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Zusammenfassung

Es werden zwei integrable Hamiltonsche Systeme untersucht: das Toda-Gitter mit periodischen
Randwertbedingungen und einer grossen Anzahl Partikel und die Korteweg-de Vries (KdV) Gle-
ichung auf R. Im ersten Teil untersuchen wir das asymptotische Verhalten von Birkhoff Koordinaten
(kartesische Wirkung- und Winkelvariablen) des Toda-Gitters in der Nihe des Gleichgewichts, falls
die Anzahl Partikel N gegen Unendlich strebt. Wir zeigen, dass fiir geeignet gewéhlte Konstanten
R, R’ > 0, die der Anzahl N entsprechende Koordinatentransformation die komplexe Kugel von Ra-
dius R/N® um den Gleichgewichtspunkt analytisch in eine Kugel mit Radius R/N¢ abbildet genau
dann falls o > 2. Dabei werden Sobolev-analytische Normen gew#hlt. Als Anwendung betrachten
wir das Problem der Gleichverteilung der Energie fiir Losungen des Toda Gitters im Sinne von Fermi-
Pasta-Ulam. Wir zeigen, dass fiir Anfangswerte kleiner als R/N?, 0 < R < 1, bei denen nur der er-
ste Fourier Koeflizient nicht null ist, die Energie fiir alle Zeiten in einem Wellenpacket eingeschlossen
bleibt, dessen Fourierkoeffizienten exponentiell mit der Wellenzahl abfallen. Schliesslich zeigen wir,
dass fiir Losungen des FPU-Gitters mit den oben beschriebenen Anfangswerten die Energie fiir
ein ldngeres Zeitintervall in einem derartigen Wellenpacket eingeschlossen bleibt, als zuvor bekannt
war.

Im zweiten Teil wird die Streuabbildung fiir die KdV Gleichung auf R untersucht. Es wird
gezeigt, dass fiir Potentiale in gewichteten Sobolev Rdumen ohne Eigenzustinde der nichtlineare
Teil der Streuabbildung 1-regularisierend ist und die sich daraus ergebende Anwendungen fiir die
Losungen der KdV Gleichung diskutiert.



Abstract

In this thesis we investigate two examples of infinite dimensional integrable Hamiltonian systems in
1-space dimension: the Toda chain with periodic boundary conditions and large number of particles,
and the Korteweg-de Vries (KdV) equation on R.

In the first part of the thesis we study the Birkhoff coordinates (Cartesian action angle coor-
dinates) of the Toda lattice with periodic boundary condition in the limit where the number N
of the particles tends to infinity. We prove that the transformation introducing such coordinates
maps analytically a complex ball of radius R/N® (in discrete Sobolev-analytic norms) into a ball of
radius R'/N® (with R, R’ > 0 independent of N) if and only if o > 2. Then we consider the prob-
lem of equipartition of energy in the spirit of Fermi-Pasta-Ulam. We deduce that corresponding to
initial data of size R/N?, 0 < R < 1, and with only the first Fourier mode excited, the energy re-
mains forever in a packet of Fourier modes exponentially decreasing with the wave number. Finally
we consider the original FPU model and prove that energy remains localized in a similar packet
of Fourier modes for times one order of magnitude longer than those covered by previous results
which is the time of formation of the packet. The proof of the theorem on Birkhoff coordinates is
based on a new quantitative version of a Vey type theorem by Kuksin and Perelman which could
be interesting in itself.

In the second part of the thesis we study the scattering map of the KAV on R. We prove that
in appropriate weighted Sobolev spaces of the form HY N L2, with integers N > 2M > 8 and in
the case of no bound states, the scattering map is a perturbation of the Fourier transform by a
regularizing operator. As an application of this result, we show that the difference of the KdV flow
and the corresponding Airy flow is 1-smoothing.
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Introduction

In the last decades the problem of a rigorous analysis of the theory of infinite dimensional integrable
Hamiltonian systems has been widely studied. In particular Kappeler with collaborators intro-
duced a series of methods in order to construct rigorously action-angle variables for 1-dimensional
integrable Hamiltonian PDE’s on T. The program succeeded in many cases, like KAV [KP03],
defocusing and focusing NLS [GK14, KLTZ09]. In each case considered, it has been proved that
there exists a real analytic symplectic diffeomorphism between two scales of Hilbert spaces which
introduce action-angle coordinates.

