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Zusammenfassung

Es werden zwei integrable Hamiltonsche Systeme untersucht: das Toda-Gitter mit periodischen
Randwertbedingungen und einer grossen Anzahl Partikel und die Korteweg-de Vries (KdV) Gle-
ichung auf R. Im ersten Teil untersuchen wir das asymptotische Verhalten von Birkhoff Koordinaten
(kartesische Wirkung- und Winkelvariablen) des Toda-Gitters in der Nähe des Gleichgewichts, falls
die Anzahl Partikel N gegen Unendlich strebt. Wir zeigen, dass für geeignet gewählte Konstanten
R,R′ > 0, die der Anzahl N entsprechende Koordinatentransformation die komplexe Kugel von Ra-
dius R/Nα um den Gleichgewichtspunkt analytisch in eine Kugel mit Radius R/Nα abbildet genau
dann falls α ≥ 2. Dabei werden Sobolev-analytische Normen gewählt. Als Anwendung betrachten
wir das Problem der Gleichverteilung der Energie für Lösungen des Toda Gitters im Sinne von Fermi-
Pasta-Ulam. Wir zeigen, dass für Anfangswerte kleiner als R/N2, 0 < R� 1, bei denen nur der er-
ste Fourier Koeffizient nicht null ist, die Energie für alle Zeiten in einem Wellenpacket eingeschlossen
bleibt, dessen Fourierkoeffizienten exponentiell mit der Wellenzahl abfallen. Schliesslich zeigen wir,
dass für Lösungen des FPU-Gitters mit den oben beschriebenen Anfangswerten die Energie für
ein längeres Zeitintervall in einem derartigen Wellenpacket eingeschlossen bleibt, als zuvor bekannt
war.

Im zweiten Teil wird die Streuabbildung für die KdV Gleichung auf R untersucht. Es wird
gezeigt, dass für Potentiale in gewichteten Sobolev Räumen ohne Eigenzustände der nichtlineare
Teil der Streuabbildung 1-regularisierend ist und die sich daraus ergebende Anwendungen für die
Lösungen der KdV Gleichung diskutiert.



Abstract

In this thesis we investigate two examples of infinite dimensional integrable Hamiltonian systems in
1-space dimension: the Toda chain with periodic boundary conditions and large number of particles,
and the Korteweg-de Vries (KdV) equation on R.

In the first part of the thesis we study the Birkhoff coordinates (Cartesian action angle coor-
dinates) of the Toda lattice with periodic boundary condition in the limit where the number N
of the particles tends to infinity. We prove that the transformation introducing such coordinates
maps analytically a complex ball of radius R/Nα (in discrete Sobolev-analytic norms) into a ball of
radius R′/Nα (with R,R′ > 0 independent of N) if and only if α ≥ 2. Then we consider the prob-
lem of equipartition of energy in the spirit of Fermi-Pasta-Ulam. We deduce that corresponding to
initial data of size R/N2, 0 < R � 1, and with only the first Fourier mode excited, the energy re-
mains forever in a packet of Fourier modes exponentially decreasing with the wave number. Finally
we consider the original FPU model and prove that energy remains localized in a similar packet
of Fourier modes for times one order of magnitude longer than those covered by previous results
which is the time of formation of the packet. The proof of the theorem on Birkhoff coordinates is
based on a new quantitative version of a Vey type theorem by Kuksin and Perelman which could
be interesting in itself.

In the second part of the thesis we study the scattering map of the KdV on R. We prove that
in appropriate weighted Sobolev spaces of the form HN ∩ L2

M , with integers N ≥ 2M ≥ 8 and in
the case of no bound states, the scattering map is a perturbation of the Fourier transform by a
regularizing operator. As an application of this result, we show that the difference of the KdV flow
and the corresponding Airy flow is 1-smoothing.
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Introduction
In the last decades the problem of a rigorous analysis of the theory of infinite dimensional integrable
Hamiltonian systems has been widely studied. In particular Kappeler with collaborators intro-
duced a series of methods in order to construct rigorously action-angle variables for 1-dimensional
integrable Hamiltonian PDE’s on T. The program succeeded in many cases, like KdV [KP03],
defocusing and focusing NLS [GK14, KLTZ09]. In each case considered, it has been proved that
there exists a real analytic symplectic diffeomorphism between two scales of Hilbert spaces which
introduce action-angle coordinates.

The present thesis is part of this program. Infinite dimensional integrable Hamiltonian systems
in 1-space dimension come up in two setups: (i) on compact intervals (finite volume) and (ii) on
infinite intervals (infinite volume). The dynamical behaviour of the systems in the two setups have
many similar features, but also distinct ones, mostly due to the different manifestation of dispersion.
In this thesis we analyze two systems in different setups. As an example of a system in the first
setup we study the Toda chain with a large number of particles, while as an example of a system
in the second setup we study the Korteweg-de Vries equation (KdV) on R. The choice of the Toda
chain is motivated by the application to the FPU chain which will be discussed below, while the
choice of KdV is motivated by the question if features such as the 1-smoothing property established
recently for this equation in the periodic setup also hold in the infinite volume case.

We describe now in more details our results.

The Toda’s chain. The Toda chain is the system with Hamiltonian

HToda(p, q) =
1

2

N−1∑
j=0

p2
j +

N−1∑
j=0

eqj−qj+1 (1)

and periodic boundary conditions qN = q0 , pN = p0, which is known to be integrable. We are
interested in the limit N → ∞. By standard Arnold-Liouville theory the system admits action
angle coordinates. However the actual introduction of such coordinates is quite complicated and
the corresponding transformation has only recently been studied analytically in a series of papers
by Henrici and Kappeler [HK08b, HK08c]. In particular such authors have proved the existence
of global Birkhoff coordinates, namely canonical coordinates (xk, yk) analytic on the whole phase
space, with the property that the kth action is given by (x2

k+y2
k)/2. The construction of Henrici and

Kappeler, however is not uniform in the size of the chain, in the sense that the map ΦN introducing
Birkhoff coordinates is globally analytic for any fixed N , but it could (and actually does) develop
singularities as N → +∞. Our main result is to prove some analyticity properties fulfilled by ΦN
uniformly in the limit N → +∞. Precisely we consider complex balls centered at the origin and
prove that ΦN maps analytically a ball of radius R/Nα in discrete Sobolev-analytic norms into a
ball of radius R′/Nα (with R,R′ > 0 independent of N) if and only if α ≥ 2. To come to a precise
statement we have to introduce a suitable topology in CN−1 ×CN−1. Consider the Toda lattice in
the subspace characterized by

∑
j qj = 0 =

∑
j pj which is invariant under the dynamics. Introduce

the discrete Fourier transform F(q) = q̂ defined by

q̂k =
1√
N

N−1∑
j=0

qje
2iπjk/N , k ∈ Z , (2)
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and consider p̂k defined analogously. Finally introduce the linear Birkhoff variables

Xk =
p̂k + p̂N−k − iωk(q̂k − q̂N−k)√

2ωk
, Yk =

p̂k − p̂N−k + iωk(q̂k + q̂N−k)

i
√

2ωk
, k = 1, ..., N−1 , (3)

where ωk ≡ ω
(
k
N

)
:= 2 sin(kπ/N); using such coordinates, which are symplectic, the quadratic

part of the Hamiltonian takes the form

H0 =

N−1∑
k=1

ω
(
k
N

) X2
k + Y 2

k

2
. (4)

For any s ≥ 0, σ ≥ 0 introduce in CN−1 × CN−1 the discrete Sobolev-analytic norm

‖(X,Y )‖2Ps,σ :=
1

N

N−1∑
k=1

[k]2sN e2σ[k]N ω
(
k
N

) |Xk|2 + |Yk|2

2
(5)

where [k]N := min(|k|, |N − k|) . The space CN−1×CN−1 endowed by such a norm will be denoted
by Ps,σ. We denote by Bs,σ(R) the ball of radius R and center 0 in the topology defined by the
norm ‖.‖Ps,σ . We will also denote by Bs,σR := Bs,σ(R) ∩ (RN−1 × RN−1) the real ball of radius R.
The most important result in this section is the following

Theorem 0.1. For any s ≥ 0, σ ≥ 0 there exist strictly positive constants Rs,σ, R′s,σ, such that
for any N ≥ 2, the map ΦN is analytic as a map

ΦN : Bs,σ
(
Rs,σ
Nα

)
↪→ Bs,σ

(
R′s,σ
Nα

)
, (x, y) 7→ (X,Y )

if and only if α ≥ 2. The same is true for the inverse mapping Φ−1
N .

In order to prove the "if" part of Theorem 0.1 we apply to the Toda lattice a Vey type theorem
[Vey78] for infinite dimensional systems recently proved by Kuksin and Perelman [KP10]. Actually,
we need to prove a new quantitative version of Kuksin-Perelman’s theorem, a result that we think
could be interesting in itself.

In order to prove the "only if" part of Theorem 0.1, we explicitly construct the first term of
the Taylor expansion of ΦN through Birkhoff normal form techniques, and prove that the second
differential QΦN := d2ΦN (0, 0) at the origin diverges like N2. It follows that, as N → +∞, the
real diffeomorphism ΦN develops a singularity at zero in the second derivative. Thus, by Cauchy
estimate, the image of a ball of radius R/Nα is unbounded when α < 2.

We finally apply the result to the problem of equipartition of energy in the spirit of Fermi-Pasta-
Ulam. Recall that the FPU (α, β)-model is the Hamiltonian lattice with Hamiltonian function
which, in suitable rescaled variables, takes the form

HFPU (p, q) =

N−1∑
j=0

p2
j

2
+ U(qj − qj+1) , U(x) =

x2

2
+

x3

6
+ β

x4

24
. (6)

We will consider the case of periodic boundary conditions: q0 = qN , p0 = pN . Let us denote by Ek
the energy of the kth normal mode, and by Ek := Ek/N the specific energy in the kth mode. In
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their celebrated numerical experiment Fermi Pasta and Ulam [FPU65] studied both the behaviour
of Ek(t) and of its time average 〈Ek〉(t) := 1

t

∫ t
0
Ek(s)ds . They observed that, corresponding to

initial data with E1(0) 6= 0 and Ek(0) = 0 ∀k 6= 1, N − 1, the quantities Ek(t) present a recurrent
behaviour, while their averages 〈Ek〉(t) quickly relax to a sequence Ēk exponentially decreasing with
k. This is what is known under the name of FPU packet of modes.

A systematic numerical study of the evolution of the Toda compared to FPU, paying particular
attention to the dependence on N of the phenomena, was performed by Benettin and Ponno [BP11]
(see also [BCP13]). In particular such authors put into evidence the fact that the FPU packet
seems to have an infinite lifespan in the Toda lattice. Furthermore they showed that the relevant
parameter controlling the lifespan of the packet in the FPU model is the distance of FPU from the
corresponding Toda lattice, which is measured by the quantity (β − 1).

As a corollary of Theorem 0.1 we prove that in the Toda lattice, corresponding to initial data
in a ball of radius R/N2 (0 < R � 1) and with only the first Fourier mode excited, the energy
remains forever in a packet of Fourier modes exponentially decreasing with the wave number. Then
we consider the original FPU model and prove that, corresponding to the same initial data, energy
remains in an exponentially localized packet of Fourier modes for very long times (see Theorem
0.3 below), namely for times one order of magnitude longer then those covered by previous results
[BP06]. This is relevant in view of the fact that the time scale covered in [BP06] is that of formation
of the packet, so the result that we prove allows to conclude that the packet persists over a time
much longer then the one needed for its formation. It is convenient to state the results for Toda
and FPU using the small parameter µ := 1

N as in [BP06]. We prove the following theorem

Theorem 0.2. Consider the Toda lattice (1). Fix σ > 0, then there exist constants R0, C1, such
that the following holds true. Consider an initial datum with

E1(0) = EN−1(0) = R2e−2σµ4 , Ek(0) ≡ Ek(t)
∣∣
t=0

= 0 , ∀k 6= 1, N − 1 (7)

with R < R0. Then, along the corresponding solution, one has

Ek(t) ≤ R2(1 + C1R)µ4e−2σk , ∀ 1 ≤ k ≤ bN/2c , ∀t ∈ R . (8)

For the FPU model we have the following theorem

Theorem 0.3. Consider the FPU system (6). Fix s ≥ 1 and σ ≥ 0; then there exist constants R′0,
C2, T, such that the following holds true. Consider a real initial datum fulfilling (7) with R < R′0,
then, along the corresponding solution, one has

Ek(t) ≤ 16R2µ4e−2σk

k2s
, ∀ 1 ≤ k ≤ bN/2c , |t| ≤ T

R2µ4
· 1

|β − 1|+ C2Rµ2
. (9)

Furthermore, for 1 ≤ k ≤ N − 1, consider the action Ik :=
x2
k+y2

k

2 of the Toda lattice and let Ik(t)
be its evolution according to the FPU flow. Then one has

1

N

N−1∑
k=1

[k]
2(s−1)
N e2σ[k]Nω

(
k
N

)
|Ik(t)− Ik(0)| ≤ C3R

2µ5 for t fullfilling (9) (10)

Let us remark that our analysis is part of a project aiming at studying the dynamics of periodic
Toda lattices with a large number of particles, in particular its asymptotics. First results in this
project were obtained in the papers [BKP09, BKP13b, BKP13a] (see also [BGPU03]).
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They are based on the Lax pair representation of the Toda lattice in terms of periodic Jacobi
matrices. The spectrum of these matrices leads to a complete set of conserved quantities and hence
determines the Toda Hamiltonian and the dynamics of Toda lattices, such as their frequencies.

In order to study the asymptotics of Toda lattices for a large number N of particles one therefore
needs to work in two directions: on the one hand one has to study the asymptotics of the spectrum
of Jacobi matrices as N → ∞ and on the other hand, one needs to use tools of the theory of
integrable systems in order to effectively extract information on the dynamics of Toda lattices from
the periodic spectrum of periodic Jacobi matrices.

The KdV on R. In the second part of the thesis we show that for the KdV on the line, the
scattering map is an analytic perturbation of the Fourier transform by a 1-smoothing nonlinear
operator. With the application we have in mind, we choose a setup for the scattering map so that
the spaces considered are left invariant under the KdV flow. Recall that the KdV equation on R

∂tu(t, x) = −∂3
xu(t, x)− 6u(t, x)∂xu(t, x) , u(0, x) = q(x) , (11)

is globally in time well-posed in various function spaces such as the Sobolev spacesHN ≡ HN (R,R),
N ∈ Z≥2, as well as on the weighted spaces H2N ∩ L2

M , with integers N ≥ M ≥ 1 [Kat66], where
L2
M ≡ L2

M (R,C) denotes the space of functions satisfying ‖q‖2
L2
M

:=
∫∞
−∞(1 + |x|2)M |q(x)|2dx <∞.

Our analysis relies on a detailed study of the spectral data of the Schrödinger operator L(q) :=
−∂2

x + q. Denote by f1(q, x, k) and f2(q, x, k) the Jost solutions, i.e. solutions of L(q)f = k2f
with asymptotics f1(q, x, k) ∼ eikx, x → ∞, f2(q, x, k) ∼ e−ikx, x → −∞. The eigenvalues of the
operator L(q) are called bound states, and a potential q will be said to be without bound states
if L(q) has no eigenvalues. Furthermore q will be said to be generic if the Wronskian W (q, k) :=
[f2(q, x, k), f1(q, x, k)] satisfies the condition W (q, 0) 6= 0 (see [Fad64]). We are interested in the
analytic properties of the scattering map

S(q, k) := [f1(q, x, k), f2(q, x,−k)] .

which is known to linearize the KdV flow [GGKM74].
To state our result, introduce the set

Q :=
{
q : R→ R , q ∈ L2

4 : q without bound states and generic
}
, (12)

and for any integers N ≥ 0 and M ≥ 4 define QN,M := Q∩HN ∩L2
M . We prove that for potentials

q ∈ Q, the scattering map S(q, ·) takes value in the space S of functions σ : R→ C satisfying

(S1) σ(−k) = σ(k), ∀k ∈ R;

(S2) σ(0) > 0.

Denote by SM,N := S ∩ HM
ζ,C ∩ L2

N . Here HM
ζ,C is the space of functions f ∈ HM−1

C such that
the M th derivative fulfills ζ∂Mk f ∈ L2, where ζ : R → R is an odd monotone C∞ function with
ζ(k) = k for |k| ≤ 1/2 and ζ(k) = 1 for k ≥ 1 .

Moreover let F± be the Fourier transformations defined by F±(f) =
∫ +∞
−∞ e∓2ikxf(x) dx. In this

setup, the scattering map S has the following properties:

Theorem 0.4. For any integers N ≥ 0, M ≥ 4, the following holds:

9



(i) The map
S : QN,M → SM,N , q 7→ S(q, ·)

is a real analytic diffeomorphism.

(ii) The maps A := S −F− and B := S−1 −F−1
− are 1-smoothing, i.e.

A : QN,M → HM
ζ ∩ L2

N+1 and B : SM,N → HN+1 ∩ L2
M−1 .

Furthermore they are real analytic maps.

Item (i) of Theorem 0.4 shows that the scattering map behaves like a nonlinear Fourier trans-
form, interchanging the decaying and regularity properties. Item (ii) shows that the difference A
of the scattering map and its linear part F− is 1-smoothing.
Kappeler and Trubowitz [KT86, KT88] studied analytic properties of the scattering map S between
weighted Sobolev spaces. More precisely, define the spaces

Hn,α :=
{
f ∈ L2 : xβ∂jxf ∈ L2, 0 ≤ j ≤ n, 0 ≤ β ≤ α

}
,

Hn,α
] :=

{
f ∈ Hn,α : xβ∂n+1

x f ∈ L2, 1 ≤ β ≤ α
}
.

In [KT86], Kappeler and Trubowitz showed that the map q 7→ S(q, ·) is a real analytic diffeomor-
phism from Q ∩ HN,N to S ∩ HN−1,N

] , N ∈ Z≥3. They extend their results to potentials with
finitely many bound states in [KT88]. Unfortunately, such spaces are not invariant for the KdV
flow, thus they are not suited for analyzing qualitative properties of the KdV dynamic. The novelty
of our work is to extend the construction of [KT86] to spaces of the form HN ∩ L2

M , which, for
N ≥ 2M ≥ 2, are invariant for the KdV [Kat66].

As an application of Theorem 0.4 we compare solutions of (11) to solutions of the Cauchy
problem for the Airy equation on R,

∂tv(t, x) = −∂3
xv(t, x) , v(0, x) = p(x) . (13)

Denote the flows of (13) and (11) by U tAiry(p) := v(t, ·) respectively U tKdV (q) := u(t, ·). We show
that for q ∈ QN,M with N ≥ 2M ≥ 8, the difference U tKdV (q) − U tAiry(q) is 1-smoothing, i.e. it
takes values in HN+1. More precisely we prove the following:

Theorem 0.5. Let N , M be integers with N ≥ 2M ≥ 8. Then the following holds true:

(i) QN,M is invariant under the KdV flow.

(ii) For any q ∈ QN,M the difference U tKdV (q)− U tAiry(q) takes values in HN+1 ∩ L2
M . Moreover

the map

QN,M × R≥0 →HN+1 ∩ L2
M , (q, t) 7→ U tKdV (q)− U tAiry(q)

is continuous and for any fixed t real analytic in q.

This result is motivated from the study of the 1-smoothing property of the KdV flow in the
periodic set-up, established recently in [ET13a, KST13] and addresses the question if similar results
hold for the KdV flow on the line. In particular in [KST13] the 1-smoothing property of the Birkhoff
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map has been exploited to prove that for q ∈ HN (T,R), N ≥ 1, the difference U tKdV (q)− U tAiry(q)

is bounded in HN+1(T,R) with a bound which grows linearly in time.

Organization of the thesis. In Chapter 1 we analyze the Toda Lattice with a large number of
particles, and we prove Theorem 0.1, Theorem 0.2 and Theorem 0.3. The results of this Chapter
are taken from our paper [BM14].

In Chapter 2 we analyze the KdV on R and we prove Theorem 0.5 and Theorem 0.4. The results
of this chapter are taken from our paper [MS14].

Each chapter here is self contained and can be read separately.
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Chapter 1

Birkhoff coordinates for the Toda
Lattice in the limit of infinitely many
particles with an application to FPU

1 Introduction and main result
It is well known that the Toda lattice, namely the system with Hamiltonian

HToda(p, q) =
1

2

N−1∑
j=0

p2
j +

N−1∑
j=0

eqj−qj+1 , (1.1)

and periodic boundary conditions qN = q0 , pN = p0, is integrable [Tod67, Hén74]. Thus, by
standard Arnold-Liouville theory the system admits action angle coordinates. However the actual
introduction of such coordinates is quite complicated (see [FM76, FFM82]) and the corresponding
transformation has only recently been studied analytically in a series of papers by Henrici and
Kappeler [HK08b, HK08c]. In particular such authors have proved the existence of global Birkhoff
coordinates, namely canonical coordinates (xk, yk) analytic on the whole R2N , with the property
that the kth action is given by (x2

k+y2
k)/2. The construction of Henrici and Kappeler, however is not

uniform in the size of the chain, in the sense that the map ΦN introducing Birkhoff coordinates is
globally analytic for any fixed N , but it could (and actually does) develop singularities as N → +∞.
Here we prove some analyticity properties fulfilled by ΦN uniformly in the limit N → +∞. Precisely
we consider complex balls centered at the origin and prove that ΦN maps analytically a ball of radius
R/Nα in discrete Sobolev-analytic norms into a ball of radius R′/Nα, with R,R′ > 0 independent
of N if and only if α ≥ 2. Furthermore we prove that the supremum of ΦN over a complex ball of
radius R/Nα diverges as N → +∞ when α < 1.

In order to prove upper estimates on ΦN we apply to the Toda lattice a Vey type theorem
[Vey78] for infinite dimensional systems recently proved by Kuksin and Perelman [KP10]. Actually,
we need to prove a new quantitative version of Kuksin-Perelman’s theorem. We think that such a
result could be interesting in itself.

The lower estimates on the size of ΦN are proved by constructing explicitly the first term of the
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Taylor expansion of ΦN through Birkhoff normal form techniques; in particular we prove that the
second differential d2ΦN (0) at the origin diverges like N2.

We finally apply the result to the problem of equipartition of energy in the spirit of Fermi-
Pasta-Ulam. We prove that in the Toda lattice, corresponding to initial data with energy E/N3

(0 < E � 1) and with only the first Fourier mode excited, the energy remains forever in a packet of
Fourier modes exponentially decreasing with the wave number. Then we consider the original FPU
model and prove that, corresponding to the same initial data, energy remains in an exponentially
localized packet of Fourier modes for times of order N4 (see Theorem 1.16 below), namely for
times one order of magnitude longer then those covered by previous results (see [BP06], see also
[SW00, HL12]). This is relevant in view of the fact that the time scale of formation of the packet is
N3 (see [BP06]), so our result allows to conclude that the packet persists over a time much longer
then the one needed for its formation.

1.1 Birkhoff coordinates for the Toda lattice
We come to a precise statement of the main results of the present chapter. Consider the Toda
lattice in the subspace characterized by∑

j

qj = 0 =
∑
j

pj (1.2)

which is invariant under the dynamics. Introduce the discrete Fourier transform F(q) = q̂ defined
by

q̂k =
1√
N

N−1∑
j=0

qje
2iπjk/N , k ∈ Z , (1.3)

and consider p̂k defined analogously. Due to (1.2) one has p̂0 = q̂0 = 0 and furthermore p̂k =
p̂k+N , q̂k = q̂k+N , ∀k ∈ Z, so we restrict to {p̂k, q̂k}N−1

k=1 . Corresponding to real sequences (pj , qj)
one has q̂k = q̂N−k and p̂k = p̂N−k.

Introduce the linear Birkhoff variables

Xk =
p̂k + p̂N−k − iωk(q̂k − q̂N−k)√

2ωk
, Yk =

p̂k − p̂N−k + iωk(q̂k + q̂N−k)

i
√

2ωk
, k = 1, ..., N − 1 ,

(1.4)
where ωk ≡ ω

(
k
N

)
:= 2 sin(kπ/N); using such coordinates, which are symplectic, the quadratic

part

H0 :=

N−1∑
j=0

p2
j + (qj − qj+1)2

2
(1.5)

of the Hamiltonian takes the form

H0 =

N−1∑
k=1

ω
(
k
N

) X2
k + Y 2

k

2
. (1.6)

With an abuse of notations, we re-denote by HToda the Hamiltonian (1.1) written in the coordinates
(X,Y ). The following theorem is due to Henrici and Kappeler:
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Theorem 1.1 ([HK08c]). For any integer N ≥ 2 there exists a global real analytic symplectic
diffeomorphism ΦN : RN−1 × RN−1 → RN−1 × RN−1, (X,Y ) = ΦN (x, y) with the following
properties:

(i) The Hamiltonian HToda ◦ ΦN is a function of the actions Ik :=
x2
k+y2

k

2 only, i.e. (xk, yk) are
Birkhoff variables for the Toda Lattice.

(ii) The differential of ΦN at the origin is the identity: dΦN (0, 0) = 1.

Our main results concern the analyticity properties of the map ΦN as N → ∞. To come to a
precise statement we have to introduce a suitable topology in CN−1 × CN−1.

For any s ≥ 0, σ ≥ 0 introduce in CN−1 × CN−1 the discrete Sobolev-analytic norm

‖(X,Y )‖2Ps,σ :=
1

N

N−1∑
k=1

[k]2sN e2σ[k]N ω
(
k
N

) |Xk|2 + |Yk|2

2
(1.7)

where
[k]N := min(|k|, |N − k|) .

The space CN−1 ×CN−1 endowed by such a norm will be denoted by Ps,σ. We denote by Bs,σ(R)
the ball of radius R and center 0 in the topology defined by the norm ‖.‖Ps,σ . We will also denote
by Bs,σR := Bs,σ(R) ∩ (RN−1 × RN−1) the real ball of radius R.

Remark 1.2. When σ = s = 0 the norm (1.7) coincides with the energy norm rescaled by a factor
1/N (the rescaling factor will be discussed in Remark 1.11). We are particularly interested in the
case σ > 0 since, in such a case, states belonging to Ps,σ are exponentially decreasing in Fourier
space. The consideration of positive values of s will be needed in the proof of the main theorem.

Our main result is the following Theorem.

Theorem 1.3. For any s ≥ 0, σ ≥ 0 there exist strictly positive constants Rs,σ, Cs,σ, such that
for any N ≥ 2, the map ΦN is analytic as a map from Bs,σ(Rs,σ/N

2) to Ps,σ and fulfills

sup
‖(x,y)‖Ps,σ≤R/N2

‖ΦN (x, y)− (x, y)‖Ps+1,σ ≤ Cs,σ
R2

N2
, ∀R < Rs,σ. (1.8)

The same estimated is fulfilled by the inverse map Φ−1
N possibly with a different Rs,σ.

Remark 1.4. The estimate (1.8) controls the size of the nonlinear corrections in a norm which
is stronger then the norm of (x, y), showing that ΦN − 1 is 1-smoothing. The proof of this kind
of smoothing effect was actually the main aim of the work by Kuksin and Perelman [KP10], which
proved it for KdV. Subsequently Kappeler, Schaad and Topalov [KST13] proved that such a smooth-
ing property holds also globally for the KdV Birkhoff map.

Remark 1.5. As a consequence of (1.8) one has

ΦN

(
Bs,σ

(
R

N2

))
⊂ Bs,σ

(
R

N2
(1 + Cs,σR)

)
, ∀R < Rs,σ,∀N ≥ 2 (1.9)

and the same estimate is fulfilled by the inverse map Φ−1
N , possibly with a different Rs,σ.
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Corollary 1.6. For any s ≥ 0, σ ≥ 0 there exist strictly positive constants Rs,σ, Cs,σ, with the
following property. Consider the solution v(t) ≡ (X(t), Y (t)) of the Toda Lattice corresponding to
initial data v0 ∈ Bs,σ

(
R
N2

)
with R ≤ Rs,σ then one has

v(t) ∈ Bs,σ
(
R

N2
(1 + Cs,σR)

)
, ∀t ∈ R . (1.10)

In order to state a converse of Theorem 1.3 consider the second differential QΦN := d2ΦN (0, 0)
of ΦN at the origin; QΦN : Ps,σ → Ps,σ is a quadratic polynomial in the phase space variables1.

Theorem 1.7. For any s ≥ 0, σ ≥ 0 there exist strictly positive R,C, Ns,σ ∈ N, such that, for any
N ≥ Ns,σ, α ∈ R, the quadratic form QΦN fulfills

sup
v∈Bs,σR ( R

Nα )

∥∥QΦN (v, v)
∥∥
Ps,σ ≥ CR

2N2−2α . (1.11)

Remark 1.8. Roughtly speaking, one can say that, as N →∞, the real diffeomorphism ΦN develops
a singularity at zero in the second derivative.

Using Cauchy estimate (see subsect. 3.2) one immediately gets the following corollary.

Corollary 1.9. Assume that for some s ≥ 0, σ ≥ 0 there exist strictly positive R,R′ and α ≥ 0,
α′ ∈ R, Ns,σ ∈ N, s.t., for any N ≥ Ns,σ, the map ΦN is analytic in the complex ball Bs,σ(R/Nα)
and fulfills

ΦN

(
Bs,σ

(
R

Nα

))
⊂ Bs,σ

(
R′

Nα′

)
, (1.12)

then one has α′ ≤ 2(α− 1).

Remark 1.10. A particular case of Corollary 1.9 is α < 1, in which one has that the image of a
ball of radius RN−α under ΦN is unbounded as N →∞.

A further interesting case is that of α = α′, which implies α ≥ 2, thus showing that the scaling
R/N2 is the best possible one in which a property of the kind of (1.9) holds.

Remark 1.11. A state (X,Y ) is in the ball Bs,σ(R/N2) if and only if there exist interpolating
periodic functions (β, α), namely functions s.t.

pj = β

(
j

N

)
, qj − qj+1 = α

(
j

N

)
, (1.13)

which are analytic in a strip of width σ and have a Sobolev-analytic norm of size R/N2. More
precisely, given a state (p, q) one considers its Fourier coefficients (p̂, q̂) and the corresponding X,Y
variables; define

α(x) =
1√
N

N−1∑
k=0

q̂k

(
1− e−2πik/N

)
e−2πixk, β(x) =

1√
N

N−1∑
k=0

p̂ke
−2πixk

1actually according to the estimate (1.8) it is smooth as a map Ps,σ → Ps+1,σ
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which fulfill (1.13). Then the Sobolev-analytic norms of α and β are controlled by ‖(X,Y )‖Ps,σ .
For example one has

‖(α, β)‖2Hs := ‖α‖2L2 + ‖β‖2L2 +
1

(2π)2s
‖∂sxα‖

2
L2 +

1

(2π)2s
‖∂sxβ‖

2
L2 = ‖(X,Y )‖2Ps,0 ,

where ‖α‖2L2 :=
∫ 1

0
|α(x)|2 dx. In particular we consider here states with Sobolev-analytic norm

of order R/N2 with R � 1. The factor 1/N in the definition of the norm was introduced to get
correspondence between the norm of a state and the norm of the interpolating functions.

Remark 1.12. As a consequence of Remark 1.11, the order in N of the solutions we are describing
with Theorem 1.3 is the same of the solutions studied in the papers [BP06] and [BKP09, BKP13b,
BKP13a].

Remark 1.13. The results of Theorem 1.3 and Theorem 1.7 extend to states with discrete Sobolev-
Gevrey norm defined by

‖(X,Y )‖2Ps,σ,ν :=
1

N

N−1∑
k=1

[k]2sN e2σ[k]νN ω
(
k
N

) |Xk|2 + |Yk|2

2
(1.14)

where 0 ≤ ν ≤ 1. As a consequence of Remark 1.11, these states are interpolated by periodic
functions with regularity Gevrey ν.

Our analysis is part of a project aiming at studying the dynamics of periodic Toda lattices
with a large number of particles, in particular its asymptotics. First results in this project were
obtained in the papers [BKP09, BKP13b, BKP13a]. They are based on the Lax pair representation
of the Toda lattice in terms of periodic Jacobi matrices. The spectrum of these matrices leads to a
complete set of conserved quantities and hence determines the Toda Hamiltonian and the dynamics
of Toda lattices, such as their frequencies. In order to study the asymptotics of Toda lattices for a
large number N of particles one therefore needs to work in two directions: on the one hand one has
to study the asymptotics of the spectrum of Jacobi matrices as N →∞ and on the other hand, one
needs to use tools of the theory of integrable systems in order to effectively extract information on
the dynamics of Toda lattices from the periodic spectrum of periodic Jacobi matrices.

The limit of a class of sequences of N ×N Jacobi matrices as N →∞ has been formally studied
already at the beginning of the theory of the Toda lattices (see e.g. [Tod67]). However, as pointed
out in [BKP13b], these studies only allowed to (formally) compute the asymptotics of the spectrum
in special cases. In particular, Toda lattices, which incorporated right and left moving waves could
not be analyzed at all in this way. In [BKP13b], based on an approach pioneered in [BGPU03], the
asymptotics of the spectra of sequences of Jacobi matrices corresponding to states of the form (1.13)
were rigorously derived by the means of semiclassical analysis. It turns out that in such a limit the
spectrum splits into three parts: one group of eigenvalues at each of the two edges of the spectrum
within an interval of size O(N−2), whose asymptotics are described by certain Hill operators, and
a third group of eigenvalues, consisting of the bulk of the spectrum, whose asymptotics coincides
with the one of Toda lattices at the equilibrium – see [BKP13b] for details.

In [BKP13a] the asymptotics of the eigenvalues obtained in [BKP13b] were used in order to
compute the one of the actions and of the frequencies of Toda lattices. In particular it was shown
that the asymptotics of the frequencies at the two edges involve the frequencies of two KdV solutions.
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The tools used in [BKP13a] are those of the theory of infinite dimensional integrable systems as
developed in [KP03] and adapted to the Toda lattice in [HK08b].

The present thesis takes up another important topic in the large number of particle limit of
periodic Toda lattices: we study the Birkhoff coordinates near the equilibrium in the limit of large
N to provide precise estimates on the size of complex balls around the equilibrium in Fourier
coordinates and the corresponding size in Birkhoff coordinates. Our analysis allows to describe the
evolution of Toda lattices with large number of particles in the original coordinates and to obtain
an application to the study of FPU lattices (on which we will comment in the next section).

We remark that the obtained estimates on the size of the complex balls are optimal. In our view
this is a strong indication that beyond such a regime the standard tools of integrable systems become
inadequate for studying the asymptotic features of the dynamics of the periodic Toda lattices as
N →∞.

The proofs of our results are based on a novel technique developed in [KP10] to show a Vey
type theorem for the KdV equation on the circle which we adapt here to the study of Toda lattices,
developing in this way another tool for the study of periodic Toda lattices with a large number
of particles. We remark that for our arguments to go through, we need to assume an additional
smallness condition on the set of states admitted as initial data: the states are required to be
interpolated by functions α and β with Sobolev-analytic norm of size R/N2, with R� 1 sufficiently
small. (In the papers [BKP09, BKP13b, BKP13a], the size R can be arbitrarily large.)

1.2 On the FPU metastable packet
In this subsection we recall the phenomenon of the formation of a packet of modes in the FPU chain
and state our related results. First of all we recall that the FPU (α, β)-model is the Hamiltonian
lattice with Hamiltonian function which, in suitable rescaled variables, takes the form

HFPU (p, q) =

N−1∑
j=0

p2
j

2
+ U(qj − qj+1) , (1.15)

U(x) =
x2

2
+

x3

6
+ β

x4

24
. (1.16)

We will consider the case of periodic boundary conditions: q0 = qN , p0 = pN .

Remark 1.14. One has

HFPU (p, q) = HToda(p, q) + (β − 1)H2(q) +H(3)(q),

where

Hl(q) :=

N−1∑
j=0

(qj − qj+1)l+2

(l + 2)!
, ∀l ≥ 2 ,

H(3) := −
∑
l≥3

Hl .

Introduce the energies of the normal modes by

Ek :=
|p̂k|2 + ω

(
k
N

)2 |q̂k|2
2

, 1 ≤ k ≤ N − 1 , (1.17)
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correspondingly denote by

Ek :=
Ek
N

(1.18)

the specific energy in the kth mode. Note that since p, q are real variables, one has Ek = EN−k.
In their celebrated numerical experiment Fermi Pasta and Ulam [FPU65], being interested in the
problem of foundation of statistical mechanics, studied both the behaviour of Ek(t) and of its time
average

〈Ek〉(t) :=
1

t

∫ t

0

Ek(s)ds .

They observed that, corresponding to initial data with E1(0) 6= 0 and Ek(0) = 0 ∀k 6= 1, N − 1,
the quantities Ek(t) present a recurrent behaviour, while their averages 〈Ek〉(t) quickly relax to a
sequence Ēk exponentially decreasing with k. This is what is known under the name of FPU packet
of modes.

Subsequent numerical observations have investigated the persistence of the phenomenon for
large N and have also shown that after some quite long time scale (whose precise length is not yet
understood) the averages 〈Ek〉(t) relax to equipartition (see e.g. [BGG04, BGP04, BP11, BCP13]).
This is the phenomenon known as metastability of the FPU packet.

The idea of exploiting the vicinity of FPU with Toda in order to study the dynamics of FPU
goes back to [FFM82], in which the authors performed some numerical investigations studying the
evolution of the Toda invariants in the dynamics of FPU. A systematic numerical study of the
evolution of the Toda invariants in FPU, paying particular attention to the dependence on N of
the phenomena, was performed by Benettin and Ponno [BP11] (see also [BCP13]). In particular
such authors put into evidence the fact that the FPU packet seems to have an infinite lifespan in
the Toda lattice. Furthermore they showed that the relevant parameter controlling the lifespan of
the packet in the FPU model is the distance of FPU from the corresponding Toda lattice.

Our Theorem 1.3 yields as a corollary the effective existence and infinite persistence of the
packet in the Toda lattice and also an estimate of its lifespan in the FPU system, estimate in which
the effective parameter is the distance between Toda and FPU.

It is convenient to state the results for Toda and FPU using the small parameter

µ :=
1

N

as in [BP06].
The following corollary is an immediate consequence of Corollary 1.6.

Corollary 1.15. Consider the Toda lattice (1.1). Fix σ > 0, then there exist constants R0, C1,
such that the following holds true. Consider an initial datum with

E1(0) = EN−1(0) = R2e−2σµ4 , Ek(0) ≡ Ek(t)
∣∣
t=0

= 0 , ∀k 6= 1, N − 1 (1.19)

with R < R0. Then, along the corresponding solution, one has

Ek(t) ≤ R2(1 + C1R)µ4e−2σk , ∀ 1 ≤ k ≤ bN/2c , ∀t ∈ R . (1.20)

For the FPU model we have the following corollary
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Theorem 1.16. Consider the FPU system (1.15). Fix s ≥ 1 and σ ≥ 0; then there exist constants
R′0, C2, T, such that the following holds true. Consider a real initial datum fulfilling (1.19) with
R < R′0, then, along the corresponding solution, one has

Ek(t) ≤ 16R2µ4e−2σk

k2s
, ∀ 1 ≤ k ≤ bN/2c , |t| ≤ T

R2µ4
· 1

|β − 1|+ C2Rµ2
. (1.21)

Furthermore, for 1 ≤ k ≤ N − 1, consider the action Ik :=
x2
k+y2

k

2 of the Toda lattice and let Ik(t)
be its evolution according to the FPU flow. Then one has

1

N

N−1∑
k=1

[k]
2(s−1)
N e2σ[k]Nω

(
k
N

)
|Ik(t)− Ik(0)| ≤ C3R

2µ5 for t fullfilling (1.21) (1.22)

Remark 1.17. The estimates (1.21) are stronger then the corresponding estimates given in [BP06],
which are

Ek(t) ≤ C1µ
4e−σk + C2µ

5 , ∀ 1 ≤ k ≤ bN/2c , |t| ≤ T

µ3
.

First, the time scale of validity of (1.21) is one order longer than that of [BP06]. Second we show
that as β approaches the value corresponding to the Toda lattice (1 in our units) the time of stability
improves. Third the exponential estimate of Ek as a function of k is shown to hold also for large
values of k (the µ5 correction is missing). Finally in [BP06] it was shown that T/µ3 is the time
of formation of the metastable packet. So we can now conclude that the time of persistence of the
packet is at least one order of magnitude larger (namely µ−4) with respect to the time needed for
its formation.

Remark 1.18. We recall also the result of [HL12] in which the authors obtained a control of the
dynamics for longer time scales, but for initial data with much smaller energies.

Remark 1.19. Recently some results on energy sharing in FPU in the thermodynamic limit
[MBC14](see also [Car07, CM12, GPP12]) have also been obtained, however such results are not
able to explain the formation and the stability of the FPU packet of modes.

2 A quantitative Kuksin-Perelman Theorem

2.1 Statement of the theorem
In this section we state and prove a quantitative version of Kuksin-Perelman Theorem which will
be used to prove Theorem 1.3. It is convenient to formulate it in the framework of weighted `2

spaces, that we are going now to recall.
For any N ≤ ∞, given a sequence w = {wk}Nk=1, wk ≥ 1 ∀k ≥ 1, consider the space `2w of complex
sequences ξ = {ξk}Nk=1 with norm

‖ξ‖2w :=

N∑
k=1

w2
k|ξk|2 <∞. (1.23)

Denote by Pw the complex Banach space Pw := `2w⊕`2w 3 (ξ, η) endowed with the norm ‖(ξ, η)‖2w :=

‖ξ‖2w + ‖η‖2w. We denote by PwR the real subspace of Pw defined by

PwR :=
{

(ξ, η) ∈ Pw : ηk = ξk ∀ 1 ≤ k ≤ N
}
. (1.24)
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We will denote by Bw(ρ) (respectively BwR (ρ)) the ball in the topology of Pw (respectively PwR )
with center 0 and radius ρ > 0.

Remark 1.20. In the case of the Toda lattice the variables (ξ, η) are defined by

ξk =
p̂k + iω

(
k
N

)
q̂k√

2ω
(
k
N

) , ηk =
p̂N−k − iω

(
k
N

)
q̂N−k√

2ω
(
k
N

) , 1 ≤ k ≤ N − 1 , (1.25)

and their connection with the real Birkhoff variables is given by

Xk =
ξk + ηk√

2
, Yk =

ξk − ηk
i
√

2
, 1 ≤ k ≤ N − 1 . (1.26)

We denote by P1 the Banach space of sequences in which all the weights wk are equal to 1. For
X ,Y Banach spaces, we shall write L(X ,Y) to denote the set of linear and bounded operators from
X to Y. For X = Y we will write just L(X ).

Remark 1.21. In the application to the Toda lattice with N particles we will use a finite, but not
fixed N and weights of the form w2

k = w2
N−k = N3 k2s e2σkω

(
k
N

)
, 1 ≤ k ≤ bN/2c.

Given two weights w1 and w2, we will say that w1 ≤ w2 iff w1
k ≤ w2

k, ∀k. Sometimes, when
there is no risk of confusion, we will omit the index w from the different quantities.
In P1 we will use the scalar product

〈
(ξ1, η1), (ξ2, η2)

〉
c

:=

N∑
k=1

ξ1
kξ

2

k + η1
kη

2
k . (1.27)

Correspondingly, the scalar product and symplectic form on the real subspace PwR are given for
ξ1 ≡ (ξ1, ξ̄1) and ξ2 ≡ (ξ2, ξ̄2) by

〈
ξ1, ξ2

〉
:= 2Re

N∑
k=1

ξ1
k ξ

2
k , ω0(ξ1, ξ2) :=

〈
E ξ1, ξ2

〉
, (1.28)

where E := −i.
Given a smooth F : PwR → C, we denote by XF the Hamiltonian vector field of F , given by

XF = J∇F , where J = E−1. For F,G : PwR → C we denote by {F, G} the Poisson bracket (with
respect to ω0): {F, G} := 〈∇F, J∇G〉 (provided it exists). We say that the functions F,G commute
if {F, G} = 0.

In order to state the main abstract theorem we start by recalling the notion of normally analytic
map, exploited also in [Nik86] and [BG06].
First we recall that a map P̃ r : (Pw)r → B, with B a Banach space, is said to be r-multilinear
if P̃ r(v(1), . . . , v(r)) is linear in each variable v(j) ≡ (ξ(j), η(j)); a r-multilinear map is said to be
bounded if there exists a constant C > 0 such that∥∥∥P̃ r(v(1), . . . , v(r))

∥∥∥
B
≤ C

∥∥∥v(1)
∥∥∥
w
. . .
∥∥∥v(r)

∥∥∥
w
∀v(1), . . . , v(r) ∈ Pw.

20



Correspondingly its norm is defined by∥∥∥P̃ r∥∥∥ := sup
‖v(1)‖

w
,··· ,‖v(r)‖

w
≤1

∥∥∥P̃ r(v(1), · · · , v(r))
∥∥∥
B
.

A map P r : Pw → B is a homogeneous polynomial of order r if there exists a r-multilinear map
P̃ r : (Pw)r → B such that

P r(v) = P̃ r(v, . . . , v) ∀v ∈ Pw . (1.29)

A r- homogeneous polynomial is bounded if it has finite norm

‖P r‖ := sup
‖v‖w≤1

‖P r(v)‖B .

Remark 1.22. Clearly ‖P r‖ ≤
∥∥∥P̃ r∥∥∥. Furthermore one has

∥∥∥P̃ r∥∥∥ ≤ er ‖P r‖ – cf. [Muj86].

It is easy to see that a multilinear map and the corresponding polynomial are continuous (and
analytic) if and only if they are bounded.

Let P r : Pw → B be a homogeneous polynomial of order r; assume B separable and let
{bn}n≥1 ⊂ B be a basis for the space B. Expand P r as follows

P r(v) ≡ P r(ξ, η) =
∑

|K|+|L|=r
n≥1

P r,nK,Lξ
KηLbn, (1.30)

where K,L ∈ NN0 , N0 = N ∪ {0}, |K| := K1 + · · · + KN , ξ ≡ {ξj}j≥1 and ξK ≡ ξK1
1 · · · ξKNN ,

ηL ≡ ηL1
1 · · · η

LN
N .

Definition 1.23. The modulus of a polynomial P r is the polynomial P r defined by

P r(ξ, η) :=
∑

|K|+|L|=r
n≥1

∣∣∣P r,nK,L∣∣∣ ξKηLbn. (1.31)

A polynomial P r is said to have bounded modulus if P r is a bounded polynomial.

A map F : Pw → B is said to be an analytic germ if there exists ρ > 0 such that F : Bw(ρ)→ B
is analytic. Then F can be written as a power series absolutely and uniformly convergent in Bw(ρ):
F (v) =

∑
r≥0 F

r(v). Here F r(v) is a homogeneous polynomial of degree r in the variables v = (ξ, η).
We will write F = O(vn) if in the previous expansion F r(v) = 0 for every r < n.

