =∞
i.e., limit of kreff � 1kreff � 1kreff � 1, k|a| � 1k|a| � 1k|a| � 1, k :=

√
E

‘unitary’ because the two-body (low-energy) s-wave scattering amplitude

f0(E) =
eiδ0(E) sin δ0(E)√

E
= −

1(
1

aaa
−
reffreffreff

2
E + · · ·

)
+ i
√
E
≈

i√
E

thus, f0 reaches “the max allowed by unitarity”;

recall indeed the Optical Theorem: Im f`(E) =
√
E |f`(E)|2,

i.e., f`(E) = − 1
(real function of E)+i

√
E
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Popular particle systems with zero-range interaction
and with non-trivial spectral problems (many are open):

unitary Fermi gases

Notice:

p Bethe-Peierls contact condition ‘at unitarity’:
1

rΨ

∂

∂r
(rΨ)

r↓0−−→ 0

p ‘unitarity’ is a typical 3-dim phenomenon

p ‘unitarity’ is essentially absent in higher order partial waves

p gases ‘at unitarity’ are an experimental fact (via Feshbach res.)

p typical interest in N +M eteronuclear mixtures (→ in 2 slides)
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Popular particle systems with zero-range interaction
and with non-trivial spectral problems (many are open):

unitary Fermi gases

Universality:

p when |a| → ∞ all details of the interaction are dropped out, no
other parameters left to describe the interaction (challenging: no
small parameters readily identifiable for perturbation theory)

p the only length (energy) units are
~2

m

~2

m

~2

m
and LLL (size or the sample)

p scale invariance: the gas remains unitary if L 7→ λL,
with Ek 7→ λ−2Ek, Ψk(x1, . . . , xN) 7→ λ−3N/2Ψk(x1/λ, . . . , xN/λ)

Werner, Castin, “Unitary gas in an isotropic harmonic trap”, Phys. Rev. A (2006)
Braaten, Hammer, “Universality in few-body systems with large scatt. length”, Phys.Rep. (2006)
Giorgini, Pitaevskii, Stringari, “Theory of ultra-cold atomic Fermi gases”, Rev. Mod. Phys. (2008)
Naidon, Endo, “Efimov physics: a review”, Rep. Prog. Phys. (2017)



p typical interest in N +M eteronuclear mixtures at unitarity

intriguing spectral challenges

à in the FEW-BODY PROBLEM

à in the MANY-BODY PROBLEM

(of course, as said, defining the model is an issue itself!)



2+1 fermionic system
Minlos, LNP (1987)
Minlos, Shermatov, Vestnik Moskov. Mat. Mekh. (1989)
Mogilner, Shermatov, Phys. Lett. A (1990)
Shermatov, Theor. Math. Phys. (2003)
Kartavtsev, Malykh, J. Phys. B (2007)
Endo, Naidon, Ueda, Few-Body Systems (2011)
Minlos, Mosc. Math. J. (2011,2012,2014)
Minlos, ISRN Math. Phys. (2012)
Finco, Teta, Rep. Math. Phys. (2012)
Correggi, Dell’Antonio, Finco, Michelangeli, Teta, Rev. Math. Phys. (2012)
Michelangeli, Schmidbauer, Phys. Rev. A (2013)
Minlos, Russian Math. Surveys (2014)
Correggi, Dell’Antonio, Finco, Michelangeli, Teta, MPAG (2015)
Yoshitomi, Math. Slovaca (2016)
Kartavtsev, Malykh, EPL (2016)
Michelangeli, Ottolini, Rep. Math. Phys. (2017,2018)
Moser, Seiringer, CMP (2017)
Becker, Michelangeli, Ottolini, MPAG (2018)



2+2 fermionic system
Michelangeli, Pfeiffer, J. Phys. A (2015)
Moser, Seiringer, MPAG (2018)

N+1 fermionic system
Minlos, SISSA ILAS (1994)
Minlos, Mosc. Math. J. (2011,2012)
Finco, Teta, Rep. Math. Phys. (2012)
Correggi, Dell’Antonio, Finco, Michelangeli, Teta, Rev. Math. Phys. (2012)
Correggi, Finco, Teta, EPL (2015)
Moser, Seiringer, CMP (2017)

and several other combinations

in formal treatments in the physical literature

(references above are mathematical)



For the many-body unitary Fermi gas,

a challenging (and open) spectral problem:

the Bertsch problem (George Bertsch, 1999)
(100$ prize...)

“what are the ground state properties of the many-body system

composed of spin-1
2 fermions interacting via a zero range, infinite

scattering-length contact interaction?”

(a problem originally intended as a challenge parameter-free model

of neutron matter at subnuclear density→ crust of neutron stars)

Baker, Phys.. Rev. C (1999)
Mihaila, Cardenas, SciTech Connect. (2008)
Iori, Macr̀ı, Trombettoni, in Mathematical Challenges of Zero-Range Interac-
tions, A. Michelangeli ed., Springer-INdAM (2021)
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Explicitly: ground state energy per particle in a free Fermi gas

Efree
gs /N =

3

5
EF

(N fermions occupying all states within the Fermi sphere),

where EF =
~2

2m
k2
F =

~2

2m

(
3π2N

V

)2
3
.

Conjectured:

lim
N→∞

Eunitary
gs (N)

N
= ξξξ

3

5
EF , ξξξ = ‘Bertsch parameter’ .

Mathematically ambiguity in modelling. Physical calculations in practice:

lim
N→∞

lim
a→∞
reff→0

Egs(a, reff , N)

N
= ξξξ

3

5
EF ,

and order of limits affects the result.