The present thesis is part of this program. Infinite dimensional integrable Hamiltonian systems
in 1-space dimension come up in two setups: (i) on compact intervals (finite volume) and (ii) on
infinite intervals (infinite volume). The dynamical behaviour of the systems in the two setups have
many similar features, but also distinct ones, mostly due to the different manifestation of dispersion.
In this thesis we analyze two systems in different setups. As an example of a system in the first
setup we study the Toda chain with a large number of particles, while as an example of a system
in the second setup we study the Korteweg-de Vries equation (KdV) on R. The choice of the Toda
chain is motivated by the application to the FPU chain which will be discussed below, while the
choice of KdV is motivated by the question if features such as the 1-smoothing property established
recently for this equation in the periodic setup also hold in the infinite volume case.

We describe now in more details our results.

The Toda’s chain. The Toda chain is the system with Hamiltonian

1 Nl N-1
HToda(p7 C]) = 3 p? + Z edi —45+1 (1>
Jj=0 j=0

and periodic boundary conditions gy = qo, pN = po, wWhich is known to be integrable. We are
interested in the limit N — oco. By standard Arnold-Liouville theory the system admits action
angle coordinates. However the actual introduction of such coordinates is quite complicated and
the corresponding transformation has only recently been studied analytically in a series of papers
by Henrici and Kappeler [HK08b, HK08c|. In particular such authors have proved the existence
of global Birkhoff coordinates, namely canonical coordinates (z,yx) analytic on the whole phase
space, with the property that the k* action is given by (22 +y2)/2. The construction of Henrici and
Kappeler, however is not uniform in the size of the chain, in the sense that the map ¢ introducing
Birkhoff coordinates is globally analytic for any fixed N, but it could (and actually does) develop
singularities as N — +o0o0. Our main result is to prove some analyticity properties fulfilled by @y
uniformly in the limit N — +o0o. Precisely we consider complex balls centered at the origin and
prove that ® maps analytically a ball of radius R/N® in discrete Sobolev-analytic norms into a
ball of radius R'/N® (with R, R’ > 0 independent of N) if and only if o > 2. To come to a precise
statement we have to introduce a suitable topology in CN~! x CN~1. Consider the Toda lattice in
the subspace characterized by > ;4 =0= > ; pj which is invariant under the dynamics. Introduce
the discrete Fourier transform F(q) = ¢ defined by

N—-1
P L 2imjk/N
:—Ej e AimIk/N kelZ, 2
TN =Y @)



and consider py defined analogously. Finally introduce the linear Birkhoff variables

_ PPNk — iwp (Gr — 4N —k) Y, = Pr — PN—k + 1wk (Gr + dN—k)

vV 2wk ’ i\/ 2wk ’

where wy = w (%) := 2sin(kw/N); using such coordinates, which are symplectic, the quadratic
part of the Hamiltonian takes the form

Xk

k=1,..,N—1, (3)

(4)

For any s > 0, o > 0 introduce in CV~! x CN~1 the discrete Sobolev-analytic norm

2 1 s 20 |Xk|2 + |Yk|2
(X, Y)||pe0 := v (k]38 €20 TN ¢ (&) a2 %)
k=1

where [k]x := min(|k|, |N — k|) . The space CV~1 x CV~! endowed by such a norm will be denoted
by P#°. We denote by B*>?(R) the ball of radius R and center 0 in the topology defined by the
norm ||.|| p.... We will also denote by By := B*?(R) N (RV~! x R¥~1) the real ball of radius R.
The most important result in this section is the following

Theorem 0.1. For any s > 0, 0 > 0 there exist strictly positive constants Ry, R, ., such that

s,07
for any N > 2, the map ®n is analytic as a map

s,0 RSU s.0 R;o
by : B* Ni’o‘ — B% Niﬁa ) ($,y)'—>(X7Y)

if and only if a« > 2. The same is true for the inverse mapping <I>R,1.

In order to prove the "if" part of Theorem 0.1 we apply to the Toda lattice a Vey type theorem
[Vey78] for infinite dimensional systems recently proved by Kuksin and Perelman [KP10]. Actually,
we need to prove a new quantitative version of Kuksin-Perelman’s theorem, a result that we think
could be interesting in itself.