Definition 1.24. An analytic germ F : Pw → B is said to be normally analytic if there exists
ρ > 0 such that

F (v) :=
∑
r≥0

F r(v) (1.32)

is absolutely and uniformly convergent in Bw(ρ). In such a case we will write F ∈ Nρ(Pw,B).
Nρ(Pw,B) is a Banach space when endowed by the norm

|F |ρ := sup
v∈Bw(ρ)

‖F (v)‖B. (1.33)

Let U ⊂ PwR be open. A map F : U → B is said to be a real analytic germ (respectively real normally
analytic) on U if for each point u ∈ U there exist a neighborhood V of u in Pw and an analytic
germ (respectively normally analytic germ) which coincides with F on U ∩ V .
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Remark 1.25. It follows from Cauchy inequality that the Taylor polynomials F r of F satisfy

‖F r(v)‖B ≤ |F |ρ
‖v‖rw
ρr

∀v ∈ Bw(ρ) . (1.34)

Remark 1.26. Since ∀r ≥ 1 one has ‖F r‖ ≤ ‖F r‖ , if F ∈ Nρ(Pw,B) then the Taylor series of F
is uniformly convergent in Bw(ρ).

The case B = Pw will be of particular importance; in this case the basis {bj}j≥1 will coincide
with the natural basis {ej}j≥1 of such a space (namely the vectors with all components equal to
zero except the jth one which is equal to 1). We will consider also the case B = L(Pw1

,Pw2

)

(bounded linear operators from Pw1

to Pw2

), where w1 and w2 are weights. Here the chosen basis
is bjk = ej ⊗ ek (labeled by 2 indexes).

Remark 1.27. For v ≡ (ξ, η) ∈ P1, we denote by |v| the vector of the modulus of the com-
ponents of v: |v| = (|v1|, . . . , |vN |), |vj | := (|ξj |, |ηj |). If F ∈ Nρ(Pw

1

,Pw2

) then dF (|v|)|u| ≤
dF (|v|)|u| (see [KP10]) and therefore, for any 0 < d < 1, Cauchy estimates imply that dF ∈
N(1−d)ρ(Pw

1

,L(Pw1

,Pw2

)) with

|dF |ρ(1−d) ≤
1

dρ
|F |ρ , (1.35)

where dF is computed with respect to the basis ej ⊗ ek.

Following Kuksin-Perelman [KP10] we will need also a further property.

Definition 1.28. A normally analytic germ F ∈ Nρ(Pw
1

,Pw2

) will be said to be of class Aw2

w1,ρ if
F = O(v2) and the map v 7→ dF (v)∗ ∈ Nρ(Pw

1

,L(Pw1

,Pw2

)). Here dF (v)∗ is the adjoint operator
of dF (v) with respect to the standard scalar product (1.27). On Aw2

w1,ρ we will use the norm

‖F‖Aw2

w1,ρ

:= |F |ρ + ρ |dF |ρ + ρ |dF ∗|ρ . (1.36)

Remark 1.29. Assume that for some ρ > 0 the map F ∈ Aw2

w1,ρ, then for every 0 < d ≤ 1
2 one has

|F |dρ ≤ 2d2 |F |ρ and ‖F‖Aw2

w1,dρ

≤ 6d2 ‖F‖Aw2

w1,ρ

.

A real normally analytic germ F : Bw
1

R (ρ) → Pw2

R will be said to be of class Nρ(Pw
1

R ,Pw2

R )

(respectivelyAw2

w1,ρ) if there exists a map of classNρ(Pw
1

,Pw2

) (respectivelyAw2

w1,ρ), which coincides
with F on Bw

1

R (ρ). In this case we will also denote by |F |ρ (respectively ‖F‖Aw2

w1,ρ

) the norm defined

by (1.33) (respectively (1.36)) of the complex extension of F .
Let now F : U ⊂ Pw1 → Pw2

be an analytic map. We will say that F is real for real sequences
if F (U ∩Pw1

R ) ⊆ Pw2

R , namely F (ξ, η) = (F1(ξ, η), F2(ξ, η)) satisfies F1(ξ, ξ̄) = F2(ξ, ξ̄). Clearly, the
restriction F |

U∩Pw1

R
is a real analytic map.

We come now to the statement of the Vey Theorem.
Fix ρ > 0 and let Ψ : Bw

1

R (ρ) → Pw1

R , Ψ = 1 + Ψ0 with 1 the identity map and Ψ0 ∈ Aw2

w1,ρ.
Write Ψ component-wise, Ψ =

{
(Ψj ,Ψj)

}
j≥1

, and consider the foliation defined by the functions
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{
|Ψj(v)|2 /2

}
j≥1

. Given v ∈ PwR we define the leaf through v by

Fv :=

{
u ∈ PwR :

|Ψj(u)|2

2
=
|Ψj(v)|2

2
, ∀j ≥ 1

}
. (1.37)

Let F =
⋃
v∈PwR

Fv be the collection of all the leaves of the foliation. We will denote by TvF
the tangent space to Fv at the point v ∈ PwR . A relevant role will also be played by the function
I = {Ij}j≥1 whose components are defined by

Ij(v) ≡ Ij(ξ, ξ̄) :=
|ξj |2

2
∀j ≥ 1 . (1.38)

The foliation they define will be denoted by F (0).

Remark 1.30. Ψ maps the foliation F into the foliation F (0), namely F (0) = Ψ(F).

The main theorem of this section is the following

Theorem 1.31. (Quantitative version of Kuksin-Perelman Theorem) Let w1 and w2 be weights
with w1 ≤ w2. Consider the space Pw1

R endowed with the symplectic form ω0 defined in (1.28). Let
ρ > 0 and assume Ψ : Bw

1

R (ρ)→ Pw1

R , Ψ = 1 + Ψ0 and Ψ0 ∈ Aw2

w1,ρ. Define

ε1 :=
∥∥Ψ0

∥∥
Aw2

w1,ρ

. (1.39)

Assume that the functionals { 1
2 |Ψj(v)|2}j≥1 pairwise commute with respect to the symplectic form

ω0, and that ρ is so small that
ε1 < 2−34ρ. (1.40)

Then there exists a real normally analytic map Ψ̃ : Bw
1

R (aρ) → Pw1

R , a = 2−48, with the following
properties:

i) Ψ̃∗ω0 = ω0, so that the coordinates z := Ψ̃(v) are canonical;

ii) the functionals
{

1
2

∣∣∣Ψ̃j(v)
∣∣∣2}

j≥1

pairwise commute with respect to the symplectic form ω0;

iii) F (0) = Ψ̃(F), namely the foliation defined by Ψ coincides with the foliation defined by Ψ̃;

iv) Ψ̃ = 1 + Ψ̃0 with Ψ̃0 ∈ Aw2

w1,aρ and
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,aρ

≤ 217ε1.

The following corollary holds:

Corollary 1.32. Let H : Pw1

R → R be a real analytic Hamiltonian function. Let Ψ be as in Theorem
1.31 and assume that for every j ≥ 1, |Ψj(v)|2 is an integral of motion for H, i.e.

{H, |Ψj |2} = 0 ∀ j ≥ 1. (1.41)

Then the coordinates (xj , yj) defined by xj+iyj = Ψ̃j(v) are real Birkhoff coordinates for H, namely
canonical conjugated coordinates in which the Hamiltonian depends only on (x2

j + y2
j )/2.
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Proof of Corollary 1.32. Since Ψ = 1 + Ψ0, the functions Ψj(v) can be used as coordinates in a
suitable neighborhood of 0 in PwR . Let Ψ̃ be the map in the statement of Theorem 1.31. Denote

Fl(v) := 1
2

∣∣∣Ψ̃l(v)
∣∣∣2. Since the foliation defined by the functions {Fl}l≥1 and the foliation defined

by {|Ψj |2}j≥1 coincide (Theorem 1.31 iii)), each Fl is constant on the level sets of {|Ψj |2}j≥1. It
follows that each Fl is a function of {|Ψj |2}j≥1 only. Since ∀ j ≥ 1, |Ψj |2 is an integral of motion
for H, the same is true for Fl, ∀l ≥ 1. Define now, in a suitable neighborhood of the origin, the
coordinates (z, z̄) by zj ≡ Ψ̃j , z̄j ≡ Ψ̃j . Of course Fl = |zl|2

2 . By (1.41) it follows then that

0 = {H, zlz̄l} =
1

i

(
∂H

∂zl
zl −

∂H

∂z̄l
z̄l

)
. (1.42)

Since dΨ̃(0) = 1 (Theorem 1.31 iv)), Ψ̃ is invertible and its inverse Φ̃ satisfies Φ̃ = 1 + Φ̃0 with
Φ̃0 ∈ Aw2

w1,aµρ and
∥∥∥Φ̃0

∥∥∥
Aw2

w1,aµρ

≤ 2
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,aρ

≤ 218ε1 (Lemma 1.65 ii) in Appendix A).

Expand now H ◦ Φ̃ in Taylor series in the variables (z, z̄):

H ◦ Φ̃(z, z̄) =
∑
r≥2,

|α|+|β|=r

Hr
α,βz

αz̄β .

Then equation (1.42) implies that in each term of the summation α = β, therefore H ◦ Φ̃ is a
function of |z1|2, . . . , |zN |2. Define now the real variables (x, y) as in the statement, then the claim
follows immediately.

2.2 Proof of the Quantitative Kuksin-Perelman Theorem
In this section we recall and adapt Eliasson’s proof [Eli90] of the Vey Theorem following [KP10]. As
we anticipated in the introduction, the novelty of our approach is to add quantitative estimates on
the Birkhoff map Ψ̃ of Theorem 1.31. In Appendix A we show that the class of normally analytic
maps is closed under several operations like composition, inversion and flow-generation, and provide
new quantitative estimates which will be used during the proof below.

The idea of the proof of Theorem 1.31 is to consider the functions {Ψj(v)}j≥1 as noncanonical coor-
dinates, and to look for a coordinate transformation introducing canonical variables and preserving
the foliation F (0) (which is the image of F in the noncanonical variables).

This will be done in two steps both based on the standard procedure of Darboux Theorem
that we now recall. In order to construct a coordinate transformation ϕ transforming the closed
nondegenerate form Ω1 into a closed nondegenerate form Ω0, then it is convenient to look for ϕ as the
time 1 flow ϕt of a time-dependent vector field Y t. To construct Y t one defines Ωt := Ω0+t(Ω1−Ω0)
and imposes that

0 = d
dt

∣∣
t=0

ϕt∗Ωt = ϕt∗ (LY tΩt + Ω1 − Ω0) = ϕt∗
(
d(Y tyΩt) + d(α1 − α0)

)
where α1, α0 are potential forms for Ω1 and Ω0 (namely dαi = Ωi, i = 0, 1) and LY t is the Lie
derivative of Y t. Then one gets

Y tyΩt + α1 − α0 = df (1.43)
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for each f smooth; then, if Ωt is nondegenerate, this defines Y t. If Y t generates a flow ϕt defined
up to time 1, the map ϕ := ϕt|t=1 satisfies ϕ∗Ω1 = Ω0. Thus, given Ω0 and Ω1, the whole game
reduces to study the analytic properties of Y t and to prove that it generates a flow.

A non-constant symplectic form Ω will always be represented through a linear skew-symmetric
invertible operator E as follows:

Ω(v)(u(1);u(2)) = 〈E(v)u(1);u(2)〉 , ∀u(1), u(2) ∈ TvPwR ' PwR . (1.44)

We denote by {F, G}Ω the Poisson bracket with respect to Ω : {F, G}Ω := 〈∇F, J∇G〉, J := E−1.
Similarly we will represent 1-forms through the vector field A such that

α(v)(u) = 〈A(v), u〉, ∀u ∈ TvPwR . (1.45)

Define ω1 := (Ψ−1)∗ω0, and let Eω1
be the operator representing the symplectic form ω1. The first

step consists in transforming ω1 to a symplectic form whose "average over F (0)" coincides with ω0.
So we start by defining precisely what “average of k-forms” means. To this end consider the

Hamiltonian vector fields X0
Il

of the functions Il ≡ |vl|
2

2 through the symplectic form ω0; they are
given by

X0
Il

(v) = i∇Il(v) = ivlel, ∀ l ≥ 1. (1.46)

For every l ≥ 1 the corresponding flow φtl ≡ φtX0
Il

is given by

φtl(v) =
(
v1, · · · , vl−1, e

itvl, vl+1, · · ·
)
.

Remark that the map φtl is linear in v, 2π periodic in t and its adjoint satisfies (φtl)
∗ = φ−tl .

Given a k-form α on PwR (k ≥ 0), we define its average by

Mjα(v) =
1

2π

∫ 2π

0

((φtj)
∗α)(v)dt, j ≥ 1 , and Mα(v) =

∫
T

[(φθ)∗α] dθ (1.47)

where T is the (possibly infinite dimensional) torus, the map φθ = (φθ11 ◦φ
θ2
2 · · · ) and dθ is the Haar

measure on T .

Remark 1.33. In the particular cases of 1 and 2-forms it is useful to compute the average in term
of the representations (1.44) and (1.45). Thus, for v, u(1), u(2) ∈ PwR , if

α(v)u(1) = 〈A(v);u(1)〉 , ω(v)(u(1), u(2)) = 〈E(v)u(1);u(2)〉 ,

one has
(Mα)(v)u(1) = 〈(MA)(v); u(1)〉 , with MA(v) =

∫
T
φ−θA(φθ(v)) dθ (1.48)

and

(Mω)(v)(u(1), u(2)) = 〈(ME)(v)u(1); u(2)〉 , with ME(v) =

∫
T
φ−θE(φθ(v))φθ dθ. (1.49)
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Remark 1.34. The operator M commutes with the differential operator d and the rotations φθ. In
particular MA(v) and ME(v) as in (1.48), (1.49) satisfy

φθMA(v) = MA(φθv), φθME(v)u = ME(φθv)φθu, ∀ θ ∈ T .

We study now the analytic properties of ω1 and of its potential form αω1 . In the rest of the
section denote by S :=

∑∞
n=1 1/n2 and by

µ := 1/e(32S)1/2 ≈ 0.0507 . (1.50)

Lemma 1.35. Let Φ := Ψ−1 and ω1 be as above. Assume that ε1 ≤ ρ/e. Then the following holds:

(i) Eω1 = −i + Υω1 , with Υω1 ∈ Nµρ(Pw
1

R ,L(Pw1

R ,Pw2

R )) and

|Υω1 |µρ ≤
8ε1
µρ

. (1.51)

(ii) Define

Wω1
(v) :=

∫ 1

0

Υω1
(tv)tv dt , (1.52)

then Wω1
∈ Aw2

w1,µ3ρ and ‖Wω1
‖Aw2

w1,µ3ρ

≤ 8ε1. Moreover the 1-form αWω1
:= 〈Wω1

; .〉 satisfies
dαWω1

= ω1 − ω0 .

Proof. By Lemma 1.65 one has that Φ =
(
1 + Ψ0

)−1
= 1+Φ0 with Φ0 ∈ Aw2

w1,µρ and
∥∥Φ0

∥∥
Aw2

w1,µρ

≤

2
∥∥Ψ0

∥∥
Aw2

w1,ρ

≤ 2ε1. To prove (i), just remark that

Eω1
(v) = dΦ∗(v)(−i)dΦ(v) = −i + dΦ0(v)∗(−i)dΦ(v)− idΦ0(v) =: −i + Υω1

(v)

and use the results of Lemma 1.65. To prove (ii), use Poincaré construction of the potential of ω1

which gives

αω1(v)u := 〈
∫ 1

0

Eω1(tv)tv, u〉dt = α0(v)u+ 〈Wω1(v), u〉, Wω1(v) =

∫ 1

0

Υω1(tv)tv dt ,

where α0 is the potential for ω0. In order to prove the analytic properties of Wω1
, note that

Wω1(v) =
∫ 1

0
(H1(tv) + H2(tv))dt where H1(v) := −i dΦ0(v)v and H2(v) := dΦ0(v)∗(−i)dΦ(v)v ≡

dΦ0(v)∗(−iv+H1(v)). Thus, by Lemma 1.65, one gets that ‖H1‖Aw2

w1,µ2ρ

≤ 2
∥∥Φ0

∥∥
Aw2

w1,µρ

≤ 4ε1 and

‖H2‖Aw2

w1,µ3ρ

≤ 2
∥∥Φ0

∥∥
Aw2

w1,µ2ρ

≤ 4ε1 . Thus the estimate on Wω1 follows.

Remark 1.36. One has Mαω1
−α0 = MαWω1

= 〈MWω1
, ·〉 and ‖MWω1

‖Aw2

w1,µ3ρ

≤ ‖Wω1
‖Aw2

w1,µ3ρ

.

We are ready now for the first step.

Lemma 1.37. There exists a map ϕ̂ : Bw
1

R (µ5ρ)→ Pw1

R such that (1− ϕ̂) ∈ Aw2

w1,µ5ρ and

‖1− ϕ̂‖Aw2

w1,µ5ρ

≤ 25ε1 . (1.53)

Moreover ϕ̂ satisfies the following properties:
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(i) ϕ̂ commutes with the rotations φθ, namely φθϕ̂(v) = ϕ̂(φθv) for every θ ∈ T .

(ii) Denote ω̂1 := ϕ̂∗ω1, then Mω̂1 = ω0.

Proof. We apply the Darboux procedure described at the beginning of this section with Ω0 = ω0

and Ω1 = Mω1. Then Ωt is represented by the operator Êtω1
:= (−i + t(MEω1

+ i)). Write equation
(1.43), with f ≡ 0, in terms of the operators defining the symplectic forms, getting the equation
Êtω1

Ŷ t = −MWω1 (see also Remark 1.36). This equation can be solved by inverting the operator
Êtω1

by Neumann series:
Ŷ t := −(−i + tMΥω1

)−1MWω1
. (1.54)

By the results of Lemma 1.35 and Remark 1.36, Ŷ t is of class Aw2

w1,µ4ρ and fulfills

sup
t∈[0,1]

∥∥∥Ŷ t∥∥∥
Aw2

w1,µ4ρ

≤ 2 ‖MWω1
‖Aw2

w1,µ3ρ

≤ 24ε1 . (1.55)

By Lemma 1.66 the vector field Ŷ t generates a flow ϕ̂t : Bw
1

R (µ5ρ) → Pw1

such that ϕ̂t − 1 is of
class Aw2

w1,µ5ρ and satisfies∥∥ϕ̂t − 1∥∥Aw2

w1,µ5ρ

≤ 2 sup
t∈[0,1]

∥∥∥Ŷ t∥∥∥
Aw2

w1,µ4ρ

≤ 25ε1.

Therefore the map ϕ̂ ≡ ϕ̂t|t=1 exists, satisfies the claimed estimate (1.53) and furthermore ϕ̂∗Mω1 =
ω0.
We prove now item (i). The claim follows if we show that the vector field Ŷ t commutes with
rotations. To this aim consider equation (1.54), and define Ĵ tω1

(v) = (Êtω1
(v))−1. By construc-

tion the operator Êtω1
commutes with rotations (cf. Remark 1.34), namely ∀ θ0 ∈ T one has

φθ0Êtω1
(v)u = Êtω1

(φθ0(v))φθ0u. Then it follows that

φθ0 Ŷ t(v) = −φθ0 Ĵ tω1
(v)MWω1(v) = −Ĵ tω1

(φθ0(v))φθ0MWω1(v)

= −Ĵ tω1
(φθ0(v))MWω1

(φθ0(v)) = Ŷ t(φθ0(v)).

This proves item (i). Item (ii) then follows from item (i) since, defining ω̂1 = ϕ̂∗ω1, one has the
chain of identities Mω̂1 = Mϕ̂∗ω1 = ϕ̂∗Mω1 = ω0.

The analytic properties of the symplectic form ω̂1 can be studied in the same way as in Lemma
1.35; we get therefore the following corollary:

Corollary 1.38. Denote by Eω̂1 the symplectic operator describing ω̂1 = ϕ̂∗ω1. Then

(i) Eω̂1
= −i + Υω̂1

, with Υω̂1
∈ Nµ5ρ(Pw

1

R ,L(Pw1

R ,Pw2

R )) and
∣∣∣Υω̂1

∣∣∣
µ5ρ
≤ 27 ε1

µρ .

(ii) Define W (v) :=
∫ 1

0
Υω̂1

(tv)tv dt, then W ∈ Aw2

w1,µ7ρ and ‖W‖Aw2

w1,µ7ρ

≤ 27ε1.

Furthermore the 1-form αW := 〈W, .〉 satisfies dαW = ω̂1 − ω0.
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Finally we will need also some analytic and geometric properties of the map

Ψ̌ := ϕ̂−1 ◦Ψ. (1.56)

The functions {Ψ̌(v)}j≥1 forms a new set of coordinates in a suitable neighborhood of the origin
whose properties are given by the following corollary:

Corollary 1.39. The map Ψ̌ : Bw
1

R (µ8ρ) → Pw1

R , defined in (1.56), satisfies the following proper-
ties:

(i) dΨ̌(0) = 1 and Ψ̌0 := Ψ̌− 1 ∈ Aw2

w1,µ8ρ with
∥∥Ψ̌0

∥∥
Aw2

w1,µ8ρ

≤ 28ε1.

(ii) F (0) = Ψ̌(F), namely the foliation defined by Ψ̌ coincides with the foliation defined by Ψ.

(iii) The functionals { 1
2

∣∣Ψ̌j

∣∣2}j≥1 pairwise commute with respect to the symplectic form ω0.

Proof. By Lemma 1.65 the map ϕ̂ is invertible in Bw
1

R (µ6ρ) and ϕ̂−1 = 1 + g, with g ∈ Aw2

w1,µ6ρ

and ‖g‖Aw2

w1,µ6ρ

≤ 26ε1. Then Ψ̌ = 1 + Ψ̌0 where Ψ̌0 = Ψ0 + g ◦ (1 + Ψ0). By Remark 1.29,∥∥Ψ0
∥∥
Aw2

w1,µ7ρ

≤ 6µ14ε1, thus Lemma 1.65 i) implies that Ψ̌0 ∈ Aw2

w1,µ8ρ and moreover
∥∥Ψ̌0

∥∥
Aw2

w1,µ8ρ

≤

6µ14ε1 + 27ε1 ≤ 28ε1. Item (ii) and (iii) follow from the fact that, by Lemma 1.37 (i), ϕ̂ commutes
with the rotations (see also the proof of Corollary 1.32).

The second step consists in transforming ω̂1 into the symplectic form ω0 while preserving the
functions Il. In order to perform this transformation, we apply once more the Darboux procedure
with Ω1 = ω̂1 and Ω0 = ω0. However, we require each leaf of the foliation to be invariant under the
transformation. In practice, we look for a change of coordinates ϕ satisfying

ϕ∗Ω1 = Ω0 , (1.57)
Il(ϕ(v)) = Il(v), ∀ l ≥ 1 . (1.58)

In order to fulfill the second equation, we take advantage of the arbitrariness of f in equation (1.43).
It turns out that if f satisfies the set of differential equations given by

df(X0
Il

)− (α1 − α0)(X0
Il

) = 0, ∀ l ≥ 1 (1.59)

then equation (1.58) is satisfied (as it will be proved below). Here α1 is the potential form of ω̂1 and
is given by α1 := α0 + αW , where αW is defined in Corollary 1.38. However, (1.59) is essentially a
system of equations for the potential of a 1-form on a torus, so there is a solvability condition. In
Lemma 1.42 below we will prove that the system (1.59) has a solution if the following conditions
are satisfied:

d(α1 − α0)|TF(0) = 0 , (1.60)
M(α1 − α0)|TF(0) = 0 . (1.61)

In order to show that these two conditions are fulfilled, we need a preliminary result. First,
for v ∈ PwR fixed, define the symplectic orthogonal of TvF (0) with respect to the form ωt :=
ω0 + t(ω̂1 − ω0) by

(TvF (0))∠t :=
{
h ∈ PwR : ωt(v)(u, h) = 0 ∀u ∈ TvF (0)

}
. (1.62)
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Lemma 1.40. For v ∈ Bw1

R (µ5ρ), one has TvF (0) = (TvF (0))∠t .

Proof. First of all we have that, since for any couple of functions F,G and any change of coordinates
Φ, one has

{F ◦ Φ, G ◦ Φ}Φ∗ω0
= {F,G}ω0

◦ Φ ,

it follows that
{Il, Im}ω1

=
{
|Ψl|2 , |Ψm|2

}
ω0

= 0 , ∀l,m ≥ 1

and
{Il, Im}ω̂1

◦ ϕ̂−1 =
{
Il ◦ ϕ̂−1, Im ◦ ϕ̂−1

}
ω1

but, by the property of invariance with respect to rotations of ϕ̂ (and therefore of ϕ̂−1), Ij ◦ ϕ̂−1 is
a function of {Il}l≥1 only, and therefore the above quantity vanishes and one has ∀l,m

0 = {Il(v), Im(v)}ω̂1
= 〈∇Il(v), Jω̂1(v)∇Im(v)〉 = 〈vlel, Jω̂1(v)vmem〉 ∀ l,m ≥ 1. (1.63)

Define Σv := span {vlel, l ≥ 1}. The identities (1.63) imply that Jω̂1
(v)(Σv) ⊆ Σ⊥v ≡ iΣv. By

Corollary 1.38 (i), Eω̂1
(v) is an isomorphism for v ∈ Bw1

R (µ5ρ), so the same is true for its inverse
Jω̂1

(v). Hence Jω̂1
(v)(Σv) = iΣv and Σv = Eω̂1

(v)(iΣv) and

ω̂1(X0
Il
, X0

Im) = 〈Eω̂1
(v)(ivlel), ivmem〉 = 0, ∀ l,m ≥ 1. (1.64)

Since ωt is a linear combination of ω0 and ω̂1, the previous formula implies that ωt(v)(X0
Il
, X0

Im
) = 0

for every t ∈ [0, 1] and v ∈ Bw1

R (µ5ρ), hence TvF (0) ⊆ (TvF (0))∠t . Now assume by contradiction
that the inclusion is strict: then there exists u ∈ (TvF (0))∠t , ‖u‖ = 1, such that u /∈ TvF (0).
Decompose u = u> + u⊥ with u> ∈ TvF (0) and u⊥ ∈ (TvF (0))⊥. Due to the bilinearity of ω(v)t,
we can always assume that u ≡ u⊥. Then for every l ≥ 1

dIl(v)(−iu) = 〈∇Il(v),−iu〉 =
〈
−iX0

Il
(v),−iu

〉
=
〈
X0
Il

(v), u
〉

= 0 ∀ l ≥ 1

since X0
Il

(v) ∈ TvF (0). Hence iu ∈ TvF (0) and therefore ωt(v)(−iu, u) = 0. Furthermore it holds
that

ωt(0)(iu, u) = ω0(−iu, u) =
〈
i2u, u

〉
= −1.

It follows that for v ∈ Bw1

R (µ5ρ) one has ‖tMΥω̂1
(v)‖L(Pw1

R ,Pw1

R )
≤ 1/2, thus ωt(v)(iu, u) = −1 +

〈tMΥω̂1
(v)iu, u〉 < 0, leading to a contradiction.

We can now prove the following lemma:

Lemma 1.41. The solvability conditions (1.60), (1.61) are fulfilled.

Proof. Condition (1.60) follows by equation (1.64), since

d(α1 − α0)(X0
Il
, X0

Im) = ω̂1(X0
Il
, X0

Im)− ω0(X0
Il
, X0

Im) = 0, ∀l,m ≥ 1.

We analyze now (1.61). We claim that in order to fulfill this condition, one must have that ω̂1

satisfies Mω̂1 = ω0, which holds by Lemma 1.37 (ii). Indeed, since

0 = Mω̂1 − ω0 = M(ω̂1 − ω0) = Md(α1 − α0) = dM(α1 − α0),

there exists a function g such that M(α1−α0) = dg. But Mdg = M(M(α1−α0)) = M(α1−α0) =
dg, therefore g = Mg, so g is invariant by rotations. Hence 0 = d

dt

∣∣
t=0

g(φtl) = dg(X0
Il

) = M(α1 −
α0)(X0

Il
), ∀l ≥ 1, thus also (1.61) is satisfied.
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We show now that the system (1.59) can be solved and its solution has good analytic properties:

Lemma 1.42. (Moser) If conditions (1.60) and (1.61) are fulfilled, then equation (1.59) has a
solution f . Moreover, denoting hj := (α1−α0)(X0

Ij
), the solution f is given by the explicit formula

f(v) =

∞∑
j=1

fj(v), fj(v) = M1 · · ·Mj−1Ljhj (1.65)

where

Ljg =
1

2π

∫ 2π

0

tg(φtj)dt .

Finally f ∈ Nµ7ρ(Pw
1

R ,C), ∇f ∈ Nµ7ρ(Pw
1

R ,Pw2

R ) and∣∣f ∣∣
µ7ρ
≤ 210ε1µ

7ρ,
∣∣∇f ∣∣

µ7ρ
≤ 211ε1 . (1.66)

Proof. Denote by θj the time along the flow generated by X0
Ij
, then one has dg(X0

Ij
) = ∂g

∂θj
, so

that the equations to be solved take the form

∂f

∂θj
= hj , ∀j ≥ 1. (1.67)

Clearly ∂
∂θj

Mjhj = 0, and by (1.60) it follows that

∂

∂θl
Mjhj = Mj

∂hj
∂θl

= Mj
∂hl
∂θj

=
∂

∂θj
Mjhl = 0, ∀l, j ≥ 1,

which shows that Mjhj is independent of all the θ’s, thus Mjhj = Mhj . Furthermore, by (1.61)
one hasMhj = 0, ∀ j ≥ 1. Now, using that ∂

∂θj
Ljg = g−Mjg, one verifies that fj defined in (1.65)

satisfies
∂fj
∂θl

=

 0 if l < j
M1 · · ·Mj−1hj if l = j

M1 · · ·Mj−1hl −M1 · · ·Mjhl if l > j

where, for j = 1, we definedM1 · · ·Mj−1hl = hl. Thus the series f(v) :=
∑
j≥1 fj(v), if convergent,

satisfies (1.67).
We prove now the convergence of the series for f and ∇f . First we define, for θ ∈ T ,

Θθ
j := φθ11 · · ·φ

θj
j ∀ j ≥ 1 ,

then by (1.65) one has

fj(v) =

∫
T j
θjhj(Θ

θ
jv) dθj , (1.68)

∇fj(v) =

∫
T j

Θ−θj θj∇hj(Θθ
jv) dθj , (1.69)

where T j is the j-dimensional torus and dθj = dθ1
2π · · ·

dθj
2π . Now, using that

hj(v) = 〈W (v), X0
Ij (v)〉 = Re(iWj(v)v̄j) ∀ j ≥ 1
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one gets that fj(|v|) ≤ 2π hj(|v|) ≤ 2πWj(|v|)|vj |, therefore f(|v|) ≤
∑∞
j=1 fj(|v|) ≤ 2π ‖W (|v|)‖w1 ‖v‖w1

and it follows that
∣∣f ∣∣

µ7ρ
≤ 2π |W |µ7ρ µ

7ρ. This proves the convergence of the series defining f .
Consider now the gradient of hj , whose kth component is given by

[∇hj(v)]k = Re

(
i
∂Wj(v)

∂vk
v̄j

)
+ δj,k Re (iWj(v)) .

Inserting the formula displayed above in (1.69) we get that ∇fj is the sum of two terms. We begin
by estimating the second one, which we denote by (∇fj)(2). The kth component of (∇f)(2) :=∑
j(∇fj)(2) is given by

[
(∇f(v))

(2)
]
k

=

∑
j

(∇fj(v))(2)


k

=

∫
T k

Θ−θk θk Re (iWk(Θθ
kv)) dθk , (1.70)

thus, for any v ∈ Bw1

R (µ7ρ) one has
[
(∇f(|v|))(2)

]
k
≤ 2πWk(|v|) , and therefore∣∣∣(∇f)

(2)
∣∣∣
µ7ρ
≤ 2π |W |µ7ρ ≤ π28ε1.

We come to the other term, which we denote by (∇fj)(1). Its kth component is given by[
(∇fj(v))(1)

]
k

=

∫
T j

Θ−θj θjRe

(
i
∂Wj

∂vk
(Θθ

jv)φ
θj
j vj

)
dθ . (1.71)

Then ∇fj(|v|) ≤ 2π
∂Wj

∂vk
(|v|)|vj | = 2π[dW (|v|)]jk|vj |.

It follows that the kth component of the function (∇f)(1) :=
∑
j(∇fj)(1) satisfies

[
(∇f(|v|))(1)

]
k
≤

∑
j

(∇fj(|v|))(1)


k

≤ 2π
∑
j

[dW (|v|)]jk|vj | .

Therefore
∣∣∣(∇f)(1)

∣∣∣
µ7ρ
≤ 2π ‖W‖Aw2

w1,µ7ρ

≤ π28ε1. This is the step at which the control of the norm

of the modulus dW ∗ of dW ∗ is needed. Thus the claimed estimate for ∇f follows.

We can finally apply the Darboux procedure in order to construct an analytic change of coor-
dinates ϕ which satisfies (1.57) and (1.58).

Lemma 1.43. There exists a map ϕ : Bw
1

R (µ9ρ)→ Pw1

R which satisfies (1.57). Moreover ϕ− 1 ∈
Nµ9ρ(Pw

1

R , Pw2

R ), ϕ− 1 = O(v2) and ∣∣ϕ− 1∣∣
µ9ρ
≤ 214ε1 . (1.72)

Proof. As anticipated just after Corollary 1.39, we apply the Darboux procedure with Ω0 = ω0,
Ω1 = ω̂1 and f solution of (1.59). Then equation (1.43) takes the form

Y t = (−i + tΥω̂1)−1(∇f −W ), (1.73)
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where Υω̂1 and W are defined in Corollary 1.38. By Lemma 1.42 and Corollary 1.38, the vector
field Y t is of class Nµ8ρ(Pw

1

R ,Pw2

R ) and

sup
t∈[0,1]

∣∣Y t∣∣
µ8ρ

< 2(211ε1 + 27ε1) < 213ε1.

Thus Y t generates a flow ϕt : Bw
1

R (µ9ρ) → Pw1

R , defined for every t ∈ [0, 1], which satisfies (cf.
Lemma 1.66) ∣∣ϕt − 1∣∣

µ9ρ
≤ 214ε1, ∀t ∈ [0, 1] .

Thus the map ϕ := ϕt|t=1 exists and satisfies the claimed properties.

We prove now that the map ϕ of Lemma 1.43 satisfies also equation (1.58).

Lemma 1.44. Let f be as in (1.65) and ϕt be the flow map of the vector field Y t defined in (1.73).
Then ∀ l ≥ 1 one has Il(ϕt(v)) = Il(v), for each t ∈ [0, 1].

Proof. The following chain of equivalences follows from Lemma 1.40 and the Darboux equation
(1.43):

Il(ϕ
t(v)) = Il(v) ⇐⇒ 0 =

d

dt
Il(ϕ

t(v)) = dIl(Y
t(v)) ⇐⇒ Y t(v) ∈ TvF (0)

⇐⇒ Y t(v) ∈ (TvF (0))∠t ⇐⇒
(
ωtv(Y

t(v), X0
Il

(v)) = 0 , ∀l ≥ 1
)

⇐⇒ α1(X0
Il

)− α0(X0
Il

) = df(X0
Il

) ∀l ≥ 1 .

In turn the last property follows since f is a solution of (1.59).

We can finally prove the quantitative version of the Kuksin-Perelman Theorem.

Proof of Theorem 1.31. Consider the map ϕ of Lemma 1.43. Since dϕ(0) = 1, ϕ is invertible in
Bw

1

R (µ10ρ) and ϕ−1 = 1 + g1 with g1 ∈ Nµ10ρ(Pw
1

R ,Pw2

R ) and
∣∣g1

∣∣
µ10ρ

≤ 2
∣∣ϕ− 1∣∣

µ9ρ
≤ 215ε1 (cf.

Lemma 1.64). Define now
Ψ̃ := ϕ−1 ◦ Ψ̌.

It’s easy to check that Ψ̃∗ω0 = ω0, thus proving that Ψ̃ is symplectic. By equation (1.58) one has
Il(Ψ̃(v)) = Il(Ψ̌(v)) for every l ≥ 1, therefore Ψ̃ and Ψ̌ define the same foliation, which coincides
also with the foliation defined by Ψ, c.f. Corollary 1.39. Similarly one proves that the functionals{

1
2

∣∣∣Ψ̃j(v)
∣∣∣}
j≥1

pairwise commute with respect to the symplectic form ω0. We have thus proved

item i)− iii) of Theorem 1.31.
We prove now item iv). Clearly dΨ̃(0) = 1, and Ψ̃0 := Ψ̃ − 1 = Ψ̌0 + g1 ◦ (1 + Ψ̌0) is of
class Nµ11ρ(Pw

1

R ,Pw2

R ). Moreover, by Remark 1.29 and Corollary 1.39 (i), one has
∣∣Ψ̌0
∣∣
µ11ρ

≤
2µ6

∣∣Ψ̌0
∣∣
µ8ρ
≤ µ629ε1 ≤ µ11ρ by condition (1.40). Thus

∣∣1 + Ψ̌0
∣∣
µ11ρ
≤ µ10ρ and by Lemma 1.63∣∣∣Ψ̃0

∣∣∣
µ11ρ
≤
∣∣Ψ̌0
∣∣
µ11ρ

+
∣∣∣g1 ◦ (1 + Ψ̌0)

∣∣∣
µ11ρ
≤
∣∣Ψ̌0
∣∣
µ11ρ

+
∣∣g1

∣∣
µ10ρ
≤ 28ε1 + 215ε1 ≤ 216ε1.
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We are left to prove that Ψ̃0 ∈ Aw2

w1,µ12ρ. Since Ψ̃∗ω0 = ω0, one has dΨ̃(v)∗(−i) Ψ̃(v) = −i, from
which it follows that Ψ̃0 satisfies

dΨ̃0(v)∗ = i dΨ̃0(v)
(
1 + dΨ̃0(v)

)−1

i

and therefore Ψ̃0 ∈ Aw2

w1,µ12ρ with
∥∥∥Ψ̃0

∥∥∥
Aw2

w1,µ12ρ

< 217ε1.

3 Toda lattice

3.1 Proof of Theorem 1.3 and Corollary 1.6.
We consider the Toda lattice with N particles and periodic boundary conditions on the positions
q and momenta p: qj+N = qj , pj+N = pj , ∀ j ∈ Z. As anticipated in Section 1, we restrict to
the invariant subspace characterized by (1.2). The phase space of the system is Ps,σ, where s ≥ 0,
σ ≥ 0 and it is defined in terms of the linear, complex, Birkhoff variables (ξ, η) (defined in (1.25)).
We endow the phase space with the symplectic form 2 Ω0 = −i

∑N−1
k=1 dξk ∧ dηk.

We will denote by Ps,σR the real subspace of Ps,σ in which ηk = ξ̄k ∀1 ≤ k ≤ N − 1, endowed
with the norm (1.7), and by Bs,σR (ρ) the ball in Ps,σR with center 0 and radius ρ > 0. The main step
of the proof of Theorem 1.3 is the construction of the functions {Ψj}1≤j≤N−1. This is based on a
detailed analysis of the spectrum of the Jacobi matrix appearing in the Lax pair representation of
the Toda lattice. So we start by recalling the elements of the theory needed for our development.
Introduce the translated Flaschka coordinates [Fla74] by

(b, a) = Θ(p, q), (bj , aj) := (−pj , e
1
2 (qj−qj+1) − 1). (1.75)

The translation of the a variables by 1 is useful in order to keep the equilibrium point at (b, a) =
(0, 0). Recall that the variables b, a are constrained by the conditions

N−1∑
j=0

bj = 0,

N−1∏
j=0

(1 + aj) = 1 .

Introduce Fourier variables (b̂, â) for the Flaschka coordinates by (1.3). In these variables

Ek =
|b̂k|2 + 4|âk|2

2
+O(â3), 1 ≤ k ≤ N − 1 . (1.76)

The Jacobi matrix whose spectrum forms a complete set of integrals of motions for the Toda lattice
2so that the Hamilton equations become

ξ̇k = i
∂H

∂ηk
, η̇k = −i

∂H

∂ξk
, (1.74)

33



is given by [vM76]

L(b, a) :=



b0 1 + a0 0 . . . 1 + aN−1

1 + a0 b1 1 + a1
. . .

...

0 1 + a1 b2
. . . 0

...
. . . . . . . . . 1 + aN−2

1 + aN−1 . . . 0 1 + aN−2 bN−1


. (1.77)

It is useful to double the size of L(b, a), redefining

Lb,a :=



b0 1 + a0 . . . 0 0 . . . 0 1 + aN−1

1 + a0 b1
. . .

... 0 . . . 0
...

. . .
. . . 1 + aN−2

...
...

0
. . . 1 + aN−2 bN−1 1 + aN−1 . . . 0 0

0 . . . 0 1 + aN−1 b0 1 + a0 . . . 0

0 . . . 0 1 + a0 b1
. . .

...
...

...
...

. . .
. . . 1 + aN−2

1 + aN−1 . . . 0 0 0
. . . 1 + aN−2 bN−1



.

(1.78)
Consider the eigenvalues of Lb,a and order them in the non-decreasing sequence

λ0(b, a) < λ1(b, a) ≤ λ2(b, a) < . . . < λ2N−3(b, a) ≤ λ2N−2(b, a) < λ2N−1(b, a)

where one has that where the sign ≤ appears equality is possible, while it is impossible in the
correspondence of a sign <. Define the quantities

γj(b, a) := λ2j(b, a)− λ2j−1(b, a), 1 ≤ j ≤ N − 1; (1.79)

γj(b, a) is called jth spectral gap. The quantities {γ2
j }1≤j≤N−1 form a complete set of commuting

integrals of motions, which are regular also at (b, a) = (0, 0). Furthermore one has H(b, a) =
H(γ2

1(b, a), . . . , γ2
N−1(b, a)) [BGGK93]. A spectral gap is said to be closed if γj(b, a) = 0.

The following Theorem 1.45 ensures that the assumptions of Theorem 1.31 are fulfilled by the
Toda lattice.

Theorem 1.45. There exists ε∗ > 0, independent of N , and an analytic map

Ψ :
(
Bs,σ

( ε∗
N2

)
,Ω0

)
→ Ps,σ, (ξ, η) 7→ (φ(ξ, η), ψ(ξ, η)) (1.80)

such that:

(Ψ1) Ψ is real for real sequences, namely φk(ξ, ξ̄) = ψk(ξ, ξ̄) ∀k.

(Ψ2) For every 1 ≤ j ≤ N − 1, and for (φ, ψ) ∈ Bs,σ
(
ε∗
N2

)
∩ Ps,σR , one has

γ2
j = 2

N ω
(
j
N

)
|ψj |2 = 2

N ω
(
j
N

)
|ϕj |2 .
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(Ψ3) Ψ(0, 0) = (0, 0) and dΨ(0, 0) = 1.

(Ψ4) There exist constants C1, C2 > 0, independent of N , such that for every 0 < ε ≤ ε∗, the map
Ψ0 := Ψ − 1 ∈ Nε/N2

(
Ps,σ,Ps+1,σ

)
and [dΨ0]∗ ∈ Nε/N2

(
Ps,σ, L(Ps,σ,Ps+1,σ)

)
. Further-

more one has ∣∣Ψ0
∣∣
ε/N2 ≤ C1

ε2

N2
;

∣∣∣[dΨ0]∗
∣∣∣
ε/N2

≤ C2ε . (1.81)

The main point is (Ψ4), in which the estimates of the domain of definition of the map Ψ holds
uniformly in the limit N →∞.

We show now how Theorem 1.3 follows from Kuksin-Perelman Theorem 1.31.

Proof of Theorem 1.3. Introduce the weights w1 := {N3/2[k]sNe
σ[k]Nω

(
k
N

)1/2}N−1
k=1 and w2 :=

{N3/2[k]s+1
N eσ[k]Nω

(
k
N

)1/2}N−1
k=1 and consider the map Ψ of Theorem 1.45 as a map from Pw1

in
itself. Since for any (ξ, η) ∈ Pw1

one has that

‖(ξ, η)‖Pw1 ≡ N2 ‖(ξ, η)‖Ps,σ , (1.82)

it follows by scaling that there exists a constant C3 > 0, independent of N , such that∥∥Ψ0
∥∥
Aw2

w1,ρ

≤ C3ρ
2 .

Thus, for any ρ ≤ ρ∗ ≡ min
(

2−34

C3
, ε∗

)
, Ψ satisfies condition (1.40). Thus we can apply Theorem

1.31 to the map Ψ, getting the existence of a symplectic real analytic map Ψ̃ defined on Bw
1

(aρ∗)
which satisfies i)− iv) of Theorem 1.31.
By Lemma 1.65 the map Ψ̃ is invertible in Bw

1

(µaρ∗) and its inverse Φ satisfies Φ = 1 + Φ0 with
Φ0 ∈ Aw2

w1,µaρ∗
. To get the statement of the theorem simply reexpress the map Φ in terms of real

variables (x, y), (X,Y ) and denote such a map by ΦN .

Remark 1.46. By the proof of Theorem 1.3 above one deduces the estimate

sup
‖(φ,ψ)‖Ps,σ≤Rs,σ/N2

∥∥dΦ0(φ, ψ)∗
∥∥
L(Ps,σ,Ps+1,σ)

≤ Cs,σRs,σ , (1.83)

for some Cs,σ > 0, independent of N .

The rest of this subsection is devoted to the proof of Theorem 1.45.
In the following it will be convenient to consider the variables (b, a) defined in (1.75) dropping

the conditions
∑N−1
j=0 bj = 0 and

∏N−1
j=0 (1 + aj) = 1. Equation (1.76) suggests to introduce on the

variables b, a the norm

‖(b, a)‖2Cs,σ :=
1

2N

N−1∑
k=0

max(1, [k]2sN )e2σ[k]N
(
|b̂k|2 + 4|âk|2

)
(1.84)

and to define the space

Cs,σR :=
{

(b, a) ∈ RN × RN : ‖(b, a)‖Cs,σ <∞
}
. (1.85)
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We will write Cs,σ for the complexification of Cs,σR .

In the following we will consider normally analytic map between the spaces Ps,σ and Cs,σ. We need
to specify the basis of Cs,σ that we will use to verify the property of being normally analytic. While
it is quite hard to verify this property when the basis is general, it turns out that it is quite easy to
verify it using the basis of complex exponentials defined in (1.3). Indeed the norm (1.84) is given
in term of the Fourier variables. For the same reason, it will be convenient to express a map from
Cs,σ to Ps,σ as a function of the Fourier variables b̂, â.

We prove now some analytic properties of the map Θ defined in (1.75). In the following we will
denote by ΘΞ the map Θ expressed in the (ξ, η) variables.

Proposition 1.47. The map ΘΞ satisfies the following properties:

(Θ1) ΘΞ(0, 0) = (0, 0). Furthermore let dΘΞ(0, 0) be the linearization of ΘΞ at (ξ, η) = (0, 0). Then
(B,A) = dΘΞ(0, 0)[(ξ, η)] iff

B̂0 = 0, B̂k = −
(

1
2ω
(
k
N

))1/2
(ξk + ηN−k), 1 ≤ k ≤ N − 1 ,

Â0 = 0, Âk = −i$k

(
2ω
(
k
N

))−1/2
(ξk − ηN−k), 1 ≤ k ≤ N − 1.