ξ =


0.41 Navon et al., Science (2010)
0.39 Luo, Thomas, J. Low Temp. Phys. (2009)
0.376 Ku et al., Science (2012)
0.37 Zürn et al., PRL (2013)
0.388 Schonenberg, Conduit, PRA (2017)
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The proof of the existence of the dimensionless Bertsch

spectral parameter ξ in some rigorous and meaningful limit,

and its calculation, has become a theoretical challenge.

With 0 < ξ 6 1 the ground state Eunitary
gs would be that of a

very unusual gas, a super-fluid with a pairing gap of the order of

the Fermi energy, the largest pairing gap in any physical system,

in addition to its universal properties largely independent of the

details of the interaction.

To be stressed: a hard problem mathematically!

à rigorous construction of N-body Hamiltonian at unitarity

unknown for N > 4

à let alone the limit N →∞
à uncontrolled limit reff → 0, at fixed N > 3 (known for N = 2)



More on 2+1 fermionic system.

Two identical fermions of mass 1,

zero-range interaction with a third particle of mass m.

Preparations:

p µµµ := 2
m+1, ννν := m(m+2)

(m+1)2 = 1− µ2

4

p (̂Tλ ξ)(p) := 2π2
√
νp2 + λ ξ̂(p) +

∫
R3

ξ̂(q)

p2 + q2 + µp · q + λ
dq , p ∈ R3

for fixed λ > 0 (‘charge operator’).

Maps continuously Hs(R3) into Hs−1(R3) for any s ∈ (−1
2,

3
2).

p ûλξ (p1, p2) :=
ξ̂(p1)− ξ̂(p2)

p2
1 + p2

2 + µ p1 · p2 + λ
, ξ ∈ H−

1
2(R3) ≡‘space of charges’

p Λ(m) :=
2

π
(m+ 1)2

(
1√

m(m+ 2)
− arcsin

1

m+ 1

)
(‘Efimov trascendental function’) monotone decreas. R+ → R+ bijection

p m∗ ≈ (13.607)−1, the unique root of Λ(m) = 1.



The Hamiltonian HHHααα: for ααα ∈ R and m > m∗ define

D(Hα) :=

 g = Fλ + uλξ

∣∣∣∣∣∣∣∣
Fλ ∈ H2

f (R3 × R3) ,

ξ ∈ H
1
2(R3) , (Tλ + α1)ξ ∈ H

1
2(R3) ,

plus the boundary conditions (tms′)


(tms′)

∫
R3
F̂λ(p1, p2) dp2 =

(
(Tλ + α) ξ

)̂
(p1) ,

(Hα + λ1) g := (Hfree + λ1)Fλ

=
(
−∆x1 −∆x2 −

2
m+1∇x1 · ∇x2 + λ

)
Fλ .

acting on H = L2
f (R3 × R3,dx1dx2)

(three-body Hilbert space in internal coordinates, c.m. factored out)
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Theorem. Let m > m∗.
(1) Hα is self-adjoint on H, and

inf σ(Hα) = 0 if α > 0

inf σ(Hα) > − α2

4π4(1−Λ(m)2)
if α < 0 .

(2) Hα is an extension of

H̊ := −∆x1 −∆x2 −
2

m+1∇x1 · ∇x2

D(H̊) := C∞0 ((R3 × R3)\(Γ1 ∪ Γ2)) ∩H

(Γ1 := {x1 = 0}, Γ2 := {x2 = 0}, the coincidence hyperplanes)

(3) every g ∈ D(Hα) satisfies∫
p2∈R3

|p2|<R
ĝ(p1, p2) dp2

R→+∞
= (4πR+ α) ξ̂(p1) + o(1) (tms)

the Ter-Martirosyan–Skornyakov condition ( (tms) ⇔ (tms′) )

(4) equivalently, with aaa := −(4πα)−1

gav(x1; |x2|) :=
1

4π

∫
S2
g(x1, |x2|Ω)dΩ

|x2|→0
= cg

(
1

|x2|
−

1

a

)
ξ(x1) + o(1)

the Bete-Peierls contact condition



p Rigorously established in

Correggi, Dell’Antonio, Finco, Michelangeli, Teta, Rev. Math. Phys. (2012)

Michelangeli, Schmidbauer, Phys. Rev. A (2013)

Michelangeli, Ottolini, Rep. Math. Phys. (2017,2018)

Becker, Michelangeli, Ottolini, MPAG (2018)

Michelangeli, Rev. Math. Phys. (2021)

both by extension techniques and by quadratic form methods.

Previous attempts: formal / heuristic / numerical / (or wrong).

p Model of non-trivial contact interaction supported Γ1 and Γ2.

p Each two-body channels exhibits

precisely the physical behaviour Ψ ∼ (1
r −

1
a) as r ↓ 0.

p α is the inverse scattering length (two-body parameter)



.

Theorem.
Michelangeli, Schmidbauer, Phys. Rev. A (2013)

Becker, Michelangeli, Ottolini, MPAG (2018)

Michelangeli, Rev. Math. Phys. (2021)

(α < 0)



Based on the following key fact:

eigenfunctions ΨE at −E < 0: Ψ̂E = ûEξ = ξ̂(p1)−ξ̂(p2)
p2

1+p2
2+µ p1·p2+E

for suitable ξ of angular symmetry ` = 1

satisfying TEξ + αξ = 0 (the ‘Ter-Martirosyan Skornyakov equation’)

+ study of the (non-local) integro-differential operator TE

Open (work in progress):

p rigorous derivation of threshold M?

p mass threshold for EV’s to disappear/embed in σcont(Hα)

p spectral behaviour as m ↓ m∗

p rigorize physicist’s formal (yet efficient!) arguments

p additional multiplicity of models for m ∈ (0,m∗∗), m∗∗ ≈ (8.62)−1

(each one characterised by an extra three-body parameter)

p counterpart problem for bosons