In order to prove the "only if" part of Theorem 0.1, we explicitly construct the first term of
the Taylor expansion of ® 5 through Birkhoff normal form techniques, and prove that the second
differential Q®~ := d?®x(0,0) at the origin diverges like N2. It follows that, as N — +oo, the
real diffeomorphism ®y develops a singularity at zero in the second derivative. Thus, by Cauchy
estimate, the image of a ball of radius R/N® is unbounded when « < 2.

We finally apply the result to the problem of equipartition of energy in the spirit of Fermi-Pasta-
Ulam. Recall that the FPU («, 8)-model is the Hamiltonian lattice with Hamiltonian function
which, in suitable rescaled variables, takes the form

Nol g2 2 3 !
HFPU(p7Q):ZEJ+U(qJ7qj+1)7 U(I’):?+ €+ﬁﬂ (6)
=0

We will consider the case of periodic boundary conditions: gy = qn, po = pn. Let us denote by Ej,
the energy of the k' normal mode, and by &, := Ej/N the specific energy in the £** mode. In



their celebrated numerical experiment Fermi Pasta and Ulam [FPU65| studied both the behaviour
1

of &(t) and of its time average (&x)(t) = ¢ fé Er(s)ds . They observed that, corresponding to
initial data with £;(0) # 0 and &(0) = 0 Vk # 1, N — 1, the quantities £ (f) present a recurrent
behaviour, while their averages (£;)(t) quickly relax to a sequence &, exponentially decreasing with
k. This is what is known under the name of FPU packet of modes.

A systematic numerical study of the evolution of the Toda compared to FPU, paying particular
attention to the dependence on N of the phenomena, was performed by Benettin and Ponno [BP11]
(see also [BCP13]). In particular such authors put into evidence the fact that the FPU packet
seems to have an infinite lifespan in the Toda lattice. Furthermore they showed that the relevant
parameter controlling the lifespan of the packet in the FPU model is the distance of FPU from the
corresponding Toda lattice, which is measured by the quantity (8 — 1).

As a corollary of Theorem 0.1 we prove that in the Toda lattice, corresponding to initial data
in a ball of radius R/N? (0 < R < 1) and with only the first Fourier mode excited, the energy
remains forever in a packet of Fourier modes exponentially decreasing with the wave number. Then
we consider the original FPU model and prove that, corresponding to the same initial data, energy
remains in an exponentially localized packet of Fourier modes for very long times (see Theorem
0.3 below), namely for times one order of magnitude longer then those covered by previous results
[BP06]. This is relevant in view of the fact that the time scale covered in [BP06] is that of formation
of the packet, so the result that we prove allows to conclude that the packet persists over a time
much longer then the one needed for its formation. It is convenient to state the results for Toda
and FPU using the small parameter y := % as in [BP06]. We prove the following theorem

Theorem 0.2. Consider the Toda lattice (1). Fix o > 0, then there exist constants Ry, C1, such
that the following holds true. Consider an initial datum with

£1(0) = En1(0) = R?e>pt . &(0) = &(t)|,_, =0, VE#1,N-1 (7)
with R < Ry. Then, along the corresponding solution, one has
En(t) S R*(14+CiR)p'e % | V1<E<|N/2|, VteR. (8)
For the FPU model we have the following theorem

Theorem 0.3. Consider the FPU system (6). Fixz s > 1 and o > 0; then there exist constants Rg,
Cy, T, such that the following holds true. Consider a real initial datum fulfilling (7) with R < Ry,
then, along the corresponding solution, one has

16R?pute=20k T 1
—_— V1<Ek<|N/2 t| < . .

Er(t) < 9)

Furthermore, for 1 <k < N — 1, consider the action I} := % of the Toda lattice and let I (t)
be its evolution according to the FPU flow. Then one has

N-1

1 _

~ N RNV Mg (&) |1u(t) — 1(0)| < C3R?u®  for t fullfilling (9) (10)
k=1

Let us remark that our analysis is part of a project aiming at studying the dynamics of periodic
Toda lattices with a large number of particles, in particular its asymptotics. First results in this
project were obtained in the papers [BKP09, BKP13b, BKP13a] (see also [BGPUO03]).



They are based on the Lax pair representation of the Toda lattice in terms of periodic Jacobi
matrices. The spectrum of these matrices leads to a complete set of conserved quantities and hence
determines the Toda Hamiltonian and the dynamics of Toda lattices, such as their frequencies.