(1.86)

where $k := (1− e−2iπk/N )/2, ∀ 1 ≤ k ≤ N − 1.

Moreover for any s ≥ 0, σ ≥ 0 there exist constants CΘ1
, CΘ2

> 0, independent of N , such
that ∥∥dΘΞ(0, 0)

∥∥
L(Ps,σ, Cs,σ)

≤ CΘ1
,

∥∥dΘΞ(0, 0)∗
∥∥
L(Cs+2,σ,Ps+1,σ)

≤ CΘ2

N
. (1.87)

(Θ2) Let Θ0
Ξ := ΘΞ − dΘΞ(0, 0). For any s ≥ 0, σ ≥ 0, there exist constants CΘ3 , CΘ4 , ε∗ > 0,

independent of N , such that the map Θ0
Ξ ∈ Nε∗/N2(Ps,σ, Cs+1,σ) and the map [dΘ0

Ξ]∗ ∈
Nε∗/N2(Ps,σ, L(Cs+2,σ, Ps+1,σ)), and∣∣∣Θ0

Ξ

∣∣∣
ε/N2

≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θ0
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤ CΘ3ε
2

N2
;∣∣∣[dΘ0

Ξ]∗
∣∣∣
ε/N2

≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘ0
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤ CΘ4
ε

N2
.

(1.88)

The proof of the proposition is postponed in Appendix C. Note that the estimates (1.87) and
(1.88) imply that there exists a constant CΘ5

> 0, independent of N , such that for any ρ ≤ ε∗
N2 one

has ΘΞ ∈ Nρ(Ps,σ, Cs,σ) and ∣∣ΘΞ

∣∣
ρ
≤ CΘ5 ρ . (1.89)

We start now the perturbative construction of the Birkhoff coordinates for the Toda lattice, which is
based on the construction of the spectrum and of the eigenfunctions of Lb,a (defined in (1.78)) as a
perturbation of the free operator L0 := Lb,a|(b,a)=(0,0). More precisely we decompose Lb,a = L0+Lp,
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where

L0 =



0 1 0 . . . 1

1 0 1
. . .

...
0 1 0 . . . 0
...

. . . . . . . . . 1
1 . . . . . . 1 0

 , Lp =



b0 a0 0 . . . aN−1

a0 b1 a1
. . .

...
0 a1 b2 . . . 0
...

. . . . . . . . . aN−2

aN−1 . . . . . . aN−2 bN−1

 (1.90)

and following the approach in [KP10, BGGK93, Kap91] we apply Kato perturbation theory [Kat66].
The next lemma characterizes completely the spectrum of L0 as an operator on C2N :

Lemma 1.48. Consider L0 as an operator on C2N , then its eigenvalues and normalized eigenvectors
are:
eigenvalues eigenvectors
λ0

0 = −2, f00(k) = 1√
2N

(−1)
k

λ0
2j−1 = λ0

2j = −2 cos
(
jπ
N

)
, f2j−1,0(k) = 1√

2N
e−iρjk, f2j,0(k) = 1√

2N
eiρjk , 1 ≤ j ≤ N − 1

λ0
2N−1 = 2, f2N−1,0(k) = 1√

2N

where 0 ≤ k ≤ 2N − 1 and ρj :=
(
1 + j

N

)
π. In particular the gaps of L0 are all closed.

The proof is an easy computation and can be found in [HK08b].

Remark 1.49. For 0 ≤ j, k ≤ bN/2c one has
∣∣λ0

2j − λ0
2k

∣∣ , ∣∣λ0
2N−j − λ0

2N−k
∣∣ ≥ 4|j2−k2|

N2 .

In particular if j 6= k then
∣∣λ0

2j − λ0
2k

∣∣ ≥ 1/N2.

We use now Kato perturbation theory of operators in order to introduce the main objects needed
in the following and to give some preliminary estimates.

For 1 ≤ j ≤ N − 1 let Ej(b, a) be the two-dimensional subspace spanned by the eigenvectors
corresponding to the eigenvalues λ2j−1(b, a) and λ2j(b, a) of Lb,a. Analogously, let E0(b, a) (respec-
tively EN (b, a)) be the one-dimensional subspace spanned by the eigenvector of λ0(b, a) (respectively
λ2N−1(b, a)). Introduce the spectral projector on Ej(b, a) defined by

Pj(b, a) = − 1

2πi

∮
Γj

(Lb,a − λ)
−1

dλ, 0 ≤ j ≤ N (1.91)

where, for 1 ≤ j ≤ N − 1, Γj is a closed path counter-clockwise oriented in C which encloses the
eigenvalues λ2j−1(b, a) and λ2j(b, a) and does not contain any other eigenvalue of Lb,a. Analogously,
Γ0 (respectively ΓN ) encloses the eigenvalue λ0(b, a) (respectively λ2N−1(b, a)) and no other eigen-
value of Lb,a. Pj(b, a) maps C2N onto Ej(b, a) and, as we will prove, is well defined for (b, a) small
enough. Pj(0, 0) will be denoted by Pj0 and its range Ej(0, 0), which will be denoted by Ej0, is
given by

Im Pj0 = Ej0, Ej0 = span 〈f2j,0, f2j−1,0〉 .
Define also the transformation operators

Uj(b, a) =
(
1− (Pj(b, a)− Pj0)

2
)−1/2

Pj(b, a), 1 ≤ j ≤ N − 1. (1.92)

Uj has the property of mapping isometrically Ej0 into the subspace Ej(b, a) spanned by the per-
turbed eigenvectors [Kat66]. Remark, however, that in general the image of an unperturbed eigen-
vector is not an eigenvector itself. We prove now some properties of the just defined objects.
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Lemma 1.50. There exist a constant Cs,σ > 0, independent of N , such that the map (b, a) 7→
Lp(b, a) is analytic as a map from Cs,σ to L

(
C2N

)
. Moreover

‖Lp(b, a)‖L(C2N ) ≤ Cs,σ ‖(b, a)‖Cs,σ . (1.93)

Then by Kato theory one has the corollary

Corollary 1.51. There exist constants Cs,σ, ε∗ > 0, independent of N , such that the following
holds true:

(i) The spectrum of Lb,a is close to the spectrum of L0; in particular for any (b, a) ∈ BCs,σ
(
ε∗
N2

)
∣∣λ2j(b, a)− λ0

2j

∣∣ , ∣∣λ2j−1(b, a)− λ0
2j−1

∣∣ ≤ Cs,σ ‖(b, a)‖Cs,σ . (1.94)

(ii) One has that (b, a) 7→ Pj(b, a) is analytic as a map from BC
s,σ ( ε∗

N2

)
to L(C2N ). Moreover for

(b, a) ∈ BCs,σ
(
ε∗
N2

)
one has

‖Pj(b, a)− Pj0‖L(C2N ) ≤ Cs,σ ‖(b, a)‖Cs,σ . (1.95)

(iii) For each 1 ≤ j ≤ N − 1, the maps Uj, defined in (1.92), are well defined from BC
s,σ ( ε∗

N2

)
to

L(C2N ) and satisfy the following algebraic properties:

(U1) Im Uj(b, a) = Ej(b, a);

(U2) for (b, a) real, one has Uj(b, a)f = Uj(b, a)f̄ ;
(U3) for (b, a) real and f ∈ Ej0, one has ‖Uj(b, a)f‖C2N = ‖f‖C2N .

Finally the following analytic property holds:

(U4) One has that (b, a) 7→ Uj(b, a) is analytic as a map from BC
s,σ ( ε∗

N2

)
to L(C2N ). Moreover

for (b, a) ∈ BCs,σ
(
ε∗
N2

)
one has

‖Uj(b, a)− Pj(b, a)‖L(C2N ) ≤ Cs,σ ‖(b, a)‖2Cs,σ . (1.96)

The proofs of Lemma 1.50 and Corollary 1.51 can be found in Appendix D.

For 1 ≤ j ≤ N − 1 and (b, a) ∈ BCs,σ
(
ε∗
N2

)
define now the vectors

f2j−1(b, a) := Uj(b, a)f2j−1,0, and f2j(b, a) := Uj(b, a)f2j,0 (1.97)

which by property (U1) belong to Ej(b, a). Define also the maps

zj(b, a) :=
(

2
N ω

(
j
N

))−1/2
〈(
Lb,a − λ0

2j

)
f2j(b, a), f2j(b, a)

〉
,

wj(b, a) :=
(

2
N ω

(
j
N

))−1/2
〈(
Lb,a − λ0

2j−1

)
f2j−1(b, a), f2j−1(b, a)

〉 (1.98)

where 〈u, v〉 =
∑
ujvj is the Hermitian product in C2N . Finally denote z(b, a) = (z1(b, a), . . . , zN−1(b, a))

and w(b, a) = (w1(b, a), . . . , wN−1(b, a)), and let Z be the map

(b, a) 7→ Z(b, a) := (z(b, a), w(b, a)). (1.99)
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The map Ψ of Theorem 1.45 will be constructed by expressing Z as a function of the linear Birkhoff
coordinates ξ, η.

The properties of the map Z are collected in the next lemma which constitutes the main technical
step for the application of Kuksin-Perelman Theorem to the Toda lattice.

Lemma 1.52. The map Z, defined by (1.99), is well defined for (b, a) ∈ BCs,σ
(
ε∗
N2

)
. If b, a are

real valued and fulfill ‖(b, a)‖Cs,σ ≤
ε∗
N2 , then, for every 1 ≤ j ≤ N − 1, the following properties are

also fulfilled:

(Z1) zj(b, a) = wj(b, a);

(Z2) γ2
j = 2

N ω
(
j
N

)
|zj(b, a)|2 = 2

N ω
(
j
N

)
|wj(b, a)|2;

(Z3) zj(0, 0) = wj(0, 0) = 0; moreover the linearizations of zj and wj at (b, a) = (0, 0) are given by

dzj(0, 0)[(B,A)] =
(
2ω
(
j
N

))−1/2
(
B̂j − 2ejiπ/N Âj

)
,

dwj(0, 0)[(B,A)] =
(
2ω
(
j
N

))−1/2
(
B̂N−j − 2e−jiπ/N ÂN−j

)
.

(1.100)

The map dZ(0, 0) = (dz(0, 0), dw(0, 0)) is in the class L(Cs,σ,Ps,σ). Its adjoint dZ(0, 0)∗ is
in the class L(Ps,σ, Cs+1,σ). Finally there exist constants CZ1

, CZ2
> 0, independent of N ,

such that for any s ≥ 0 and σ ≥ 0

‖dZ(0, 0)‖L(Cs,σ,Ps,σ) ≤ CZ1
, ‖dZ(0, 0)∗‖L(Ps,σ, Cs+2,σ) ≤ CZ2

N2 . (1.101)

(Z4) For any s ≥ 0, σ ≥ 0, there exist constants CZ3 , CZ4 , ε∗ > 0, independent of N , such that
for every 0 < ε ≤ ε∗ the map Z0 := Z − dZ(0, 0) ∈ Nε/N2

(
Cs,σ,Ps+1,σ

)
and the map

[dZ0]∗ ∈ Nε/N2

(
Cs,σ,L(Ps,σ, Cs+2,σ)

)
. Moreover

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥Z0(b, a)
∥∥
Ps+1,σ ≤ CZ3

ε2

N2
,

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥dZ0(b, a)∗
∥∥
L(Ps,σ, Cs+2,σ)

≤ CZ4
Nε.

(1.102)

The proof of the lemma is very technical, and is postponed in Appendix E.

Remark 1.53. In the limit of infinitely many particles, the linearization dzj(0, 0)(b, a) at the
different edges of the spectrum are given by

dzj(0, 0)(B,A) ≈ B̂j − 2Âj√
2ω(j/N)

if j/N � 1 dzj(0, 0)(B,A) ≈ B̂j + 2Âj√
2ω(j/N)

if 1− j/N � 1 .

(1.103)
The existence of two different sequences is in agreement with the works [BKP13b, BKP13a], in
which the spectrum of the Lax operator associated to the Toda lattice is approximated, up to a small
error, by the spectrum of two Sturm-Liouville operators associated to two KdV equations. More
explicitly, in [BKP13b] the following result is proved: take α, β ∈ C∞(T) such that

∫
T α =

∫
T β = 0,

aj = 1 + 1
N2α(j/N) and bj = 1

N2 β(j/N). Then the spectrum of the Lax matrix (1.78) with aj , bj as
elements can be approximated at the two edges by the spectrum of the two Sturm-Liouville operators
L = − d2

dx2 + (β ± 2α) on C∞(T).
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We are ready to define the map Ψ of Theorem 1.45: let

Ψ : Ps,σ → Ps,σ, (ξ, η) 7→ (φ(ξ, η), ψ(ξ, η)) (1.104)

defined by
Ψ = −Z ◦ΘΞ; i. e. φ = −z ◦ΘΞ, ψ = −w ◦ΘΞ. (1.105)

We show now that Ψ satisfies the properties (Ψ1)− (Ψ4) claimed in Theorem 1.45.

Proof of Theorem 1.45. Property (Ψ1) and (Ψ2) follows by (Z1) respectively (Z2). We prove now
(Ψ3). By (Θ1) and (Z3) one has Ψ(0, 0) = (0, 0). In order to compute dΨ(0, 0) = (dφ(0, 0), dψ(0, 0))
note that

dφ(0, 0) = −dz(0, 0) dΘΞ(0, 0) = −(dz(0, 0)F−1) ◦ (FdΘΞ(0, 0)) .

Let (B̂, Â) = FdΘΞ(0, 0)(ξ, η). Then (1.100) and (1.86) imply that, for 1 ≤ j ≤ N − 1,

dφj(0, 0)(ξ, η) = − 1√
2ω(j/N)

(
B̂j − 2eiπj/N Âj

)
=

1√
2ω(j/N)

(√
ω(j/N)

2
(ξj + ηN−j)− i

2eiπj/N$j√
2ω(j/N)

(ξj − ηN−j)

)
≡ ξj ,

where we used that 2eiπj/N$j = iω
(
j
N

)
. One verifies analogously that dψj(0, 0)(ξ, η) = ηj .

We prove now property (Ψ4), which is a consequence of the fact that the space of normally analytic
maps is closed by composition (see Lemma 1.63). Fix s ≥ 0 and σ ≥ 0. Let 0 < ε ≤ ε∗

CΘ5
, where

CΘ5
is the constant in (1.89). Since Z = dZ(0, 0) + Z0 and ΘΞ = dΘΞ(0, 0) + Θ0

Ξ, one gets that

Ψ0 = −Z0 ◦ΘΞ − dZ(0, 0) ◦Θ0
Ξ . (1.106)

Thus properties (Z3), (Θ2) and estimate (1.89) imply that there exists a constant C > 0, indepen-
dent of N , such that ∣∣Ψ0

∣∣
ε/N2 ≡ sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥Ψ0(ξ, η)
∥∥
Ps+1,σ ≤

C ε2

N2
,

which proves the first estimate of (Ψ4). We study now the adjoint map dΨ0(ξ, η)∗. Writing
dΘΞ = dΘΞ(0, 0) + dΘ0

Ξ one gets that

dΨ0(ξ, η)∗ = −dΘΞ(0, 0)∗ dZ0(ΘΞ(ξ, η))∗ − dΘ0
Ξ(ξ, η)∗ dZ0(ΘΞ(ξ, η))∗ − dΘ0

Ξ(ξ, η)∗ dZ(0, 0)∗

= I + II + III.

We estimate each term in the expression displayed above. In the following, ifA ∈ Nρ(Ps,σ,L(Ps,σ, Ps+1,σ)),
we denote by

|A|ρ ≡ sup
‖(ξ,η)‖Ps,σ≤ε/N2

‖A(ξ, η)‖L(Ps,σ,Ps+1,σ) .

We begin by estimating I:

|I|ε/N2 ≤
CΘ2

N
sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dZ0(ΘΞ(ξ, η))∗
∥∥
L(Ps,σ, Cs+2,σ)

≤ CΘ2

N
CZ4CΘ5N ε ≤ Cε,
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where in the first inequality we used the second estimate of (1.87) and in the second inequality we
used the second estimate in (1.102). Now we study II:

|II|ε/N2 ≤
CΘ4

ε

N2
sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dZ0(ΘΞ(ξ, η))∗
∥∥
L(Ps,σ, Cs+2,σ)

≤ CΘ4
ε

N2
CZ4

CΘ5
Nε ≤ Cε2

N
,

where we used the second estimate in (1.88) and again (Z4). Finally, using again (Θ2) and the
second estimate of (1.101), one has

|III|ε/N2 ≤
CΘ4ε

N2
‖dZ(0, 0)∗‖L(Ps,σ, Cs+2,σ) ≤

CΘ4ε

N2
CZ2N

2 ≤ Cε .

Collecting the estimates above one gets∣∣[dΨ0]∗
∣∣
ε/N2 ≡ sup

‖(ξ,η)‖Ps,σ≤ε/N2

∥∥dΨ0(ξ, η)∗
∥∥
L(Ps,σ,Ps+1,σ)

≤ 3Cε,

and (Ψ4) follows.

Proof of Corollary 1.6. Provided 0 < R < R′s,σ is small enough, one has that w0 := Φ−1
N (v0) fulfills

‖w0‖Ps,σ ≤
R

N2
(1 + CR) ,

and, denoting by w(t) the solution in Birkhoff coordinates, one has ‖w0‖Ps,σ = ‖w(t)‖Ps,σ . Thus,
provided 0 < R < R′s,σ is small enough one has

‖v(t)‖Ps,σ = ‖ΦN (w(t))‖Ps,σ ≤
R

N2
(1 + C ′R)

which implies the thesis.

3.2 Proof of Theorem 1.7
The proof is based on the construction of the first terms of the Taylor expansion of ΦN through
Birkhoff normal form. To this end we work with the complex variables (ξ, η) (defined in (1.25))
and will eventually restrict to the real subspace Ps,σR .

Remark 1.54. Consider the Taylor expansion of ΦN at the origin, one has

ΦN = 1 +QΦN +O(‖(ξ, η)‖3Ps,σ ) ,

then QΦN is a bounded quadratic polynomial. Furthermore, since ΦN is canonical, QΦN is a Hamil-
tonian vector field, i.e. there exists a cubic complex valued polynomial χΦN s.t. QΦn is the Hamil-
tonian vector field of χΦN .

We need a preliminary result about a uniqueness property of the transformation introducing
Birkhoff coordinates (called below Birkhoff map).
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Lemma 1.55. Let ΦN and ΨN be Birkhoff maps for HToda, analytic in some neighborhood of
the origin; assume that dΦN (0, 0) ≡ dΨN (0, 0) = 1 and denote by χΦN and χΨN the Hamiltonian
functions corresponding to QΦN and QΨN respectively, then one has

{H0;χΦN − χΨN } = 0 , (1.107)

where H0 is defined in (1.6).

Proof. By a standard computation of the Taylor expansion one has

HToda ◦ ΦN = H0 + {H0, χΦN }+H1 + h.o.t.

where H1 is the function

H1(q) =

N−1∑
j=0

(qj − qj+1)3

6

Since ΦN is a Birkhoff map, the function HToda ◦ΦN is in Birkhoff normal form so in particular its
Taylor expansion contains only terms of even degree. Thus the cubic terms in the expansion above
must vanish: {H0, χΦN }+H1 = 0. The same argument holds also for the map ΨN , thus the thesis
follows.

Remark 1.56. Writing as usual

χΦN (ξ, η) =
∑

|K|+|L|=3

χK,Lξ
KηL ,

one gets that, since
{H0, χΦN } = −

∑
|K|+|L|=3

iω · (K − L)χK,L ξ
KηL ,

eq. (1.107) implies that, if for some K,L one has ω ·(K−L) 6= 0, then χK,L is unique and coincides
with HK,L

iω·(K−L) with an obvious definition of HK,L.

Lemma 1.57. In terms of the variables (ξ, η) one has

H1(ξ, η) =
1

12
√

2N

 ∑
k1+k2+k3=0 mod N
1≤k1,k2,k3,≤N−1

(−1)
k1+k2+k3

N
√
ωk1

√
ωk2

√
ωk3 (ξk1ξk2ξk3 + ηk1ηk2ηk3)

+3
∑

k1+k2−k3=0 mod N
1≤k1,k2,k3≤N−1

(−1)
k1+k2−k3

N
√
ωk1

√
ωk2

√
ωk3

(ξk1
ξk2

ηk3
+ ηk1

ηk2
ξk3

)


Proof. First remark that

qj − qj+1 =
1√
N

N−1∑
k=0

q̂k

(
1− e− 2πik

N

)
e−

2πijk
N =

1√
N

N−1∑
k=0

iωke
− iπk

N q̂ke
− 2πijk

N ,
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so that

1

6

N−1∑
j=0

(qj − qj+1)3 =
i3

6N3/2

∑
k1,k2,k3

ωk1 q̂k1ωk2 q̂k2ωk3 q̂k3e
− iπ
N (k1+k2+k3)

N−1∑
j=0

e
2πij
N (k1+k2+k3)

=
i3

6N1/2

∑
k1+k2+k3=0 mod N

(−1)
k1+k2+k3

N ωk1
q̂k1

ωk2
q̂k2

ωk3
q̂k3

.

Substituting

ωkq̂k =
√
ωk
ξk − ηN−k

i
√

2

and reorganizing the terms one gets the thesis.

Lemma 1.58. For any s ≥ 0, σ ≥ 0, there exists C > 0 s.t. one has∥∥QφN (v̄)
∥∥
Ps,σ ≥ CN

2 ‖v̄‖2Ps,σ , (1.108)

where v̄ = ((ξ1, 0, 0, ..., 0), (ξ̄1, 0, 0, ..., 0)) ∈ Ps,σR .

Proof. In this proof, for clarity we denote η1 := ξ̄1, and similarly for the other variables. We are
going to compute the ξ2 component [QΦN (v̄)]ξ2 of QΦN (v̄) and exploit the inequality

∥∥QΦN (v̄)
∥∥
Ps,σ ≥

1√
N

2seσ2ω
1/2
2

1√
2

∣∣∣[QΦN (v̄)
]
ξ2

∣∣∣ =
2seσ2ω

1/2
2√

2N

∣∣∣∣∂χΦN

∂η2
(v̄)

∣∣∣∣ ; (1.109)

the only monomials in χΦN contributing to such a quantity are quadratic in (ξ1, η1) and linear in
η2, but due to the selection rule k1 ± k2 ± k3 = lN with a plus for the ξ’s and a minus for the η’s
the only monomial contributing to the r.h.s. of (1.109) is χK̄,L̄ξK̄ηL̄ with K̄ := (2, 0, ..., 0), and
L̄ = (0, 1, 0, 0, ..., 0).

Since

ω · (K − L) = 2ω1 − ω2 = 4 sin
π

N
− 2 sin

2π

N
=

2π3

N3
+O

(
1

N5

)
6= 0 , (1.110)

such a coefficient is uniquely defined and, for the χΦN corresponding to any Birkhoff map, one has

χK̄,L̄ =
1

4
√

2N

ω1ω
1/2
2

i(2ω1 − ω2)
. (1.111)

Inserting in (1.109) one has that its r.h.s. is equal to

2seσ2ω
1/2
2√

2N

∣∣χK̄,L̄∣∣ |ξ1|2 =
C ′′

N

ω1ω2

|2ω1 − ω2|
|ξ1|2 = C ′

ω2

|2ω1 − ω2|
‖v̄‖2Ps,σ ≥ CN

2 ‖v̄‖2Ps,σ ,

where C, C ′ and C ′′ are numerical constants independent of N and we used the expansions of ω1,
ω2 in 1/N as well as equation (1.110).

Proof of Theorem 1.7. The thesis immediately follows taking ‖v̄‖Ps,σ = R/Nα and imposing the
inequality (1.11).
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Proof of Corollary 1.9. By Cauchy inequality and assumption (1.12) QΦN fulfills∥∥QΦN (v̄)
∥∥
Ps,σ ≤

R′

Nα′
N2α

R2
‖v̄‖2Ps,σ . (1.112)

Comparing this inequality with (1.108), one gets

R′

R2
N2α−α′ ≥ C ′′N2 ,

which in particular implies the thesis.

4 FPU packet of modes: proofs.
In this section we prove the results stated in the subsection 1.2 about the persistence of the
metastable packet in the FPU system.

To clarify the procedure, we distinguish here between the (ξ, η) variables and the variables (p, q).
Thus, we denote by T : (ξ, η) → (p, q) the change of coordinates of the phase space introducing
the linear Birkhoff variables (ξ, η) defined in (1.25). Furthermore it is useful to use for the (p, q)
variables the following norms

‖q‖2s,σ :=
1

N

N−1∑
k=0

max(1, [k]2sN ) e2σ[k]N |q̂k|2 , (1.113)

and
‖(p, q)‖Ps,σ :=

∥∥T−1(p, q)
∥∥
Ps,σ . (1.114)

Lemma 1.59. Fix s ≥ 1, σ ≥ 0, then there exist constants C1, C2 > 0, independent of N , such
that for all (ξ, η) ∈ Ps,σ and ∀l ≥ 2 one has

‖XHl◦T (ξ, η)‖Ps,σ ≤
Cl1

(l + 1)!
‖(ξ, η)‖l+1

Ps,σ , (1.115)

‖XHl◦T (ξ, η)‖Ps−1,σ ≤
Cl2

N(l + 1)!
‖(ξ, η)‖l+1

Ps,σ . (1.116)

Proof. Define the difference operators by

S± : {qj}0≤j≤N−1 7→ {qj − qj±1}0≤j≤N−1 , where qN ≡ q0 , (1.117)

and the operator [S+(q)]l by {
[S+(q)]

l
}
j

:= (qj − qj+1)l ,

so that
XHl◦T (ξ, η) =

1

(l + 1)!
T−1

(
S− [S+(T (ξ, η))]

l
, 0
)
. (1.118)

By Lemma 1.70 and Remark 1.72 in Appendix B, there exists a constant Cs,σ > 0, independent of
N , such that for every integer n ≥ 1∥∥[S±(q)]l+1

∥∥
s,σ
≤ Cl+1

s,σ ‖S±(q)‖l+1
s,σ ≤ C

l+1
s,σ ‖(ξ, η)‖l+1

Ps,σ , (1.119)
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where for the last inequality we have identified the couple (0, q) with the corresponding (ξ, η) vector.
Then the thesis follows just remarking that

∥∥T−1(q, 0)
∥∥
Ps,σ = ‖q‖s,σ, and that S− is bounded

as an operator from Ps,σ to itself, while one has

‖(S−(q), 0)‖Ps−1,σ ≤
C

N
‖q‖s,σ .

Introducing the Birkhoff coordinates and using the standard formulae for the pull back of vector
fields3 one has the following

Corollary 1.60. Fix s ≥ 1 and σ ≥ 0, then there exist constants Rs,σ, C1, C2 > 0, independent of
N , such that for all w ≡ (φ, ψ) ∈ Bs,σ(Rs,σ/N

2) one has

‖XHl◦T◦ΦN (w)‖Ps,σ ≤
Cl1

(l + 1)!
‖w‖l+1

Ps,σ , (1.120)

‖XHl◦T◦ΦN (w)‖Ps−1,σ ≤
Cl2

N(l + 1)!
‖w‖l+1

Ps,σ . (1.121)

Remark 1.61. Write
H̃FPU ≡ HFPU ◦ T ◦ ΦN = H̃Toda + H̃P , (1.122)

where

H̃Toda := HToda ◦ T ◦ ΦN , H̃P := (β − 1)H2 ◦ T ◦ ΦN +H(3) ◦ T ◦ ΦN , (1.123)

then, provided R is small enough the vector field of H̃P fulfills the following estimates∥∥XH̃P
(w)
∥∥
Ps,σ ≤ C

[
|β − 1| ‖w‖3Ps,σ + C ‖w‖4Ps,σ

]
, (1.124)∥∥XH̃P

(w)
∥∥
Ps−1,σ

≤ C

N

[
|β − 1| ‖w‖3Ps,σ + C ‖w‖4Ps,σ

]
, (1.125)

for all w ∈ Bs,σ(R/N2).

In the following we denote by v(t) ≡ (ξ(t), ξ̄(t)) the solution of the FPU model in the original
Cartesian coordinates (we restrict to the real subspace). We denote by w(t) := Φ−1

N (v(t)) the same
solution in Birkhoff coordinates.

Lemma 1.62. Fix s ≥ 2 and σ ≥ 0. Then there exist R′s,σ, T, C2 > 0 such that v0 ∈ Bs,σR
(
R
N2

)
with R ≤ R′s,σ implies v(t) ∈ Bs,σR

(
4R
N2

)
for

|t| ≤ T

R2µ4[|β − 1|+ C2Rµ2]
. (1.126)

3Namely
[Φ∗
NX](x) = dΦ−1

N (ΦN (x))X(ΦN (x))

which gives the vector field of the transformed Hamiltonian due to the fact that ΦN is canonical
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Proof. First consider w0 := Φ−1
N (v0) and remark that (provided R′s,σ is small enough) one has

w0 ∈ Bs,σR
(

2R
N2

)
. Denote by M(w) := ‖w‖2Ps,σR

. Since
{
M, H̃Toda

}
≡ 0, one has

M(w(t)) = M(w0) +

∫ t

0

{
M ; H̃P

}
(w(s))ds . (1.127)

Denoting M̄(t) := sup|s|≤tM(w(s)), one has

M̄(w(t)) ≤M(w0) +

∫ t

0

∣∣∣{M ; H̃P

}
(w(s))

∣∣∣ ds (1.128)

≤M(w0) +

∫ t

0

(
C ‖w(s)‖4Ps,σR

|β − 1|+ C ‖w(s)‖5Ps,σR

)
ds

≤M(w0) +

∫ t

0

CM̄(t)2
(
|β − 1|+ CM̄(t)1/2

)
ds

≤M(w0) + |t|CM̄(t)2
(
|β − 1|+ CM̄(t)1/2

)
, (1.129)

where, in order to prove the second inequality we used
{
M ; H̃P

}
:= dMXH̃P

and

‖dM(w)‖L(Ps,σ,C) ≤ C ‖w‖Ps,σ ,

which follows from an explicit computation. Taking t as in the statement of the Lemma we have
that (1.128)-(1.129) ensures M̄(t) ≤ 9M(w(0))/4, which implies w(t) ∈ Bs,σR

(
3R
N2

)
from which the

thesis immediately follows.

Proof of Theorem 1.16. Inequality (1.21) is a direct consequence of Lemma 1.62. To prove inequality
(1.22) remark that İk = {Ik, H̃P } = xk

∂H̃P
∂yk
− yk ∂H̃P∂xk

. Thus

1

N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

) ∣∣∣{Ik, H̃P }
∣∣∣ =

1

N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

) ∣∣∣∣∣xk ∂H̃P

∂yk
− yk

∂H̃P

∂xk

∣∣∣∣∣
≤

(
1

N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

)
(y2
k + x2

k)

)1/2
 1

N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

)∣∣∣∣∣∂H̃P

∂yk

∣∣∣∣∣
2

+

∣∣∣∣∣∂H̃P

∂xk

∣∣∣∣∣
2
1/2

≤ 2 ‖w‖Ps−1,σ
R

∥∥XH̃P
(w)
∥∥
Ps−1,σ

R
≤ C

N

[
|β − 1| ‖w‖4Ps,σ + C ‖w‖5Ps,σ

]
,

where in the last inequality we used (1.125). Using that |Ik(w(t))− Ik(w(0))| ≤
∫ t

0

∣∣∣{Ik, H̃P }(w(s))
∣∣∣ ds,

one gets

1

N

N−1∑
k=1

[k]2s−2
N e2σ[k]Nω

(
k
N

)
|Ik(w(t))− Ik(w(0))| ≤ |t|C

N
sup
|s|≤t

[
|β − 1| ‖w(s)‖4Ps,σ + C ‖w(s)‖5Ps,σ

]
,

which, using w(t) ∈ Bs,σR
(

3R
N2

)
immediately implies the thesis.

46



A Properties of normally analytic maps

In this section we study the properties of the space Nρ(Pw
1

, Pw2

) and Aw2

w1,ρ defined in section 2,
with weights w1 ≤ w2. In particular, we consider the operations on germs defined in [KP10] and
perform quantitative estimates.

Lemma 1.63. Let w1 ≤ w2 ≤ w3 be weights. Let G ∈ Nρ(Pw
1

,Pw2

) with |G|ρ ≤ σ and F ∈
Nσ(Pw2

,Pw3

). Then F ◦G ∈ Nρ(Pw
1

,Pw3

) and |F ◦G|ρ ≤ |F |σ .

Proof. Exploiting the obvious inequality F ◦G(|v|) ≤ F ◦G(|v|)(cf [KP10]), one has

|F ◦G|ρ ≡ sup
v∈Bw1 (ρ)

‖F ◦G(|v|)‖w3 ≤ sup
v∈Bw1 (ρ)

‖F (G(|v|))‖w3 ≤ sup
u∈Bw2 (σ)

‖F (|u|)‖w3 ≡ |F |σ .

Lemma 1.64. Let F ∈ Nρ(Pw
1

, Pw2

), F = O(v2) and |F |ρ ≤ ρ/e. Then the map 1 + F is
invertible in Bw

1

(µρ), µ as in (1.50). Moreover there exists G ∈ Nµρ(Pw
1

, Pw2

), G = O(v2), such
that (1 + F )−1 = 1−G, and

|G|µρ ≤
|F |ρ

8
. (1.130)

Proof. We look for G in the form G =
∑
n≥2G

n, with the homogeneous polynomial Gn to be
determined at every order n. Note that the equation defining G can be given in the form F (v −
G(v)) = G(v), which can be recasted in a recursive way giving the formula

Gn(v) =

n∑
r=2

∑
k1+···+kr=n

F̃ r
(
Gk1(v), · · · , Gkr (v)

)
, ∀n ≥ 2 . (1.131)

In the formula above k1, . . . , kr ∈ N, and we write F =
∑
r≥2 F

r, where F r is a homogeneous
polynomial of degree r and F̃ r is its associated multilinear map (see (1.29)). Moreover we write
G1(v) := v. We show now that the formal series G =

∑
n≥2G

n with Gn defined by (1.131) is
normally analytic in Bw

1

(µρ). Note that

Gn(|v|) ≤
n∑
r=2

∑
k1+···+kr=n

F̃ r
(
Gk1(|v|), . . . , Gkr (|v|)

)
. (1.132)

In order to prove that the series
∑
n≥2G

n is convergent in Bw
1

(µρ), we prove that there exists a
constant A > 0 such that

‖Gn(|v|)‖w2 ≤
|F |ρ
8Sn2

An ‖v‖nw1 , ∀n ≥ 2. (1.133)

The proof is by induction on n. We will use in the following the chain of inequalities∥∥∥F̃ r∥∥∥ ≤ er ‖F r‖ ≤ er |F |ρ /ρr ∀r ≥ 1 ,
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see [Muj86]. For n = 2, by (1.131) it follows that G2(v) = F̃ 2(v, v). Since

∥∥G2(|v|)
∥∥
w2 ≤

∥∥∥F̃ 2
∥∥∥ ‖v‖2w1 ≤ e2

|F |ρ
ρ2
‖v‖2w1 ,

it follows that (1.133) holds for n = 2 with A = e(32S)1/2

ρ . We prove now the inductive step
n− 1 n. Assume therefore that (1.133) holds up to order n− 1. Then one has

‖Gn(|v|)‖w2 ≤
n∑
r=2

∑
k1+···+kr=n

∥∥∥F̃ r∥∥∥∥∥Gk1(|v|)
∥∥
w2 · · ·

∥∥Gkr (|v|)∥∥
w2

≤ An ‖v‖nw1

n∑
r=2

∑
k1+···+kr=n

er
|F |ρ
ρr

|F |rρ
8rSrk2

1 · · · k2
r

≤
|F |ρ
4Sn2

An ‖v‖nw1

∞∑
r=2

(
e |F |ρ

2ρ

)r
≤
|F |ρ
8Sn2

An ‖v‖nw1

where in the first inequality we used the fact that w1 ≤ w2, in the second the inductive assumption
and in the last we used the hypothesis |F |ρ ≤ ρ/e. Finally to pass from the second to the third line
we used the following inequality, proved in Lemma (1.67) below:

n2
∑

k1+···+kr=n

1

k2
1 · · · k2

r

≤ (4S)r−1, n ≥ 1 . (1.134)

Hence, choosing µρ = 1/A = ρ/e(32S)1/2 one proves (1.130).

Now it is easy to prove the following lemma, giving closedness of the class Aw2

w1,ρ under different
operations.

Lemma 1.65. Let w1 ≤ w2 be weights and let µ be as in (1.50). Then the following holds true:

i) Let F ∈ Aw2

w1,ρ and G ∈ Aw2

w1,µρ with ‖G‖Aw2

w1,µρ

< µρ
e . Then H(v) := F (v + G(v)) is of class

Aw2

w1,µρ and
‖H‖Aw2

w1,µρ

≤ 2 ‖F‖Aw2

w1,ρ

.

ii) Let F ∈ Aw2

w1,ρ and ‖F‖Aw2

w1,ρ

≤ ρ/e. Then (1 + F )−1 = 1 + G, with G ∈ Aw2

w1,µρ. Moreover

one has
‖G‖Aw2

w1,µρ

≤ 2 ‖F‖Aw2

w1,ρ

. (1.135)

iii) Let F ∈ Aw2

w1,ρ, then the function H(v) := dF (v)v is in the class Aw2

w1,µρ and

‖H‖Aw2

w1,µρ

≤ 2 ‖F‖Aw2

w1,ρ

.
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iv) Let F 0, G0 ∈ Aw2

w1,ρ with
∥∥F 0

∥∥
Aw2

w1,ρ

≤ ρ
e . Denote F = 1 + F 0. Then H(v) := dG0(v)∗(F (v))

is in the class Aw2

w1,µρ and
‖H‖Aw2

w1,µρ

≤ 2
∥∥G0

∥∥
Aw2

w1,ρ

.

Proof. i) Since H(|v|) ≤ F (|v| + G(|v|)) it follows that |H|µρ ≤ |F |2µρ ≤ |F |ρ. Furthermore,
since dH(v) = dF (v +G(v))(1+ dG(v)) one gets that dH(|v|) ≤ dF (|v|+G(|v|)) + dF (|v|+
G(|v|))dG(|v|), which implies that µρ |dH|µρ ≤ |dF |ρ (µρ + µρ |dG|µρ) ≤ |dF |ρ µρ(1 + 1/e).
The adjoint dH(v)∗ is estimated analogously, thus the claimed estimate follows.

ii) It follows from the formula dG(v) = [1−dF (v−G(v))]−1dF (v−G(v)), arguing as in item i).

iii) It follows from dH(v)u = dF (v)u+ d2F (v)(u, v), arguing as in item i).

iv) To estimate H(|v|) and dH(|v|) one proceeds as in item i). In order to estimate dH(|v|)∗
remark that (see [KP10]) dH(v)∗u = (dF 0(v)∗ + 1)dG0(v)u+ dv(dG

0(v)∗u)(F (v)), thus

dH(|v|)∗|u| ≤ (dF 0(|v|)∗ + 1)dG0(|v|)|u|+ d|v|(dG
0(|v|)∗|u|)(F (|v|)) .

The claimed estimate follows easily.

Now we analyze the flow generated by a vector field of class Aw2

w1,ρ. Given a time dependent
vector field Vt(v), consider the differential equation{

u̇(t) = Vt(u(t))

u(0) = v .
(1.136)

We will denote by φt(v) the corresponding flow map whose existence and properties are given in
the next lemma.

Lemma 1.66. Assume that the map [0, 1] 3 t 7→ Vt ∈ Aw
2

w1,ρ is continuous and furthermore fulfills
supt∈[0,1] ‖Vt‖Aw2

w1,ρ

≤ ρ/e; then for each t ∈ [0, 1], φt−1 ∈ Aw2

w1,µρ with µ as in (1.50). Furthermore

one has ∥∥φt − 1∥∥Aw2

w1,µρ

≤ 2 sup
t∈[0,1]

‖Vt‖Aw2

w1,ρ

. (1.137)

Proof. We look for a solution u(t, v) =
∑
j≥1 u

j(t, v) in power series of v, with uj(t, v) a homoge-
neous polynomial of degree j in v. Expanding the vector field Vt(v) =

∑
r≥2 V

r
t (v) in Taylor series,

one obtains the recursive formula for the solution

u1(t, v) = v, un(t, v) =

n∑
r=2

∑
k1+···+kr=n

∫ t

0

Ṽ rs (uk1(s, v), . . . , ukr (s, v)) ds ∀n ≥ 2, (1.138)

where Ṽ rs is the multilinear map associated to V rs (see (1.29)). Arguing as in the proof of (1.64)
one gets the bounds

‖un(t, v)‖w2 ≤
supt∈[0,1]

∣∣Vt∣∣ρ
8Sn2

An ‖v‖nw1 ∀n ≥ 2, (1.139)

49



with A = e
ρ (32S)1/2, from which it follows that

∣∣φt − 1∣∣
µρ
≤ supt∈[0,1]

∣∣Vt∣∣ρ /8.
We come to the estimate of the differential of u(t, v) and of its adjoint. We differentiate equation

(1.138) getting the recursive formula

dun(t, v)ξ =

n∑
r=2

∑
k1+···+kr=n

∫ t

0

[
Ṽ rs (duk1(s, v)ξ, . . . , ukr (s, v)) + · · ·+ Ṽ rs (uk1(s, v), . . . , dukr (s, v)ξ)

]
ds .

(1.140)
To estimate such an expression remark that, defining Et(v) := dVt(v) (where the differential is with
respect to the v variable only), one has

dr−1Es(u
k2(s, v), . . . , ukr (s, v))ξ = Ṽ rs (ξ, uk2(s, v), . . . , ukr (s, v))

which allows to write formula (1.140) as

dun(t, v)ξ =
n∑
r=2

∑
k1+···+kr=n

∫ t

0

[
dr−1Es(u

k2(s, v) . . . , ukr (s, v))duk1(s, v)ξ + . . .

. . .+ dr−1Es(u
k1(s, v), . . . , ukr−1(s, v))dukr (s, v)ξ

]
ds .

(1.141)

This formula allows to proceed exactly as in the estimate of un, namely making the inductive
assumption that

‖dun(t, v)‖L(Pw1 ,Pw2 ) ≤
supt∈[0,1]

∣∣dVt∣∣ρ
8Sn2

An ‖v‖nw1

and proceeding as above one gets the thesis. Finally one has to estimate [dun]∗, but again equation
(1.141) allows to obtain a formula whose estimate is obtained exactly as the estimate of du.

We prove now a useful inequality.

Lemma 1.67. [Trè70] Let r ∈ N be fixed and S =
∑
k≥1

1
k2 . Then for every n ∈ N it holds that

n2
∑

k1,...,kr∈N
k1+···+kr=n

1

k2
1 · · · k2

r

≤ (4S)r−1 .

Proof. The proof is by induction, the case n = 1 being trivial. For n > 1 one gets

n2
∑

k1+···+kr=n

1

k2
1 · · · k2

r

=
∑

k1+j=n

n2

k2
1j

2

∑
k2+···+kr=j

j2

k2
2 · · · k2

r

≤
∑

k1+j=k

n2

k2
1j

2
(4S)r−2

by the induction assumption. Now it is enough to note that

∑
k1+j=n

n2

k2
1j

2
=

∑
k1+j=n

n2

k2
1(n− k1)2

≤ 2

n−1∑
k1=1

( 1

k2
1

+
1

(n− k1)2

)
≤ 4

n−1∑
k1=1

1

k2
1

≤ 4S.
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B Discrete Fourier Transform
In this section we collect some well-known properties of the discrete Fourier transform (DFT). For
u ∈ CN , N ∈ N, the DFT of u is the vector û ∈ CN whose kth component is defined by

ûk =
1√
N

N−1∑
j=0

uje
2πijk/N , ∀ 0 ≤ k ≤ N − 1. (1.142)

When the DFT is considered as a map, it will be denoted by F , i.e. F : u 7→ û.
For any s ≥ 0 and σ ≥ 0 we endow CN with the norm ‖·‖s,σ defined in (1.113). Such a space

will be denoted by Cs,σ.

Remark 1.68. Let j be an integer such that 0 ≤ j ≤ N − 1. Then

N−1∑
k=0

ei2πjk/N =

{
0 if j 6= 0
N if j = 0

and
2N−1∑
k=0

uk e
iπkj/N =

{
2
√
N ûl, j even, j = 2l

0 j odd
(1.143)

Remark 1.69. Fix s > 1
2 and σ ≥ 0. Then there exists a constant Cs,σ > 0, independent of N ,

such that for every u ∈ CN the following estimate holds:

sup
0≤j≤N−1

|uj | ≤ Cs,σ ‖u‖s,σ .

For u, v ∈ CN , we denote by u · v the component-wise product of u and v, namely the vector
whose jth component is given by the product of the jth components of u and v:

(u · v)j := ujvj , 0 ≤ j ≤ N − 1 . (1.144)

We denote by u ∗ v the convolution product of u and v, a vector whose jth component is defined by

(u ∗ v)j :=

N−1∑
k=0

ukvj−k, 0 ≤ j ≤ N − 1 , (1.145)

where in the summation above u and v are extended periodically defining vk+lN ≡ vk for l ∈ Z.
The DFT maps the component-wise product in convolution:

Lemma 1.70. For s > 1
2 and σ ≥ 0 there exists a constant Cs,σ > 0, independent of N , such that

the following holds:

(i) û · v = 1√
N
û ∗ v̂;

(ii) ‖u · v‖s,σ ≤ Cs,σ ‖u‖s,σ ‖v‖s,σ;

(iii) the map X : u 7→ u2, has bounded modulus w.r.t. the exponentials, and ‖X(u)‖s,σ ≤
Cs,σ ‖u‖2s,σ .

51



Proof. Item (i) is standard and the details of the proof are omitted.
We prove now item (ii). To begin, note that, by periodicity, one has

‖u‖2s,σ =
1

N

∑
k∈K0

N

[k]2se2σ|k| |ûk|2 ,

where the set
K0
N := {k ∈ Z : −(N − 1)/2 ≤ k ≤ (N − 1)/2} ∪ {bN/2c}, (1.146)

while [k] := max(1, |k mod N |). By item (i), one has that

‖u · v‖2s,σ =
1

N

∑
k∈K0

N

[k]2se2σ|k||(̂u · v)k|
2 =

1

N2

∑
k∈K0

N

[k]2se2σ|k|

∣∣∣∣∣
N−1∑
l=0

ûlv̂k−l

∣∣∣∣∣
2

. (1.147)

Introduce now the quantities

γk,l :=
[k]s

[l]s [k − l]s
· eσ|k|

eσ|l|eσ|k−l|
.

For s > 1
2 and σ ≥ 0, it holds that γ2

k,l ≤ 4s ([k−l]2s+[l]2s) e2σ(|k−l|+|l|)

[k−l]2s [l]2s e2σ|l| e2σ|k−l|
≤ 4s

(
1

[l]2s + 1
[k−l]2s

)
, from

which it follows that there exists a constant Cs,σ > 0, independent of N , such that

sup
0≤k≤N−1

N−1∑
l=0

γ2
k,l ≤ C2

s,σ . (1.148)

By Cauchy-Schwartz one has

[k]seσ|k|
N−1∑
l=0

|ûl| |v̂k−l| =
N−1∑
l=0

γk,l [l]
s eσ|l| |ûl| [k − l]s eσ|k−l| |v̂k−l|

≤

(
N−1∑
l=0

γ2
k,l

)1/2 (N−1∑
l=0

[l]2s e2σ|l| |ûl|2 [k − l]2s e2σ|k−l| |v̂k−l|2
)1/2

.

Inserting the inequality above in (1.147), one has

‖u · v‖s,σ ≤
Cs,σ
N

(
N−1∑
l=0

[l]2s e2σ|l| |ûl|2
)1/2 (N−1∑

k=0

[k − l]2s e2σ|k−l| |v̂k−l|2
)1/2

≤ Cs,σ ‖u‖s,σ ‖v‖s,σ .

We prove now item (iii). Consider X̂ := FXF−1. By item (i) one has X̂ : {ûj}j∈Z 7→ { 1√
N

∑
l ûlûj−l}j∈Z.

Thus X̂ ≡ X̂ and the claim follows.

Remark 1.71. Let S± be the difference operators defined in (1.117). Let ω̂± be the vectors whose
kth components are given by ω̂±,k := 1− e∓2πik/N . Then the following holds:
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(i) the map Ŝ± := FS±F−1 is a multiplication by the vector ω̂±: Ŝ± : û 7→ ω̂± · û.

(ii)
∣∣∣Ŝ±(û)

∣∣∣ ≤ ω · |û|, where ω ≡ {ω ( kN )}N−1
k=1 is the vector of the linear frequencies.

Remark 1.72. Consider q = q(ξ, η) as a function of the linear Birkhoff variables defined in (1.25).
Then one has

∥∥∥S±(q)
∥∥∥
s,σ
≤ ‖(ξ, η)‖Ps,σ .

C Proof of Proposition 1.47
We prove now property (Θ1). Let T : (ξ, η) 7→ (p, q) be the map introducing linear Birkhoff
coordinated. Explicitly (p, q) = T (ξ, η) iff (p̂0, q̂0) = (0, 0) and

(p̂k, q̂k) =

√1

2
ω
(
k
N

)
(ξk + ηN−k),

1

i
√

2ω
(
k
N

) (ξk − ηN−k)

 , 1 ≤ k ≤ N − 1 .

Then ΘΞ ≡ Θ ◦ T and in particular dΘΞ(0, 0) = dΘ(0, 0)T . Using the formula above and the
fact that dΘ(0, 0)(P,Q) =

(
−P, 1

2S+(Q)
)
, where S+ is defined in (1.117), one obtains easily formula

(1.86). The estimate of
∥∥dΘΞ(0, 0)

∥∥
L(Ps,σ, Cs,σ)

is trivial, and is omitted.
We prove now the estimate for

∥∥dΘΞ(0, 0)∗
∥∥
L(Cs+1,σ,Ps,σ)

. Using the explicit formula (1.86),
one computes that (ξ, η) = dΘΞ(0, 0)∗(B,A) iff

(ξk, ηk) =

−√ 1
2ω
(
k
N

)
B̂k +

$k

i
√

2ω
(
k
N

) Âk, −√ 1
2ω
(
k
N

)
B̂N−k −

$k

i
√

2ω
(
k
N

) ÂN−k


for 1 ≤ k ≤ N − 1. Thus there exist constants C,CΘ2
> 0, independent of N , such that

∥∥dΘΞ(0, 0)∗(B,A)
∥∥
Ps,σ ≤ C

(
1

N

N−1∑
k=1

[k]2sN e
2σ[k]Nω

(
k
N

)2
(|B̂k|2 + |Âk|2)

)1/2

≤ CΘ2

N
‖(B,A)‖Cs+1,σ ,

where we used that
∣∣ω ( kN )∣∣2 ≤ π2[k]2N

N2 . Thus the second of (1.87) is proved.

We prove now property (Θ2). Denote by Θb the map p 7→ −p and by Θa the map q 7→
exp

(
1
2S+(q)

)
−1. Then (b, a) = Θ(p, q) ≡ (Θb(p),Θa(q)). Introduce on CN the norm ‖·‖s,σ defined

in (1.113). Then ‖Θ(p, q)‖2Cs,σ ≡ ‖Θb(p)‖2s,σ + ‖Θa(q)‖2s,σ. The analyticity of p 7→ Θb(p) is obvious.
Consider now the map q 7→ Θa(q). Expand Θa in Taylor series with center at the origin to get

Θa(q) =
∑
r≥1

Θr
a(q), Θr

a(q) :=
1

r! 2r
(S+(q))r, ∀r ≥ 1. (1.149)

Consider q as a function of the linear Birkhoff variables ξ, η. Then Lemma 1.70 and Remark 1.72
imply that for any s ≥ 0, σ ≥ 0∥∥∥Θr

a(q)
∥∥∥
s+1,σ

≤ Cr1
∥∥∥S+(q)

∥∥∥r
s+1,σ

≤ Cr2 ‖(ξ, η)‖rPs+1,σ ≤ Cr3Nr ‖(ξ, η)‖rPs,σ , ∀r ≥ 2, (1.150)
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where C1, C2, C3 > 0 are positive constants independent of N . Therefore for ε < 1
C3

one has

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θ0
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤
∑
r≥2

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥Θr
Ξ(ξ, η)

∥∥∥
Cs+1,σ

≤
∑
r≥2

Cr3N
r εr

N2r
≤ 2C2

3ε
2

N2
.

This proves the first estimate in (Θ2). We show now that for any s ≥ 0, σ ≥ 0 one has
[dΘ0

Ξ]∗ ∈ Nε/N2(Ps,σ,L(Cs+2,σ,Ps+1,σ)). Note that dΘΞ(ξ, η)∗ = T ∗dΘ(T (ξ, η))∗. Using the ex-
plicit expression of T , one verifies that (ξ, η) = T ∗(P,Q) iff

(ξk, ηk) =

√ 1
2ω
(
k
N

)
P̂k +

1

i
√

2ω
(
k
N

) Q̂k, √ 1
2ω
(
k
N

)
P̂N−k −

1

i
√

2ω
(
k
N

) Q̂N−k,
 (1.151)

for 1 ≤ k ≤ N − 1. Thus one has that for any s ≥ 0, σ ≥ 0

‖T ∗(0, Q)‖Ps,σ ≤ ‖Q‖s,σ . (1.152)

Using (1.149) one verifies that dΘr(p, q)(P,Q) = 1
(r−1)! 2r

(
0, S+(q)r−1 · S+(Q)

)
, ∀r ≥ 2, from

which it follows that

dΘr(p, q)∗(B,A) =
1

(r − 1)! 2r

(
0, S+(q)

r−1
· S−(A)

)
, ∀r ≥ 2 .

Thus, using estimate (1.152), there exists a constant C4 > 0, independent of N , such that∥∥∥dΘr
Ξ(ξ, η)∗(B,A)

∥∥∥
Ps+1,σ

≤ Cr4
∥∥∥S+(q(ξ, η))

∥∥∥r−1

s+1,σ

∥∥∥S−(A)
∥∥∥
s+1,σ

≤ Cr4Nr−2 ‖(ξ, η)‖r−1
Ps,σ ‖(B,A)‖Cs+2,σ .

Then there exists C5, ε0 > 0, independent of N , such that ∀ 0 < ε ≤ ε0

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘ0
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤
∑
r≥2

sup
‖(ξ,η)‖Ps,σ≤ε/N2

∥∥∥dΘr
Ξ(ξ, η)∗

∥∥∥
L(Cs+2,σ,Ps+1,σ)

≤
∑
r≥2

Cr4N
r−2 εr−1

N2(r−1)
≤ C5ε

N2
.

D Proof of Lemma 1.50 and Corollary 1.51
Proof of Lemma 1.50. Since the map (b, a) 7→ Lp(b, a) is linear, it is enough to prove that it is
continuous from Cs,σ to L(C2N ). In particular we will prove that

‖Lp‖L(C2N ) ≤ sup
0≤j≤N−1

(
|bj |+ 2 sup

j
|aj |
)
. (1.153)

This estimate, together with Lemma 1.69, proves (1.93). In order to prove (1.153), write Lp =
D +A+ +A−, where D is the diagonal part of Lp and A± are defined by

A+ =


0 a0

0
. . .
0 aN−1

aN−1 0

 , A− =


0 aN−1

a0 0
. . . 0

aN−2 0

 .
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To estimate the norms of D,A+ and A− is enough to observe that for every x ∈ C2N one has

‖Dx‖2C2N :=

2N−1∑
j=0

|bjxj |2 ≤
(

sup
0≤j≤N−1

|bj |
)2

‖x‖2C2N ,
∥∥A±x∥∥2

C2N ≤
(

sup
0≤j≤N−1

|aj |
)2

‖x‖2C2N ,

where ‖·‖C2N is the standard euclidean norm on C2N . Thus (1.153) follows.

Proof of Corollary 1.51. Item (i) follows by standard perturbation theory, and the details are
omitted. We prove now item (ii). Let Γj be the circle defined by Γj :=

{
λ ∈ C :

∣∣λ0
2j − λ

∣∣ = 1
2N2

}
,

counter-clockwise oriented. By item (i), for any ‖(b, a)‖Cs,σ ≤
ε∗
N , λ2j(b, a) and λ2j−1(b, a) are inside

the ball enclosed by Γj . Write Lb,a − λ = L0 − λ+ Lp = (L0 − λ)
(

1 + (L0 − λ)
−1
Lp

)
; its inverse

(Lb,a − λ)
−1

=

( ∞∑
n=0

(
− (L0 − λ)

−1
Lp

)n)
(L0 − λ)

−1 (1.154)

is well defined as a Neumann operator when
∥∥∥(L0 − λ)

−1
Lp

∥∥∥
L(C2N )

< 1. Since L0 − λ is diagonal-

izable with {(λ0
j − λ)}0≤j≤2N−1 as eigenvalues, the norm of its inverse is bounded by the inverse of

the smallest eigenvalue:

sup
λ∈Γj

∥∥∥(L0 − λ)
−1
∥∥∥
L(C2N )

≤ sup
λ∈Γj

0≤k≤2N−1

∣∣∣∣ 1

λ0
k − λ

∣∣∣∣ < 2N2 (1.155)

where the last estimates is due to the form of Γj . Therefore for 0 < ε ≤ ε∗ and ‖(b, a)‖Cs,σ <
ε
N2

one gets, using (1.93),∥∥∥(L0 − λ)
−1
Lp

∥∥∥
L(C2N )

≤ ‖Lp‖L(C2N )

∥∥∥(L0 − λ)
−1
∥∥∥
L(C2N )

≤ Cs,σ ‖(b, a)‖Cs,σ 2N2 < 2Cs,σε∗,

which proves the convergence of the Neumann series (1.154) for ε∗ ≤ 1
2Cs,σ

.
Substituting (1.154) in (1.91) we get, for 1 ≤ j ≤ N − 1,

Pj(b, a) = Pj0 −
1

2πi

∮
Γj

( ∞∑
n=1

(
− (L0 − λ)

−1
Lp

)n)
(L0 − λ)

−1
dλ. (1.156)

Since the series inside the integral is absolutely and uniformly convergent for (b, a) ∈ BCs,σ
(
ε
N2

)
,

(b, a) 7→ Pj(b, a) is analytic as a map from BC
s,σ ( ε

N2

)
to L(C2N ). Estimate (1.95) follows easily

from (1.156).
We prove now item (iii). Properties (U1) − (U3) are standard [Kat66]. The analyticity of

the map (b, a) 7→ Uj(b, a) follows from item (ii). Indeed, in order for Uj(b, a) to be defined as a
Neumann series one needs ‖Pj(b, a)− Pj0‖L(C2N ) < 1, which follows from (1.95). Estimate (1.96)
follows by expanding (1.92) in power series of Pj(b, a)− Pj0.

E Proof of Proposition 1.52
Denote by D : CN−1 → CN−1 the diagonal operator

D : {ξj}1≤j≤N−1 7→ {Djξj}1≤j≤N−1, where Dj :=
(

2
N ω

(
j
N

))−1/2
. (1.157)
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Proof of properties (Z1)− (Z3). Property (Z1) follows from formula (1.98), since 4:

zj(b, a) = Dj

〈(
Lb,a − λ0

2j

)
Ujf2j,0, Ujf2j,0

〉
= Dj

〈
Ujf2j,0,

(
Lb,a − λ0

2j

)
Ujf2j,0

〉
=

= Dj

〈
Ujf2j−1,0,

(
Lb,a − λ0

2j

)
Ujf2j−1,0

〉
= Dj

〈(
Lb,a − λ0

2j

)
f2j−1, f2j−1

〉
= wj(b, a).

We prove now (Z2). Using Lemma 1.51 (iv) and the fact that f2j,0 = f2j−1,0, decompose f2j,0 and
f2j in real and imaginary part:

f2j,0 = ej,0 + ihj,0, f2j = ej + ihj

f2j−1,0 = ej,0 − ihj,0, f2j−1 = ej − ihj ,

where

ej,0 := Re f2j,0, hj,0 := Imf2j,0, and ej := Re f2j = Ujej,0, hj := Imf2j = Ujhj,0.

The vectors {ej , hj} form a real orthogonal basis for Ej(b, a). Let Mj(b, a) be the matrix of the
selfadjoint operator Lb,a − λ0

2j

∣∣
Ej(b,a)

with respect to this basis:

Mj(b, a) =

(
αj σj
σj βj

)
.

The eigenvalues of Mj are obviously λ2j − λ0
2j and λ2j−1 − λ0

2j , hence

TrMj = αj + βj =
(
λ2j − λ0

2j

)
+
(
λ2j−1 − λ0

2j

)
,

DetMj = αjβj − σ2
j =

(
λ2j − λ0

2j

) (
λ2j−1 − λ0

2j

)
.

Now observe that

zj(b, a) = Dj

〈(
Lb,a − λ0

2j

)
(ej + ihj), (ej − ihj)

〉
=

= Dj

〈(
Lb,a − λ0

2j

)
ej , ej

〉
−Dj

〈(
Lb,a − λ0

2j

)
hj , hj

〉
+ 2iDj

〈(
Lb,a − λ0

2j

)
ej , hj

〉
=

=
(

2
N ω

(
j
N

))−1/2
(αj − βj + i2σj).

Finally one computes

(λ2j − λ2j−1)
2

= (Tr Mj)
2 − 4Det Mj = (αj + βj)

2 − 4αjβj + 4σ2
j

= (αj − βj)2
+ 4σ2

j = (Re zj)
2

+ (Im zj)
2

=
(

2
N ω

(
j
N

))
|zj(b, a)|2.

We prove now (Z3). The first order terms of zj and wj in (b, a) are given by

dzj(0, 0)(b, a) = Dj

〈
Lpf2j,0, f2j,0

〉
, dwj(0, 0)(b, a) = Dj

〈
Lpf2j−1,0, f2j−1,0

〉
, 1 ≤ j ≤ N−1 .

Using the explicit formula for f2j,0 in Lemma 1.48, one computes

〈
Lpf2j,0, f2j,0

〉
=

1

2N

2N−1∑
l=0

ble
i2ρj l + al−1e

i2ρj(l−1)eiρj + ale
i2ρj leiρj

=
1

2N

2N−1∑
l=0

ble
i2πjl/N + al−1e

i2π(l−1)j/Neiρj + ale
i2πlj/Neiρj

=
1√
N

(
b̂j + 2eiρj âj

)
=

1√
N

(
b̂j − 2eiπj/N âj

)
.

(1.158)

4to simplify the notation, we write fj ≡ fj(b, a) and Uj ≡ Uj(b, a)
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The formula for dzj(0, 0)(b, a) immediately follows. The one for dwj(0, 0)(b, a) is proved in the same
way and the details are omitted.

The estimate (1.101) for dZ(0, 0) follows immediately. We estimate now the norm of dZ(0, 0)∗.
One checks that (B,A) = dZ(0, 0)∗(ξ, η) iff B̂0 = Â0 = 0 and for 1 ≤ k ≤ N − 1

(B̂k, Âk) =

 1√
2ω
(
k
N

) (ξk + ηN−k),
2√

2ω
(
k
N

) (eiπk/Nξk + eiπ(N−k)/NηN−k)

 .

Thus there exist constants C,C ′, CZ > 0, independent of N , such that

‖dZ(0, 0)∗(ξ, η)‖2Cs+2,σ ≤
C ′

N

N−1∑
k=1

[k]2sN e2σ[k]Nω
(
k
N

) [k]4N

ω
(
k
N

)2 (|ξk|2 + |ηk|2
)
≤ C2

ZN
4 ‖(ξ, η)‖2Ps,σ

where in the last inequality we used that [k]4N/ω
(
k
N

)2 ≤ C ′′N4 for some constant C ′′ > 0 indepen-
dent of N . Thus the second of (1.101) is proved.

Proof of property (Z4). We will prove that Z is normally analytic. Recall that, as mentioned in
the discussion before Proposition 1.47, the map Z is said to be normally analytic if Ž := ZF is
normally analytic. With an abuse of notations, we omit the “check” from Z.

We begin by expanding the components of Z, denoted by Zj(b, a) := (zj(b, a), wj(b, a)), in
Taylor series with center at (b, a) = (0, 0). The first two terms of the expansions are given by

zj(b, a) = Dj〈Lpf2j,0, f2j,0〉+Dj〈Lp
(
L0 − λ0

2j

)−1
(1− Pj0)Lpf2j,0, f2j,0〉+O((b, a)3),

wj(b, a) = Dj〈Lpf2j−1,0, f2j−1,0〉+Dj〈Lp
(
L0 − λ0

2j

)−1
(1− Pj0)Lpf2j−1,0, f2j−1,0〉+O((b, a)3).

(1.159)
To perform the Taylor expansion at every order it is convenient to proceed in the following way.
Write zj(b, a) = zj,1(b, a) + zj,2(b, a) and wj(b, a) = wj,1(b, a) + wj,2(b, a) where

zj,1(b, a) = Dj

〈(
L0 − λ0

2j

)
f2j(b, a), f2j(b, a)

〉
, zj,2(b, a) = Dj

〈
Lpf2j(b, a), f2j(b, a)

〉
, (1.160)

while wj,1(b, a) and wj,2(b, a) are defined as in (1.160), but with f2j−1(b, a) replacing f2j(b, a).
Expand zj,ς(b, a), ς = 1, 2, in Taylor series with center at (b, a) = (0, 0): zj,ς(b, a) =

∑
n≥1 z

n
j,ς(b, a),

with znj,ς a homogeneous polynomial of degree n in b, a. We write an analogous expansion for
wj,ς(b, a). Therefore one has

Znj (b, a) := (znj (b, a), wnj (b, a)) ≡
(
znj,1(b, a) + znj,2(b, a), wnj,1(b, a) + wnj,2(b, a)

)
.

In order to write explicitly znj,ς(b, a) as a function of b and a, one needs to expand the vectors
f2j(b, a) and f2j−1(b, a) in Taylor series of b, a. Rewrite (1.92), (1.97) as

f2j(b, a) = Uj(b, a)f2j,0 =
(
1− (Pj(b, a)− Pj0)

2
)−1/2(

1 + (Pj(b, a)− Pj0)
)
f2j,0

and expand the r.h.s. above in power series of Pj(b, a)− Pj0, getting:

f2j(b, a) =

∞∑
m=0

cm (Pj(b, a)− Pj0)
m
f2j,0, f2j−1(b, a) =

∞∑
m=0

cm (Pj(b, a)− Pj0)
m
f2j−1,0 ,

(1.161)
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where the cm’s are the coefficients of the Taylor series of the function φ(x) = 1+x
(1−x2)1/2 . Note that

c2k+1 = c2k ≡ (−1)k
(−1/2

k

)
, where

(−1/2
k

)
:= − 1

2 (− 1
2−1) · · · (− 1

2−k+1) is the product of k negative
terms, thus (−1)k

(−1/2
k

)
≥ 0, ∀k ≥ 0, and therefore cm ≥ 0, ∀m.

By Corollary 1.51 (see also formula (1.156)) one has, in the ball BC
s,σ

(ε∗/N
2),

Pj(b, a)− Pj0 =
i

2π

∞∑
n=1

(−1)n
∮

Γj

Tn(b, a, λ) (L0 − λ)
−1

dλ (1.162)

where the Γj ’s are defined as in equation (1.91), and

T (b, a, λ) := (L0 − λ)
−1
Lp .

Substituting (1.162) in (1.161) we get that

f2j(b, a) = f2j,0 +
∑
n≥1

∑
1≤m≤n

cm
∑

α=(α1,...,αm)∈Nm, |α|=n

fα2j,m(b, a),

fα2j,m(b, a) :=(
i

2π

)m
(−1)|α|

∮
Γj

. . .

∮
Γj

Tα1(b, a, λ1) (L0 − λ1)
−1
. . . Tαm(b, a, λm) (L0 − λm)

−1
f2j,0 dλ1 . . . dλm.

(1.163)
An analogous expansion holds for f2j−1(b, a), with f2j−1,0 substituting f2j,0 in the integral formula
above. In order to write explicitly the expression inside the integral, one needs to compute the
iterated terms Tn(b, a, λ)f2j,0 and Tn(b, a, λ)f2j−1,0. The computation turns out to be simpler if
we express Lpf2j,0 in the basis of the eigenvectors of L0. To simplify the notations we relabel the
eigenvectors of L0 in the following way:

g0 := f00, gN := f2N−1,0, gj := f2j,0, g−j := f2j−1,0, for 1 ≤ j ≤ N − 1

and the eigenvalues of L0 as

λ̂0 := λ0
0, λ̂N := λ0

2N−1, λ̂j := λ0
2j , λ̂−j := λ0

2j−1, for 1 ≤ j ≤ N − 1.

For every 1 ≤ j ≤ N − 1 one has that gj = g−j , formally, one can also write gj+2N = gj , λ̂j = λ̂−j
and λ̂j+2N = λ̂j , as one verifies using the explicit expressions of the gj ’s and λ̂j ’s. In this notation,
for λ 6= λ̂±j , one has (L0− λ)−1g±j = g±j/(λ̂±j − λ). With a computation analogous to the one in
(1.158) (using also the second formula in (1.143)), one verifies that the projection of Lpgj on the
vector gk is given by

〈Lp gj , gk〉 =
1√
N

(
b̂ j−k

2
− 2 cos

(
kπ
N

)
â j−k

2

)
δ(j−k; even ), (1.164)

where δ(j−k; even ) = 1 if j − k is an even integer, and equals 0 otherwise. Formula (1.164) implies
that Lpgj is supported only on the vectors gk whose index k satisfies k = j − 2l for some integer l.
Therefore we can write

T (b, a, λ)gj =
∑
l∈K0

N

xlj

λ̂j−2l − λ
gj−2l, xlj := 〈Lpgj , gj−2l〉 =

1√
N

(
b̂l − 2 cos

(
(j−2l)π
N

)
âl

)
,

(1.165)
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where K0
N is the set of indexes defined in (1.146). Note that

∣∣xlj∣∣ ≤ 2√
N

(
|b̂l|+ |âl|

)
uniformly in

j, and xl+Nj = xlj . Iterating (1.165) one gets

Tn(b, a, λ) (L0 − λ)
−1
gj =

∑
i1,··· ,in∈K0

N

xi1j x
i2
j−2i1

. . . xinj−2i1−···−2in−1

(λ̂j − λ)
∏n
l=1

(
λ̂j−2

∑l
m=1 im

− λ
)gj−2i1−···−2in .

More generally, for a vector α = (α1, . . . , αm) ∈ Nm with |α| = n and λ1, · · · , λm ∈ Γj , one has

Tαm(b, a, λm) (L0 − λm)
−1 · · ·Tα1(b, a, λ1) (L0 − λ1)

−1
gj =

=
∑

i1,...,in∈K0
N

xi1j x
i2
j−2i1

. . . xinj−2i1−···−2in−1

(λ̂j − λ1)
∏n
l=1

(
λ̂j−2

∑l
m=1 im

− µl
)∏m−1

l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)gj−2i1−···−2in

(1.166)
where

µl = λ1 for 1 ≤ l ≤ α1, and µl = λk for
k−1∑
h=1

αh + 1 ≤ l ≤
k∑
h=1

αh, 2 ≤ k ≤ m . (1.167)

To obtain the explicit expression of znj,ς and wnj,ς , ς = 1, 2, in terms of the Fourier variables b̂, â, we
substitute (1.166) in (1.163) and the obtained result in (1.160). By (1.163), znj,1 is a sum of terms

of the form
〈(
L0 − λ0

2j

)
fα2j,p1

, fβ2j,p2

〉
over (p, α, β) ∈ N2 × Np1 × Np2 with |p| = p1 + p2 ≤ n and

|α|+ |β| = n. For |α| = r, |β| = n− r one gets〈(
L0 − λ̂j

)
fα2j,p1

, fβ2j,p2

〉
=

(
i

2π

)|p|
(−1)n

∮
Γj

. . .

∮
Γj

κp,α,βj,1 (i)xi1j x
i2
j−2i1

. . . xirj−2i1−···−2ir−1
×

× xinj x
in−1

j−2in
. . . x

ir+1

j−2in−···−2ir+2

〈
gj−2i1−···−2ir , gj−2ir+1−···−2in

〉
dλ1 . . . dλ|p|,

(1.168)
where, writing i = (i1, · · · , in),

κp,α,βj,1 (i) :=

(
λ̂j−2

∑r
m=1 im

− λ̂j
)

(λ̂j − λ1)
∏r
l=1

(
λ̂j−2

∑l
m=1 im

− µl
)∏p1−1

l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)×
× 1

(λ̂j − λp1+1)
∏n
l=r+1

(
λ̂j−2

∑n
m=l im

− µ̃l
)∏p2−1

l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

) (1.169)

and the µ̃l’s are defined as in (1.167), but with the multi-index β replacing α. Similarly, the term
znj,2 is a sum of terms of the form

〈
Lp f

α
2j,p1

, fβ2j,p2

〉
over (p, α, β) ∈ N2×Np1 ×Np2 with |p| ≤ n and

|α|+ |β| = n− 1. The term
〈
Lp f

α
2j,p1

, fβ2j,p2

〉
has an expression similar to (1.168), and for |α| = r

and |β| = n− 1− r the kernel κp,α,βj,2 (i) is given by

κp,α,βj,2 (i) :=
1

(λ̂j − λ1)
∏r
l=1

(
λ̂j−2

∑l
m=1 im

− µl
)∏p1−1

l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)×
× 1

(λ̂j − λp1+1)
∏n
l=r+2

(
λ̂j−2

∑n
m=l im

− µ̃l
)∏p2−1

l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

) . (1.170)
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Using the explicit form of the eigenvectors {gk}−(N−1)≤k≤N (see Lemma 1.48), one verifies that

〈
gj−2i1−···−2ir , gj−2ir+1−···−2in

〉
= δ

(
j,

n∑
m=1

im

)
,
〈
gN−j−2i1−···−2ir , gN−j−2ir+1−···−2in

〉
= δ

(
−j,

n∑
m=1

im

)
.

This is used to simplify the last term in (1.168). Moreover, using j =
∑n
m=1 im and the identity

λ̂j = λ̂−j , one gets that

λ̂j−2in = λ̂j−2
∑n−1
m=1 im

, . . . , λ̂j−2in−2in−1−···−2ir+1
= λ̂j−2

∑r
m=1 im

. (1.171)

Recalling the definition of the coefficients xlj (formula (1.165)), we can write, for ς = 1, 2,

znj,ς(b̂, â) =
1

Nn/2

(
2
N ω

(
j
N

))−1/2 ∑
(i,ι)∈∆n

Knj,ς(i, ι)ui1,ι1 . . . uin,ιn (1.172)

where the set

∆n :=
{

(i, ι) ∈ Zn × Nn : il ∈ K0
N , ιl ∈ {1, 2}, ∀1 ≤ l ≤ n

}
,

the variables u = (ui1,ι1 , · · · , uin,ιn) are defined by

uir,1 := b̂ir , uir,2 := âir ,

the kernels Knj,ς(i, ι) are defined for (i, ι) ∈ ∆n by

Knj,ς(i, ι) := K̃nj,ς(i)
∏

{1≤l≤n}

(
−2 cos

(
(j−2ii−···−2il)π

N

))ιl−1

, (1.173)

K̃nj,ς(i) =
∑

r+s=n−(ς−1)

p=(p1,p2)∈N2, |p|≤n

cp1
cp2

∑
(α,β)∈Np1×Np2

|α|=r, |β|=s

Sp,α,βj,ς (i) (1.174)

and finally

Sp,α,βj,ς (i) = δ

(
j,

n∑
m=1

im

)(
i

2π

)|p|
(−1)n

∮
Γj

. . .

∮
Γj

κp,α,βj,ς (i) dλ1 . . . dλ|p|. (1.175)

An analogous expansion holds also for wnj,1 and wnj,2.
We need now to get estimates of the kernels Knj,ς , which will follow from estimates on the denomi-
nators of κp,α,βj,ς .

Lemma 1.73. Let µ ∈ Γj :=
{
λ ∈ C :

∣∣λ− λ0
2j

∣∣ = min
(
〈j〉

2N2 ,
〈N−j〉
2N2

)}
, where 〈j〉 =

(
1 + |j|2

)1/2.
Then there exists a constant R > 0, independent of N , such that for every −(N − 1) ≤ k ≤ N one
has ∣∣∣λ̂k − µ∣∣∣ ≥ {R〈j − k〉〈j + k〉/N2, if 0 ≤ |j| ≤ bN/2c

R〈j − k〉〈(N − j) + (N − k)〉/N2, if bN/2c+ 1 ≤ |j| ≤ N
(1.176)
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Proof. Consider first the situation in which both the eigenvalues λ̂j and λ̂k are in the low half of
the spectrum, namely 0 ≤ |j|, |k| ≤ bN/2c. In this case one has

|λ̂k − λ̂j | ≡ |λ0
2|k| − λ

0
2|j|| = 2

∣∣∣cos
(
|k|π
N

)
− cos

(
|j|π
N

)∣∣∣ = 2
∣∣cos

(
kπ
N

)
− cos

(
jπ
N

)∣∣ ≥ 4|j2 − k2|
N2

.

Therefore, for k 6= j, there exists a positive constant R1 such that for ∀µ ∈ Γj∣∣∣λ̂k − µ∣∣∣ ≥ ∣∣∣λ̂k − λ̂j∣∣∣− 〈j〉
2N2

≥ 4|j2 − k2|
N2

− 〈j〉
2N2

≥ R1
〈j − k〉 〈j + k〉

N2
, (1.177)

where we used the inequality 〈j〉 ≤ 2 〈j − k〉 〈j + k〉, which holds since j, k are integers. If k = j,
then the claimed estimate follows trivially since |λ̂k − µ| = 〈j〉/2N2.

Consider now the case when λ̂j is in the low half of the spectrum, while λ̂k is in the high half, i.e.
0 ≤ |j| ≤ bN/2c, while bN/2c < |k| ≤ N . In this case the distance of the eigenvalues λ̂j and λ̂k is
of order 1

N , therefore the estimate (1.176) holds as well. More precisely, using cosx ≥ 1 − 2
πx for

0 ≤ x ≤ π/2, one has

|λ̂k − λ̂j | = |λ0
2|k| − λ

0
2|j|| = 2

∣∣∣cos
(

(N−|k|)π
N

)
+ cos

(
jπ
N

)∣∣∣ ≥ 4(|k| − |j|)
N

≥ 〈j − k〉 〈j + k〉
N2

,

where the last inequality holds since 〈l〉 /N ≤ 4, ∀|l| ≤ 2N . The inequality above implies that∣∣∣λ̂k − µ∣∣∣ ≥ |λ̂k − λ̂j | − 〈j〉
2N2

≥ 〈j − k〉 〈j + k〉
N2

− 〈j〉
2N2

≥ R2
〈j − k〉 〈j + k〉

N2
, (1.178)

for some R2 > 0. Thus the first of (1.176) is proved.
The proof of the second inequality of (1.176) follows by symmetry and is omitted.

We can now estimate the kernels Knj,ς defined in (1.173).

Lemma 1.74. There exists a constant R > 0, independent of N , such that Knj,ς(i, ι), ς = 1, 2,
satisfy, for every n ≥ 2 and 1 ≤ j ≤ bN/2c, the estimates

∣∣Knj,ς(i, ι)∣∣ ≤ RnN2(n−1)δ

(
j,

n∑
l=1

il

)
1∏n−1

l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 ,
∣∣KnN−j,ς(i, ι)∣∣ ≤ RnN2(n−1)δ

(
−j,

n∑
l=1

il

)
1∏n−1

l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 . (1.179)

Proof. We start by estimating κp,α,βj,ς (i), defined in (1.169) and (1.170). For every −(N−1) ≤ k ≤ N
and µ ∈ Γj one has

∣∣∣λ̂k − µ∣∣∣ ≥ ∣∣∣λ̂j − µ∣∣∣ ≥ min
(
〈j〉

2N2 ,
〈N−j〉
2N2

)
, therefore∣∣∣∣∣(λ̂j − λ1)

p1−1∏
l=1

(
λ̂
j−2

∑α1+···+αl
h=1 ih

− λl+1

)
(λ̂j − λp1+1)

p2−1∏
l=1

(
λ̂
j−2

∑β1+···+βl
h=1 ih

− λl+1

)∣∣∣∣∣
≥
[
min

(
〈j〉

2N2
,
〈N − j〉

2N2

)]|p|
.
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Let now 1 ≤ j ≤ bN/2c. By Lemma 1.73, formula (1.171) and the inequality
|λ̂j−2

∑r
m=1 im

−λ̂j |
|λ̂j−2

∑r
m=1 im

−µ|
≤ 2

(which is used to estimate just κp,α,βj,1 (i)), it follows that, for ς = 1, 2,∣∣∣κp,α,βj,ς (i)
∣∣∣ ≤ 2[

min
(
〈j〉

2N2 ,
〈N−j〉
2N2

)]|p|∏n−1
l=1

∣∣∣λ̂j−2
∑l
m=1 im

− µl
∣∣∣ ≤

2 aj(i1, · · · , in−1)[
min

(
〈j〉

2N2 ,
〈N−j〉
2N2

)]|p|
where

aj(i1, · · · , in−1) :=
Rn−1N2(n−1)∏n−1

l=1

〈∑l
k=1 ik

〉 〈∑l
k=1 ik − j

〉 .

To estimate Sp,α,βj,ς consider (1.175). The Sp,α,βj,ς ’s are defined by integrating the kernels κp,α,βj,ς

over Γj |p|-times. Since |Γj | = 2πmin
(
〈j〉

2N2 ,
〈N−j〉
2N2

)
, one gets

∣∣∣Sp,α,βj,ς (i)
∣∣∣ ≤ [min

(
〈j〉
N2 ,

〈N−j〉
N2

)]|p|
δ

(
j,

n∑
l=1

il

)∣∣∣κp,α,βj,ς (i)
∣∣∣ ≤ 2δ

(
j,

n∑
l=1

il

)
aj(i1, · · · , in−1).

Finally consider Knj,ς . From (1.173) one has
∣∣Knj,ς(i, ι)∣∣ ≤ 2n

∣∣∣K̃nj,ς(i)∣∣∣, and from (1.174)

∣∣∣K̃nj,ς(i)∣∣∣ ≤ δ
(
j,

n∑
l=1

il

)
aj(i1, · · · , in−1)

∑
r+s=n−(ς−1)

p=(p1,p2)∈N2, |p|≤n

cp1
cp2

∑
(α,β)∈Np1×Np2

|α|=r, |β|=s

1

≤ Cnδ

(
j,

n∑
l=1

il

)
aj(i1, · · · , in−1) ,

thus the first estimate of (1.179) follows. The proof of the second one is similar, and is omitted.

Define now Knj := Knj,1 +Knj,2. Then

znj (b̂, â) =
Dj

Nn/2

∑
(i,ι)∈∆n

Knj (i, ι)ui1,ι1 . . . uin,ιn , wnj (b̂, â) =
Dj

Nn/2

∑
(i,ι)∈∆n

Hnj (i, ι)ui1,ι1 . . . uin,ιn ,

(1.180)
where Hnj (i, ι) = Knj (−i, ι). The second formula holds since for b, a real one has wn(b, a) = zn(b, a).

Corollary 1.75. Let ∆n
j := {(i, ι) ∈ ∆n :

∑n
l=1 il = j}. Then for 1 ≤ j ≤ bN/2c one has

supp Knj ⊆ ∆n
j and supp KnN−j ⊆ ∆n

−j. Moreover

∥∥Knj ∥∥∆n
j

,
∥∥KnN−j∥∥∆n

−j
≤ RnN2(n−1)

〈j〉n−1 , (1.181)

where
∥∥Knj ∥∥2

∆n
j

:= supι1,··· ,ιn∈{1,2}
∑
i1+···+in=j

∣∣Knj (i, ι)
∣∣2.
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Proof. Just remark that 〈j〉2
〈k〉2〈k−j〉2 ≤ 4

(
1
〈k〉2 + 1

〈k−j〉2

)
.

We prove now bounds on the map Zn(b̂, â) := (zn(b̂, â), wn(b̂, â)).

Lemma 1.76. There exists a constant C > 0, independent of N , such that for any s ≥ 0 and σ ≥ 0∥∥∥Zn(|b̂|, |â|)
∥∥∥
Ps+1,σ

≤ CnN2(n−1) ‖(b, a)‖nCs,σ , ∀n ≥ 2. (1.182)

Proof. By formula (1.172) one has that for 1 ≤ j ≤ bN/2c∣∣∣znj (|b̂|, |â|)
∣∣∣ ≤ Dj

Nn/2

∑
(i,ι)∈∆n

j

∣∣Knj (i, ι)
∣∣ |ui1,ι1 | . . . |uin,ιn |,

∣∣∣znN−j(|b̂|, |â|)∣∣∣ ≤ Dj

Nn/2

∑
(i,ι)∈∆n

−j

∣∣KnN−j(i, ι)∣∣ |ui1,ι1 | . . . |uin,ιn |. (1.183)

Introduce Λ(i) := [i1] · · · [in], where [ir] = max(1, |ir|) ∀1 ≤ r ≤ n, and remark that for some
constant R > 0 one has

sup
i1+···+in=j

Λ(i)−1 ≤ Rn

〈j〉
, ∀j ∈ Z.

Therefore, by Corollary 1.75,∣∣∣znj (|b̂|, |â|)
∣∣∣2 ≤ 1

Nn
D2
j

∥∥Knj ∥∥2

∆n
j

(
sup

i1+···+in=j
Λ(i)−2s

) ∑
(i,ι)∈∆n

j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2,

∣∣∣znN−j(|b̂|, |â|)∣∣∣2 ≤ 1

Nn
D2
j

∥∥KnN−j∥∥2

∆n
−j

(
sup

i1+···+in=−j
Λ(i)−2s

) ∑
(i,ι)∈∆n

−j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2.

Use now inequalities (1.181), the definition ofDj , the fact that e2σ|j| ≤ e2σ|i1| · · · e2σ|in−1|e2σ|j−i1−···−in−1|,
and the bounds |ul,ιl | ≤ |b̂l|+ |âl|, to deduce that, for any n ≥ 2,

1

N

bN/2c∑
j=1

[j]2(s+1)e2σ|j|ω
(
j
N

)(∣∣∣znj (|b̂|, |â|)
∣∣∣2 +

∣∣∣znN−j(|b̂|, |â|)∣∣∣2)

≤ N4(n−1) C
n

Nn

bN/2c∑
j=1

[j]2(2−n)e2σ|j|
∑

(i,ι)∈∆n
±j

[i1]2s|ui1,ι1 |2 . . . [in]2s|uin,ιn |2

≤ N4(n−1)Cn ‖(b, a)‖2nCs,σ .

Since wn(b̂, â) satisfies the same inequality, estimate (1.182) holds.

Consider now the map (b̂, â) 7→ dZn(b̂, â)∗, where dZn(b̂, â)∗ is the adjoint of the differen-
tial of Zn. Explicitly, if ξ, η are vectors in CN−1 and h, g are vectors in CN such that (h, g) ≡
dZn(b̂, â)∗(ξ, η), then the jth components of h and g are given by

(hj , gj) =

(
N−1∑
k=1

(
∂znk
∂b̂j

(b̂, â)ξk +
∂wnk
∂b̂j

(b̂, â)ηk

)
,

N−1∑
k=1

(
∂znk
∂âj

(b̂, â)ξk +
∂wnk
∂âj

(b̂, â)ηk

))
. (1.184)
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Denote by h, g the vectors of CN whose components are given by

(hj , gj) =

(
N−1∑
k=1

(
∂znk
∂b̂j

(|b̂|, |â|)|ξk|+
∂wnk
∂b̂j

(|b̂|, |â|)|ηk|

)
,

N−1∑
k=1

(
∂znk
∂âj

(|b̂|, |â|)|ξk|+
∂wnk
∂âj

(|b̂|, |â|)|ηk|

))
.

(1.185)
We begin to study the case n = 2.

Lemma 1.77. There exists a constant R > 0, independent of N , such that ∀s ≥ 0 , σ ≥ 0 one has∥∥∥dZ2(|b̂|, |â|)∗(|ξ|, |η|)
∥∥∥
Cs+2,σ

≤ RN3 ‖(b, a)‖Cs,σ ‖(ξ, η)‖Ps,σ . (1.186)

Proof. By (1.159), one computes that the second order terms Z2 = (z2, w2) are given by

z2
k(b̂, â) = Dk

N

∑
l 6=0

(
b̂l − 2 cos( (k−2l)π

N )âl

)(
b̂k−l − 2 cos(kπN )âk−l

)
/(λ0

2(k−2l) − λ
0
2k)

w2
k(b̂, â) = Dk

N

∑
l 6=0

(
b̂N−l − 2 cos( (k−2l)π

N )âN−l

)(
b̂l−k − 2 cos(kπN )âl−k

)
/(λ0

2(k−2l) − λ
0
2k).

Let h, g be as in (1.185) with n = 2. Using the explicit expressions for z2
k and w2

k, one computes
that for 0 ≤ j ≤ bN/2c

|hj | ≤
1

N

N−1∑
k=1

(
|b̂k−j |+ 2|âk−j |

)
Dk(|ξk|+ |ηk|)

|λ0
2(k−2j) − λ

0
2k|

≤ N
bN/2c∑
k=1

(
|b̂k−j |+ 2|âk−j |

)
Dk(|ξk|+ |ηk|)

〈k − j〉〈j〉
+N

N−1∑
k=bN/2c+1

(
|b̂k−j |+ 2|âk−j |

)
Dk(|ξk|+ |ηk|)

〈N − k + j〉〈j〉

≤ N
bN/2c∑
k=1

(
|b̂k−j |+ 2|âk−j |

)
Dk(|ξk|+ |ηk|)

〈k − j〉〈j〉
+

(
|b̂N−k−j |+ 2|âN−k−j |

)
Dk(|ξN−k|+ |ηN−k|)

〈k + j〉〈j〉

≤ N2

〈j〉

bN/2c∑
k=1

(
|b̂k−j |+ 2|âk−j |

)
〈k〉1/2(|ξk|+ |ηk|)

〈k − j〉〈k〉
+

(
|b̂N−k−j |+ 2|âN−k−j |

)
〈k〉1/2(|ξN−k|+ |ηN−k|)

〈k + j〉〈k〉

where in the last inequality we used that Dk ≤ N/〈k〉1/2. With analogous computations, one
verifies that

|hN−j | ≤
N2

〈j〉

bN/2c∑
k=1

(
|b̂k+j |+ 2|âk+j |

)
〈k〉1/2(|ξk|+ |ηk|)

〈k + j〉〈k〉
+

(
|b̂j−k|+ 2|âj−k|

)
〈k〉1/2(|ξN−k|+ |ηN−k|)

〈k − j〉〈k〉
.

Proceeding as in the proof of Lemma 1.70, one obtains that there exist constants C,C ′ > 0,
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independent of N , such that

1

N

bN/2c∑
j=0

[j]2(s+2)e2σ|j|(|hj |2 + |hN−j |2)

≤ CN3

(
N−1∑
k=0

[k]2sN e
2σ[k]N (|b̂k|2 + |âk|2)

)(
N−1∑
l=1

[l]2sN e
2σ[l]N [l]N (|ξl|2 + |ηl|2)

)
≤ C ′N6 ‖(b, a)‖2Cs,σ ‖(ξ, η)‖2Ps,σ (1.187)

where in the last inequality we used that [l]N ≤ Nω
(
l
N

)
for l integer. One verifies that g satisfies

the same inequality as (1.187). Thus estimate (1.186) follows from the following inequality:∥∥∥dZ2(|b̂|, |â|)∗(|ξ|, |η|)
∥∥∥2

Cs+2,σ
≤ 1

N

N−1∑
j=0

[j]2s+4
N e2σ[j]N

(
|hj |2 + |gj |2

)
. (1.188)

We study now dZn(b̂, â)∗ for n ≥ 3.

Lemma 1.78. There exists a constant R > 0, independent of N , such that for every s ≥ 0, σ ≥ 0
and n ≥ 3 ∥∥∥dZn(|b̂|, |â|)∗(|ξ|, |η|)

∥∥∥
Cs+2,σ

≤ RnN2n−1 ‖(b, a)‖n−1
Cs,σ ‖(ξ, η)‖Ps,σ . (1.189)

Proof. Let h, g be as in (1.185). We concentrate on h only, the estimates for g being analogous.
Write hj =

∑N−1
k=1

∂znk
∂b̂j

ξk +
∑N−1
k=1

∂wnk
∂b̂j

ηk =: hj,1 + hj,2. By (1.180) one gets that

hj,1 =
1

Nn/2

n∑
l=1

An,lj (Dξ, u, . . . , u), hj,2 =
1

Nn/2

n∑
l=1

Bn,lj (Dη, u, . . . , u)

where D is defined in (1.157), the multilinear map An,lj is defined by

An,lj (h, u, . . . , u) =
∑

(i,ι)∈∆n

An,lj (i, ι)ui1,ι1 . . . hil . . . uin,ιn ,

Bn,lj is defined analogously but with kernel Bn,lj (i, ι), and finally An,lj and Bn,lj are defined for
1 ≤ j ≤ bN/2c by

An,lj (i, ι) := Knil
(

(i1, . . . , il−1, j, il+1, . . . , in), (ι1, . . . , ιl−1, 1, ιl+1, . . . , ιn)
)
,

An,lN−j(i, ι) := Knil
(

(i1, . . . , il−1,−j, il+1, . . . , in), (ι1, . . . , ιl−1, 1, ιl+1, . . . , ιn)
)
,

while Bn,lj (i, ι) = An,lj (−i, ι) and Bn,lN−j(i, ι) = An,lN−j(−i, ι), see (1.180). By Corollary (1.75) it
follows that

supp An,lj = supp Bn,lN−j ≡ {(i, ι) : i1 + · · ·+ il−1 − il + il+1 + · · ·+ in = −j, ιl = 1} ⊆ ∆n
−j ,

supp An,lN−j = supp Bn,lj ≡ {(i, ι) : i1 + · · ·+ il−1 − il + il+1 + · · ·+ in = j, ιl = 1} ⊆ ∆n
j .
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Proceeding as in the proof of Corollary 1.75, one proves that there exists a constant R > 0,
independent of N , such that (see [KP10])

max
1≤l≤n

(∥∥∥An,lj ∥∥∥
∆n
−j

,
∥∥∥An,lN−j∥∥∥

∆n
j

,
∥∥∥Bn,lj ∥∥∥

∆n
j

,
∥∥∥Bn,lN−j∥∥∥

∆n
−j

)
≤ RnN2(n−1)

〈j〉2
, ∀n ≥ 3 . (1.190)

Thus h, defined in (1.185), satisfies

|hj | ≤
1

Nn/2

n∑
l=1

(
An,lj (|Dξ|, |u|, . . . , |u|) +Bn,lj (|Dη|, |u|, . . . , |u|)

)
,

where An,lj (h, u, . . . , u) =
∑

(i,ι)∈∆n

∣∣∣An,lj (i, ι)
∣∣∣ui1,ι1 . . . hil . . . uin,ιn , and Bn,lj is defined in analogous

way. Then, using (1.190) and arguing as in the proof of Lemma 1.76, one proves the estimate

1

N

N−1∑
j=0

[j]
2(s+2)
N e2σ[j]N |hj |2 ≤ RnN4n−5 ‖(b, a)‖2(n−1)

Cs,σ

(
1

N

N−1∑
l=1

[l]2sN e
2σ[l]ND2

l (|ξl|2 + |ηl|2)

)
≤ RnN4n−2 ‖(b, a)‖2(n−1)

Cs,σ ‖(ξ, η)‖2Ps−1,σ ,

where in the last inequality we used that D2
l ≤ N3

[l]2N
ω
(
l
N

)
. One verifies that g satisfies the same

inequality, thus estimate (1.189) follows.