In order to study the asymptotics of Toda lattices for a large number N of particles one therefore
needs to work in two directions: on the one hand one has to study the asymptotics of the spectrum
of Jacobi matrices as N — oo and on the other hand, one needs to use tools of the theory of
integrable systems in order to effectively extract information on the dynamics of Toda lattices from
the periodic spectrum of periodic Jacobi matrices.

The KdV on R. In the second part of the thesis we show that for the KdV on the line, the
scattering map is an analytic perturbation of the Fourier transform by a 1-smoothing nonlinear
operator. With the application we have in mind, we choose a setup for the scattering map so that
the spaces considered are left invariant under the KdV flow. Recall that the KdV equation on R

atu(tax) = 782”(15733) - 6u(t>$)azu(tax) ) ’UJ(O,.I) = Q(z) ) (11)

is globally in time well-posed in various function spaces such as the Sobolev spaces HY = HY (R, R),
N € Zss, as well as on the weighted spaces H2Y N L2, with integers N > M > 1 [Kat66], where
L2, = L%,(R,C) denotes the space of functions satisfying lqll2. = 7 (1+]z|*)M|q(z)[*dz < oo.

Our analysis relies on a detailed study of the spectral data of the Schrodinger operator L(q) :=
—02 + q. Denote by fi(q,z,k) and fa(q,z,k) the Jost solutions, i.e. solutions of L(q)f = k%f
with asymptotics fi(q,z, k) ~ e** z — oo, falg,z,k) ~ e % x — —oo. The eigenvalues of the
operator L(q) are called bound states, and a potential ¢ will be said to be without bound states
if L(q) has no eigenvalues. Furthermore ¢ will be said to be generic if the Wronskian W(q, k) :=
[f2(q, z, k), f1(q, @, k)] satisfies the condition W(g,0) # 0 (see [Fad64]). We are interested in the
analytic properties of the scattering map

S(Q7k) = [fl(Q7ka)7f2(qaxa _k)} :

which is known to linearize the KdV flow [GGKMT74].
To state our result, introduce the set

Q= {q R—=R, g€ LZ : ¢ without bound states and generic} , (12)

and for any integers N > 0 and M > 4 define QV'M := QN HYN N L3,. We prove that for potentials
q € Q, the scattering map S(q, ) takes value in the space .7 of functions o : R — C satisfying

(S1) o(—=k)=0(k), VkeR;
(S2) o(0) > 0.

Denote by .7V .= ¥ N Hé\,/{c N L%. Here Hé\jfc is the space of functions f € Héwfl such that
the M*" derivative fulfills COMf € L?, where ¢ : R — R is an odd monotone C* function with
(k) =k for |[k| <1/2and ((k)=1fork>1.

Moreover let F be the Fourier transformations defined by Fi(f) = fjoo; e T2k f (1) dx. In this
setup, the scattering map S has the following properties:

Theorem 0.4. For any integers N > 0, M > 4, the following holds:



(i) The map
S QMM o FMN g S(q,0)

is a real analytic diffeomorphism.
(i) The maps A= S — F_ and B := S~' — F~! are 1-smoothing, i.e.
A:QNM s HM N LY, and B:SMN 5 HNYIALY,
Furthermore they are real analytic maps.

Item (i) of Theorem 0.4 shows that the scattering map behaves like a nonlinear Fourier trans-
form, interchanging the decaying and regularity properties. Item (ii) shows that the difference A
of the scattering map and its linear part F_ is 1-smoothing.

Kappeler and Trubowitz [KT86, KT88] studied analytic properties of the scattering map S between
weighted Sobolev spaces. More precisely, define the spaces

H™ ={feLl?:2°0ifeL?,0<j<n0<pB<a}l,

H = {feH" 2’} fe > 1<f<a} .
In [KT86|, Kappeler and Trubowitz showed that the map ¢ — S(g, ) is a real analytic diffeomor-
phism from Q@ N HVN to .7 N HN_l’N, N € Z>s3. They extend their results to potentials with
finitely many bound states in [KT88]. Unfortunately, such spaces are not invariant for the KdV
flow, thus they are not suited for analyzing qualitative properties of the KdV dynamic. The novelty
of our work is to extend the construction of [KT86] to spaces of the form HY N L3,, which, for
N > 2M > 2, are invariant for the KAV [Kat66].