We can finally prove property (Z4). Let s ≥ 0, σ ≥ 0 be fixed. By Lemma 1.76, 1.77 and 1.78,
there exists C1, C2, ε∗ > 0, independent of N , such that for every 0 < ε ≤ ε∗ it holds that

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥Z0(b, a)
∥∥
Ps+1,σ ≤

∑
n≥2

sup
‖(b,a)‖Cs,σ≤ε/N2

‖Zn(b, a)‖Ps+1,σ

≤
∑
n≥2

RnN2(n−1) εn

N2n
≤ C1ε

2

N2
,

sup
‖(b,a)‖Cs,σ≤ε/N2

∥∥dZ0(b, a)∗
∥∥
L(Ps,σ, Cs+2,σ)

≤
∑
n≥2

sup
‖(b,a)‖Cs,σ≤ε/N2

‖dZn(b, a)∗‖L(Ps,σ, Cs+2,σ)

≤
∑
n≥2

RnN2n−1 εn−1

N2(n−1)
≤ C2Nε .
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Chapter 2

One smoothing properties of the
KdV flow on R

1 Introduction
In the last decades the problem of a rigorous analysis of the theory of infinite dimensional integrable
Hamiltonian systems in 1-space dimension has been widely studied. These systems come up in two
setups: (i) on compact intervals (finite volume) and (ii) on infinite intervals (infinite volume). The
dynamical behaviour of the systems in the two setups have many similar features, but also distinct
ones, mostly due to the different manifestation of dispersion.

The analysis of the finite volume case is now quite well understood. Indeed, Kappeler with
collaborators introduced a series of methods in order to construct rigorously Birkhoff coordinates
(a cartesian version of action-angle variables) for 1-dimensional integrable Hamiltonian PDE’s on
T. The program succeeded in many cases, like Korteweg-de Vries (KdV) [KP03], defocusing and
focusing Nonlinear Schrödinger (NLS) [GK14, KLTZ09]. In each case considered, it has been proved
that there exists a real analytic symplectic diffeomorphism, the Birkhoff map, between two scales
of Hilbert spaces which conjugate the nonlinear dynamics to a linear one.
An important property of the Birkhoff map Φ of the KdV on T and its inverse Φ−1 is the semi-
linearity, i.e., the nonlinear part of Φ respectively Φ−1 is 1-smoothing. A local version of this result
was first proved by Kuksin and Perelman [KP10] and later extended globally by Kappeler, Schaad
and Topalov [KST13]. It plays an important role in the perturbation theory of KdV – see [Kuk10]
for randomly perturbed KdV equations and [ET13b] for forced and weakly damped problems. The
semi-linearity of Φ and Φ−1 can be used to prove 1-smoothing properties of the KdV flow in the
periodic setup [KST13].

The analysis of the infinite volume case was developed mostly during the ’60-’70 of the last
century, starting from the pioneering works of Gardner, Greene, Kruskal and Miura [GGKM67,
GGKM74] on the KdV on the line. In these works the authors showed that the KdV can be inte-
grated by a scattering transform which maps a function q, decaying sufficiently fast at infinity, into
the spectral data of the operator L(q) := −∂2

x+q. Later, similar results were obtained by Zakharov
and Shabat for the NLS on R [ZS71], by Ablowitz, Kaup, Newell and Segur for the Sine-Gordon
equation [AKNS74], and by Flaschka for the Toda lattice with infinitely many particles [Fla74].
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Furthermore, using the spectral data of the corresponding Lax operators, action-angle variables
were (formally) constructed for each of the equations above [ZF71, ZM74, McL75b, McL75a]. See
also [NMPZ84, FT87, AC91] for monographs about the subject. Despite so much work, the analytic
properties of the scattering transform and of the action-angle variables in the infinite volume setup
are not yet completely understood. In the present paper we discuss these properties, at least for a
special class of potentials.

The aim of this paper is to show that for the KdV on the line, the scattering map is an analytic
perturbation of the Fourier transform by a 1-smoothing nonlinear operator. With the applications
we have in mind, we choose a setup for the scattering map so that the spaces considered are left
invariant under the KdV flow. Recall that the KdV equation on R{

∂tu(t, x) = −∂3
xu(t, x)− 6u(t, x)∂xu(t, x) ,

u(0, x) = q(x) ,
(2.1)

is globally in time well-posed in various function spaces such as the Sobolev spacesHN ≡ HN (R,R), N ∈
Z≥2 ( e.g. [BS75, Kat79, KPV93]), as well as on the weighted spaces H2N ∩ L2

M , with integers
N ≥M ≥ 1 [Kat66], endowed with the norm ‖ · ‖H2N + ‖ · ‖L2

M
. Here L2

M ≡ L2
M (R,C) denotes the

space of complex valued L2-functions satisfying ‖q‖L2
M

:=
(∫∞
−∞(1 + |x|2)M |q(x)|2dx

) 1
2

<∞.
Introduce for q ∈ L2

M with M ≥ 4 the Schrödinger operator L(q) := −∂2
x + q with domain

H2
C, where, for any integer N ∈ Z≥0, HN

C := HN (R,C). For k ∈ R denote by f1(q, x, k) and
f2(q, x, k) the Jost solutions, i.e. solutions of L(q)f = k2f with asymptotics f1(q, x, k) ∼ eikx, x→
∞, f2(q, x, k) ∼ e−ikx, x → −∞. As fi(q, ·, k), fi(q, ·,−k), i = 1, 2, are linearly independent for
k ∈ R \ {0}, one can find coefficients S(q, k), W (q, k) such that for k ∈ R \ {0} one has

f2(q, x, k) =
S(q,−k)

2ik
f1(q, x, k) +

W (q, k)

2ik
f1(q, x,−k) ,

f1(q, x, k) =
S(q, k)

2ik
f2(q, x, k) +

W (q, k)

2ik
f2(q, x,−k) .

(2.2)

It’s easy to verify that the functions W (q, ·) and S(q, ·) are given by the wronskian identities

W (q, k) := [f2, f1] (q, k) := f2(q, x, k)∂xf1(q, x, k)− ∂xf2(q, x, k)f1(q, x, k) , (2.3)

and
S(q, k) := [f1(q, x, k), f2(q, x,−k)] , (2.4)

which are independent of x ∈ R. For q ∈ Q the functions S(q, k) and W (q, k) are related to the
more often used reflection coefficients r±(q, k) and transmission coefficient t(q, k) by the formulas

r+(q, k) =
S(q,−k)

W (q, k)
, r−(q, k) =

S(q, k)

W (q, k)
, t(q, k) =

2ik

W (q, k)
∀ k ∈ R \ {0} . (2.5)

It is well known that for q real valued the spectrum of L(q) consists of an absolutely continuous
part, given by [0,∞), and a finite number of eigenvalues referred to as bound states, −λn < · · · <
−λ1 < 0 (possibly none). Introduce the set

Q :=
{
q : R→ R , q ∈ L2

4 : W (q, 0) 6= 0, q without bound states
}
. (2.6)
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We remark that the property W (q, 0) 6= 0 is generic. In the sequel we refer to elements in Q as
generic potentials without bound states. Finally we define

QN,M := Q∩HN ∩ L2
M , N ∈ Z≥0, M ∈ Z≥4.

We will see in Lemma 2.25 that for any integers N ≥ 0, M ≥ 4, QN,M is open in HN ∩ L2
M .

Our main theorem analyzes the properties of the scattering map q 7→ S(q, ·) which is known to
linearize the KdV flow [GGKM74]. To formulate our result on the scattering map in more details
let S denote the set of all functions σ : R→ C satisfying

(S1) σ(−k) = σ(k), ∀k ∈ R;

(S2) σ(0) > 0.

For M ∈ Z≥1 define the real Banach space

HM
ζ := {f ∈ HM−1

C : f(k) = f(−k), ζ∂Mk f ∈ L2} , (2.7)

where ζ : R→ R is an odd monotone C∞ function with

ζ(k) = k for |k| ≤ 1/2 and ζ(k) = 1 for k ≥ 1 . (2.8)

The norm on HM
ζ is given by

‖f‖2HMζ := ‖f‖2HM−1
C

+
∥∥ζ∂Mk f∥∥2

L2 .

For any N,M ∈ Z≥0 let

SM,N := S ∩HM
ζ ∩ L2

N . (2.9)

Different choices of ζ, with ζ satisfying (2.8), lead to the same Hilbert space with equivalent norms.
We will see in Lemma 2.26 that for any integersN ≥ 0,M ≥ 4, SM,N is an open subset ofHM

ζ ∩L2
N .

Moreover let F± be the Fourier transformations defined by F±(f) =
∫ +∞
−∞ e∓2ikxf(x) dx. In this

setup, the scattering map S has the following properties – see Appendix B for a discussion of the
notion of real analytic.

Theorem 2.1. For any integers N ≥ 0, M ≥ 4, the following holds:

(i) The map
S : QN,M → SM,N , q 7→ S(q, ·)

is a real analytic diffeomorphism.

(ii) The maps A := S −F− and B := S−1 −F−1
− are 1-smoothing, i.e.

A : QN,M → HM
ζ ∩ L2

N+1 and B : SM,N → HN+1 ∩ L2
M−1 .

Furthermore they are real analytic maps.
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As a first application of Theorem 2.1 we prove analytic properties of the action variable for the
KdV on the line. For a potential q ∈ Q, the action-angle variable were formally defined for k 6= 0
by Zakharov and Faddeev [ZF71] as the densities

I(q, k) :=
k

π
log

(
1 +
|S(q, k)|2

4k2

)
, θ(q, k) := arg (S(q, k)) , k ∈ R \ {0} . (2.10)

We can write the action as

I(q, k) := −k
π

log

(
4k2

4k2 + S(q, k)S(q,−k)

)
, k ∈ R \ {0} . (2.11)

By Theorem 2.1, S(q, ·) ∈ S , thus property (S2) implies that limk→0 I(q, k) exists and equals 0.
Furthermore, by (S1), the action I(q, ·) is an odd function in k, and strictly positive for k > 0.
Thus we will consider just the case k ∈ [0,+∞). The properties of I(q, ·) for k near 0 and k large
are described separately.

Corollary 2.2. For any integers N ≥ 0, M ≥ 4, the maps

QN,M → L1
2N+1([1,+∞),R) , q 7→ I(q, ·)|[1,∞)

and

QN,M → HM ([0, 1],R) , q 7→ I(q, ·)|[0,1] +
k

π
ln

(
4k2

4(k2 + 1)

)
are real analytic.

Finally we compare solutions of (2.1) to solutions of the Cauchy problem for the Airy equation
on R, {

∂tv(t, x) = −∂3
xv(t, x)

v(0, x) = p(x)
(2.12)

Being a linear equation with constant coefficients, one sees that the Airy equation is globally in
time well-posed on HN and H2N ∩ L2

M , with integers N ≥ M ≥ 1 (see Remark 2.41 below).
Denote the flows of (2.12) and (2.1) by U tAiry(p) := v(t, ·) respectively U tKdV (q) := u(t, ·). Our
third result is to show that for q ∈ H2N ∩L2

M with no bound states and W (q, 0) 6= 0, the difference
U tKdV (q) − U tAiry(q) is 1-smoothing, i.e. it takes values in H2N+1. More precisely we prove the
following theorem.

Theorem 2.3. Let N , M be integers with N ≥ 2M ≥ 8. Then the following holds true:

(i) QN,M is invariant under the KdV flow.

(ii) For any q ∈ QN,M the difference U tKdV (q)− U tAiry(q) takes values in HN+1 ∩ L2
M . Moreover

the map

QN,M × R≥0 →HN+1 ∩ L2
M , (q, t) 7→ U tKdV (q)− U tAiry(q)

is continuous and for any fixed t real analytic in q.
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Outline of the proof: In Section 2 we study analytic properties of the Jost functions fj(q, x, k),
j = 1, 2, in appropriate Banach spaces. We use these results in Section 3 to prove the direct
scattering part of Theorem 2.1. The inverse scattering part of Theorem 2.1 is proved in Section 4.
Finally in Section 5 we prove Corollary 2.2 and Theorem 2.3.

Related works: As we mentioned above, this paper is motivated in part from the study of the
1-smoothing property of the KdV flow in the periodic setup, established recently in [BIT11, ET13a,
KST13]. In [KST13] the one smoothing property of the Birkhoff map has been exploited to prove
that for q ∈ HN (T,R), N ≥ 1, the difference U tKdV (q)− U tAiry(q) is bounded in HN+1(T,R) with
a bound which grows linearly in time.

Kappeler and Trubowitz [KT86, KT88] studied analytic properties of the scattering map S
between weighted Sobolev spaces. More precisely, define the spaces

Hn,α :=
{
f ∈ L2 : xβ∂jxf ∈ L2, 0 ≤ j ≤ n, 0 ≤ β ≤ α

}
,

Hn,α
] :=

{
f ∈ Hn,α : xβ∂n+1

x f ∈ L2, 1 ≤ β ≤ α
}
.

In [KT86], Kappeler and Trubowitz showed that the map q 7→ S(q, ·) is a real analytic diffeomor-
phism from Q ∩ HN,N to S ∩ HN−1,N

] , N ∈ Z≥3. They extend their results to potentials with
finitely many bound states in [KT88]. Unfortunately, Q∩HN,N is not left invariant under the KdV
flow.

Results concerning the 1-smoothing property of the inverse scattering map were obtained pre-
viously in [Nov96], where it is shown that for a potential q in the space Wn,1(R,R) of real-valued
functions with weak derivatives up to order n in L1

q(x)− 1

π

∫
R
e−2ikxχc(k)2ikr+(q, k)dk ∈Wn+1,1(R,R) .

Here c is an arbitrary number with c > ‖q‖L1 and χc(k) = 0 for |k| ≤ c , χc(k) = |k| − c for
c ≤ |k| ≤ c + 1, and 1 otherwise. The main difference between the result in [Nov96] and ours
concerns the function spaces considered. For the application to the KdV we need to choose function
spaces such as HN ∩L2

M for which KdV is well posed. To the best of our knowledge it is not known
if KdV is well posed in Wn,1(R,R). Furthermore in [Nov96] the question of analyticity of the map
q 7→ r+(q) and its inverse is not addressed.

We remark that Theorem 2.1 treats just the case of regular potentials. In [FHMP09, HMP11]
a special class of distributions is considered. In particular the authors study Miura potentials
q ∈ H−1

loc (R,R) such that q = u′ + u2 for some u ∈ L1(R,R) ∩ L2(R,R), and prove that the map
q 7→ r+ is bijective and locally bi-Lipschitz continuous between appropriate spaces. Finally we
point out the work of Zhou [Zho98], in which L2-Sobolev space bijectivity for the scattering and
inverse scattering transforms associated with the ZS-AKNS system are proved.

2 Jost solutions
In this section we assume that the potential q is complex-valued. Often we will assume that
q ∈ L2

M with M ∈ Z≥4. Consider the normalized Jost functions m1(q, x, k) := e−ikxf1(q, x, k) and
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m2(q, x, k) := eikxf2(q, x, k) which satisfy the following integral equations

m1(q, x, k) = 1 +

∫ +∞

x

Dk(t− x) q(t)m1(q, t, k)dt (2.13)

m2(q, x, k) = 1 +

∫ x

−∞
Dk(x− t) q(t)m2(q, t, k)dt (2.14)

where Dk(y) :=
∫ y

0
e2iksds.

The purpose of this section is to analyze the solutions of the integral equations (2.13) and (2.14)
in spaces needed for our application to KdV. We adapt the corresponding results of [KT86] to these
spaces. As (2.13) and (2.14) are analyzed in a similar way we concentrate on (2.13) only. For
simplicity we write m(q, x, k) for m1(q, x, k).

For 1 ≤ p ≤ ∞, M ≥ 1 and a ∈ R, 1 ≤ α <∞, 1 ≤ β ≤ ∞ we introduce the spaces

LpM :=
{
f : R→ C : 〈x〉Mf ∈ Lp

}
, Lαx≥aL

β :=
{
f : [a,+∞)× R→ C : ‖f‖Lα

x≥aL
β < +∞

}
where 〈x〉 := (1 + x2)1/2, Lp is the standard Lp space, and

‖f‖Lα
x≥aL

β :=
(∫ +∞

a

‖f(x, ·)‖αLβ dx
)1/α

whereas for α = ∞, ‖f‖L∞
x≥aL

β := supx≥a ‖f(x, ·)‖Lβ . We consider also the space C0
x≥aL

β :=

C0
(
[a,+∞), Lβ

)
with ‖f‖C0

x≥aL
β := supx≥a ‖f(x, ·)‖Lβ <∞. We will use also the space Lαx≤aL

β of

functions f : (−∞, a]×R→ C with finite norm ‖f‖Lα
x≤aL

β :=
( ∫ a
−∞ ‖f(x, ·)‖αLβ dx

)1/α

. Moreover
given any Banach spaces X and Y we denote by L(X,Y ) the Banach space of linear bounded
operators from X to Y endowed with the operator norm. If X = Y , we simply write L(X).
For the notion of an analytic map between complex Banach spaces we refer to Appendix B.
We begin by stating a well known result about the properties of m.

Theorem 2.4 ( [DT79]). Let q ∈ L1
1. For each k, Im k ≥ 0, the integral equation

m(x, k) = 1 +

+∞∫
x

Dk(t− x)q(t)m(t, k)dt , x ∈ R

has a unique solution m ∈ C2(R,C) which solves the equation m′′+2ikm′ = q(x)m with m(x, k)→ 1
as x→ +∞. If in addition q is real valued the function m satisfies the reality condition m(q, k) =
m(q,−k). Moreover, there exists a constant K > 0 which can be chosen uniformly on bounded
subsets of L1

1 such that the following estimates hold for any x ∈ R

(i) |m(x, k)− 1| ≤ eη(x)/|k|η(x)/|k|, k 6= 0;

(ii) |m(x, k)− 1| ≤ K
(

(1 + max(−x, 0))
+∞∫
x

(1 + |t|)|q(t)|dt
)
/(1 + |k|);

(iii) |m′(x, k)| ≤ K1

( +∞∫
x

(1 + |t|)|q(t)|dt
)
/(1 + |k|)
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where η(x) =
+∞∫
x

|q(t)|dt. For each x, m(x, k) is analytic in Im k > 0 and continuous in Im k ≥ 0.

In particular, for every x fixed, k 7→ m(x, k)− 1 ∈ H2+, where H2+ is the Hardy space of functions

analytic in the upper half plane such that supy>0

+∞∫
−∞
|h(k + iy)|2 dk <∞.

Estimates on the Jost functions.

Proposition 2.5. For any q ∈ L2
M with M ≥ 2, a ∈ R and 2 ≤ β ≤ +∞, the solution m(q) of

(2.13) satisfies m(q)− 1 ∈ C0
x≥aL

β ∩ L2
x≥aL

2. The map L2
M 3 q 7→ m(q)− 1 ∈ C0

x≥aL
β ∩ L2

x≥aL
2

is analytic. Moreover there exist constants C1, C2 > 0, only dependent on a, β, such that

‖m(q)− 1‖C0
x≥aL

β ≤ C1e
‖q‖

L1
1 ‖q‖L2

1
, ‖m(q)− 1‖L2

x≥aL
2 ≤ C2 ‖q‖L2

2

(
1 + ‖q‖L2

3/2
e
‖q‖

L1
1

)
.

(2.15)

Remark 2.6. In comparison with [KT86], the novelty of Proposition 2.5 consists in the choice of
spaces.

To prove Proposition 2.5 we first need to establish some auxiliary results.

Lemma 2.7. (i) For any q ∈ L1
1, a ∈ R and 1 ≤ β ≤ +∞, the linear operator

K(q) : C0
x≥aL

β → C0
x≥aL

β , f 7→ K(q)[f ](x, k) :=

+∞∫
x

Dk(t− x)q(t)f(t, k)dt (2.16)

is bounded. Moreover for any n ≥ 1, the nth composition K(q)n satisfies ‖K(q)n‖L(C0
x≥aL

β) ≤
Cn ‖q‖nL1

1
/n! where C > 0 is a constant depending only on a.

(ii) The map K : L1
1 → L

(
C0
x≥aL

β
)
, q 7→ K(q), is linear and bounded, and Id − K is invertible.

More precisely,

(Id−K)
−1

: L1
1 → L

(
C0
x≥aL

β
)
, q 7→ (Id−K(q))

−1

is analytic and
∥∥∥(Id−K)

−1
∥∥∥
L(L1

1,C
0
x≥aL

β)
≤ eC‖q‖L1

1 .

Proof. Let h ∈ Lα with 1
α + 1

β = 1. Using |Dk(t− x)| ≤ |t− x|, one has∣∣∣∣∣∣
+∞∫
−∞

h(k)K(q)[f ](x, k)dk

∣∣∣∣∣∣ ≤
+∞∫
x

dt |t− x||q(t)| ‖f(t, ·)‖Lβ ‖h‖Lα

≤

 +∞∫
a

|t− a||q(t)|dt

 ‖f‖C0
x≥aL

β ‖h‖Lα ,

and hence ‖K(q)‖L(C0
x≥aL

β) ≤
+∞∫
a

|t − a||q(t)|dt ≤ C ‖q‖L1
1
, where C > 0 is a constant depending

just on a. To compute the norm of the iteration of the map K(q) it’s enough to proceed as above and

73



exploit the fact that the integration in t is over a simplex, yielding ‖K(q)n‖C0
x≥aL

β ≤ Cn ‖q‖nL1
1
/n!

for any n ≥ 1. Therefore the Neumann series of the operator
(
Id − K(q)

)−1

=
∑
n≥0K(q)n

converges absolutely in L
(
C0
x≥aL

β
)
. Since K(q) is linear and bounded in q, the analyticity and, by

item (i), the claimed estimate for (Id−K)−1 follow.

Lemma 2.8. Let a ∈ R.

(i) For any q ∈ L2
3/2, K(q) defines a bounded linear operator L2

x≥aL
2 → L2

x≥aL
2. Moreover the

nth composition K(q)n satisfies

‖K(q)n‖L(L2
x≥aL

2) ≤ C
n ‖q‖L2

3/2
‖q‖n−1

L1
1
/(n− 1)!

where C > 0 depends only on a.

(ii) The map K : L2
3/2 → L

(
L2
x≥aL

2
)
, q 7→ K(q) is linear and bounded; the map

(Id−K)
−1

: L2
3/2 → L

(
L2
x≥aL

2
)

q 7→ (Id−K(q))
−1

is analytic and
∥∥∥(Id−K)

−1
∥∥∥
L(L2

3/2
,L2
x≥aL

2)
≤ C

(
1 + ‖q‖L2

3/2
e
‖q‖

L1
1

)
.

Proof. Proceeding as in the proof of the previous lemma, one gets for x ≥ a the estimate

‖K(q)[f ](x, ·)‖L2 ≤
+∞∫
x

|t− x||q(t)| ‖f(t, ·)‖L2 dt ≤
( +∞∫
x

(t− x)2|q(t)|2 dt
)1/2

‖f‖L2
x≥aL

2 ,

from which it follows that

‖K(q)[f ]‖2L2
x≥aL

2 ≤

∥∥∥∥∥∥
+∞∫
x

(t− x)2|q(t)|2 dt

∥∥∥∥∥∥
1/2

L1
x≥a

‖f‖L2
x≥aL

2 ≤ C ‖q‖L2
3/2
‖f‖L2

x≥aL
2

proving item (i). To estimate the composition K(q)n viewed as an operator on L2
x≥aL

2, remark
that

‖K(q)n[f ](x, ·)‖L2 ≤
∫

x≤t1≤...≤tn

|t1 − x||q(t1)| · · · |tn − tn−1||q(tn)| ‖f(tn, ·)‖L2 dt

≤
∫

x≤t1≤...≤tn

|t1 − x||q(t1)| · · · |tn−1 − tn−2||q(tn−1)|
( +∞∫
tn−1

dtn (tn − tn−1)2 |q(tn)|2
)1/2

‖f‖L2
x≥aL

2 dt

≤
( +∞∫
x

(t− x)2|q(t)|2 dt
)1/2

‖f‖L2
x≥aL

2

( +∞∫
x

|t− x||q(t)| dt
)n−1

/(n− 1)! .
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Therefore

‖K(q)n[f ]‖L2
x≥aL

2 ≤

∥∥∥∥∥∥
+∞∫
x

(t− x)2|q(t)|2 dt

∥∥∥∥∥∥
1/2

L1
x≥a

‖f‖L2
x≥aL

2

Cn−1 ‖q‖n−1
L1

1

(n− 1)!

≤‖q‖L2
3/2
‖f‖L2

x≥aL
2 C

n
‖q‖n−1

L1
1

(n− 1)!

from which item (i) follows. Item (ii) is then proved as in the previous Lemma.

Note that for f ≡ 1, the expression in (2.16) of K(q)[f ], K(q)[1](x, k) =
+∞∫
x

Dk(t − x) q(t) dt is

well defined.

Lemma 2.9. For any 2 ≤ β ≤ +∞ and a ∈ R, the map L2
2 3 q 7→ K(q)[1] ∈ C0

x≥aL
β ∩ L2

x≥aL
2 is

analytic. Furthermore

‖K(q)[1]‖C0
x≥aL

β ≤ C1 ‖q‖L2
2
, ‖K(q)[1]‖L2

x≥aL
2 ≤ C2 ‖q‖L2

2
,

where C1, C2 > 0 are constants depending on a and β.

Proof. Since the map q 7→ K(q)[1] is linear in q, it suffices to prove its continuity in q. Moreover, it is
enough to prove the result for β = 2 and β = +∞ as the general case then follows by interpolation.
For any k ∈ R, the bound |Dk(y)| ≤ |y| shows that the map k 7→ Dk(y) is in L∞. Thus

‖K(q)[1](x, ·)‖L∞ ≤
+∞∫
x

(t− x)|q(t)|dt ≤
+∞∫
a

|t− a||q(t)| dt ≤ C ‖q‖L1
1
,

where C > 0 is a constant depending only on a ∈ R. The claimed estimate follows by noting that
‖q‖L1

1
≤ C ‖q‖L2

2
.

Using that for |k| ≥ 1, |Dk(y)| ≤ 1
|k| , one sees that k 7→ Dk(y) is L2-integrable. Hence k 7→

Dk(t − x)D−k(s − x) is integrable. Actually, since the Fourier transform F+(Dk(y)) in the k-
variable of the function k 7→ Dk(y) is the function η 7→ 1[0,y](η), by Plancherel’s Theorem∫ ∞

−∞
Dk(t− x)Dk(s− x) dk =

1

π

∫ ∞
−∞

1[0,t−x](η)1[0,s−x](η) dη =
1

π
min(t− x, s− x).

For any x ≥ a one thus has

‖K(q)[1](x, ·)‖2L2 =

∫ ∞
−∞
K(q)[1](x, ·) · K(q)[1](x, ·) dk

=

∫∫
[x,∞)×[x,∞)

dt ds q(t) q(s)

+∞∫
−∞

Dk(t− x)D−k(s− x) dk .
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and hence

‖K(q)[1](x, ·)‖2L2 ≤
2

π

+∞∫
x

(t− x)|q(t)|
+∞∫
t

|q(s)|ds ≤ 2

π

+∞∫
a

ds |q(s)|
∫ s

a

|t− a| |q(t)| dt ≤ C ‖q‖2L2
1
,

(2.17)
where the last inequality follows from the Hardy-Littlewood inequality. The continuity in x follows
from Lebesgue convergence Theorem.
To prove the second inequality, start from the second term in (2.17) and change the order of
integration to obtain

‖K(q)[1]‖2L2
x≥aL

2 ≤

∥∥∥∥∥∥
+∞∫
x

|t− a||q(t)|
+∞∫
t

|q(s)|ds

∥∥∥∥∥∥
L1
x≥a

≤
+∞∫
a

|q(s)|
s∫
a

(s−a)2|q(s)|ds ≤ C ‖q‖L2
1
‖q‖L2

2
.

Proof of Proposition 2.5. Formally, the solution of equation (2.13) is given by

m(q)− 1 =
(
Id−K(q)

)−1

K(q)[1]. (2.18)

By Lemma 2.7, 2.8, 2.9 it follows that the r.h.s. of (2.18) is an element of C0
x≥aL

β ∩ L2
x≥aL

2,
2 ≤ β ≤ ∞, and analytic as a function of q, since it is the composition of analytic maps.

Properties of ∂nkm(q, x, k) for 1 ≤ n ≤M−1. In order to study ∂nkm(q, x, k), we deduce from (2.13)
an integral equation for ∂nkm(q, x, ·) and solve it. Recall that for any M ∈ Z≥0, HM

C ≡ HM (R,C)

denotes the Sobolev space of functions {f ∈ L2| f̂ ∈ L2
M}. The result is summarized in the following

Proposition 2.10. Fix M ∈ Z≥4 and a ∈ R. For any integer 1 ≤ n ≤M − 1 the following holds:

(i) for q ∈ L2
M and x ≥ a fixed, the function k 7→ m(q, x, k)− 1 is in HM−1

C ;

(ii) the map L2
M 3 q 7→ ∂nkm(q) ∈ C0

x≥aL
2 is analytic. Moreover ‖∂nkm(q)‖C0

x≥aL
2 ≤ K ‖q‖L2

M
,

where K can be chosen uniformly on bounded subsets of L2
M .

Remark 2.11. In [CK87b] it is proved that if q ∈ L1
M−1 then for every x ≥ a fixed the map

k 7→ m(q, x, k) is in CM−2; note that since L2
M ⊂ L1

M−1, we obtain the same regularity result by
Sobolev embedding theorem.

To prove Proposition 2.10 we first need to derive some auxiliary results. Assuming that
m(q, x, ·)−1 has appropriate regularity and decay properties, the nth derivative ∂nkm(q, x, k) satisfies
the following integral equation

∂nkm(q, x, k) =

n∑
j=0

(
n

j

) +∞∫
x

∂jkDk(t− x) q(t) ∂n−jk m(q, t, k) dt . (2.19)
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To write (2.19) in a more convenient form introduce for 1 ≤ j ≤ n and q ∈ L2
n+1 the operators

Kj(q) : C0
x≥aL

2 → C0
x≥aL

2, f 7→ Kj(q)[f ](x, k) :=

+∞∫
x

∂jkDk(t− x) q(t) f(t, k) dt (2.20)

leading to

(
Id−K(q)

)
∂nkm(q) =

n−1∑
j=1

(
n

j

)
Kj(q)[∂n−jk m(q)] +Kn(q)[m(q)− 1] +Kn(q)[1]

 . (2.21)

In order to prove the claimed properties for ∂nkm(q) we must show in particular that the r.h.s. of
(2.21) is in C0

x≥aL
2. This is accomplished by the following

Lemma 2.12. Fix M ∈ Z≥4 and a ∈ R. Then there exists a constant C > 0, depending only on
a,M , such that the following holds:

(i) for any integers 1 ≤ n ≤M − 1

(i1) the map L2
M 3 q 7→ Kn(q)[1] ∈ C0

x≥aL
2 is analytic, and ‖Kn(q)[1]‖C0

x≥aL
2 ≤ C ‖q‖L2

M
.

(i2) the map L2
M 3 q 7→ Kn(q) ∈ L

(
L2
x≥aL

2, C0
x≥aL

2
)
is analytic. Moreover

‖Kn(q)[f ]‖C0
x≥aL

2 ≤ ‖q‖L2
M
‖f‖L2

x≥aL
2 .

(ii) For any 1 ≤ n ≤ M − 2, the map L2
M 3 q 7→ Kn(q) ∈ L

(
C0
x≥aL

2
)
is analytic. Moreover one

has ‖Kn(q)[f ]‖C0
x≥aL

2 ≤ C ‖q‖L2
M
‖f‖C0

x≥aL
2 .

(iii) As an application of item (i) and (ii), for any integers 1 ≤ n ≤ M − 1 the map L2
M 3 q 7→

Kn(q)[m(q)− 1] ∈ C0
x≥aL

2 is analytic, and

‖Kn(q)[m(q)− 1]‖C0
x≥aL

2 ≤ K ′0 ‖q‖
2
L2
M

,

where K ′0 > 0 can be chosen uniformly on bounded subsets of L2
M .

Proof. First, remark that all the operators q 7→ Kn(q) are linear in q, therefore the continuity in q
implies the analyticity in q. We begin proving item (i).

(i1) Let ϕ(x, k) :=
+∞∫
x

∂nkDk(t − x) q(t) dt and compute the Fourier transform F+(ϕ(x, ·)) with

respect to the k variable for x ≥ a fixed, which we denote by ϕ̂(x, ξ) ≡
∫∞
−∞ dk eikξϕ(x, k).

Explicitly

ϕ̂(x, ξ) =

+∞∫
x

dt q(t)

+∞∫
−∞

dk e2ikξ ∂nkDk(t− x) =

+∞∫
x

q(t) ξn 1[0,t−x](ξ) dt.
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By Parseval’s Theorem ‖ϕ(x, ·)‖L2 = 1√
π
‖ϕ̂(x, ·)‖L2 . By changing the order of integration

one has

‖ϕ̂(x, ·)‖2L2 =

+∞∫
−∞

ϕ̂(x, ξ) ϕ̂(x, ξ) dξ =

∫∫
[x,∞)×[x,∞)

dt ds q(t) q(s)

+∞∫
−∞

|ξ|2n 1[0,t−x](ξ)1[0,s−x](ξ)dξ ≤

≤ 2

+∞∫
x

dt |q(t)| |t− x|2n+1

+∞∫
t

|q(s)| ds ≤
∥∥(t− a)n+1q

∥∥
L2
t≥a

∥∥∥∥∥∥(t− a)n
+∞∫
t

|q(s)|ds

∥∥∥∥∥∥
L2
t≥a

≤ C ‖q‖2L2
n+1

,

where we used that by (A3) in Appendix A,
∥∥∥∥(t− a)n

+∞∫
t

|q(s)| ds
∥∥∥∥
L2
t≥a

≤ C ‖q‖L2
n+1

.

(i2) Let f ∈ L2
x≥aL

2, and using |∂nkDk(t− x)| ≤ 2n|t− x|n+1 it follows that

‖Kn(q)[f ](x, ·)‖L2 ≤ C
+∞∫
x

|q(t)| |t− x|n+1 ‖f(t, ·)‖L2 dt ≤ C ‖q‖L2
n+1
‖f‖L2

x≥aL
2 ;

by taking the supremum in the x variable one has Kn(q) ∈ L
(
L2
x≥aL

2, C0
x≥aL

2
)
, where the

continuity in x follows by Lebesgue’s convergence theorem. The map q 7→ Kn(q) is linear and
continuous, therefore also analytic.

We prove now item (ii). Let g ∈ C0
x≥aL

2. From ‖Kn(q)[g](x, ·)‖L2 ≤
+∞∫
x

|q(t)| |t−x|n+1 ‖g(t, ·)‖L2 dt

it follows that

sup
x≥a
‖Kn(q)[g](x, ·)‖L2 ≤ ‖g‖C0

x≥aL
2

+∞∫
a

|q(t)| |t− a|n+1 dt ≤ C ‖g‖C0
x≥aL

2 ‖q‖L2
n+2

,

which implies the claimed estimate. The analyticity follows from the linearity and continuity of the
map q 7→ Kn(q).

Finally we prove item (iii). By Proposition 2.5, the map L2
n+1 3 q 7→ m(q) − 1 ∈ L2

x≥aL
2 is

analytic. By item (i2) above the bilinear map L2
n+1 × L2

x≥aL
2 3 (q, f) 7→ Kn(q)[f ] ∈ C0

x≥aL
2 is

analytic; since the composition of analytic maps is analytic, the map L2
n+1 3 q 7→ Kn(q)[m(q)−1] ∈

C0
x≥aL

2 is analytic. By (i2) and Proposition 2.5 one has

‖Kn(q)[m(q)− 1]‖C0
x≥aL

2 ≤ C ‖q‖L2
n+1
‖m(q)− 1‖L2

x≥aL
2 ≤ K ′0 ‖q‖

2
L2
n+1

where K ′0 can be chosen uniformly on bounded subsets of L2
M .

Proof of Proposition (2.10). The proof is carried out by a recursive argument in n. We assume
that q 7→ ∂rkm(q) is analytic as a map from L2

M to C0
x≥aL

2 for 0 ≤ r ≤ n − 1, and prove that
L2
M → C0

x≥aL
2 : q 7→ ∂nkm(q) is analytic, provided that n ≤ M − 1. The case n = 0 is proved in
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Proposition 2.5.
We begin by showing that for every x ≥ a fixed k 7→ ∂n−1

k m(q, x, k) is a function in H1, therefore
it has one more (weak) derivative in the k-variable. We use the following characterization of H1

function [Bre11]:

f ∈ H1 iff there exists a constant C > 0 such that ‖τhf − f‖L2 ≤ C|h|, ∀h ∈ R, (2.22)

where (τhf)(k) := f(k + h) is the translation operator. Moreover the constant C above can be
chosen to be C = ‖∂ku‖L2 . Starting from (2.21) (with n − 1 instead of n), an easy computation
shows that for every x ≥ a fixed (τh)∂n−1

k m(q) ≡ ∂n−1
k m(q, x, k + h) satisfies the integral equation

(Id−K(q))(τh∂
n−1
k m(q)− ∂n−1

k m(q))

=

∫ +∞

x

(τh∂
n−1
k Dk(t− x)− ∂n−1

k Dk(t− x))q(t)(m(q, t, k + h)− 1) dt

+

∫ +∞

x

(τh∂
n−1
k Dk(t− x)− ∂n−1

k Dk(t− x))q(t) dt

+

∫ +∞

x

(∂n−1
k Dk(t− x)) q(t) (m(q, t, k + h)−m(q, t, k)) dt

+

n−2∑
j=1

(
n− 1

j

)(∫ +∞

x

(τh∂
j
kDk(t− x)− ∂jkDk(t− x))q(t)∂n−1−j

k m(q, t, k + h) dt

+

∫ +∞

x

∂jkDk(t− x) q(t) (τh∂
n−1−j
k m(q, t, k)− ∂n−1−j

k m(q, t, k)) dt
)

+

∫ +∞

x

(τhDk(t− x)−Dk(t− x)) q(t) ∂n−1
k m(q, t, k + h) dt.

(2.23)
In order to estimate the term in the fourth line on the right hand side of the latter identity, use
item (i1) of Lemma 2.12 and the characterization (2.22) of H1. To estimate all the remaining lines,
use the induction hypothesis, the estimates of Lemma 2.12, the fact that the operator norm of
(Id−K(q))−1 is bounded uniformly in k and the estimate∣∣∣τh∂jkDk(t− x)− ∂jkDk(t− x)

∣∣∣ ≤ C|t− x|j+2 |h|, ∀h ∈ R,

to deduce that for every n ≤M − 1∥∥τh∂n−1
k m(q)− ∂n−1

k m(q)
∥∥
L2 ≤ C|h|, ∀h ∈ R,

which is exactly condition (2.22). This shows that k 7→ ∂n−1
k m(q, x, k) admits a weak derivative in

L2. Formula (2.19) is therefore justified. We prove now that the map L2
M 3 q 7→ ∂nkm(q) ∈ C0

x≥aL
2

is analytic for 1 ≤ n ≤M − 1. Indeed equation (2.21) and Lemma 2.12 imply that

‖∂nkm(q)‖C0
x≥aL

2 ≤ K ′
(
‖q‖L2

M
+ ‖q‖2L2

M
+

n−1∑
j=1

‖q‖L2
M

∥∥∥∂n−jk m(q)
∥∥∥
C0
x≥aL

2

)
where K ′ can be chosen uniformly on bounded subsets of q in L2

M . Therefore ∂nkm(q) ∈ C0
x≥aL

2 and
one gets recursively ‖∂nkm(q)‖C0

x≥aL
2 ≤ K ‖q‖L2

M
, where K can be chosen uniformly on bounded
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subsets of q in L2
M . The analyticity of the map q 7→ ∂nkm(q) follows by formula (2.21) and the fact

that composition of analytic maps is analytic.

Properties of k∂nkm(q, x, k) for 1 ≤ n ≤ M . The analysis of the M th k-derivative of m(q, x, k)
requires a separate attention. It turns out that the distributional derivative ∂Mk m(q, x, ·) is not
necessarily L2-integrable near k = 0 but the product k∂Mk m(q, x, ·) is. This is due to the fact that
∂Mk Dk(x)q(x) ∼ xM+1q(x) which might not be L2-integrable. However, by integration by parts,
it’s easy to see that k∂Mk Dk(x)q(x) ∼ xMq(x) ∈ L2. The main result of this section is the following

Proposition 2.13. Fix M ∈ Z≥4 and a ∈ R. Then for every integer 1 ≤ n ≤ M the following
holds:

(i) for every q ∈ L2
M and x ≥ a fixed, the function k 7→ k∂nkm(q, x, k) is in L2;

(ii) the map L2
M 3 q 7→ k∂nkm(q) ∈ C0

x≥aL
2 is analytic. Moreover ‖k∂nkm‖C0

x≥aL
2 ≤ K1 ‖q‖L2

M

where K1 can be chosen uniformly on bounded subsets of L2
M .

Formally, multiplying equation (2.19) by k, the function k∂nkm(q) solves

(Id−K(q)) (k∂nkm(q)) =

n−1∑
j=1

(
n

j

)
K̃j(q)[∂n−jk m(q)] + K̃n(q)[m(q)− 1] + K̃n(q)[1]

 (2.24)

where we have introduced for 0 ≤ j ≤M and q ∈ L2
M the operators

K̃j(q) : C0
x≥aL

2 → C0
x≥aL

2, f 7→ K̃j(q)[f ](x, k) :=

+∞∫
x

k∂jkDk(t− x) q(t) f(t, k) dt. (2.25)

We begin by proving that each term of the r.h.s. of (2.25) is well defined and analytic as a function
of q. The following lemma is analogous to Lemma 2.12:

Lemma 2.14. Fix M ∈ Z≥4 and a ∈ R. There exists a constant C > 0 such that the following
holds:

(i) for any integers 1 ≤ n ≤M

(i1) the map L2
M 3 q 7→ K̃n(q)[1] ∈ C0

x≥aL
2 is analytic, and

∥∥∥K̃n(q)[1]
∥∥∥
C0
x≥aL

2
≤ C ‖q‖L2

M
;

(i2) the map L2
M 3 q 7→ K̃n(q) ∈ L

(
L2
x≥aL

2, C0
x≥aL

2
)
is analytic. Moreover∥∥∥K̃n(q)[f ]

∥∥∥
C0
x≥aL

2
≤ C ‖q‖L2

M
‖f‖L2

x≥aL
2 ;

(ii) for any 1 ≤ j ≤M − 1 the map L2
M 3 q 7→ K̃j(q) ∈ L

(
C0
x≥aL

2
)
is analytic, and∥∥∥K̃j(q)[f ]

∥∥∥
C0
x≥aL

2
≤ C ‖q‖L2

M
‖f‖C0

x≥aL
2 .
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(iii) As an application of item (i) and (ii) we get

(iii1) for any 1 ≤ n ≤M , the map L2
M 3 q 7→ K̃n(q)[m(q)− 1] ∈ C0

x≥aL
2 is analytic with∥∥∥K̃n(q)[m(q)− 1]

∥∥∥
C0
x≥aL

2
≤ K ′1 ‖q‖

2
L2
M
, (2.26)

where K ′1 can be chosen uniformly on bounded subsets of L2
M ;

(iii2) for any 1 ≤ j ≤ n− 1, the map L2
M 3 q 7→ K̃j(q)[∂

n−j
k m(q)] ∈ C0

x≥aL
2 is analytic with∥∥∥K̃j(q)[∂n−jk m(q)]

∥∥∥
C0
x≥aL

2
≤ K ′2 ‖q‖

2
L2
M
, (2.27)

where K ′2 can be chosen uniformly on bounded subsets of L2
M .

Proof. (i) Since the maps q 7→ K̃n(q), 0 ≤ n ≤ M , are linear, it is enough to prove that these
maps are continuous.

(i1) Introduce ϕ(x, k) :=
+∞∫
x

k∂nkDk(t − x) q(t) dt. The Fourier transform F+(ϕ(x, ·) of ϕ

with respect to the k-variable is given by F+(ϕ(x, ·)) ≡ ϕ̂(x, ξ), where

ϕ̂(x, ξ) =

+∞∫
x

dt q(t)

+∞∫
−∞

dk e−2ikξ k∂nkDk(t− x) = −(2i)n−1

+∞∫
x

dt q(t) ∂ξ(ξ
n
1[0,t−x](ξ)),

where ∂ξ(ξn1[0,t−x](ξ)) is to be understood in the distributional sense. By Parseval’s
Theorem ‖ϕ(x, ·)‖L2 = 1√

π
‖ϕ̂(x, ·)‖L2 . Let C∞0 be the space of smooth, compactly

supported functions. Since

‖ϕ̂(x, ·)‖L2
ξ

= sup
χ∈C∞0
‖χ‖L2≤1

∣∣∣∣∣∣
∞∫
−∞

χ(ξ) ϕ̂(x, ξ) dξ

∣∣∣∣∣∣ ,
one computes∣∣∣∣∣∣
∞∫
−∞

χ(ξ) ϕ̂(x, ξ) dξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
+∞∫
x

dt q(t)

∞∫
−∞

χ(ξ) ∂ξ
(
ξn1[0,t−x](ξ)

)
dξ

∣∣∣∣∣∣ =

∣∣∣∣∣∣
+∞∫
x

dt q(t)

t−x∫
0

dξ ξn∂ξχ(ξ)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
+∞∫
x

dt q(t)χ(t− x)(t− x)n

∣∣∣∣∣∣+ n

∣∣∣∣∣∣
+∞∫
x

dt q(t)

t−x∫
0

dξ χ(ξ)ξn−1

∣∣∣∣∣∣
≤ ‖q‖L2

M
‖χ‖L2 + n

∣∣∣∣∣∣
+∞∫
x

dt |q(t)||t− x|n−1

t−x∫
0

dξ |χ(ξ)|

∣∣∣∣∣∣
≤ ‖q‖L2

M
‖χ‖L2 + n

∣∣∣∣∣∣∣∣∣
+∞∫
x

dt |q(t)||t− x|n

t−x∫
0

dξ |χ(ξ)|

|t− x|

∣∣∣∣∣∣∣∣∣ ≤ C ‖q‖L2
M
‖χ‖L2
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where the last inequality follows from Cauchy-Schwartz and Hardy inequality, and C > 0
is a constant depending on a and M .