As an application of Theorem 0.4 we compare solutions of (11) to solutions of the Cauchy
problem for the Airy equation on R,

o(t,x) = —0v(t,x) , v(0,2) = p(x) . (13)

Denote the flows of (13) and (11) by U}, (p) := v(t,-) respectively U 4-(q) := u(t,-). We show
that for ¢ € QVM with N > 2M > 8, the difference Uf 4y (q) — Uk, () is 1-smoothing, i.e. it
takes values in HV*!. More precisely we prove the following:

Theorem 0.5. Let N, M be integers with N > 2M > 8. Then the following holds true:
(i) QNM s invariant under the KdV flow.

(ii) For any g € QNM the difference Ul 4y, (q) — Uk, (q) takes values in HN+' N L3, Moreover
the map

OV M x Rsg —HNT N L3, (¢:t) = Ugkay (@) — Ul (q)
is continuous and for any fived t real analytic in q.

This result is motivated from the study of the 1-smoothing property of the KdV flow in the
periodic set-up, established recently in [ET13a, KST13] and addresses the question if similar results
hold for the KdV flow on the line. In particular in [KST13] the 1-smoothing property of the Birkhoff

10



map has been exploited to prove that for ¢ € HY(T,R), N > 1, the difference U 4y (q) — Uk;,, (q)
is bounded in H¥*!(T,R) with a bound which grows linearly in time.

Organization of the thesis. In Chapter 1 we analyze the Toda Lattice with a large number of
particles, and we prove Theorem 0.1, Theorem 0.2 and Theorem 0.3. The results of this Chapter
are taken from our paper [BM14].

In Chapter 2 we analyze the KAV on R and we prove Theorem 0.5 and Theorem 0.4. The results
of this chapter are taken from our paper [MS14].

Each chapter here is self contained and can be read separately.

11



Chapter 1

Birkhoff coordinates for the Toda
Lattice in the limit of infinitely many
particles with an application to FPU

1 Introduction and main result

It is well known that the Toda lattice, namely the system with Hamiltonian

N-1 N-1

1 .
Hroaa(p,q) = 5 Y P5 + D e ™4+, (1.1)
=0 =0

and periodic boundary conditions ¢y = qo, py = po, is integrable [Tod67, Hén74]. Thus, by
standard Arnold-Liouville theory the system admits action angle coordinates. However the actual
introduction of such coordinates is quite complicated (see [FM76, FFM82|) and the corresponding
transformation has only recently been studied analytically in a series of papers by Henrici and
Kappeler [HK08b, HK08c]. In particular such authors have proved the existence of global Birkhoff
coordinates, namely canonical coordinates (zj,yx) analytic on the whole R?Y, with the property
that the k*" action is given by (22 +y2)/2. The construction of Henrici and Kappeler, however is not
uniform in the size of the chain, in the sense that the map ®x introducing Birkhoff coordinates is
globally analytic for any fixed N, but it could (and actually does) develop singularities as N — +o0.
Here we prove some analyticity properties fulfilled by ® 5 uniformly in the limit N — 4o00. Precisely
we consider complex balls centered at the origin and prove that ® 5 maps analytically a ball of radius
R/N® in discrete Sobolev-analytic norms into a ball of radius R'/N®, with R, R’ > 0 independent
of N if and only if @ > 2. Furthermore we prove that the supremum of ® over a complex ball of
radius R/N® diverges as N — 400 when o < 1.

In order to prove upper estimates on ®5 we apply to the Toda lattice a Vey type theorem
[Vey78] for infinite dimensional systems recently proved by Kuksin and Perelman [KP10]. Actually,
we need to prove a new quantitative version of Kuksin-Perelman’s theorem. We think that such a
result could be interesting in itself.

The lower estimates on the size of @ are proved by constructing explicitly the first term of the

12



Taylor expansion of @ through Birkhoff normal form techniques; in particular we prove that the
second differential d?® y(0) at the origin diverges like N2.