(i2) As |k∂nkDk(t− x)| ≤ 2n|t−x|n by integration by parts, it follows that for some constant
C > 0 depending only on a and M ,

∥∥∥K̃n(q)[f ](x, ·)
∥∥∥
L2
≤ C

+∞∫
x

|t− x|n |q(t)| ‖f(t, ·)‖L2 dt ≤ C ‖q‖L2
M
‖f‖L2

x≥aL
2 .

Now take the supremum over x ≥ a in the expression above and use Lebesgue’s domi-
nated convergence theorem to prove item (i2).

(ii) The claim follows by the estimate

∥∥∥K̃j(q)[f ](x, ·)
∥∥∥
L2
≤ C

+∞∫
x

|t− x|j |q(t)| ‖f(t, ·)‖L2 dt ≤ C ‖q‖L1
j
‖f‖C0

x≥aL
2

and the remark that ‖q‖L1
j
≤ C ‖q‖L2

M
for 0 ≤ j ≤M − 1.

(iii) By Propositions 2.5 and 2.10 the maps L2
M 3 q 7→ m(q)−1 ∈ C0

x≥aL
2∩L2

x≥aL
2 and L2

M 3 q 7→
∂n−jk m(q) ∈ C0

x≥aL
2 are analytic; by item (ii) for any 1 ≤ n ≤M−1, the bilinear map (q, f) 7→

K̃n(q)[f ] is analytic from L2
M×C0

x≥aL
2 to C0

x≥aL
2. Since the composition of two analytic maps

is again analytic, item (iii) follows. Moreover K̃n(q)[m(q) − 1], K̃j(q)[∂n−jk m(q)] ∈ C0
x≥aL

2

since m(q, x, k) and ∂nkm(q, x, k) are continuous in the x-variable. The estimate (2.26) follows
from item (ii) and Proposition 2.5, 2.10.

Proof of Proposition 2.13. One proceeds in the same way as in the proof of Proposition 2.10.
Given any 1 ≤ n ≤M , we assume that q 7→ k∂rkm(q) is analytic as a map from L2

M to C0
x≥aL

2 for
1 ≤ r ≤ n−1, and deduce that q 7→ k∂nkm(q) is analytic as a map from L2

M to C0
x≥aL

2 and satisfies
equation (2.24) (with r instead of n).
We begin by showing that for every x ≥ a fixed, k 7→ k∂n−1

k m(q, x, k) is a function in H1. Our
argument uses again the characterization (2.22) of H1. Arguing as for the derivation of (2.23) one
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gets the integral equation

(Id−K(q))(τh(k∂n−1
k m(q))− k∂n−1

k m(q)) =

=

+∞∫
x

(
τh(k∂n−1

k Dk(t− x))− k∂n−1
k Dk(t− x)

)
q(t)(m(q, t, k + h)− 1) dt

+

+∞∫
x

(
τh(k∂n−1

k Dk(t− x))− k∂n−1
k Dk(t− x)

)
q(t) dt

+

+∞∫
x

(k∂n−1
k Dk(t− x))q(t) (m(q, t, k + h)−m(q, t, k)) dt

+

n−2∑
j=1

(
n− 1

j

)( +∞∫
x

(
τh(k∂jkDk(t− x))− k∂jkDk(t− x)

)
q(t) ∂n−1−j

k m(q, t, k + h) dt

+

+∞∫
x

k∂jkDk(t− x) q(t)
(
τh∂

n−1−j
k m(q, t, k)− ∂n−1−j

k m(q, t, k)
)
dt
)

+

+∞∫
x

(τhDk(t− x)−Dk(t− x)) q(t) (k + h)∂n−1
k m(q, t, k + h) dt .

Using the estimates
|τhDk(t− x)−Dk(t− x)| ≤ C|t− x|2|h|

and ∣∣∣τh(k∂jkDk(t− x))− k∂jkDk(t− x)
∣∣∣ ≤ C|t− x|j+1 |h|, ∀h ∈ R ,

obtained by integration by parts, the characterization (2.22) of H1, the inductive hypothesis, esti-
mates of Lemma 2.12 and Lemma 2.8 one deduces that for every n ≤M∥∥τh(k∂n−1

k m(q))− k∂n−1
k m(q)

∥∥
L2 ≤ C|h|, ∀h ∈ R.

This shows that k 7→ k∂n−1
k m(q, x, k) admits a weak derivative in L2. Since

k∂nkm(q, x, k) = ∂k(k∂n−1
k m(q, x, k))− ∂n−1

k m(q, x, k) ,

the estimate above and Proposition 2.10 show that k 7→ k∂nkm(q, x, k) is an L2 function. Formula
(2.19) is therefore justified.
The proof of the analyticity of the map q 7→ k∂nkm(q) is analogous to the one of Proposition 2.10
and it is omitted.

Analysis of ∂xm(q, x, k). Introduce a odd smooth monotone function ζ : R→ R with ζ(k) = k
for |k| ≤ 1/2 and ζ(k) = 1 for k ≥ 1. We prove the following

Proposition 2.15. Fix M ∈ Z≥4 and a ∈ R. Then the following holds:
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(i) for any integer 0 ≤ n ≤ M − 1, the map L2
M 3 q 7→ ∂nk ∂xm(q) ∈ C0

x≥aL
2 is analytic, and

‖∂nk ∂xm(q)‖C0
x≥aL

2 ≤ K2 ‖q‖L2
M

where K2 can be chosen uniformly on bounded subsets of L2
M .

(ii) the map L2
M 3 q 7→ ζ∂Mk ∂xm(q) ∈ C0

x≥aL
2 is analytic, and

∥∥ζ∂Mk ∂xm(q)
∥∥
C0
x≥aL

2 ≤ K3 ‖q‖L2
M

where K3 can be chosen uniformly on bounded subsets of L2
M .

The integral equation for ∂xm(q, x, k) is obtained by taking the derivative in the x-variable of
(2.13):

∂xm(q, x, k) = −
+∞∫
x

e2ik(t−x) q(t)m(q, t, k) dt. (2.28)

Taking the derivative with respect to the k-variable one obtains, for 0 ≤ n ≤M − 1,

∂nk ∂xm(q, x, k) = −
n∑
j=0

(
n

j

) +∞∫
x

e2ik(t−x) (2i(t− x))j q(t) ∂n−jk m(q, t, k) dt. (2.29)

For 0 ≤ j ≤M introduce the integral operators

Gj(q) : C0
x≥aL

2 → C0
x≥aL

2, q 7→ Gj(q)[f ](x, k) := −
+∞∫
x

e2ik(t−x) (2i(t− x))j q(t) f(t, k) dt (2.30)

and rewrite (2.29) in the more compact form

∂nk ∂xm(q) =

n−1∑
j=0

(
n

j

)
Gj(q)[∂n−jk m(q)] + Gn(q)[m(q)− 1] + Gn(q)[1]. (2.31)

Proposition 2.15 (i) follows from Lemma 2.16 below.
The M th derivative requires a separate treatment, as ∂Mk m might not be well defined at k = 0.

Indeed for n = M the integral
+∞∫
x

e2ik(t−x) q(t) ∂Mk m(q, t, k) dt in (2.29) might not be well defined

near k = 0 since we only know that k∂Mk m(q, x, ·) ∈ L2. To deal with this issue we use the function
ζ described above. Multiplying (2.31) with n = M by ζ we formally obtain

ζ∂Mk ∂xm(q) =

M−1∑
j=1

(
M

j

)
ζ Gj(q)[∂M−jk m(q)] + ζ GM (q)[m(q)− 1] + ζ GM (q)[1] + G0(q)[ζ∂Mk m(q)].

Proposition 2.15 (ii) follows from item (iii) of Lemma 2.16 and the fact that ζ ∈ L∞:

Lemma 2.16. Fix M ∈ Z≥4 and a ∈ R. There exists a constant C > 0 such that

(i) for any integer 0 ≤ n ≤M the following holds:

(i1) the map L2
M 3 q 7→ Gn(q)[1] ∈ C0

x≥aL
2 is analytic. Moreover ‖Gn(q)[1]‖C0

x≥aL
2 ≤

C ‖q‖L2
M
.
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(i2) The map L2
M 3 q 7→ Gn(q) ∈ L

(
L2
x≥aL

2, C0
x≥aL

2
)
is analytic and

‖Gn(q)[f ]‖C0
x≥aL

2 ≤ C ‖q‖L2
M
‖f‖L2

x≥aL
2 .

(ii) For any 0 ≤ j ≤M − 1, the map L2
M 3 q 7→ Gj(q) ∈ L

(
C0
x≥aL

2
)
is analytic, and

‖Gj(q)[f ]‖C0
x≥aL

2 ≤ C ‖q‖L2
M
‖f‖C0

x≥aL
2 .

(iii) For any 1 ≤ n ≤ M − 1, 0 ≤ j ≤ n − 1 and ζ : R → R odd smooth monotone function with
ζ(k) = k for |k| ≤ 1/2 and ζ(k) = 1 for k ≥ 1, the following holds:

(iii1) the maps L2
M 3 q → Gj(q)[∂n−jk m(q)] ∈ C0

x≥aL
2 and L2

M 3 q → Gn(q)[m(q) − 1] ∈
C0
x≥aL

2 are analytic. Moreover∥∥∥Gj(q)[∂n−jk m(q)]
∥∥∥
C0
x≥aL

2
, ‖Gn(q)[m(q)− 1]‖C0

x≥aL
2 ≤ K ′2 ‖q‖

2
L2
M
,

where K ′2 can be chosen uniformly on bounded subsets of L2
M .

(iii2) The map L2
M 3 q → G0(q)[ζ∂Mk m(q)] ∈ C0

x≥aL
2 is analytic and

∥∥G0(q)[ζ∂Mk m(q)]
∥∥
C0
x≥aL

2 ≤

K ′3 ‖q‖
2
L2
M

where K ′3 can be chosen uniformly on bounded subsets of L2
M .

Proof. As before it’s enough to prove the continuity in q of the maps considered to conclude that
they are analytic.

(i1) For x ≥ a and any 0 ≤ n ≤M one has ‖Gn(q)[1](x, ·)‖2L2 ≤ C
+∞∫
x

|t−x|2n|q(t)|2dt ≤ C ‖q‖2L2
M
.

The claim follows by taking the supremum over x ≥ a in the inequality above.

(i2) For x ≥ a and 0 ≤ n ≤ M one has the bound ‖Gn(q)[f ]‖C0
x≥aL

2 ≤ C ‖q‖L2
n
‖f‖L2

x≥aL
2 , which

implies the claimed estimate.

(ii) For x ≥ a and 0 ≤ j ≤M − 1 one has the bound

‖Gj(q)[f ]‖C0
x≥aL

2 ≤ C ‖q‖L1
M−1
‖f‖C0

x≥aL
2 ≤ C ‖q‖L2

M
‖f‖C0

x≥aL
2 .

(iii1) By Proposition 2.10 one has that for any 1 ≤ n ≤ M − 1 and 0 ≤ j ≤ n − 1 the map
L2
M 3 q 7→ ∂n−jk m(q) ∈ C0

x≥aL
2 is analytic. Since composition of analytic maps is again an

analytic map, the claim regarding the analyticity follows. The first estimate follows from item
(ii). A similar argument can be used to prove the second estimate.

(iii2) By Proposition 2.13, the map L2
M 3 q 7→ ζ∂Mk m(q) ∈ C0

x≥aL
2 is analytic, implying the claim

regarding the analyticity. The estimate follows from
∥∥G0[ζ∂Mk m(q)]

∥∥
C0
x≥aL

2 ≤ ‖q‖L2
M

∥∥ζ∂Mk m(q)
∥∥
C0
x≥aL

2 .

The following corollary follows from the results obtained so far:

Corollary 2.17. Fix M ∈ Z≥4. Then the normalized Jost functions mj(q, x, k), j = 1, 2, satisfy:
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(i) the maps L2
M 3 q 7→ mj(q, 0, ·)− 1 ∈ L2 and L2

M 3 q 7→ kα∂nkmj(q, 0, ·) ∈ L2 are analytic for
1 ≤ n ≤M − 1 [1 ≤ n ≤M ] if α = 0 [α = 1]. Moreover

‖mj(q, 0, ·)− 1‖L2 , ‖kα∂nkmj(q, 0, ·)‖L2 ≤ K1 ‖q‖L2
M
,

where K1 > 0 can be chosen uniformly on bounded subsets of L2
M .

(ii) For 0 ≤ n ≤M−1, the maps L2
M 3 q 7→ ∂nk ∂xmj(q, 0, ·) ∈ L2 and L2

M 3 q 7→ ζ∂Mk ∂xmj(q, 0, ·) ∈
L2 are analytic. Moreover

‖∂nk ∂xmj(q, 0, ·)‖L2 ,
∥∥ζ∂Mk ∂xmj(q, 0, ·)

∥∥
L2 ≤ K2 ‖q‖L2

M
,

where K2 > 0 can be chosen uniformly on bounded subsets of L2
M .

Proof. The Corollary follows by evaluating formulas (2.13), (2.19), (2.29) at x = 0 and using the
results of Proposition 2.5, 2.10, 2.13 and 2.15.

3 One smoothing properties of the scattering map.
The aim of this section is to prove the part of Theorem 2.1 related to the direct problem. To
begin, note that by Theorem 2.4, for q ∈ L2

4 real valued one has m1(q, x, k) = m1(q, x,−k) and
m2(q, x, k) = m2(q, x,−k); hence

S(q, k) = S(q,−k) , W (q, k) = W (q,−k) . (2.32)

Moreover one has for any q ∈ L2
4

W (q, k)W (q,−k) = 4k2 + S(q, k)S(q,−k) ∀ k ∈ R \ {0} (2.33)

which by continuity holds for k = 0 as well. In the case where q ∈ Q, the latter identity implies
that S(q, 0) 6= 0.
Recall that for q ∈ L2

4 the Jost solutions f1(q, x, k) and f2(q, x, k) satisfy the following integral
equations

f1(x, k) = eikx +

+∞∫
x

sin k(t− x)

k
q(t)f1(t, k)dt , (2.34)

f2(x, k) = e−ikx +

x∫
−∞

sin k(x− t)
k

q(t)f2(t, k)dt . (2.35)

Substituting (2.34) and (2.35) into (2.4), (2.3), one verifies that S(q, k), W (q, k) satisfy for k ∈ R
and q ∈ L2

4

S(q, k) =

+∞∫
−∞

eiktq(t)f1(q, t, k)dt , (2.36)

W (q, k) = 2ik −
+∞∫
−∞

e−iktq(t)f1(q, t, k)dt . (2.37)
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Note that the integrals above are well defined thanks to the estimate in item (ii) of Theorem 2.4.

Inserting formula (2.34) into (2.36), one gets that

S(q, k) = F−(q, k) +O
(

1
k

)
.

The main result of this section is an estimate of

A(q, k) := S(q, k)−F−(q, k) , (2.38)

saying that A is 1-smoothing. To formulate the result in a precise way, we need to introduce the
following Banach spaces for M ∈ Z≥1

HM
∗ := {f ∈ HM−1

C : f(k) = f(−k), k∂Mk f ∈ L2} ,

HM
ζ := {f ∈ HM−1

C : f(k) = f(−k), ζ∂Mk f ∈ L2} ,

where ζ : R → R is an odd monotone C∞ function with ζ(k) = k for |k| ≤ 1/2 and ζ(k) = 1 for
k ≥ 1. The norms on HM

∗ and HM
ζ are given by

‖f‖2HM∗ := ‖f‖2HM−1
C

+
∥∥k∂Mk f∥∥2

L2 , ‖f‖2HMζ := ‖f‖2HM−1
C

+
∥∥ζ∂Mk f∥∥2

L2 .

Note that HM
∗ and HM

ζ are real Banach spaces. We will use also the complexification of the Banach
spaces above, in which the reality condition f(k) = f(−k) is dropped:

HM
∗,C := {f ∈ HM−1

C : k∂Mk f ∈ L2}, HM
ζ,C := {f ∈ HM−1

C : ζ∂Mk f ∈ L2}.

Note that for any M ≥ 2

(i)HM
C ⊂ HM

ζ,C and HM
∗,C ⊂ HM

ζ,C, (ii) fg ∈ HM
ζ,C ∀ f ∈ HM

∗,C, g ∈ HM
ζ,C. (2.39)

We can now state the main theorem of this section. Let L2
M,R :=

{
f ∈ L2

M | f real valued
}
.

Theorem 2.18. Let N ∈ Z≥0 and M ∈ Z≥4. Then one has:

(i) The map q 7→ A(q, ·) is analytic as a map from L2
M to HM

ζ,C.

(ii) The map q 7→ A(q, ·) is analytic as a map from HN
C ∩ L2

4 to L2
N+1. Moreover

‖A(q, ·)‖L2
N+1
≤ CA ‖q‖2HNC ∩L2

4

where the constant CA > 0 can be chosen uniformly on bounded subsets of HN
C ∩ L2

4.

Furthermore for q ∈ L2
4,R the map A(q, ·) satisfies A(q, k) = A(q,−k) for every k ∈ R. Thus

its restrictions A : L2
M,R → HM

ζ and A : HN ∩ L2
4 → L2

N+1 are real analytic.

The following corollary follows immediately from identity (2.38), item (ii) of Theorem 2.18 and
the properties of the Fourier transform:

Corollary 2.19. Let N ∈ Z≥0. Then the map q 7→ S(q, ·) is analytic as a map from HN
C ∩ L2

4 to
L2
N . Moreover

‖S(q, ·)‖L2
N
≤ CS ‖q‖HNC ∩L2

4

where the constant CS > 0 can be chosen uniformly on bounded subsets of HN
C ∩ L2

4.
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In [KST13], it is shown that in the periodic setup, the Birkhoff map of KdV is 1-smoothing. As
the map q 7→ S(q, ·) on the spaces considered can be viewed as a version of the Birkhoff map in the
scattering setup of KdV, Theorem 2.18 confirms that a result analogous to the one on the circle
holds also on the line.

The proof of Theorem 2.18 consists of several steps. We begin by proving item (i). Since
F− : L2

M → HM
C is bounded, item (i) will follow from the following proposition:

Proposition 2.20. Let M ∈ Z≥4, then the map L2
M 3 q 7→ S(q, ·) ∈ HM

ζ,C is analytic and

‖S(q, ·)‖HMζ,C ≤ KS ‖q‖L2
M
,

where KS > 0 can be chosen uniformly on bounded subsets of L2
M .

Proof. Recall that f1(q, x, k) = eikxm1(q, x, k) and f2(q, x, k) = e−ikxm2(q, x, k). The x-independence
of S(q, k) implies that

S(q, k) = [m1(q, 0, k), m2(q, 0,−k)] . (2.40)

As by Corollary 2.17, mj(q, 0, ·) − 1 ∈ HM
∗,C and ∂xmj(q, 0, ·) ∈ HM

ζ,C, j = 1, 2, the identity (2.40)
yields

S(q, k) =(m1(q, 0, k)− 1) ∂xm2(q, 0,−k)− (m2(q, 0,−k)− 1) ∂xm1(q, 0, k)

+ ∂xm2(q, 0,−k)− ∂xm1(q, 0, k) ,

thus S(q, ·) ∈ HM
ζ,C by (2.39). The estimate on the norm ‖S(q, ·)‖HMζ,C follows by Corollary 2.17.

Proof of Theorem 2.18 (i). The claim is a direct consequence of Proposition 2.20 and the
fact that for any real valued potential q, S(q, k) = S(q,−k), F−(q, k) = F−(q,−k) and hence
A(q, k) = A(q,−k) for any k ∈ R.

In order to prove the second item of Theorem 2.18, we expand the map q 7→ A(q) as a power series
of q. More precisely, iterate formula (2.34) and insert the formal expansion obtained in this way in
the integral term of (2.36), to get

S(q, k) = F−(q, k) +
∑
n≥1

sn(q, k)

kn
(2.41)

where, with dt = dt0 · · · dtn,

sn(q, k) :=

∫
∆n+1

eikt0q(t0)

n∏
j=1

(
q(tj) sin k(tj − tj−1)

)
eiktn dt (2.42)

is a polynomial of degree n+ 1 in q (cf Appendix B) and ∆n+1 is given by

∆n+1 :=
{

(t0, · · · , tn) ∈ Rn+1 : t0 ≤ · · · ≤ tn
}
.

Since by Proposition 2.20 S(q, ·) is in L2, it remains to control the decay of A(q, ·) in k at infinity.
Introduce a cut off function χ with χ(k) = 0 for |k| ≤ 1 and χ(k) = 1 for |k| > 2 and consider the
series

χ(k)S(q, k) = χ(k)F−(q, k) +
∑
n≥1

χ(k)sn(q, k)

kn
. (2.43)
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Item (ii) of Theorem 2.18 follows once we show that each term χ(k)sn(q,k)
kn of the series is bounded

as a map from HN
C ∩ L2

4 into L2
N+1 and the series has an infinite radius of convergence in L2

N+1.
Indeed the analyticity of the map then follows from general properties of analytic maps in complex
Banach spaces, see Remark 2.46.
In order to estimate the terms of the series, we need estimates on the maps k 7→ sn(q, k). A first
trivial bound is given by

‖sn(q, ·)‖L∞ ≤
1

(n+1)! ‖q‖
n+1
L1 . (2.44)

However, in order to prove convergence of (2.43), one needs more refined estimates of the norm of
k 7→ sn(q, k) in L2

N . In order to derive such estimates, we begin with a preliminary lemma about
oscillatory integrals:

Lemma 2.21. Let f ∈ L1(Rn,C) ∩ L2(Rn,C). Let α ∈ Rn, α 6= 0 and

g : R→ C, g(k) :=

∫
Rn
eikα·tf(t) dt.

Then g ∈ L2 and for any component αi 6= 0 one has

‖g‖L2 ≤
∫

Rn−1

( +∞∫
−∞

|f(t)|2 dti
)1/2

dt1 . . . d̂ti . . . dtn. (2.45)

Proof. The lemma is a variant of Parseval’s theorem for the Fourier transform; indeed

‖g‖2L2 =

∫
R
g(k) g(k) dk =

∫
R×Rn×Rn

eikα·(t−s)f(t)f(s) dt ds dk. (2.46)

Integrating first in the k variable and using the distributional identity
∫
R e

ikx dk = 1
2π δ0, where δ0

denotes the Dirac delta function, one gets

‖g‖2L2 =
1

2π

∫
Rn×Rn

f(t) f(s) δ(α · (t− s)) dt ds (2.47)

Choose an index i such that αi 6= 0; then α · (t − s) = 0 implies that si = ti + ci/αi, where
ci =

∑
j 6=i αj(tj − sj). Denoting dσi = dt1 · · · d̂ti · · · dtn and dσ̃i = ds1 · · · d̂si · · · dsn, one has,

integrating first in the variables si and ti,

‖g‖2L2 =
1

2π

∫
Rn−1×Rn−1

dσi dσ̃i

∫
R
f(t1, . . . , ti, . . . , tn)f(s1, . . . , ti + ci/αi, . . . , sn)dti

≤
∫

Rn−1×Rn−1

dσi dσ̃i

( +∞∫
−∞

|f(t)|2 dti
)1/2

·
( +∞∫
−∞

|f(s)|2 dsi
)1/2

≤
( ∫
Rn−1

dσ̃i

( +∞∫
−∞

|f(s)|2 dsi
)1/2)2

(2.48)
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where in the second line we have used the Cauchy-Schwarz inequality and the invariance of the

integral
+∞∫
−∞
|f(s1, . . . , ti + ci/αi, . . . , sn)|2 by translation.

To get bounds on the norm of the polynomials k 7→ sn(q, k) in L2
N it is convenient to study the

multilinear maps associated with them:

s̃n :
(
HN

C ∩ L1
)n+1 → L2

N ,

(f0, · · · , fn) 7→ s̃n(f0, · · · , fn) :=

∫
∆n+1

eikt0f0(t0)

n∏
j=1

(
fj(tj) sin(k(tj − tj−1))

)
eiktn dt .

The boundedness of these multilinear maps is given by the following

Lemma 2.22. For each n ≥ 1 and N ∈ Z≥0, s̃n : (HN
C ∩ L1)n+1 → L2

N is bounded. In particular
there exist constants Cn,N > 0 such that

‖s̃n(f0, . . . , fn)‖L2
N
≤ Cn,N ‖f0‖HNC ∩L1 · · · ‖fn‖HNC ∩L1 . (2.49)

For the proof, introduce the operators Ij : L1 → L∞, j = 1, 2, defined by

I1(f)(t) :=

+∞∫
t

f(s) ds I2(f)(t) :=

t∫
−∞

f(s) ds. (2.50)

It is easy to prove that if u, v ∈ HN
C ∩L1, then u Ij(v) ∈ HN

C ∩L1 and the estimate ‖u Ij(v)‖HNC ≤
‖u‖HNC ∩L1 ‖v‖HNC ∩L1 holds for j = 1, 2.

Proof of Lemma 2.22. As sinx = (eix − e−ix)/2i we can write eikt0
(∏n

j=1 sin k(tj − tj−1)
)
eiktn

as a sum of complex exponentials. Note that the arguments of the exponentials are obtained by
taking all the possible combinations of ± in the expression t0 ± (t1 − t0) ± . . . ± (tn − tn−1) + tn.
To handle this combinations, define the set

Λn :=
{
σ = (σj)1≤j≤n : σj ∈ {±1}

}
(2.51)

and introduce
δσ := #{1 ≤ j ≤ n : σj = −1}.

For any σ ∈ Λn, define ασ = (αj)0≤j≤n as

α0 = (1− σ1), αj = σj − σj+1 for 1 ≤ j ≤ n− 1, αn = 1 + σn.

Note that for any t = (t0, . . . , tn), one has ασ · t = t0 +
∑n
j=1 σj(tj − tj−1) + tn.

For every σ ∈ Λn, ασ satisfies the following properties:

(i) α0, αn ∈ {2, 0} , αj ∈ {0,±2} ∀1 ≤ j ≤ n− 1; (ii) # {j|αj 6= 0} is odd. (2.52)

Property (i) is obviously true; we prove now (ii) by induction. For n = 1, property (ii) is trivial.
To prove the induction step n n+ 1, let α0 = 1− σ1, . . . , αn = σn− σn+1, αn+1 = 1 + σn+1, and
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define α̃n := 1 + σn ∈ {0, 2}. By the induction hypothesis the vector α̃σ = (α0, . . . , αn−1, α̃n) has
an odd number of elements non zero. Case α̃n = 0: in this case the vector (α0, . . . , αn−1) has an
odd number of non zero elements. Then, since αn = σn−σn+1 = α̃n−αn+1 = −αn+1, one has that
(αn, αn+1) ∈ {(0, 0), (−2, 2)}. Therefore the vector ασ has an odd number of non zero elements.
Case α̃n = 2: in this case the vector (α0, . . . , αn−1) has an even number of non zero elements. As
αn = 2 − αn+1, it follows that (αn, αn+1) ∈ {(2, 0), (0, 2)}. Therefore the vector ασ has an odd
number of non zero elements. This proves (2.52).
As

eikt0
( n∏
j=1

sin k(tj − tj−1)
)
eiktn =

∑
σ∈Λn

(−1)δσ

(2i)n
eikα·t

s̃n can be written as a sum of complex exponentials, s̃n(f0, . . . , fn)(k) =
∑
σ∈Λn

(−1)δσ

(2i)n s̃n,σ(f0, . . . , fn)(k)

where
s̃n,σ(f0, . . . , fn)(k) =

∫
∆n+1

eikα·tf0(t0) · · · fn(tn)dt. (2.53)

The case N = 0 follows directly from Lemma 2.21, since for each σ ∈ Λn one has by (2.52) that
there exists m with αm 6= 0 implying ‖s̃n,σ(f0, . . . , fn)‖L2 ≤ C ‖fm‖L2

∏
j 6=m ‖fj‖L1 , which leads

to (2.49).
We now prove by induction that s̃n : (HN

C ∩L1)n+1 → L2
N for any N ≥ 1. We start with n = 1.

Since we have already proved that s̃1 is a bounded map from (L2 ∩ L1)2 to L2, it is enough to
establish the stated decay at ∞. One verifies that

s̃1(f0, f1) =
1

2i

+∞∫
−∞

e2ikt f0(t) I1(f1)(t) dt− 1

2i

+∞∫
−∞

e2ikt f1(t) I2(f0)(t) dt

=
1

2i
F−(f0 I1(f1))− 1

2i
F−(f1 I2(f0)).

Hence, for each N ∈ Z≥0, (f0, f1) 7→ s̃1(f0, f1) is bounded as a map from (HN
C ∩ L1)2 to L2

N .
Moreover

‖s̃1(f0, f1)‖L2
N
≤ C1

(
‖f0 I1(f1)‖HNC + ‖f1 I2(f0)‖HNC

)
≤ C1,N ‖f0‖HNC ∩L1 ‖f1‖HNC ∩L1 .

We prove the induction step n n+ 1 with n ≥ 1 for any N ≥ 1 (the case N = 0 has been already
treated). The term s̃n+1(f0, . . . , fn+1) equals∫

∆n+2

eikt0f0(t0)

n∏
j=1

(
sin k(tj − tj−1)fj(tj)

)
eiktn sin k(tn+1 − tn)eik(tn+1−tn)fn+1(tn+1) dt

where we multiplied and divided by the factor eiktn . Writing

sin k(tn+1 − tn) = (eik(tn+1−tn) − e−ik(tn+1−tn))/2i ,

the integral term
+∞∫
tn

eik(tn+1−tn) sin k(tn+1 − tn) fn+1(tn+1) dtn+1 equals

1

2i

+∞∫
tn

e2ik(tn+1−tn)fn+1(tn+1) dtn+1 −
1

2i
I1(fn+1)(tn).
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Since fn+1 ∈ HN
C , for 0 ≤ j ≤ N − 1 one gets f (j)

n+1 → 0 when x → ∞, where we wrote f (j)
n+1 ≡

∂jkfn+1. Integrating by parts N -times in the integral expression displayed above one has

1

2i

N−1∑
j=0

(−1)j+1

(2ik)j+1
f

(j)
n+1(tn) +

(−1)N

2i(2ik)N

+∞∫
tn

e2ik(tn+1−tn)f
(N)
n+1(tn+1) dtn+1 −

1

2i
I1(fn+1)(tn).

Inserting the formula above in the expression for s̃n+1, and using the multilinearity of s̃n+1 one
gets

s̃n+1(f0, . . . , fn+1) =
1

2i

N−1∑
j=0

(−1)j+1

(2ik)j+1
s̃n(f0, . . . , fn · f (j)

n+1)− 1

2i
s̃n(f0, . . . , fn I1(fn+1)) (2.54)

+
(−1)N

2i(2ik)N

∫
∆n+2

eikt0f0(t0)

n∏
j=1

(
sin k(tj − tj−1) fj(tj)

)
e2iktn+1f

(N)
n+1(tn+1) dtn+1. (2.55)

We analyze the first term in the r.h.s. of (2.54). For 0 ≤ j ≤ N − 1, the function f (j)
n+1 ∈ H

N−j
C

is in L∞ by the Sobolev embedding theorem. Therefore fn · f (j)
n+1 ∈ H

N−j
C ∩ L1. By the inductive

assumption applied to N − j, s̃n(f0, . . . , fn ·f (j)
n+1) ∈ L2

N−j . Therefore
χ

(2ik)j+1 s̃n(f0, . . . , fn ·f (j)
n+1) ∈

L2
N , where χ is chosen as in (2.43). For the second term in (2.54) it is enough to note that

fn I1(fn+1) ∈ HN
C ∩L1 and by the inductive assumption it follows that s̃n(f0, . . . , fn I1(fn+1)) ∈ L2

N .
We are left with (2.55). Due to the factor (2ik)N in the denominator, we need just to prove that
the integral term is L2 integrable in the k-variable. Since the oscillatory factor e2iktn+1 doesn’t
get canceled when we express the sine functions with exponentials, we can apply Lemma 2.21,
integrating first in L2 w.r. to the variable tn+1, getting

‖χ · (2.55)‖L2
N
≤ Cn+1,N

∥∥∥f (N)
n+1

∥∥∥
L2

n∏
j=0

‖fj‖L1 .

Putting all together, it follows that s̃n+1 is bounded as a map from (HN
C ∩ L1)n+2 to L2

N for
each N ∈ Z≥0 and the estimate (2.49) holds.

By evaluating the multilinear map s̃n on the diagonal, Lemma 2.22 says that for any N ≥ 0,

‖sn(q, ·)‖L2
N
≤ Cn,N ‖q‖n+1

HNC ∩L1 , ∀n ≥ 1. (2.56)

Combining the L∞ estimate (2.44) with (2.56) we can now prove item (ii) of Theorem 2.18:

Proof of Theorem 2.18 (ii). Let χ be the cut off function introduced in (2.43) and set

Ã(q, k) :=

∞∑
n=1

χ(k)sn(q, k)

kn
. (2.57)

We now show that for any ρ > 0, Ã(q, ·) is an absolutely and uniformly convergent series in L2
N+1

for q in Bρ(0), where Bρ(0) is the ball in HN
C ∩ L1 with center 0 and radius ρ. By (2.56) the map
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q 7→
∑N+1
n=1

χ(k)sn(q,k)
kn is analytic as a map from HN

C ∩L1 to L2
N+1, being a finite sum of polynomials

- cf. Remark 2.46. It remains to estimate the sum

ÃN+2(q, k) := Ã(q, k)−
N+1∑
n=1

χ(k)sn(q, k)

kn
.

It is absolutely convergent since by the L∞ estimate (2.44)∥∥∥∥∥∥
∑

n≥N+2

χsn(q, ·)
kn

∥∥∥∥∥∥
L2
N+1

≤
∑

n≥N+2

∥∥∥∥χ(k)

kn

∥∥∥∥
L2
N+1

‖sn(q, ·)‖L∞ ≤ C
∑

n≥N+2

‖q‖n+1
L1

(n+ 1)!
(2.58)

for an absolute constant C > 0. Therefore the series in (2.57) converges absolutely and uniformly
in Bρ(0) for every ρ > 0. The absolute and uniform convergence implies that for any N ≥ 0,
q 7→ Ã(q, ·) is analytic as a map from HN

C ∩ L1 to L2
N+1.

It remains to show that identity (2.43) holds, i.e., for every q ∈ HN
C ∩L1 one has χA(q, ·) = Ã(q, ·)

in L2
N+1. Indeed, fix q ∈ HN

C ∩ L1 and choose ρ such that ‖q‖HNC ∩L1 ≤ ρ. Iterate formula (2.34)
N ′ ≥ 1 times and insert the result in (2.36) to get for any k ∈ R \ {0},

S(q, k) = F−(q, k) +

N ′∑
n=1

sn(q, k)

kn
+ SN ′+1(q, k) ,

where

SN ′+1(q, k) :=
1

kN ′+1

∫
∆N′+2

eikt0q(t0)

N ′+1∏
j=1

(
q(tj) sin k(tj − tj−1)

)
f1(q, tN ′+1, k) dt .

By the definition (2.38) of A(q, k) and the expression of SN ′+1 displayed above

χ(k)A(q, k)−
N ′∑
n=1

χ(k)sn(q, k)

kn
= χ(k)SN ′+1(q, k), ∀N ′ ≥ 1 .

Let now N ′ ≥ N , then by Theorem 2.4 (ii) there exists a constant Kρ, which can be chosen
uniformly on Bρ(0) such that

‖χSN ′+1(q, ·)‖L2
N+1
≤ Kρ

‖q‖N
′+2

L1
1

(N ′ + 2)!
≤ Kρ

ρN
′+2

(N ′ + 2)!
→ 0, when N ′ →∞ ,

where for the last inequality we used that ‖q‖L1
1
≤ C ‖q‖L2

2
for some absolute constant C > 0. Since

limN ′→0

∑N ′

n=1
χ(k)sn(q,k)

kn = Ã(q, k) in L2
N+1, it follows that χ(k)A(q, k) = Ã(q, k) in L2

N+1.

For later use we study regularity and decay properties of the map k 7→W (q, k). For q ∈ L2
4 real

valued with no bound states it follows thatW (q, k) 6= 0, ∀ Im k ≥ 0 by classical results in scattering
theory. We define

QC :=
{
q ∈ L2

4 : W (q, k) 6= 0, ∀ Im k ≥ 0
}
, QN,MC := QC ∩HN

C ∩ L2
M . (2.59)
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We will prove in Lemma 2.25 below that QN,MC is open in HN
C ∩ L2

M . Finally consider the Banach
space WM

C defined for M ≥ 1 by

WM
C := {f ∈ L∞ : ∂kf ∈ HM−1

C } , (2.60)

endowed with the norm ‖f‖2WM
C

= ‖f‖2L∞ + ‖∂kf‖2HM−1
C

.
Note that HM

C ⊆WM
C for any M ≥ 1 and

gh ∈ HM
ζ,C ∀ g ∈ HM

ζ,C, ∀h ∈WM
C . (2.61)

The properties of the map W are summarized in the following Proposition:

Proposition 2.23. For M ∈ Z≥4 the following holds:

(i) The map L2
M 3 q 7→W (q, ·)− 2ik + F−(q, 0) ∈ HM

ζ,C is analytic and

‖W (q, ·)− 2ik + F−(q, 0)‖HMζ,C ≤ CW ‖q‖L2
M
,

where the constant CW > 0 can be chosen uniformly on bounded subsets of L2
M .

(ii) The map Q0,M
C 3 q 7→ 1/W (q, ·) ∈ L∞ is analytic.

(iii) The maps

Q0,M
C 3 q 7→

∂jkW (q, ·)
W (q, ·)

∈ L2 for 0 ≤ j ≤M − 1 and Q0,M
C 3 q 7→ ζ∂Mk W (q, ·)

W (q, ·)
∈ L2

are analytic. Here ζ is a function as in (2.8).

Proof. The x-independence of the Wronskian function (2.3) implies that

W (q, k) = 2ik m2(q, 0, k)m1(q, 0, k) + [m2(q, 0, k), m1(q, 0, k)]. (2.62)

Introduce for j = 1, 2 the functions m̀j(q, k) := 2ik (mj(q, 0, k)− 1). By the integral formula (2.13)
one verifies that

m̀1(q, k) =

+∞∫
0

(
e2ikt − 1

)
q(t) (m1(q, t, k)− 1) dt+

+∞∫
0

e2ikt q(t) dt−
+∞∫
0

q(t) dt;

m̀2(q, k) =

0∫
−∞

(
e−2ikt − 1

)
q(t) (m2(q, t, k)− 1) dt+

0∫
−∞

e−2ikt q(t) dt−
0∫

−∞

q(t) dt.

(2.63)

A simple computation using (2.62) shows that W (q, k)− 2ik + F−(q, 0) = I + II + III where

I := m̀1(q, k) + m̀2(q, k) + F−(q, 0),

II := m̀1(q, k)(m2(q, 0, k)− 1) and III := [m2(q, 0, k),m1(q, 0, k)].
(2.64)

We prove now that each of the terms I, II and III displayed above is an element of HM
ζ,C. We begin

by discussing the smoothness of the functions k 7→ m̀j(q, k), j = 1, 2. For any 1 ≤ n ≤M,

∂nk m̀j(q, k) = 2in ∂n−1
k (mj(q, 0, k)− 1) + 2ik ∂nkmj(q, 0, k) .
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Thus by Corollary 2.17 (i), m̀j(q, ·) ∈WM
C and q 7→ m̀j(q, ·), j = 1, 2, are analytic as maps from L2

M

to WM
C . Consider first the term III in (2.64). By Corollary 2.17, ‖III(q, ·)‖HMζ,C ≤ KIII ‖q‖L2

M
,

where KIII > 0 can be chosen uniformly on bounded subsets of L2
M . Arguing as in the proof of

Proposition 2.20, one shows that it is an element of HM
ζ,C and it is analytic as a map L2

M → HM
ζ,C.

Next consider the term II. Since m̀1(q, ·) is in WM
C and m2(q, 0, ·) − 1 is in HM

ζ,C, it follows by
(2.61) that their product is in HM

ζ,C. It is left to the reader to show that L2
M → HM

ζ,C , q 7→ II(q) is
analytic and furthermore ‖II(q, ·)‖HMζ,C ≤ KII ‖q‖L2

M
, where KII > 0 can be chosen uniformly on

bounded subsets of L2
M .

Finally let us consider term I. By summing the identities for m̀1 and m̀2 in equation (2.63), one
gets that

m̀1(q, k) + m̀2(q, k) + F−(q, 0) =

+∞∫
0

e2ikt q(t)m1(q, t, k) dt−
+∞∫
0

q(t) (m1(q, t, k)− 1) dt

+

0∫
−∞

e−2ikt q(t)m2(q, t, k)−
0∫

−∞

q(t) (m2(q, t, k)− 1) dt.

(2.65)

We study just the first line displayed above, the second being treated analogously. By equation

(2.28) one has that
+∞∫
0

e2ikt q(t)m1(q, t, k) dt = ∂xm(q, 0, k), which by Corollary 2.17 is an element

of HM
ζ,C and analytic as a function L2

M → HM
ζ,C. Furthermore, by Proposition 2.10 and Proposition

2.13 it follows that k 7→
+∞∫
0

q(t) (m1(q, t, k) − 1) dt is an element of HM
ζ,C and it is analytic as a

function L2
M → HM

ζ,C. This proves item (i). By Corollary 2.17, it follows that ‖I(q, ·)‖HMζ,C ≤
KI ‖q‖L2

M
, where KI > 0 can be chosen uniformly on bounded subsets of L2

M .
We prove now item (ii). By the definition ofQC, for q ∈ Q0,4

C the functionW (q, k) 6= 0 for any k with
Im k ≥ 0. By Proposition 2.20 (ii) and the condition M ≥ 4, it follows that W (q, k) = 2ik + L∞;
therefore the map Q0,M

C 3 q 7→ 1/W (q) ∈ L2 is analytic.
Item (iii) follows immediately from item (i) and (ii).

Lemma 2.24. For any q ∈ Q0,4, W (q, 0) < 0.

Proof. Let q ∈ Q0,4 and κ ≥ 0. By formulas (2.34) and (2.35) with k = iκ, it follows that fj(q, x, iκ)
(j = 1, 2) is real valued (recall that q is real valued). By the definition W (q, iκ) = [f2, f1] (q, iκ) it
follows that for κ ≥ 0, W (q, iκ) is real valued. As q is generic, W (q, iκ) has no zeroes for κ ≥ 0.
Furthermore for large κ we have W (q, iκ) ∼ 2i(iκ) = −2κ. Thus W (q, iκ) < 0 for κ ≥ 0.

We are now able to prove the direct scattering part of Theorem 2.1.

Proof of Theorem 2.1: direct scattering part. Let N ≥ 0, M ≥ 4 be fixed integers. First we remark
that S(q, ·) is an element of SM,N if q ∈ QN,M . By (2.32), S(q, ·) satisfies (S1). To see that
S(q, 0) > 0 recall that S(q, 0) = −W (q, 0), and by Lemma 2.24 W (q, 0) < 0. Thus S(q, ·) satisfies
(S2). Finally by Corollary 2.19 and Proposition 2.20 it follows that S(q, ·) ∈ SM,N . The analyticity
properties of the map q 7→ S(q, ·) and q 7→ A(q, ·) follow by Corollary 2.19, Proposition 2.20 and
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Theorem 2.18.

We conclude this section with a lemma about the openness of QN,M and SM,N .

Lemma 2.25. For any integers N ≥ 0, M ≥ 4, QN,M [QN,MC ] is open in HN ∩ L2
M [HN

C ∩ L2
M ].

Proof. The proof can be found in [KT88]; we sketch it here for the reader’s convenience. By a
classical result in scattering theory [DT79], W (q, k) admits an analytic extension to the upper
plane Im k ≥ 0. By definition (2.59) one has QC = {q ∈ L2

4 : W (q, k) 6= 0 ∀ Im k ≥ 0}. Using
that (q, k) 7→ W (q, k) is continuous on L2

4 × R and that by Proposition 2.23, ‖W (q, ·)− 2ik‖L∞ is
bounded locally uniformly in q ∈ L2

4 one sees that QC is open in L2
4. The remaining statements

follow in a similar fashion.

Denote by HM
ζ,C the complexification of the Banach space HM

ζ , in which the reality condition
f(k) = f(−k) is dropped:

HM
ζ,C := {f ∈ HM−1

C : ζ∂Mk f ∈ L2}. (2.66)

On HM
ζ,C ∩ L2

N with M ≥ 4, N ≥ 0, define the linear functional

Γ0 : HM
ζ,C ∩ L2

N → C, h 7→ h(0).

By the Sobolev embedding theorem Γ0 is a linear analytic map on HM
ζ,C ∩ L2

N . In view of the
definition (2.9), SM,N ⊆ HM

ζ . Furthermore denote by SM,N
C the complexification of SM,N . It

consists of functions σ : R→ C with <(σ(0)) > 0 and σ ∈ HM
ζ,C ∩ L2

N .
In the following we denote by Cn,γ(R,C), with n ∈ Z≥0 and 0 < γ ≤ 1, the space of complex-
valued functions with n continuous derivatives such that the nth derivative is Hölder continuous
with exponent γ.

Lemma 2.26. For any integers M ≥ 4, N ≥ 0 the subset SM,N [SM,N
C ] is open in HM

ζ ∩ L2
N

[HM
ζ,C ∩ L2

N ].

Proof. Clearly H4
ζ,C ⊆ H3

C, and by the Sobolev embedding theorem H3
C ↪→ C2,γ(R,C) for any

0 < γ < 1/2. It follows that σ → σ(0) is a continuous functional on H4
ζ,C. In view of the definition

of SM,N , the claimed statement follows.

4 Inverse scattering map
The aim of this section is to prove the inverse scattering part of Theorem 2.1. More precisely we
prove the following theorem.

Theorem 2.27. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. Then the scattering map S : QN,M → SM,N

is bijective. Its inverse S−1 : SM,N → QN,M is real analytic.

The smoothing and analytic properties of B := S−1 − F−1
− claimed in Theorem 2.1 follow now

in a straightforward way from Theorem 2.27 and 2.18.
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Proof of Theorem 2.1: inverse scattering part. By Theorem 2.27, S−1 : SM,N → QN,M is well
defined and real analytic. As by definition B = S−1 − F−1

− and S = F− + A one has B ◦ S =

Id−F−1
− ◦ S = −F−1

− ◦A or
B = −F−1

− ◦A ◦ S−1 .

Hence, by Theorem 2.18 and Theorem 2.27, for any M ∈ Z≥4 and N ∈ Z≥0 the restriction
B : SM,N → HN+1 ∩ L2

M−1 is a real analytic map.

The rest of the section is devoted to the proof of Theorem 2.27. By the direct scattering part
of Theorem 2.1 proved in Section 3, S(QN,M ) ⊆ SM,N . Furthermore, the map S : Q → S is 1-1,
see [KT86, Section 4]. Thus also its restriction S|QN,M : QN,M → SM,N is 1-1.

Let us denote by H : L2 → L2 the Hilbert transform

H(v)(k) := − 1

π
p. v.

∫ ∞
−∞

v(k′)

k′ − k
dk′ . (2.67)

We collect in Appendix E some well known properties of the Hilbert transform which will be
exploited in the following.

In order to prove that S : QN,M → SM,N is onto, we need some preparation. Following [KT86]
define for σ ∈ SM,N ,

ω(σ, k) := exp

(
1

2
l(σ, k) +

i

2
H(l(σ, ·))(k)

)
, l(σ, k) := log

(
4(k2 + 1)

4k2 + σ(k)σ(−k)

)
, k ∈ R (2.68)

and
1

w(σ, k)
:=

ω(σ, k)

2i(k + i)
, τ(σ, k) :=

2ik

w(σ, k)
,

ρ+(σ, k) :=
σ(−k)

w(σ, k)
, ρ−(σ, k) :=

σ(k)

w(σ, k)
.

(2.69)

The aim is to show that ρ+(σ, ·), ρ−(σ, ·) and τ(σ, ·) are the scattering data r+, r− and t of a
potential q ∈ QN,M .

In the next proposition we discuss the properties of the map σ → l(σ, ·). To this aim we
introduce, for M ∈ Z≥2 and ζ as in (2.8), the auxiliary Banach space

WM
ζ := {f ∈ L∞ : f(k) = f(−k), ∂nk f ∈ L2 for 1 ≤ n ≤M − 1 , ζ∂Mk f ∈ L2} (2.70)

and its complexification

WM
ζ,C := {f ∈ L∞ : ∂nk f ∈ L2 for 1 ≤ n ≤M − 1 , ζ∂Mk f ∈ L2} , (2.71)

both endowed with the norm ‖f‖2WM
ζ,C

:= ‖f‖2L∞ + ‖∂kf‖2HM−2
C

+
∥∥ζ∂Mk f∥∥2

L2 .

Proposition 2.28. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. The map SM,N → HM
ζ , σ → l(σ, ·) is

real analytic.

Proof. Denote by

h(σ, k) :=
4(k2 + 1)

4k2 + σ(k)σ(−k)
.
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We show that the map SM,N → WM
ζ , σ → h(σ, ·) is real analytic. First note that the map

SM,N
C → L∞, assigning to σ the function σ(k)σ(−k) is analytic by the Sobolev embedding theorem.

For σ ∈ SM,N
C write σ = σ1 + iσ2, where σ1 := <σ, σ2 := Imσ. Then

<(σ(k)σ(−k)) = σ1(k)σ1(−k)− σ2(k)σ2(−k) . (2.72)

Now fix σ0 ∈ SM,N and recall that SM,N = S ∩HM
ζ ∩ L2

N . Remark that σ0
2 := Imσ0 = 0, while

σ0
1 := <σ0 satisfies σ0

1(k)σ0
1(−k) ≥ 0 and σ0

1(0)2 > 0. Thus, by formula (2.72) and the Sobolev
embedding theorem, there exists Vσ0 ⊂ SM,N

C small complex neighborhood of σ0 and a constant
Cσ0 such that

<(4k2 + σ(k)σ(−k)) > Cσ0 , ∀σ ∈ Vσ0 .

It follows that there exist constants C1, C2 > 0 such that

<h(σ, k) ≥ C1 , |h(σ, k)| ≤ C2 , ∀k ∈ R, ∀σ ∈ Vσ0 , (2.73)

implying that the map Vσ0 → L∞, σ → h(σ, ·) is analytic. In a similar way one proves that
Vσ0 → WM

ζ,C, σ 7→ h(σ, ·) is analytic (we omit the details). If σ(k) = σ(−k), the function h(σ, ·) is
real valued. Thus it follows that SM,N →WM

ζ , σ → h(σ, ·) is real analytic.
We consider now the map σ → l(σ, ·). By (2.73), l(σ, k) = log(h(σ, k)) is well defined for

every k ∈ R. Since the logarithm is a real analytic function on the right half plane, the map
SM,N → L∞, σ → l(σ, ·) is real analytic as well. Furthermore for |k| > 1 one finds a constant
C3 > 0 such that |l(σ, k)| ≤ C3/|k|2, ∀σ ∈ Vσ0 . Thus σ → l(σ, ·) is real analytic as a map from
SM,N to L2. One verifies that ∂k log(h(σ, ·)) = ∂kh(σ,·)

h(σ,·) is in L2 and one shows by induction that
the map SM,N → HM

ζ , σ 7→ l(σ, ·) is real analytic.

In the next proposition we discuss the properties of the map σ → ω(σ, ·).

Proposition 2.29. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. The map SM,N → WM
ζ , σ → ω(σ, ·) is

real analytic. Furthermore ω(σ, ·) has the following properties:

(i) ω(σ, k) extends analytically in the upper half plane Im k > 0, and it has no zeroes in Im k ≥ 0.

(ii) ω(σ, k) = ω(σ,−k) ∀k ∈ R.

(iii) For every k ∈ R

ω(σ, k)ω(σ,−k) =
4(k2 + 1)

4k2 + σ(k)σ(−k)
.

Proof. By Lemma 2.60, the Hilbert transform is a bounded linear operator from HM
ζ,C to HM

ζ,C. By
Proposition 2.28 it then follows that the map

SM,N → HM
ζ , σ 7→ H(l(σ, ·))

is real analytic as well. Since the exponential function is real analytic and ∂kω(σ, ·) = 1
2∂k(l(σ, ·) +

iH(l(σ, ·)))ω(σ, ·), one proves by induction that SM,N → WM
ζ , σ → ω(σ, ·) is real analytic. Prop-

erties (i)–(iii) are proved in [KT86, Section 4].

Next we consider the map σ → 1
w(σ,·) . The following proposition follows immediately from

Proposition 2.29 and the definition 1
w(σ,k) = ω(σ,k)

2i(k+i) .
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Proposition 2.30. The map SM,N → HM−1
C , σ → 1

w(σ,·) is real analytic. Furthermore the maps

SM,N → L2 , σ → ∂nk
2ik

w(σ, ·)
, 1 ≤ n ≤M

are real analytic. The function 1
w(σ,·) fulfills

(i)
(

1
w(σ,k)

)
= 1

w(σ,−k) for every k ∈ R.

(ii)
∣∣∣ 2ik
w(σ,k)

∣∣∣ ≤ 1 for every k ∈ R.

(iii) For every k ∈ R
w(σ, k)w(σ,−k) = 4k2 + σ(k)σ(−k) .

In particular |w(σ, k)| > 0 for every k ∈ R and σ ∈ SM,N .

Now we study the properties of ρ+(σ, ·) and ρ−(σ, ·) defined in formulas (2.69).

Proposition 2.31. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. Then the maps SM,N → HM
ζ ∩ L2

N ,
σ → ρ±(σ, ·) are real analytic. There exists C > 0 so that ‖ρ±(σ, ·)‖HMζ,C∩L2

N
≤ C ‖σ‖HMζ ∩L2

N
, where

C depends locally uniformly on σ ∈ SM,N . Furthermore the following holds:

(i) unitarity: τ(σ, k)τ(σ,−k) + ρ±(σ, k)ρ±(σ,−k) = 1 and ρ+(σ, k)τ(σ, k) + ρ−(σ, k)τ(σ, k) = 0
for every k ∈ R .

(ii) reality: τ(σ, k) = τ(σ,−k), ρ±(σ, k) = ρ±(σ,−k);

(iii) analyticity: τ(σ, k) admits an analytic extension to {Im k > 0};

(iv) asymptotics: τ(σ, z) = 1 + O(1/|z|) as |z| → ∞, Im z ≥ 0, and ρ±(σ, k) = O(1/k), as
|k| → ∞, k real;

(v) rate at k = 0: |τ(σ, z)| > 0 for z 6= 0, Im z ≥ 0 and |ρ±(σ, k)| < 1 for k 6= 0. Furthermore

τ(σ, z) =αz + o(z), α 6= 0, Im z ≥ 0

1 + ρ±(σ, k) =β±k + o(k), k ∈ R;

Proof. The real analyticity of the maps SM,N → HM
ζ ∩L2

N , σ → ρ±(σ, ·) follows from Proposition
2.30 and the definition ρ±(σ, k) = σ(∓, k)/w(σ, k) (see also the proof of Proposition 2.32). Since
σ 7→ 1

w(σ,·) is real analytic, it is locally bounded, i.e., there exists C > 0 so that ‖ρ±(σ, ·)‖HMζ,C∩L2
N
≤

C ‖σ‖HMζ ∩L2
N
, where C depends locally uniformly on σ ∈ SM,N . Properties (i), (ii), (v) follow now

by simple computations. Property (iii)− (iv) are proved in [KT86, Lemma 4.1].

Finally define the functions
R±(σ, k) := 2ikρ±(σ, k) . (2.74)

Proposition 2.32. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. Then the maps SM,N → HM
C ∩ L2

N ,
σ → R±(σ, ·) are real analytic. There exists C > 0 so that ‖R±(σ, ·)‖HMC ∩L2

N
≤ C ‖σ‖HMζ ∩L2

N
,

where C depends locally uniformly on σ ∈ SM,N . Furthermore the following holds:
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(i) R±(σ, k) = R±(σ,−k) for every k ∈ R.

(ii) |R±(σ, k)| < 2|k| for any k ∈ R \ {0}.

Proof. In order to prove the statements, we will use that R±(σ, k) = 2ik σ(∓k)
w(σ,k) . We will consider just

R−, since the analysis for R+ is identical. To simplify the notation, we will denote R−(σ, ·) ≡ R(σ, ·).
By Proposition 2.30(ii), |R(σ, k)| ≤ |σ(k)| , thus R(σ, ·) ∈ L2

N . In order to prove that R(σ, ·) ∈
HM

C , take n derivatives (1 ≤ n ≤M) of R(σ, ·) to get the identity

∂nkR(σ, k) =
2ik

w(σ, k)
∂nk σ(k) +

n−1∑
j=1

(
n

j

)(
∂jk

2ik

w(σ, k)

)
∂n−jk σ(k) +

(
∂nk

2ik

w(σ, k)

)
σ(k) . (2.75)

We show now that each term of the r.h.s. of the identity above is in L2. Consider first the term
I1 := 2ik

w(σ,k)∂
n
k σ(k). If 1 ≤ n < M , then ∂nk σ ∈ L2 and |2ik/w(σ, k)| ≤ 1, thus proving that I1 ∈ L2.

If n = M , let χ be a smooth cut-off function with χ(k) ≡ 1 in [−1, 1] and χ(k) ≡ 0 in R \ [−2, 2].
Then one has

I1 =
1

w(σ, k)
χ(k)2ik∂Mk σ(k) +

2ik

w(σ, k)
(1− χ(k))∂Mk σ(k) .

As σ ∈ SM,N it follows that k 7→ χ(k)2ik∂Mk σ(k) and k 7→ (1 − χ(k))∂Mk σ(k) are in L2. By
Proposition 2.30, 1

w(σ,·) and 2ik
w(σ,·) are in L∞. Altogether it follows that I1 ∈ L2 for any 1 ≤ n ≤M .

Consider now I2 :=
∑n−1
j=1

(
n
j

) (
∂jk

2ik
w(σ,k)

)
∂n−jk σ(k). By Proposition 2.30,

(
∂jk

2ik
w(σ,k)

)
∈ H1

C

for every 1 ≤ j ≤ M − 1, thus by the Sobolev embedding theorem
(
∂jk

2ik
w(σ,k)

)
∈ L∞ for every

1 ≤ j ≤M − 1. As ∂n−jk σ ∈ L2 for 1 ≤ j ≤ n− 1 < M , it follows that I2 ∈ L2 for any 1 ≤ n ≤M .
Finally consider I3 :=

(
∂nk

2ik
w(σ,k)

)
σ(k). By Proposition 2.30,

(
∂nk

2ik
w(σ,k)

)
∈ L2 for any 1 ≤ n ≤

M . Since σ ∈ L∞, I3 ∈ L2 for any 1 ≤ n ≤M .
Altogether we proved that R(σ, ·) ∈ HM

C ∩ L2
N . The claimed estimate on ‖R(σ, ·)‖HMC ∩L2

N
and

item (i) and (ii) follow in a straightforward way. The real analyticity of the map SM,N → HM
C ∩L2

N ,
σ → R(σ, ·) follows by Proposition 2.30.

For σ ∈ SM,N , define the Fourier transforms

F±(σ, y) := F−1
± (ρ±(σ, ·))(y) =

1

π

∫
R
ρ±(σ, k)e±2ikydk . (2.76)

Then

±∂yF±(σ, y) =
1

π

+∞∫
−∞

2ikρ±(σ, k)e±2iky dk = F−1
± (R±(σ, ·))(y) . (2.77)

In the next proposition we analyze the properties of the maps σ 7→ F±(σ, ·).

Proposition 2.33. Let N ∈ Z≥0 and M ∈ Z≥4 be fixed. Then the following holds true:

(i) σ 7→ F±(σ, ·) are real analytic as maps from S 4,0 to H1 ∩ L2
3. Moreover there exists C > 0

so that ‖F±(σ, ·)‖H1∩L2
3
≤ C ‖σ‖HMζ , where C depends locally uniformly on σ ∈ SM,N .
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(ii) σ 7→ F ′±(σ, ·) are real analytic as maps from SM,N to HN ∩L2
M . Moreover there exists C ′ > 0

so that
∥∥F ′±(σ, ·)

∥∥
HN∩L2

M

≤ C ′ ‖σ‖HMζ ∩L2
N
, where C ′ depends locally uniformly on σ ∈ SM,N .

Proof. By Proposition 2.31, the map S 4,0 → H3
C ∩L2

1, σ → ρ±(σ, ·) is real analytic. Thus item (i)
follows by the properties of the Fourier transform. By Proposition 2.31 (ii), F±(σ, ·) = F−1

± (ρ±) is
real valued. Item (ii) follows from (2.77) and the characterizations

R± ∈ HM
C ⇐⇒ F−1

± (R±) ∈ L2
M and R± ∈ L2

N ⇐⇒ F−1
± (R±) ∈ HN

C . (2.78)

The claimed estimates follow from the properties of the Fourier transform, Proposition 2.31 and
Proposition 2.32.

We are finally able to prove that there exists a potential q ∈ Q with prescribed scattering
coefficient σ ∈ SM,N . More precisely the following theorem holds.

Theorem 2.34. Let N ∈ Z≥0, M ∈ Z≥4 and σ ∈ SM,N be fixed. Then there exists a potential
q ∈ Q such that S(q, ·) = σ.

Proof. Let ρ± := ρ±(σ, ·) and τ := τ(σ, ·) be given by formula (2.69). Let F±(σ, ·) be defined as
in (2.76). By Proposition 2.33 it follows that F±(σ, ·) are absolutely continuous and F ′±(σ, ·) ∈
HN ∩ L2

M . As M ≥ 4 it follows that∫ ∞
−∞

(1 + x2)|F ′±(σ, x)| dx <∞ . (2.79)

The main theorem in inverse scattering [Fad64] assures that if (2.79) and item (i)–(v) of Proposition
2.32 hold, then there exists a potential q ∈ Q such that r±(q, ·) = ρ± and t(q, ·) = τ , where r± and
t are the reflection respectively transmission coefficients defined in (2.5). From the formulas (2.69)
it follows that S(q, ·) = σ.

It remains to show that q ∈ QN,M and that the map S−1 : SM,N → QN,M is real analytic. We
take here a different approach then [KT86]. In [KT86] the authors show that the map S is complex
differentiable and its differential dqS is bounded invertible. Here instead we reconstruct q by solving
the Gelfand-Levitan-Marchenko equations and we show that the inverse map SM,N → QN,M ,
σ 7→ q is real analytic. We outline briefly the procedure. Given two reflection coefficients ρ±
satisfying items (i)–(v) of Proposition 2.31 and arbitrary real numbers c+ ≤ c−, it is possible to
construct a potential q+ on [c+,∞) using ρ+ and a potential q− on (−∞, c−] using ρ−, such that q+

and q− coincide on the intersection of their domains, i.e., q+|[c+,c−] = q−|[c+,c−]. Hence q defined
on R by q|[c+,+∞) = q+ and q|(−∞,c−] = q− is well defined, q ∈ Q and r±(q, ·) = ρ±, i.e., ρ+ and
ρ− are the reflection coefficients of the potential q [Fad64, Mar86, DT79]. We postpone the details
of this procedure to the next section.

4.1 Gelfand-Levitan-Marchenko equation
In this section we prove how to construct for any σ ∈ SM,N two potentials q+ and q− with
q+ ∈ HN

x≥c ∩ L2
M,x≥c respectively q− ∈ HN

x≤c ∩ L2
M,x≤c, where for any c ∈ R and 1 ≤ p ≤ ∞

Lpx≥c :=
{
f : [c,+∞)→ C : ‖f‖Lp

x≥c
<∞

}
, (2.80)
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where ‖f‖Lp
x≥c

:=
(∫ +∞

c
|f(x)|p dx

)1/p

for 1 ≤ p < ∞ and ‖f‖L∞
x≥c

:= ess supx≥c |f(x)|. For any
integer N ≥ 1 define

HN
x≥c :=

{
f : [c,+∞)→ R : ‖f‖HN

x≥c
<∞

}
, ‖f‖2HN

x≥c
:=

N∑
j=0

‖∂nxf‖
2
L2
x≥c

, (2.81)

and for any real number M ≥ 1 define

L2
M,x≥c :=

{
f : [c,+∞)→ C : ‖f‖L2

M,x≥c
<∞

}
, ‖f‖L2

M,x≥c
=
∥∥〈x〉Mf∥∥

L2
x≥c

, (2.82)

where 〈x〉 := (1+x2)1/2. We will write HN
C,x≥c for the complexification of HN

x≥c. For 1 ≤ α, β ≤ ∞,
we define

Lαx≥cL
β
y≥0 :=

{
f : [c,+∞)× [0,+∞)→ C : ‖f‖Lα

x≥cL
β
y≥0

<∞
}
,

where ‖f‖Lα
x≥cL

β
y≥0

:=
( ∫ +∞

c
‖f(x, ·)‖αLβ

y≥0
dx
)1/α

. Analogously one defines the spaces Lpx≤c, H
N
x≤c,

L2
M,x≤c and L

α
x≤cL

β
y≤0, mutatis mutandis.

Let us denote by C0
y≥0 := C0([0,∞),C) and by C0

x≥c,y≥0 := C0([c,∞) × [0,∞),C). Finally we
denote by C0

x≥cL
2
y≥0 := C0([c,∞), L2

y≥0) the set of continuous functions on [c,∞) taking value in
L2
y≥0.

The potentials q+ and q− mentioned at the beginning of this section are constructed by solving
an integral equation, known in literature as the Gelfand-Levitan-Marchenko equation, which we are
now going to described in more detail.

Given σ ∈ S , define the functions F±(σ, ·) as in (2.76). See Proposition 2.33 for the analytical
properties of the maps σ → F±(σ, ·). To have a more compact notation, in the following we will
denote F±,σ := F±(σ, ·).

Remark 2.35. From the decay properties of F ′±,σ one deduces corresponding decay properties of
F±,σ. Indeed one has

〈x〉m F ′± ∈ L2
x≥c ⇒ 〈x〉m−1F ′± ∈ L1

x≥c ⇒ xm−2F± ∈ L1
x≥c , ∀m ≥ 2 . (2.83)

The Gelfand-Levitan-Marchenko equations are the integral equations given by

F+,σ(x+ y) + E+,σ(x, y) +

+∞∫
0

F+,σ(x+ y + z)E+,σ(x, z)dz = 0, y ≥ 0 (2.84)

F−,σ(x+ y) + E−,σ(x, y) +

0∫
−∞

F−,σ(x+ y + z)E−,σ(x, z)dz = 0, y ≤ 0 (2.85)

where E±,σ(x, y) are the unknown functions and F±,σ are given and uniquely determined by σ
through formula (2.76). If (2.84) and (2.85) have solutions with enough regularity, then one defines
the potentials q+ and q− through the well-known formula – [Fad64]

q+(x) = −∂xE+,σ(x, 0), ∀ c+ ≤ x <∞ , q−(x) = ∂xE−,σ(x, 0), ∀ −∞ < x ≤ c− .
(2.86)
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The main purpose of this section is to study the maps R±,c defined by

σ 7→ R±,c(σ), R±,c(σ)(x) := ∓∂xE±,σ(x, 0), x ∈ [c,±∞) . (2.87)

Theorem 2.36. Fix N ∈ Z≥0, M ∈ Z≥4 and c ∈ R. Then the maps R+,c [R−,c] are well defined
on SM,N and take values in HN

x≥c ∩ L2
M,x≥c [HN

x≤c ∩ L2
M,x≤c]. As such they are real analytic.

In order to prove Theorem 2.36 we look for solutions of (2.84) and (2.85) of the form

E±,σ(x, y) ≡ −F±,σ(x+ y) +B±,σ(x, y) (2.88)

where B±,σ(x, y) are to be determined. Inserting the ansatz (2.88) into the Gelfand-Levitan-
Marchenko equations (2.84), (2.85), one gets

B+,σ(x, y) +

+∞∫
0

F+,σ(x+ y + z)B+,σ(x, z)dz =

+∞∫
0

F+,σ(x+ y + z)F+,σ(x+ z) dz, y ≥ 0 ,

(2.89)

B−,σ(x, y) +

0∫
−∞

F−,σ(x+ y + z)B−,σ(x, z)dz =

0∫
−∞

F−,σ(x+ y + z)F−,σ(x+ z) dz, y ≤ 0.

(2.90)

We will prove in Lemma 2.38 below that there exists a solution B+,σ of (2.89) and a solution B−,σ
of (2.90) with ∂xB+,σ(·, 0) ∈ H1

x≥c respectively ∂xB−,σ(·, 0) ∈ H1
x≤c. By (2.86) we get therefore

q+ = ∂xF+,σ − ∂xB+,σ(·, 0) ∀ c ≤ x <∞, q− = −∂xF−,σ + ∂xB−,σ(·, 0) ∀ −∞ < x ≤ c .
(2.91)

Define the maps
B±,c : σ 7→ B±,c(σ)

as

B+,c(σ)(x) := −∂xB+,σ(x, 0) ∀x ≥ c and B−,c(σ)(x) := ∂xB−,σ(x, 0) ∀x ≤ c , (2.92)

with B±,σ(x, y) := E±,σ(x, y) + F±,σ(x, y) as in (2.88). Now we study analytic properties of the
maps B±,c in case the scattering coefficient σ belongs to S 4,N with arbitrary N ∈ Z≥0. Later we
will treat the case where σ ∈ SM,0, M ∈ Z≥4.

Proposition 2.37. Fix N ∈ Z≥0 and c ∈ R. Then B+,c [B−,c] is real analytic as a map from
S 4,N to HN

x≥c [HN
x≤c]. Moreover

‖B+,c(σ)‖HN
x≥c

, ‖B−,c(σ)‖HN
x≤c
≤ K ‖σ‖2H4

ζ,C∩L
2
N

where K > 0 is a constant which can be chosen locally uniformly in σ ∈ S 4,N .

The main ingredient of the proof of Proposition 2.37 is a detailed analysis of the solutions of
the integral equations (2.89)-(2.90), which we rewrite as(

Id+K±x,σ
)

[B±,σ(x, ·)](y) = f±,σ(x, y) (2.93)
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where for every x ∈ R fixed, the two operators K+
x,σ : L2

y≥0 → L2
y≥0 and K−x,σ : L2

y≤0 → L2
y≤0 are

defined by

K+
x,σ [f ](y) :=

+∞∫
0

F+,σ(x+ y + z)f(z) dz , f ∈ L2
y≥0 , (2.94)

K−x,σ [f ](y) :=

0∫
−∞

F−,σ(x+ y + z)f(z) dz , f ∈ L2
y≤0 , (2.95)

and the functions f±,σ are defined by

f±,σ(x, y) := ±
±∞∫
0

F±,σ(x+ y + z)F±,σ(x+ z) dz . (2.96)

As the claimed statements for B+,c and B−,c can be proved in a similar way we consider B+,c

only. To simplify notation, in the following we omit the subscript ” + ”. In particular we write
Bσ ≡ B+,σ, Fσ ≡ F+,σ, fσ ≡ f+,σ and Kx,σ ≡ K+

x,σ.

We give the following definition: a function hσ : [c,∞)× [0,∞)→ R, which depends on σ ∈ S 4,N ,
will be said to satisfy (P ) if the following holds true:

(P1) hσ ∈ C0
x≥cL

2
y≥0 ∩ L2

x≥cL
2
y≥0 ∩ C0

x≥c,y≥0. Finally hσ(·, 0) ∈ L2
x≥c.

(P2) There exists a constant Kc > 0, which depends locally uniformly on σ ∈ H4
ζ,C∩L2

N , such that

‖hσ‖L2
x≥cL

2
y≥0

+ ‖hσ(·, 0)‖L2
x≥c
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. (2.97)

(P3) σ 7→ hσ [σ 7→ hσ(·, 0)] is real analytic as a map from S 4,N to L2
x≥cL

2
y≥0 [L2

x≥c].

We have the following lemma:

Lemma 2.38. Fix N ≥ 0 and c ∈ R. For every σ ∈ S 4,N equation (2.89) has a unique solution
Bσ ∈ C0

x≥cL
2
y≥0 ∩ L2

x≥cL
2
y≥0. Moreover for all integers n1, n2 ≥ 0 with n1 + n2 ≤ N + 1 , the

function ∂n1
x ∂n2

y Bσ satisfies (P ).

Proof. Let N ∈ Z≥0 and c ∈ R be fixed. The proof is by induction on j1 + j2 = n, 0 ≤ n ≤ N .
For each n we prove that ∂j1x ∂j2y Bσ and its derivatives ∂j1+1

x ∂j2y Bσ, ∂j1x ∂j2+1
y Bσ satisfy (P ). Thus

the claim follows.
Case n = 0. Then j1 = j2 = 0. We need to prove existence and uniqueness of the solution

of equation (2.93). By Lemma 2.55 [Proposition 2.33 and Lemma 2.54] the function fσ and its
derivatives ∂xfσ, ∂yfσ [Fσ] satisfy assumption (P ) [(H)– cf Appendix C]. Thus by Lemma 2.53
(i) it follows that Bσ = (Id+Kσ)

−1
fσ and its derivatives ∂xBσ, ∂yBσ satisfy (P ).

Note that if N = 0 the lemma is proved. Thus in the following we assume N ≥ 1.
Case n− 1 n. Let j1 + j2 = n. By the induction assumption we already know that ∂j1x ∂j2y Bσ

satisfies (P ). By Lemma 2.53 it follows that ∂j1x ∂j2y Bσ satisfies{
(Id+Kx,σ)[∂nxBσ(x, ·)](y) = fn,0σ (x, y) if j2 = 0 ,

∂j1x ∂
j2
y Bσ(x, y) = f j1,j2σ (x, y) if j2 > 0 ,

(2.98)
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where

fn,0σ (x, y) := ∂nxfσ(x, y)−
n∑
l=1

(
n

l

) +∞∫
0

∂lxFσ(x+ y + z) ∂n−lx Bσ(x, z) dz ,

f j1,j2σ (x, y) := ∂j1x ∂
j2
y fσ(x, y)−

j1∑
l=0

(
j1
l

) +∞∫
0

∂j2+l
z Fσ(x+ y + z) ∂j1−lx Bσ(x, z) dz .

(2.99)

In order to prove the induction step, we show in Lemma 2.57 that for any j1 + j2 = n, 0 ≤ n ≤ N ,
f j1,j2σ and its derivatives ∂yf j1,j2σ , ∂xf j1,j2σ satisfy (P ). In view of identities (2.98) and Lemma
2.53 (i), it follows that ∂j1x ∂j2y Bσ and its derivatives ∂j1+1

x ∂j2y Bσ and ∂j1x ∂j2+1
y Bσ satisfy (P ), thus

proving the induction step.

Lemma 2.38 implies in a straightforward way Proposition 2.37.

Proof of Proposition 2.37. By Lemma 2.38, ∂nxBσ satisfies (P ) for every 1 ≤ n ≤ N + 1. In
particular for every 1 ≤ n ≤ N + 1, σ 7→ ∂nxBσ(·, 0) is real analytic as a map from S 4,N to L2

x≥c
and ‖∂nxBσ(·, 0)‖L2

x≥c
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. Thus the map σ → −∂xBσ(·, 0) is real analytic as a map

from S 4,N to HN
x≥c. The claimed estimate follows in a straightforward way.

In the next result we study the case σ ∈ SM,0 for arbitrary M ≥ 4.

Proposition 2.39. Fix M ∈ Z≥4 and c ∈ R. For any σ ∈ SM,0 the equations (2.84) and (2.85)
admit solutions E±,σ. The maps R+,c [R−,c], defined by (2.87), are real analytic as maps from
SM,0 to L2

M,x≥c [L2
M,x≤c]. Moreover ‖R+,c(σ)‖L2

M,x≥c
, ‖R−,c(σ)‖L2

M,x≤c
≤ Kc ‖σ‖HMζ,C , where

Kc > 0 can be chosen locally uniformly in σ ∈ SM,0.

Proof. We prove the result just for R+,c, since for R−,c the proof is analogous. As before, we
suppress the subscript ”+” from the various objects.
Consider the Gelfand-Levitan-Marchenko equation (2.84). Multiply it by 〈x〉M−3/2 to obtain

(Id+Kx,σ)
[
〈x〉M−3/2Eσ(x, y)

]
= −〈x〉M−3/2Fσ(x+ y). (2.100)

The function
hσ(x, y) := −〈x〉M−3/2Fσ(x+ y) ,

satisfies hσ(x, ·) ∈ L2
y≥0 and one checks that hσ ∈ C0

x≥cL
2
y≥0 ∩ C0

x≥c,y≥0. We show now that
hσ ∈ L2

x≥cL
2
y≥0. By Lemma 2.42 (A3) and Proposition 2.33 for N = 0 it follows that

∥∥∥〈x〉M−3/2hσ

∥∥∥2

L2
x≥cL

2
y≥0

≤ Kc

+∞∫
c

〈x〉2M−2|Fσ(x)|2 dx ≤ Kc

∥∥〈x〉MF ′σ∥∥2

L2
x≥c
≤ Kc ‖σ‖2HMζ,C .

Consider now hσ(x, 0) = −〈x〉M−3/2Fσ(x). By (2.83) it follows that hσ(·, 0) ∈ L2
x≥c. Finally

the map σ 7→ hσ [σ 7→ hσ(·, 0)] is real analytic as a map from SM,0 to L2
x≥cL

2
y≥0 [L2

M−3/2,x≥c].
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Proceeding as in the proof of Lemma 2.51, one shows that there exists a solution Eσ of equa-
tion (2.84) which satisfies (i) 〈x〉M−3/2Eσ ∈ C0

x≥cL
2
y≥0 ∩ L2

x≥cL
2
y≥0, 〈x〉M−3/2Eσ(x, ·) ∈ C0

y≥0,
〈·〉M−3/2Eσ(·, 0) ∈ L2

x≥c, (ii)
∥∥〈x〉M−3/2Eσ

∥∥
L2
x≥cL

2
y≥0

≤ Kc ‖σ‖HMζ,C , (iii) σ 7→ 〈x〉M−3/2Eσ [σ 7→
Eσ(·, 0)] is real analytic as a map from SM,0 to L2

x≥cL
2
y≥0 [L2

M−3/2,x≥c]. Furthermore its derivative
∂xEσ satisfies the integral equation

(Id+Kx,σ) (∂xEσ(x, y)) = −F ′σ(x+ y)−
+∞∫
0

F ′σ(x+ y + z) Eσ(x, z) dz. (2.101)

Multiply the equation above by 〈x〉M−3/2, to obtain (Id+Kσ)
(
〈x〉M−3/2∂xEσ

)
= h̃σ, where

h̃σ(x, y) := −〈x〉M−3/2h′σ(x, y)−
+∞∫
0

F ′σ(x+ y + z) 〈x〉M−3/2Eσ(x, z) dz . (2.102)

where h′σ(x, y) := F ′σ(x+ y). We claim that h̃σ ∈ L2
x≥cL

2
y≥0 and σ 7→ h̃σ is real analytic as a map

SM,0 → L2
x≥cL

2
y≥0. By Lemma 2.42 (A0) the first term of (2.102) satisfies∥∥∥〈x〉M−3/2h′σ

∥∥∥
L2
x≥cL

2
y≥0

≤ Kc

∥∥〈x〉M−1F ′σ
∥∥
L2
x≥c
≤ Kc ‖σ‖HMζ,C ,

and by Lemma 2.42 (A1) the second term of (2.102) satisfies∥∥∥∥∥∥
+∞∫
0

F ′σ(x+ y + z) 〈x〉M−3/2Eσ(x, z) dz

∥∥∥∥∥∥
L2
x≥cL

2
y≥0

≤ ‖F ′σ‖L1

∥∥∥〈x〉M−3/2Eσ

∥∥∥
L2
x≥cL

2
y≥0

≤ Kc ‖σ‖2HMζ,C .

Moreover σ 7→ h̃σ is real analytic as a map from SM,0 to L2
x≥cL

2
y≥0, being composition of real

analytic maps.
Thus, by Lemma 2.51, it follows that 〈x〉M−3/2∂xEσ ∈ L2

x≥cL
2
y≥0,

∥∥〈x〉M−3/2∂xEσ
∥∥
L2
x≥cL

2
y≥0

≤

Kc ‖σ‖HMζ,C and σ 7→ 〈·〉M−3/2∂xEσ is real analytic as a map from SM,0 to L2
x≥cL

2
y≥0 .

Consider now equation (2.84). Evaluate it at y = 0 to get

Eσ(x, 0) = −Fσ(x)−
+∞∫
0

Fσ(x+ z)Eσ(x, z) dz .

Take the x-derivative of the equation above and multiply it by 〈x〉M to obtain

〈x〉M∂xEσ(x, 0) =− 〈x〉MF ′σ(x)−
+∞∫
0

〈x〉3/2F ′σ(x+ z)〈x〉M−3/2Eσ(x, z) dz

−
+∞∫
0

〈x〉3/2Fσ(x+ z)〈x〉M−3/2∂xEσ(x, z) dz .
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We prove now that ∂xEσ(·, 0) ∈ L2
M,x≥c and σ 7→ ∂xEσ(·, 0) is real analytic as a map from SM,0

to L2
M,x≥c. The result follows by Proposition 2.33 and Lemma 2.42 (A2). Indeed one has that

σ 7→ F ′σ [σ 7→ Fσ] is real analytic as a map from SM,0 to L2
M [L2

3/2], and we proved above that
σ 7→ 〈·〉M−3/2Eσ and σ 7→ 〈·〉M−3/2∂xEσ are real analytic as maps from SM,0 to L2

x≥cL
2
y≥0.

Combining the results of Proposition 2.37 and Proposition 2.39, we can prove Theorem 2.36.

Proof of Theorem 2.36. It follows from Proposition 2.33, Proposition 2.37 and Proposition 2.39 by
restricting the scattering maps R±,c to the spaces SM,N = S 4,N ∩SM,0.

Using the results of Theorem 2.36 and Theorem 2.34 we can prove Theorem 2.27, showing that
S−1 : S N,M → QN,M is real analytic.

Proof of Theorem 2.27. Let σ ∈ SM,N . By Theorem 2.34 there exists q ∈ Q with S(q, ·) = σ. Now
let c+ ≤ c ≤ c− be arbitrary real numbers and consider R+,c+(σ) and R−,c−(σ), where R±,c± are
defined in (2.87). By classical inverse scattering theory [Fad64], [Mar86] the following holds:

(i) R+,c+(σ)
∣∣
x∈[c+,c]

= R−,c−(σ)
∣∣
x∈[c,c−]

,

(ii) the potential qc defined by

qc := R+,c+(σ)1[c,∞) +R−,c−(σ)1(−∞,c] (2.103)

is in Q and satisfies r+(qc, ·) = ρ+(σ, ·), r−(qc, ·) = ρ−(σ, ·) and t(qc, ·) = τ(σ, ·). Thus by
formulas (2.5) and (2.69) it follows that S(qc, ·) = σ.

Since S is 1-1 it follows that qc ≡ q. Finally, by Theorem 2.36, SM,N → HN
x≥c+ ∩ L

2
M,x≥c+ ,

σ 7→ R+,c+(σ) and SM,N → HN
x≤c− ∩ L

2
M,x≤c− , σ 7→ R−,c−(σ) are real analytic. It follows that

q ∈ HN ∩ L2
M and the map S−1 : σ → q is real analytic.

5 Proof of Corollary 2.2 and Theorem 2.3
This section is devoted to the proof of Corollary 2.2 and Theorem 2.3. Both results are easy
applications of Theorem 2.1.

Proof of Corollary 2.2. Let N ≥ 0, M ≥ 4 be fixed integers. Fix q ∈ QN,M . By Theorem 2.1 the
scattering map S(q, ·) is in SM,N . Furthermore by the definition (2.10) of I(q, k) there exists a
constant C > 0 such that for any |k| ≥ 1

|I(q, k)| ≤ C|S(q, k)|2

|k|
.

In particular I(q, ·) ∈ L1
2N+1([1,∞),R). By the real analyticity of the map q 7→ S(q, ·), it follows

that QN,M → L1
2N+1([1,∞),R), q 7→ I(q, ·)|[1,∞) is real analytic.

Now let us analyze I(q, k) for 0 ≤ k ≤ 1. By the definition (2.10) of I(q, k) one has

I(q, k) +
k

π
log

(
4k2

4(k2 + 1)

)
= −k

π
log

(
4(k2 + 1)

4k2 + S(q, k)S(q,−k)

)
.
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By Proposition 2.28, the map SM,N → HM
ζ ([0, 1],R), σ → l(σ, k) := log

(
4(k2+1)

4k2+σ(k)σ(−k)

)
is real

analytic.
Thus also the map QN,M → HM

ζ ([0, 1],R), q → l(S(q), ·) is real analytic, being composition of real
analytic maps. It follows that the map q 7→ − k

π l(S(q), k) is real analytic as a map from QN,M to
HM ([0, 1],R).

For t ∈ R and σ ∈ H1
C, let us denote by

Ωt(σ)(k) := e−i8k
3tσ(k) . (2.104)

We prove the following lemma.

Lemma 2.40. Let N,M be integers with N ≥ 2M ≥ 2. Let σ ∈ SM,N . Then Ωt(σ) ∈ SM,N ,
∀t ≥ 0.

Proof. As a first step we show that Ωt(σ) ∈ S for every t ≥ 0. Since Ωt(σ)(0) = σ(0) > 0 and
Ωt(σ)(k) = Ωt(σ)(−k), Ωt(σ) satisfies (S1) and (S2) for every t ≥ 0. Thus Ωt(σ) ∈ S , ∀t ≥ 0.
Next we show that Ωt(σ) ∈ HM

ζ,C ∩L2
N . Clearly |Ωt(σ)(k)| ≤ |σ(k)|, thus Ωt(σ) ∈ L2

N , ∀t ≥ 0. Now
we show that Ωt(σ) ∈ HM

ζ,C, ∀t ≥ 0. In particular we prove that ζ∂Mk Ωt(σ) ∈ L2, the other cases
being analogous. Using the expression (2.104) one gets that

ζ(k)∂Mk Ωt(σ)(k) = e−i8k
3t

ζ(k)∂Mk σ(k) +

M−1∑
j=1

(
M

j

)(
−i24tk2

)j
ζ(k)∂M−jk σ(k) +

(
−i24tk2

)M
ζ(k)σ(k)

 .

As σ ∈ SM,N , the first and last term in the r.h.s. above are in L2. Now we show that for
1 ≤ j ≤ M − 1, |k|2jζ∂M−jk σ ∈ L2. We will use the following interpolating estimate, proved in
[NP09, Lemma 4]. Assume that Jaf := (1− ∂2

k)a/2f ∈ L2 and 〈k〉bf := (1 + |k|2)b/2f ∈ L2. Then
for any θ ∈ (0, 1) ∥∥∥〈k〉θbJ (1−θ)af

∥∥∥
L2
≤ c ‖f‖θL2

b
‖f‖1−θHaC

. (2.105)

Note that ζσ ∈ HM
C ∩L2

N , thus we can apply estimate (2.105) with f = ζσ, b = N , a = M , θ = j
M ,

to obtain that 〈k〉
Nj
M ∂M−jk (ζσ) ∈ L2. Since N ≥ 2M , we have 〈k〉2j∂M−jk (ζσ) ∈ L2. By integration

by parts

〈k〉2jζ(k)∂M−jk σ(k) = 〈k〉2j∂M−jk (ζσ)−
M−j∑
l=1

(
M − j
l

)
〈k〉2j∂lkζ(k) ∂M−j−lk σ(k) .

Since for any l ≥ 1 the function ∂lkζ has compact support, it follows that the r.h.s. above is in L2.
Thus for every 1 ≤ j ≤ M − 1 we have 〈k〉2jζ(k)∂M−jk σ ∈ L2 and it follows that ζ∂Mk Ωt(σ) ∈ L2

for every t ≥ 0.

Remark 2.41. One can adapt the proof above, putting ζ(k) ≡ 1, to shows that the spaces HN∩L2
M ,

with integers N ≥ 2M ≥ 2, are invariant by the Airy flow. Indeed the Fourier transform F−
conjugates the Airy flow with the linear flow Ωt, i.e., U tAiry = F−1

− ◦ Ωt ◦ F−.
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Proof of Theorem 2.3. Recall that by [GGKM74] the scattering map S conjugate the KdV flow
with the linear flow Ωt(σ)(k) := e−i8π

3k3tσ(k), i.e.,

U tKdV = S−1 ◦ Ωt ◦ S , (2.106)

whereas U tAiry = F−1
− ◦Ωt ◦ F−. Take now q ∈ QN,M , where N,M are integers with N ≥ 2M ≥ 8.

By Theorem 2.1, S(q) ≡ S(q, ·) ∈ SM,N . By Lemma 2.40 the flow Ωt preserves the space SM,N

for every t ≥ 0. Thus Ωt ◦ S(q) ∈ SM,N , ∀t ≥ 0. By the bijectivity of S it follows that
S−1 ◦ Ωt ◦ S(q) ∈ QN,M ∀t ≥ 0. Thus item (i) is proved.

We prove now item (ii). Remark that by item (i), U tKdV (q) ∈ L2
M for any t ≥ 0. Since

U tAiry preserves the space HN ∩ L2
M (N ≥ 2M ≥ 8), it follows that for q ∈ QN,M the difference

U tKdV (q) − U tAiry(q) ∈ HN ∩ L2
M , ∀t ≥ 0. We prove now the smoothing property of the difference

U tKdV (q)− U tAiry(q). Since S−1 = F−1
− +B,

U tKdV (q) =F−1
− ◦ Ωt ◦ S(q) +B ◦ Ωt ◦ S(q) (2.107)

and since S = F− +A,

F−1
− ◦ Ωt ◦ S(q) = F−1

− ◦ Ωt ◦ F−(q) + F−1
− ◦ Ωt ◦A(q) .

Hence

U tKdV (q) =U tAiry(q) + F−1
− ◦ Ωt ◦A(q) +B ◦ Ωt ◦ S(q). (2.108)

The 1-smoothing property of the difference U tKdV (q) − U tAiry(q) follows now from the smoothing
properties of A and B described in item (ii) of Theorem 2.1. The real analyticity of the map
q 7→ U tKdV (q) − U tAiry(q) follows from formula (2.108) and the real analyticity of the maps A, B
and S.

A Auxiliary results.
For the convenience of the reader in this appendix we collect various known estimates used through-
out the paper.

Lemma 2.42. Fix an arbitrary real number c. Then the following holds:

(A0) The linear map T0 : L2
1/2,x≥c → L2

x≥cL
2
y≥0 defined by

g 7→ T0(g)(x, y) := g(x+ y) (2.109)

is continuous, and there exists a constant Kc > 0, depending on c, such that

‖T0(g)‖L2
x≥cL

2
y≥0
≤ Kc ‖g‖L2

1/2,x≥c
. (2.110)

(A1) The bilinear map T1 : L2
x≥c × L2

x≥c → L2
x≥cL

2
y≥0 defined by

(g, h) 7→ T1(g, h)(x, y) := g(x+ y)h(x) (2.111)

is continuous, and
‖T1(g, h)‖L2

x≥cL
2
y≥0
≤ ‖g‖L2

x≥c
‖h‖L2

x≥c
. (2.112)
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(A2) The bilinear map T2 : L2
x≥c × L2

x≥cL
2
y≥0 → L2

x≥c defined by

(g, h) 7→ T2(g, h)(x) :=

+∞∫
0

g(x+ z)h(x, z) dz (2.113)

is continuous, and there exists a constant Kc > 0, depending on c, such that

‖T2(g, h)‖L2
x≥c
≤ Kc ‖g‖L2

x≥c
‖h‖L2

x≥cL
2
y≥0

. (2.114)

(A3) (Hardy inequality) The linear map T3 : L2
m+1,x≥c → L2

m,x≥c defined by

g 7→ T3(g)(x) :=

+∞∫
x

g(z)dz

is continuous, and there exists a constant Kc > 0, depending on c, such that

‖T3(g)‖L2
m,x≥c

≤ Kc ‖g‖L2
m+1,x≥c

.

(A4) The bilinear map T4 : L1
x≥c × L2

x≥cL
2
y≥0 → L2

x≥cL
2
y≥0 defined by

(g, h) 7→ T4(g, h)(x, y) :=

+∞∫
0

g(x+ y + z)h(x, z)dz (2.115)

is continuous, and there exists a constant Kc > 0, depending on c, such that

‖T4(g, h)‖L2
x≥cL

2
y≥0
≤ Kc ‖g‖L1

x≥c
‖h‖L2

x≥cL
2
y≥0

. (2.116)

(A5) The bilinear map T5 : L2
x≥c × L2

1,x≥c → L2
x≥cL

2
y≥0 defined by

(g, h) 7→ T5(g, h)(x, y) :=

+∞∫
0

g(x+ y + z)h(x+ z)dz (2.117)

is bounded and satisfies

‖T5(g, h)‖L2
x≥cL

2
y≥0
≤ Kc ‖g‖L2

x≥c
‖h‖L2

1,x≥c
. (2.118)

Proof. Inequality (A1), (A4) can be verified in a straightforward way. To prove (A0) make the
change of variable ξ = x+ y and remark that

+∞∫
c

+∞∫
0

|g(x+ y)|2 dx dy ≤ Kc

+∞∫
0

|ξ − c| |g(ξ)|2dξ .
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We prove now (A2): using Cauchy-Schwartz, one gets∥∥∥∥∥∥
+∞∫
0

g(x+ z)h(x, z) dz

∥∥∥∥∥∥
2

L2
x≥c

≤
+∞∫
c

 +∞∫
x

|g(z)|2 dz

  +∞∫
0

|h(x, z)|2 dz

 dx ≤ ‖g‖2L2
x≥c
‖h‖2L2

x≥cL
2
y≥0

.

In order to prove (A3) take a function h ∈ L2
x≥c and remark that∣∣∣∣∣∣

+∞∫
c

dxh(x) 〈x〉m
+∞∫
x

g(z) dz

∣∣∣∣∣∣ =

∣∣∣∣∣∣
+∞∫
c

dz g(z)

∫ z

c

〈x〉mh(x)dx

∣∣∣∣∣∣ ≤ K̃c

+∞∫
c

dz 〈z〉m|g(z)|
∫ z

c

|h(x)| dx

≤ Kc

+∞∫
c

dz 〈z〉m+1|g(z)|
∫ z
c
|h(x)|dx
|z − c|

≤ Kc

∥∥〈z〉m+1g
∥∥
L2
x≥c
‖h‖L2

x≥c

where for the last inequality we used the Hardy-Littlewood inequality.
To prove (A4) take a function f ∈ L2

x≥cL
2
y≥0, define Ωc = [c,∞)× R+ × R+ and remark that∫

Ωc

|g(x+ y + z)| |h(x, z)| |f(x, y)| dx dy dz ≤

≤
(∫

Ωc

|g(x+ y + z)| |h(x, z)|2 dx dy dz
)1/2(∫

Ωc

|g(x+ y + z)| |f(x, y)|2 dx dy dz
)1/2

≤ ‖g‖L1
x≥c
‖h‖L2

x≥c,z≥0
‖f‖L2

x≥cL
2
y≥0

,

where the first inequality follows by writing |g| = |g|1/2 · |g|1/2 and applying Cauchy-Schwartz.
To prove (A5) note that∥∥∥∥∥∥

+∞∫
0

g(x+ y + z)h(x+ z) dz

∥∥∥∥∥∥
L2
y≥0

≤ ‖g‖L2
x≥c

+∞∫
x

|h(z)| dz .

By (A3) one has that
∥∥∥∥+∞∫
x

|h(z)| dz
∥∥∥∥
L2
x≥c

≤ Kc ‖〈x〉h‖L2
x≥c

, then (A5) follows.

B Analytic maps in complex Banach spaces
In this appendix we recall the definition of an analytic map from [Muj86].

Let E and F be complex Banach spaces. A map P̃ k : Ek → F is said to be k-multilinear if
P̃ k(u1, . . . , uk) is linear in each variable uj ; a multilinear map is said to be bounded if there exist
a constant C such that∥∥∥P̃ k(u1, · · · , uk)

∥∥∥ ≤ C ∥∥u1
∥∥ · · · ∥∥uk∥∥ ∀u1, . . . , uk ∈ E.
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Its norm is defined by ∥∥∥P̃ k∥∥∥ := sup
uj∈E, ‖uj‖≤1

∥∥∥P̃ k(u1, . . . , uk)
∥∥∥.

A map P k : E → F is said to be a polynomial of order k if there exists a k-multilinear map
P̃ k : E → F such that

P k(u) = P̃ k(u, . . . , u) ∀u ∈ E.

The polynomial is bounded if it has finite norm∥∥P k∥∥ := sup
‖u‖≤1

∥∥P k(u)
∥∥ .

We denote with Pk(E,F ) the vector space of all bounded polynomials of order k from E into F .

Definition 2.43. Let E and F be complex Banach spaces. Let U be a open subset of E. A mapping
f : U → F is said to be analytic if for each a ∈ U there exists a ball Br(a) ⊂ U with center a and
radius r > 0 and a sequence of polynomials P k ∈ Pk(E,F ), k ≥ 0, such that

f(u) =

∞∑
k=0

P k(u− a)

is convergent uniformly for u ∈ Br(a); i.e., for any ε > 0 there exists K > 0 so that∥∥∥∥∥f(u)−
K∑
k=0

P k(u− a)

∥∥∥∥∥ ≤ ε
for any u ∈ Br(a).

Finally let us recall the notion of real analytic map.

Definition 2.44. Let E, F be real Banach spaces and denote by EC and FC their complexifications.
Let U ⊂ E be open. A map f : U → F is called real analytic on U if for each point u ∈ U there
exists a neighborhood V of u in EC and an analytic map g : V → FC such that f = g on U ∩ V .

Remark 2.45. The notion of an analytic map in Definition 2.43 is equivalent to the notion of a
C-differentiable map. Recall that a map f : U → F , where U , E and F are given as in Definition
2.43, is said to be C-differentiable if for each point a ∈ U there exists a linear, bounded operator
A : E → F such that

lim
u→a

‖f(u)− f(a)−A(u− a)‖F
‖u− a‖E

= 0.

Therefore analytic maps inherit the properties of C-differentiable maps; in particular the composition
of analytic maps is analytic. For a proof of the equivalence of the two notions see [Muj86], Theorem
14.7.

Remark 2.46. Any P k ∈ Pk(E,F ) is an analytic map. Let f(u) =
∑∞
m=0 P

m(u) be a power
series from E into F with infinite radius of convergence with Pm ∈ Pm(E,F ). Then f is analytic
([Muj86], example 5.3, 5.4).
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C Properties of the solutions of integral equation (2.93)
In this section we discuss some properties of the solution of equation (2.93) which we rewrite as

g(x, y) +

+∞∫
0

Fσ(x+ y + z) g(x, z) dz = hσ(x, y) . (2.119)

Here σ ∈ S 4,N , N ≥ 0, hσ is a function hσ : [c,+∞) × [0,+∞) → R, with c arbitrary, which
satisfies (P ). We denote by

‖h‖0 := ‖h‖L2
x≥cL

2
y≥0

+ ‖h(·, 0)‖L2
x≥c

. (2.120)

Furthermore Fσ : R→ R is a function that satisfies

(H) The map σ 7→ Fσ [σ 7→ F ′σ] is real analytic as a map from S 4,N to H1 ∩ L2
3 [L2

4]. Moreover
the operators Id±Kx,σ : L2

y≥0 → L2
y≥0 with Kx,σ defined as

Kx,σ[f ](y) :=

+∞∫
0

Fσ(x+ y + z) f(z) dz (2.121)

are invertible for any x ≥ c, and there exists a constant Cσ > 0, depending locally uniformly
on σ ∈ H4

ζ,C ∩ L2
N , such that

sup
x≥c

∥∥(Id±Kx,σ)−1
∥∥
L(L2

y≥0
)
≤ Cσ . (2.122)

Finally σ 7→ (Id±Kx,σ)−1 are real analytic as maps from S 4,N to L(L2
x≥cL

2
y≥0).

Remark 2.47. The pairing

L(L2
x≥cL

2
y≥0)× L2

x≥cL
2
y≥0 → L2

x≥cL
2
y≥0, (H, f) 7→ H[f ]

is a bounded bilinear map and hence analytic. Let now σ 7→ hσ be a real analytic map from S 4,0 to
L2
x≥cL

2
y≥0 and let Kσ as in (H). Then by Lemma 2.54 (iii) it follows that σ 7→ (Id+Kσ)

−1
[hσ] is

real analytic as a map from S 4,0 to L2
x≥cL

2
y≥0 as well.

Remark 2.48. By the Sobolev embedding theorem, assumption (H) implies that Fσ ∈ C0,γ(R,C),
γ < 1

2 .

By assumption (H) the map (c,∞)→ L(L2
y≥0), x 7→ Kx,σ is differentiable and its derivative is

the operator

K′x,σ[f ](y) =

+∞∫
0

F ′σ(x+ y + z) f(z) dz , (2.123)

as one verifies using that for x > c and ε 6= 0 sufficiently small∥∥∥∥Kx+ε,σ −Kx,σ
ε

−K′x,σ
∥∥∥∥
L(L2

y≥0
)

≤
+∞∫
x

∣∣∣∣Fσ(z + ε)− Fσ(z)

ε
− F ′σ(z)

∣∣∣∣ dz
≤ 1

|ε|

∣∣∣∣∣∣
∫ ε

0

+∞∫
x

|F ′σ(z + s)− F ′σ(z)| dz ds

∣∣∣∣∣∣ ≤ sup
|s|≤|ε|

+∞∫
x

|F ′σ(z + s)− F ′σ(z)| dz

(2.124)
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and the fact that the translations are continuous in L1. Therefore the following lemma holds

Lemma 2.49. Kx,σ and thus (Id + Kx,σ)−1 is a family of operators from L2
y≥0 to L2

y≥0 which
depends continuously on the parameter x. Moreover the map (c,∞) → L(L2

y≥0), x 7→ Kx,σ is
differentiable and its derivative is the operator K′x,σ defined in (2.123).

Lemma 2.50. Let Fσ satisfy assumption (H), and gσ ∈ C0
x≥cL

2
y≥0 ∩ L2

x≥cL
2
y≥0 be such that

‖gσ‖L2
x≥cL

2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N

and S 4,N → L2
x≥cL

2
y≥0, σ 7→ gσ be real analytic. Then

FR(x, y) :=

+∞∫
0

Fσ(x+ y + z) gσ(x, z) dz

satisfies (P ).

Proof. (P1) For ε 6= 0 sufficiently small

‖FR(x+ ε, ·)− FR(x, ·)‖L2
y≥0
≤‖Fσ(x+ ε, ·)− Fσ(x, ·)‖L1 ‖gσ(x+ ε, ·)‖L2

y≥0

+ ‖Fσ‖L1 ‖gσ(x+ ε, ·)− gσ(x, ·)‖L2
y≥0

which goes to 0 as ε → 0, proving that FR ∈ C0
x≥cL

2
y≥0. Furthermore, by Lemma 2.42 (A4),

FR ∈ L2
x≥cL

2
y≥0 and fulfills

‖FR‖L2
x≥cL

2
y≥0
≤ ‖Fσ‖L1 ‖gσ‖L2

x≥cL
2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. (2.125)

Now we show that FR ∈ C0
x≥c,y≥0. Let (xn)n≥1 ⊆ [c,∞) and (yn)n≥1 ⊆ [0,∞) be two sequences

such that xn → x0, yn → y0. Then Fσ(xn + yn + ·)gσ(xn, ·)→ Fσ(x0 + y0 + ·)gσ(x0, ·) in L1
z≥0 as

n→∞. Indeed

‖Fσ(xn + yn + ·)gσ(xn, ·)− Fσ(x0 + y0 + ·)gσ(x0, ·)‖L1
z≥0
≤

≤ ‖Fσ(xn + yn + ·)− Fσ(x0 + y0 + ·)‖L2
z≥0
‖gσ(xn, ·)‖L2

y≥0

+ ‖Fσ(x0 + y0 + ·)‖L2
z≥0
‖gσ(xn, ·)− gσ(x0, ·)‖L2

y≥0
,

and the r.h.s. of the inequality above goes to 0 as (xn, yn) → (x0, y0), by the continuity of the
translations in L2 and the fact that gσ ∈ C0

x≥cL
2
y≥0. Thus it follows that FR(xn, yn)→ FR(x0, y0)

as n→∞, i.e., FR ∈ C0
x≥c,y≥0.

We evaluate FR at y = 0, getting

FR(x, 0) =

+∞∫
0

Fσ(x+ z)gσ(x, z) dz .

By Lemma 2.42 (A2), FR(·, 0) ∈ L2
x≥c and fulfills

‖FR(·, 0)‖L2
x≥c
≤ ‖Fσ‖L2 ‖gσ‖L2

x≥cL
2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. (2.126)

(P2) It follows from (2.125) and (2.126).
(P3) It follows by Lemma 2.42 (A2) and the fact that FR and FR(·, 0) are composition of real

analytic maps.
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We study now the solution of equation (2.119).

Lemma 2.51. Assume that hσ satisfies (P ) and Fσ satisfies (H). Then equation (2.119) has a
unique solution gσ in C0

x≥cL
2
y≥0 ∩ L2

x≥cL
2
y≥0 which satisfies (P ).

Proof. We start to show that gσ exists and satisfies (P1). Since hσ satisfies (P ) and Fσ satisfies
(H), it follows that for any x ≥ c, gσ(x, ·) := (Id+Kx,σ)−1[hσ(x, ·)] is the unique solution in L2

y≥0

of the integral equation (2.119). Furthermore, by (2.122), ‖gσ(x, ·)‖L2
y≥0
≤ Cσ ‖hσ(x, ·)‖L2

y≥0
, which

implies
‖gσ‖L2

x≥cL
2
y≥0
≤ Cσ ‖hσ‖L2

x≥cL
2
y≥0

. (2.127)

Since hσ ∈ C0
x≥cL

2
y≥0, Lemma 2.49 implies that gσ ∈ C0

x≥cL
2
y≥0 as well. Thus we have proved that

gσ ∈ C0
x≥cL

2
y≥0 ∩ L2

x≥cL
2
y≥0. Now write

gσ(x, y) = hσ(x, y)−
+∞∫
0

Fσ(x+ y + z)gσ(x, z) dz . (2.128)

By Lemma 2.50 and the assumption that hσ satisfies (P ), it follows that the r.h.s. of formula
(2.128) satisfies (P ).

The following lemma will be useful in the following:

Lemma 2.52. (i) Let Fσ satisfy (H), and gσ ∈ C0
x≥cL

2
y≥0∩L2

x≥cL
2
y≥0 be such that ‖gσ‖L2

x≥cL
2
y≥0
≤

Kc ‖σ‖2H4
ζ,C∩L

2
N

and S 4,N → L2
x≥cL

2
y≥0, σ 7→ gσ be real analytic. Denote

Φσ(x, y) :=

+∞∫
0

F ′σ(x+ y + z)gσ(x, z) dz . (2.129)

Then Φσ ∈ C0
x≥cL

2
y≥0 ∩L2

x≥cL
2
y≥0, the map S 4,N → L2

x≥cL
2
y≥0, σ 7→ Φσ is real analytic and

‖Φσ‖L2
x≥cL

2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
, (2.130)

where Kc > 0 depends locally uniformly on σ ∈ H4
ζ,C ∩ L2

N .

(ii) Let gσ as in item (i), and furthermore let gσ ∈ C0
x≥c,y≥0 and gσ(·, 0) ∈ L2

x≥c. Assume
furthermore that ∂ygσ satisfies the same assumptions as gσ in item (i). Then Φσ, defined in
(2.129), satisfies (P ).

(iii) Assume that Fσ satisfies (H) and that the map S 4,N → H1
x≥c, σ 7→ bσ is real analytic with

‖bσ‖H1
x≥c
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. Then the function

φσ(x, y) := Fσ(x+ y)bσ(x)

satisfies (P ).

115



Proof. (i) Clearly ‖Φσ(x, ·)‖L2
y≥0
≤ ‖F ′σ‖L1 ‖gσ(x, ·)‖L2

y≥0
, and since gσ ∈ L2

x≥cL
2
y≥0 it follows that

Φσ ∈ L2
x≥cL

2
y≥0 with ‖Φσ‖L2

x≥cL
2
y≥0
≤ ‖F ′σ‖L2

4
‖gσ‖L2

x≥cL
2
y≥0

, which implies (2.129). We show now

that Φσ ∈ C0
x≥cL

2
y≥0. For ε 6= 0 one has

‖Φσ(x+ ε, ·)− Φσ(x, ·)‖L2
y≥0
≤ ‖F ′σ(·+ ε)− F ′σ‖L1 ‖gσ(x, ·)‖L2

y≥0
+ ‖F ′σ‖L1 ‖gσ(x+ ε, ·)− gσ(x, ·)‖L2

y≥0
.

The continuity of the translation in L1 and the assumption gσ ∈ C0
x≥cL

2
y≥0 imply that ‖Φσ(x+ ε, ·)− Φσ(x, ·)‖L2

y≥0
→

0 as ε → 0, thus Φσ ∈ C0
x≥cL

2
y≥0. The real analyticity of σ 7→ Φσ follows from Lemma 2.42 (A4)

and the fact that Φσ is composition of real analytic maps.
(ii) Fix x ≥ c and use integration by parts to write

Φσ(x, y) = −Fσ(x+ y)gσ(x, 0)−
+∞∫
0

Fσ(x+ y + z)∂zgσ(x, z) dz , (2.131)

where we used that since Fσ ∈ H1 [g(x, ·) ∈ H1
y≥0], limx→∞ Fσ(x) = 0 [limy→∞ gσ(x, y) = 0]. By

the assumption and the proof of Lemma 2.50 (P1), Φσ ∈ C0
x≥c,y≥0. We evaluate (2.131) at y = 0

to get the formula

Φσ(x, 0) = −Fσ(x)gσ(x, 0)−
+∞∫
0

Fσ(x+ z)∂zgσ(x, z) dz .

Together with Lemma 2.42 (A2) we have the estimate

‖Φσ(·, 0)‖L2
x≥c
≤ ‖Fσ‖H1

(
‖gσ(·, 0)‖L2

x≥c
+ ‖∂ygσ‖L2

x≥cL
2
y≥0

)
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
. (2.132)

Estimate (2.132) together with estimate (2.130) imply that Φσ satisfies (P2). Finally σ 7→ Φσ(·, 0)
is real analytic, being a composition of real analytic maps.

(iii) We skip an easy proof.

If the function hσ is more regular one deduces better regularity properties of the corresponding
solution of (2.119).

Lemma 2.53. Consider the integral equation (2.119) and assume that Fσ satisfies (H). Assume
that hσ, ∂xhσ, ∂yhσ satisfy (P ). Then gσ solution of (2.119) satisfies (P ). Its derivatives ∂xgσ
and ∂ygσ satisfy (P ) and solve the equations

(Id+Kx,σ) [∂xgσ] = ∂xhσ −K′x,σ[gσ] , (2.133)

∂ygσ = ∂yhσ −K′x,σ[gσ] . (2.134)

Proof. By Lemma 2.51, gσ satisfies (P ).

∂ygσ satisfies (P ). For ε 6= 0 sufficiently small, we have in L2
y≥0

gσ(x, y + ε)− gσ(x, y)

ε
= Ψε

σ(x, y)
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where

Ψε
σ(x, y) :=

hσ(x, y + ε)− hσ(x, y)

ε
−

+∞∫
0

Fσ(x+ y + ε+ z)− Fσ(x+ y + z)

ε
gσ(x, z) dz . (2.135)

Define

Ψ0
σ(x, y) := ∂yhσ(x, y)−

+∞∫
0

F ′σ(x+ y + z)gσ(x, z) dz .

Since ∂yhσ and gσ satisfy (P ), by Lemma 2.52 (i) it follows that Ψ0
σ ∈ C0

x≥cL
2
y≥0 ∩ L2

x≥cL
2
y≥0, the

map S 4,N → L2
x≥cL

2
y≥0, σ 7→ Ψ0

σ is real analytic and
∥∥Ψ0

σ

∥∥
L2
x≥cL

2
y≥0

≤ Kc ‖σ‖2H4
ζ,C∩L

2
N
. Further-

more one verifies that

∂ygσ(x, ·) = lim
ε→0

gσ(x, ·+ ε)− gσ(x, ·)
ε

= lim
ε→0

Ψε
σ(x, ·) = Ψ0

σ(x, ·) in L2
y≥0 .

Thus ∂ygσ fulfills

∂ygσ(x, y) = ∂yhσ(x, y)−
+∞∫
0

F ′σ(x+ y + z)gσ(x, z)dz , (2.136)

i.e., ∂ygσ satisfies equation (2.134). Since ∂ygσ = Ψ0
σ, gσ satisfies the assumptions of Lemma 2.52

(ii). Since ∂yhσ satisfies (P ) as well, it follows that ∂ygσ satisfies (P ).

∂xgσ satisfies (P ). For ε 6= 0 small enough we have in L2
y≥0

(Id+Kx+ε,σ)

[
gσ(x+ ε, ·)− gσ(x, ·)

ε

]
= Φεσ(x, ·)

where

Φεσ(x, y) :=
hσ(x+ ε, y)− hσ(x, y)

ε
−

+∞∫
0

Fσ(x+ y + ε+ z)− Fσ(x+ y + z)

ε
gσ(x, z) dz .

Define

Φ0
σ(x, y) := ∂xhσ(x, y)−

+∞∫
0

F ′σ(x+ y + z)gσ(x, z) dz .

Proceeding as above, one proves that Φ0
σ satisfies (P ), and

lim
ε→0

Φεσ(x, ·) = Φ0
σ(x, ·) in L2

y≥0 .

Together with Lemma 2.49 we get for x > c in L2
y≥0

∂xgσ(x, ·) = lim
ε→0

gσ(x+ ε, ·)− gσ(x, ·)
ε

= lim
ε→0

(Id+Kx+ε,σ)
−1

Φεσ(x, ·) = (Id+Kx,σ)
−1

Φ0
σ(x, ·) .
(2.137)
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In particular (Id+Kσ)(∂xgσ(x, ·)) = Φ0
σ(x, ·). Since Φ0

σ satisfies (P ), by Lemma 2.51, ∂xgσ satisfies
(P ). Formula (2.137) implies that

∂xgσ(x, y) +

+∞∫
0

Fσ(x+ y + z)∂xgσ(x, z) dz = ∂xhσ(x, y)−
+∞∫
0

F ′σ(x+ y + z)gσ(x, z) dz , (2.138)

namely ∂xgσ satisfies equation (2.133).

D Proof from Section 4

D.1 Properties of K±x,σ and f±,σ.

We begin with proving some properties of K±x,σ and f±,σ, defined in (2.94) and (2.96), which will
be needed later.

Properties of Id+K±x,σ. In order to solve the integral equations (2.93) we need the operator

Id+K+
x,σ to be invertible on L2

y≥0 (respectively Id+K−x,σ to be invertible on L2
y≤0). The following

result is well known:

Lemma 2.54 ([DT79, CK87a]). Let σ ∈ S 4,0 and fix c ∈ R. Then the following holds:

(i) For every x ≥ c, K+
x,σ : L2

y≥0 → L2
y≥0 is a bounded linear operator; moreover

sup
x≥c

∥∥K+
x,σ

∥∥
L(L2

y≥0
)
< 1, and

∥∥K+
x,σ

∥∥
L(L2

y≥0
)
≤

+∞∫
x

|F+,σ(ξ)| dξ → 0 if x→ +∞.

(2.139)

(ii) The map K+
σ : L2

x≥cL
2
y≥0 → L2

x≥cL
2
y≥0, f 7→ K+

σ [f ], where K+
σ [f ](x, y) := K+

x,σ[f ](y), is linear
and bounded. Moreover the operators Id±K+

σ are invertible on L2
x≥cL

2
y≥0 and there exists a

constant Kc > 0, which depends locally uniformly on σ ∈ S 4,0, such that∥∥∥(Id±K+
σ

)−1
∥∥∥
L(L2

x≥cL
2
y≥0

)
≤ Kc. (2.140)

(iii) σ 7→ (Id±K+
σ )
−1 are real analytic as maps from S 4,0 to L(L2

x≥cL
2
y≥0).

Analogous results hold also for K−x,σ replacing L2
x≥cL

2
y≥0 by L2

x≤cL
2
y≤0.

Properties of f±,σ. First note that f±,σ, defined by (2.96), are well defined. Indeed for any
σ ∈ S 4,0, Proposition 2.33 implies that F±,σ ∈ H1 ∩ L2

3 ⊂ L2. Hence for any x ≥ c, y ≥ 0 the
map given by z 7→ F+,σ(x+ y + z)F+,σ(x+ z) is in L1

z≥0. Similarly, for any x ≥ c, y ≥ 0, the map
given by z 7→ F−,σ(x+ y + z)F−,σ(x+ z) is in L1

z≤0.
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In the following we will use repeatedly the Hardy inequality [HLP88]∥∥∥∥∥∥〈x〉m
+∞∫
x

g(z)dz

∥∥∥∥∥∥
L2
x≥c

≤ Kc

∥∥〈x〉m+1g
∥∥
L2
x≥c

, ∀m ≥ 0 . (2.141)

The inequality is well known, but for sake of completeness we give a proof of it in Lemma 2.42
(A3).
We analyze now the maps σ 7→ f±,σ. Since the analysis of f+,σ and the one of f−,σ are similar,
we will consider f+,σ only. To shorten the notation we will suppress the subscript ” + ” in what
follows.

Lemma 2.55. Fix N ∈ Z≥0 and let σ ∈ S 4,N . Let fσ ≡ f+,σ be given as in (2.96). Then for
every j1, j2 ∈ Z≥0 with 0 ≤ j1 + j2 ≤ N + 1, the function ∂j1x ∂j2y fσ satisfies (P ).

Proof. We prove at the same time (P1), (P2) and (P3) for any j1, j2 ≥ 0 with j1 + j2 = n for any
0 ≤ n ≤ N + 1.
Case n = 0. Then j1 = j2 = 0. By Proposition 2.33, for any N ∈ Z≥0 one has Fσ ≡ F+,σ ∈ H1∩L2

3.

(P1) We show that fσ ∈ C0
x≥cL

2
y≥0. For any x ≥ c fixed one has ‖fσ(x, ·)‖L2

y≥0
≤ ‖Fσ‖L1 ‖Fσ(x+ ·)‖L2

y≥0
,

which shows that fσ(x, ·) ∈ L2
y≥0. For ε 6= 0 sufficiently small one has

‖fσ(x+ ε, ·)− fσ(x, ·)‖L2
x≥c
≤‖Fσ‖L1 ‖Fσ(x+ ε+ ·)− Fσ(x+ ·)‖L2

y≥0

+ ‖Fσ(ε+ ·)− Fσ‖L1 ‖Fσ(x+ ·)‖L2
y≥0

which goes to 0 as ε → 0, due to the continuity of the translations in Lp-space, 1 ≤ p < ∞.
Thus fσ ∈ C0

x≥cL
2
y≥0.

We show now that fσ ∈ L2
x≥cL

2
y≥0. Introduce hσ(x, y) := Fσ(x + y). Then hσ ∈ L2

x≥cL
2
y≥0,

since for some C,C ′ > 0

‖hσ‖L2
x≥cL

2
y≥0
≤ C ‖Fσ‖L2

1/2,x≥c
≤ C ′ ‖σ‖H4

ζ,C
(2.142)

where for the first [second] inequality we used Lemma 2.42 (A0) [Proposition 2.33 (i)]. By
Lemma 2.42(A4) and using once more Proposition 2.33 (i), one gets

‖fσ‖L2
x≥cL

2
y≥0
≤ C ′′ ‖Fσ‖L1

x≥c
‖hσ‖L2

x≥cL
2
y≥0
≤ C ′′′ ‖Fσ‖L2

1
‖hσ‖L2

x≥cL
2
y≥0
≤ C ′′′′ ‖σ‖2H4

ζ,C
,

(2.143)
for some C ′′, C ′′′, C ′′′′ > 0. Thus fσ ∈ L2

x≥cL
2
y≥0.

To show that fσ ∈ C0
x≥c,y≥0 proceed as in Lemma 2.50.

Finally we show that fσ(·, 0) ∈ L2
x≥c. Evaluate (2.96) at y = 0 to get fσ(x, 0) =

+∞∫
x

F 2
σ (z) dz.

Using the Hardy inequality (2.141), Fσ(x) = −
∫ +∞
x

F ′σ(s) ds and Proposition 2.33 one obtains

‖fσ(·, 0)‖L2
x≥c
≤
∥∥〈x〉F 2

σ

∥∥
L2
x≥c
≤ ‖〈x〉Fσ‖L∞

x≥c
‖Fσ‖L2

x≥c
≤ Kc ‖〈x〉F ′σ‖L1

x≥c
‖Fσ‖L2

x≥c

≤ K ′c
∥∥〈x〉2F ′σ∥∥L2

x≥c
‖Fσ‖L2

x≥c
≤ K ′′c ‖σ‖

2
H4
ζ,C∩L

2
N
, (2.144)

for some constants Kc,K
′
c,K

′′
c > 0. Thus fσ(·, 0) ∈ L2

x≥c.
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(P2) It follows from (2.143) and (2.144).

(P3) By Proposition 2.33 (i), S 4,0 → H1
C ∩ L2

3, σ 7→ Fσ is real analytic and by Lemma 2.42 (A0)
so is S 4,0 → L2

x≥cL
2
y≥0, σ 7→ hσ. By Lemma 2.42 (A4) it follows that S 4,0 → L2

x≥cL
2
y≥0,

σ 7→ fσ is real analytic. Since the map σ 7→ fσ(·, 0) is a composition of real analytic maps, it
is real analytic as a map from S 4,N to L2

x≥c.

Case n ≥ 1. By Proposition 2.33, Fσ ∈ HN+1 and ‖Fσ‖HN+1 ≤ C ′ ‖σ‖H4
ζ,C∩L

2
N
. By Sobolev

embedding theorem, it follows that Fσ ∈ CN,γ(R,R), γ < 1
2 . Moreover since limx→+∞ Fσ(x) = 0,

one has

∂xfσ(x, y) = ∂x

+∞∫
x

Fσ(y + z)Fσ(z) dz = −Fσ(x+ y)Fσ(x) . (2.145)

Consider first the case j1 ≥ 1. Then j2 ≤ N . By (2.145) it follows that

∂j1x ∂
j2
y fσ(x, y) = −

j1−1∑
l=0

(
j1 − 1

l

)
F (j2+l)
σ (x+ y)F (j1−1−l)

σ (x) , (2.146)

where F (l)
σ ≡ ∂lxFσ. Thus ∂j1x ∂j2y fσ is a linear combination of terms of the form (2.148), with

bσ = F
(j1−1−l)
σ satisfying the assumption of Lemma 2.56 (i), thus ∂j1x ∂j2y fσ, with j1 ≥ 1, satisfies

(P ).

Consider now the case j1 = 0. Then 1 ≤ j2 ≤ n ≤ N+1. Since ∂yFσ(x+y+z) = ∂zFσ(x+y+z) =
F ′σ(x+ y + z), by integration by parts one obtains

∂j2y fσ(x, y) = −F (j2−1)
σ (x+ y)Fσ(x)−

+∞∫
0

F (j2−1)
σ (x+ y + z)F ′σ(x+ z)dz . (2.147)

Then, by Lemma 2.56 (i) and (ii), ∂j2y fσ is the sum of two terms which satisfy (P ), thus it satisfies
(P ) as well.

Lemma 2.56. Fix c ∈ R, N ∈ Z≥0 and let σ ∈ S 4,N . Let Fσ be given as in (2.76). Then the
following holds true:

(i) Let σ 7→ bσ be real analytic as a map from S 4,N to H1
x≥c, satisfying ‖bσ‖H1

x≥c
≤ Kc ‖σ‖H4

ζ,C∩L
2
N
,

where Kc > 0 depends locally uniformly on σ ∈ H4
ζ,C ∩ L2

N . Then for every integer k with
0 ≤ k ≤ N , the function

HR(x, y) := F (k)
σ (x+ y) bσ(x) (2.148)

satisfies (P ).

(ii) For every integer 0 ≤ k ≤ N , the function

GR(x, y) =

+∞∫
0

F (k)
σ (x+ y + z)F ′σ(x+ z)dz (2.149)

satisfies (P ).
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(iii) Let N ≥ 1 and let Gσ be a function satisfying (P ). Then the function

FR(x, y) :=

+∞∫
0

F ′σ(x+ y + z)Gσ(x, z) dz (2.150)

satisfies (P ).

Proof. (i) HR satisfies (P1). Clearly HR(x, ·) ∈ L2
y≥0 and by the continuity of the translations in

L2 one verifies that ‖HR(x+ ε, ·)−HR(x, ·)‖L2
y≥0
→ 0 as ε→ 0, thus proving thatHR ∈ C0

x≥cL
2
y≥0.

We show now that HR ∈ L2
x≥cL

2
y≥0. By Lemma 2.42 (A1), Proposition 2.33 and the assumption

on bσ, one has that

‖HR‖L2
x≥cL

2
y≥0
≤ C ‖Fσ‖HN+1 ‖bσ‖L2

x≥c
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
, (2.151)

where Kc > 0 can be chosen locally uniformly for σ ∈ H4
ζ,C ∩ L2

N .
For 0 ≤ k ≤ N , F (k)

σ ∈ C0(R,R) by the Sobolev embedding theorem. Thus HR ∈ C0
x≥c,y≥0.

Finally we show that HR(·, 0) ∈ L2
x≥c. We evaluate the r.h.s. of formula (2.148) at y = 0, getting

HR(x, 0) = F (k)
σ (x)bσ(x) .

It follows that there exists C > 0 and Kc > 0, depending locally uniformly on σ ∈ H4
ζ,C ∩L2

N , such
that

‖HR(·, 0)‖L2
x≥c
≤ C ‖Fσ‖HN+1 ‖bσ‖H1

x≥c
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
, (2.152)

where we used that both F (k)
σ and bσ are in H1

x≥c.
HR satisfies (P2). It follows from (2.151) and (2.152).
HR satisfies (P3). The real analyticity property follows from Lemma 2.42 and Proposition 2.33,

since for every 0 ≤ k ≤ N , HR is product of real analytic maps.

(ii) GR satisfies (P1). We show that GR ∈ L2
x≥cL

2
y≥0. By Lemma 2.42 (A5) and Proposition

2.33 it follows that

‖GR‖L2
x≥cL

2
y≥0
≤ ‖Fσ‖HN+1 ‖F ′σ‖L1 ≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
, (2.153)

whereKc > 0 depends locally uniformly on σ ∈ H4
ζ,C∩L2

N . One verifies easily thatGR ∈ C0
x≥cL

2
y≥0.

In order to prove that GR ∈ C0
x≥c,y≥0, proceed as in Lemma 2.50.

Now we show that GR(·, 0) ∈ L2
x≥c. We evaluate formula (2.149) at y = 0 getting that

GR(x, 0) =

∫ ∞
0

F (k)
σ (x+ z)F ′σ(x+ z)dz .

Let h′σ(x, z) := F ′σ(x+ z). By Lemma 2.42 (A0) and Proposition 2.33 one has

‖h′σ‖L2
x≥cL

2
y≥0
≤
∥∥∥〈x〉1/2F ′σ∥∥∥

L2
x≥c

≤ Kc ‖σ‖H4
ζ,C∩L

2
N
,
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where Kc > 0 can be chosen locally uniformly for σ ∈ H4
ζ,C ∩ L2

N . Thus by Lemma 2.42 (A2) one
gets

‖GR(·, 0)‖L2
x≥c
≤ Kc

∥∥∥F (k)
σ

∥∥∥
L2
x≥c

‖h′σ‖L2
x≥cL

2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
, (2.154)

where Kc > 0 can be chosen locally uniformly for σ ∈ H4
ζ,C ∩ L2

N .
GR satisfies (P2). It follows from (2.153) and (2.154).
GR satisfies (P3). The real analyticity property follows from Lemma 2.42 and Proposition 2.33,

since for every 0 ≤ k ≤ N , GR is composition of real analytic maps.

(iii) FR satisfies (P1). By Lemma 2.52 (i), FR ∈ C0
x≥cL

2
y≥0 ∩ L2

x≥cL
2
y≥0 and

‖FR‖L2
x≥cL

2
y≥0
≤ ‖F ′σ‖L2

4
‖Gσ‖L2

x≥cL
2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
.

Proceeding as in the proof of Lemma 2.55 (P1) one shows that FR ∈ C0
x≥c,y≥0. Since F ′σ ∈ HN ,

N ≥ 1, F ′σ is a continuous function. Thus we can evaluate FR at y = 0, obtaining FR(x, 0) =
+∞∫
0

F ′σ(x+ z)Gσ(x, z) dz. By Lemma 2.42 (A2) we have that

‖FR(·, 0)‖L2
x≥c
≤ ‖F ′σ‖L2

x≥c
‖Gσ‖L2

x≥cL
2
y≥0
≤ Kc ‖σ‖2H4

ζ,C∩L
2
N
.

The proof that FR satisfies (P2) and (P3) follows as in the previous items. We omit the details.

Lemma 2.57. Let N ≥ 1 be fixed. For every j1, j2 ≥ 0 with 1 ≤ j1 + j2 ≤ N , the function f j1,j2σ

defined in (2.99) and its derivatives ∂yf j1,j2σ , ∂xf j1,j2σ satisfy (P ).

Proof. First note that by Lemma 2.55 the terms ∂j1x ∂j2y fσ and its derivatives ∂j1+1
x ∂j2y fσ, ∂j1x ∂j2+1

y fσ
satisfy (P ). It thus remains to show that

Fk1,k2

R (x, y) :=

+∞∫
0

∂k1
x Fσ(x+y+z) ∂k2

x Bσ(x, z) dz , k1 ≥ 1, k2 ≥ 0, k1+k2 = n ≤ N (2.155)

and its derivatives ∂yF
k1,k2

R , ∂xF
k1,k2

R satisfy (P ). Remark that, by the induction assumption in the
proof of Lemma 2.38, for every integers k1, k2 ≥ 0 with k1 + k2 ≤ n, ∂k1

x ∂
k2
y Bσ satisfies (P ).

Fk1,k2

R satisfies (P ). If k1 = 1, it follows by Lemma 2.56 (iii). Let k1 > 1. By integration by
parts k1 − 1 times we obtain

Fk1,k2

R (x, y) =

k1−1∑
l=1

(−1)l∂k1−l
x Fσ(x+ y)(∂k2

x ∂
l−1
z Bσ)(x, 0)

+ (−1)k1−1

+∞∫
0

F ′σ(x+ y + z) ∂k2
x ∂

k1−1
z Bσ(x, z) dz ,

(2.156)

where we used that for 1 ≤ l ≤ k1 − 1 one has F (k1−l)
σ ∈ H1 [(∂k2

x ∂
l−1
y Bσ)(x, ·) ∈ H1

y≥0], thus
limx→∞ F

(k1−l)
σ (x) = 0 [limy→∞ ∂k2

x ∂
l−1
y Bσ)(x, y) = 0]. Consider the r.h.s. of (2.156). It is a
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linear combinations of terms of the form (2.148) and (2.150). By the induction assumption, these
terms satisfy the hypothesis of Lemma 2.56 (i) and (iii). It follows that Fk1,k2

R satisfies (P ), and in
particular there exists a constant Kc > 0, depending locally uniformly on σ ∈ H4

ζ,C ∩L2
N , such that∥∥∥Fk1,k2

R

∥∥∥
L2
x≥cL

2
y≥0

+
∥∥∥Fk1,k2

R (·, 0)
∥∥∥
L2
x≥c

≤ Kc ‖σ‖2H4
ζ,C∩L

2
N
. (2.157)

∂yF
k1,k2

R satisfies (P ). For ε 6= 0 sufficiently small, by integration by parts k1-times we obtain

Fk1,k2

R (x, y + ε)− Fk1,k2

R (x, y)

ε
=

k1∑
l=1

(−1)l
∂k1−l
x Fσ(x+ y + ε)− ∂k1−l

x Fσ(x+ y)

ε
(∂k2
x ∂

l−1
z Bσ)(x, 0)

+ (−1)k1

+∞∫
0

Fσ(x+ y + ε+ z)− Fσ(x+ y + z)

ε
∂k2
x ∂

k1
z Bσ(x, z) dz ,

where once again we used that for 1 ≤ l ≤ k1 one has F (k1−l)
σ ∈ H1 [(∂k2

x ∂
l−1
y Bσ)(x, ·) ∈ H1

y≥0],
thus limx→∞ F

(k1−l)
σ (x) = 0 [limy→∞ ∂k2

x ∂
l−1
y Bσ)(x, y) = 0]. Define also

∂yF
k1,k2

R (x, y) :=

k1∑
l=1

(−1)l ∂k1−l+1
x Fσ(x+ y) (∂k2

x ∂
l−1
z Bσ)(x, 0)

+ (−1)k1

+∞∫
0

F ′σ(x+ y + z) ∂k2
x ∂

k1
z Bσ(x, z) dz .

(2.158)

Consider the r.h.s. of equation (2.158). It is a linear combinations of terms of the form (2.148) and
(2.150). By the induction assumption, these terms satisfy the hypothesis of Lemma 2.56 (i) and
(iii). It follows that ∂yF

k1,k2

R satisfies (P ) and one has∥∥∥∂yFk1,k2

R

∥∥∥
L2
x≥cL

2
y≥0

+
∥∥∥∂yFk1,k2

R (·, 0)
∥∥∥
L2
x≥c

≤ K ′c ‖σ‖
2
H4
ζ,C∩L

2
N

(2.159)

for some constant K ′c > 0, depending locally uniformly on σ ∈ H4
ζ,C ∩L2

N . Furthermore one verifies
that

lim
ε→0

Fk1,k2

R (x, ·+ ε)− Fk1,k2

R (x, ·)
ε

= ∂yF
k1,k2

R (x, ·) in L2
y≥0 .

∂xF
k1,k2

R satisfies (P ). The proof is similar to the previous case, and the details are omitted.
This conclude the proof of the inductive step.

E Hilbert transform
Define H : L2(R,C)→ L2(R,C) as the Fourier multiplier operator

(̂H(v))(ξ) = −i sign(ξ) v̂(ξ) .
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Thus H is an isometry on L2(R,C). It is easy to see that H|HNC : HN
C → HN

C is an isometry for
any N ≥ 1 – cf. [Duo01]. In case v ∈ C1(R,C) with ‖v′‖L∞ , ‖xv(x)‖L∞ <∞, one has

H(v)(k) = − 1

π
lim
ε→0+

∫
|k′−k|≥ε

v(k′)

k′ − k
dk′

and obtains the estimate |H(v)(k)| ≤ C(‖v′‖∞+‖xv(x)‖∞), where C > 0 is a constant independent
of v and k.

Let g ∈ C1(R,R) with ‖g′‖L∞ , ‖xg(x)‖L∞ <∞. Then define for z ∈ C+ := {z ∈ C : Im(z) > 0}
the function

f(z) :=
1

πi

∫ ∞
−∞

g(s)

s− z
ds .

Decompose 1
s−z into real and imaginary part

1

s− z
=

1

s− a− ib
=

s− a
(s− a)2 + b2

+ i
b

(s− a)2 + b2

to get the formulas for the real and imaginary part of f(z)

Re f(z) =
1

π

∫ ∞
−∞

b

(s− a)2 + b2
g(s)ds , (2.160)

Im f(z) =
−1

π

∫ ∞
−∞

s− a
(s− a)2 + b2

g(s)ds . (2.161)

The following Lemma is well known and can be found in [Duo01].

Lemma 2.58. The function f is analytic and admits a continuous extension to the real line.
Furthermore it has the following properties for any a ∈ R:

(i) limb→0+ Im f(a+ bi) = H(g)(a).

(ii) limb→0+ Re f(a+ bi) = g(a).

(iii) There exists C > 0 such that |f(z)| ≤ C
1+|z| , ∀ z ∈ {z : Im z ≥ 0}.

(iv) Let f̃(z) be a continuous function on Im z ≥ 0 which is analytic on Im z > 0 and satisfies
Re f̃|R = g and |f̃(z)| = O( 1

|z| ) as |z| → ∞, then f̃ = f .

The next lemma follows from the commutator estimates due to Calderón [Cal65]:

Lemma 2.59 ([Cal65]). Let b : R→ R have first-order derivative in L∞. For any p ∈ (1,∞) there
exists C > 0, such that

‖[H, b] ∂xg‖Lp ≤ C ‖g‖Lp .

We apply this lemma to prove the following result:

Lemma 2.60. Let M ∈ Z≥1 be fixed. Then H : HM
ζ,C → HM

ζ,C is a bounded linear operator.
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Proof. Let f ∈ HM
ζ,C. As the Hilbert transform commutes with the derivatives, we have that

H(f) ∈ HM−1
C . Next we show that if ζ∂Mk f ∈ L2, then ζ∂Mk H(f) = ζH(∂Mk f) ∈ L2. By Lemma

2.59 with p = 2, g = ∂M−1
k f and b = ζ, we have that∥∥ζH(∂Mk f)

∥∥
L2 ≤

∥∥H(ζ∂Mk f)
∥∥
L2 +

∥∥[H, ζ] ∂Mk f
∥∥
L2 ≤ ‖f‖HMζ,C + C

∥∥∂M−1
k f

∥∥
L2 <∞ .
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[NMPZ84] S. Novikov, S. Manakov, L. Pitaevskĭı, and V. Zakharov. Theory of solitons. Con-
temporary Soviet Mathematics. Consultants Bureau [Plenum], New York, 1984. The
inverse scattering method, Translated from the Russian.

[Nov96] R. G. Novikov. Inverse scattering up to smooth functions for the Schrödinger equation
in dimension 1. Bull. Sci. Math., 120(5):473–491, 1996.

[NP09] J. Nahas and G. Ponce. On the persistent properties of solutions to semi-linear
Schrödinger equation. Comm. Partial Differential Equations, 34(10-12):1208–1227,
2009.

[PCSF11] A. Ponno, H. Christodoulidi, Ch. Skokos, and S. Flach. The two-stage dynamics in the
fermi-pasta-ulam problem: From regular to diffusive behavior. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 21(4):–, 2011.

[SW00] G. Schneider and C. E. Wayne. Counter-propagating waves on fluid surfaces and the
continuum limit of the Fermi-Pasta-Ulam model. In International Conference on Dif-
ferential Equations, Vol. 1, 2 (Berlin, 1999), pages 390–404. World Sci. Publ., River
Edge, NJ, 2000.

[Tan74] S. Tanaka. Korteweg-de Vries equation: construction of solutions in terms of scattering
data. Osaka J. Math., 11:49–59, 1974.

[Tod67] M. Toda. Vibration of a Chain with Nonlinear Interaction. Journal of the Physical
Society of Japan, 22:431, February 1967.

[Trè70] F. Trèves. An abstract nonlinear Cauchy-Kovalevska theorem. Trans. Amer. Math.
Soc., 150:77–92, 1970.

[Vey78] J. Vey. Sur certains systèmes dynamiques séparables. Amer. J. Math., 100(3):591–614,
1978.

130



[vM76] P. van Moerbeke. The spectrum of Jacobi matrices. Invent. Math., 37(1):45–81, 1976.

[ZF71] V. Zaharov and L. Faddeev. The Korteweg-de Vries equation is a fully integrable
Hamiltonian system. Funkcional. Anal. i Priložen., 5(4):18–27, 1971.

[Zho98] X. Zhou. L2-Sobolev space bijectivity of the scattering and inverse scattering trans-
forms. Comm. Pure Appl. Math., 51(7):697–731, 1998.

[ZM74] V. Zaharov and S. Manakov. The complete integrability of the nonlinear Schrödinger
equation. Teoret. Mat. Fiz., 19:332–343, 1974.

[ZS71] V. Zakharov and A. Shabat. Exact theory of two-dimensional self-focusing and one-
dimensional self-modulation of waves in nonlinear media. Ž. Èksper. Teoret. Fiz.,
61(1):118–134, 1971.

131