We finally apply the result to the problem of equipartition of energy in the spirit of Fermi-
Pasta-Ulam. We prove that in the Toda lattice, corresponding to initial data with energy E/N3
(0 < E < 1) and with only the first Fourier mode excited, the energy remains forever in a packet of
Fourier modes exponentially decreasing with the wave number. Then we consider the original FPU
model and prove that, corresponding to the same initial data, energy remains in an exponentially
localized packet of Fourier modes for times of order N* (see Theorem 1.16 below), namely for
times one order of magnitude longer then those covered by previous results (see [BP06], see also
[SWO00, HL12|). This is relevant in view of the fact that the time scale of formation of the packet is
N3 (see [BP06]), so our result allows to conclude that the packet persists over a time much longer
then the one needed for its formation.

1.1 Birkhoff coordinates for the Toda lattice

We come to a precise statement of the main results of the present chapter. Consider the Toda
lattice in the subspace characterized by

qu :Oizpj (12)

which is invariant under the dynamics. Introduce the discrete Fourier transform F(q) = ¢ defined
by

N-1
5 1 2injk/N
=— > qetN . kez, 1.3
qk? \/N j_o qj ( )

and consider py defined analogously. Due to (1.2) one has pg = §o = 0 and furthermore pp =
Pe+Ns Gk = Qi+ N, Yk € Z, so we restrict to {p, cjk}kN:_ll. Corresponding to real sequences (p;, q;)
one has gy = gn—x and Py = PN k-

Introduce the linear Birkhoff variables

_ Pk PNkt iw (Gr + 4N —k)

_ Pt PNk — iwk (Gr — 4N —k)

X , Y , k=1,.,N—-1,
. V2w g iv/2wr
(1.4)
where wy = w (%) := 2sin(kn/N); using such coordinates, which are symplectic, the quadratic
part
N-1_2 2
P4 —g4)
Hy = Z 5 (1.5)
J:
of the Hamiltonian takes the form
N-1
X2+ Y72
_ k k k
Ho= 3w (k) Tt (1.6)

With an abuse of notations, we re-denote by Hrog4, the Hamiltonian (1.1) written in the coordinates
(X,Y). The following theorem is due to Henrici and Kappeler:

13



there exists a global real analytic symplectic

Theorem 1.1 ([HKO08c|). For any integer N > 2
x RN=1 (X,Y) = ®y(x,y) with the following

diffeomorphism ®y5 : RN-1 x RN-1 5 RN-1
properties:

2 2
(i) The Hamiltonian Hrodq © PN is a function of the actions Iy, := % only, i.e. (zk,yr) are
Birkhoff variables for the Toda Lattice.

(i) The differential of ®n at the origin is the identity: d®y(0,0) = 1.

Our main results concern the analyticity properties of the map ®n as N — co. To come to a
precise statement we have to introduce a suitable topology in CN~1 x CN—1,
For any s > 0, o > 0 introduce in CV~1 x CV~! the discrete Sobolev-analytic norm

N-1 2 2
1 s 20 | Xk |™ + Y|
1Y) = R e o (&) FRRL D (L.7)
k:l
where
[k]n := min(|k], |N — k|) .

The space CVN~1 x CV~! endowed by such a norm will be denoted by P*?. We denote by B*°(R)
the ball of radius R and center 0 in the topology defined by the norm ||.|[5. .. We will also denote
by By’ := B> (R) N (RN~ x RV=1) the real ball of radius R.

Remark 1.2. When o = s =0 the norm (1.7) coincides with the energy norm rescaled by a factor
1/N (the rescaling factor will be discussed in Remark 1.11). We are particularly interested in the
case o > 0 since, in such a case, states belonging to P*° are exponentially decreasing in Fourier
space. The consideration of positive values of s will be needed in the proof of the main theorem.

Our main result is the following Theorem.

Theorem 1.3. For any s > 0, o > 0 there exist strictly positive constants Rs ,, Cs o, such that
for any N > 2, the map ®y is analytic as a map from B> (Rs ,/N?) to P*° and fulfills

R2
sup [N (z,y) = (z,9) [l pet1o < Cs,aﬁ )
(@)l ps.c <R/N?

VR < Ry, (1.8)

The same estimated is fulfilled by the inverse map <I>]_Vl possibly with a different R .

Remark 1.4. The estimate (1.8) controls the size of the nonlinear corrections in a norm which
is stronger then the norm of (z,y), showing that ®x — 1 is 1-smoothing. The proof of this kind
of smoothing effect was actually the main aim of the work by Kuksin and Perelman [KP10], which
proved it for KdV. Subsequently Kappeler, Schaad and Topalov [KST13] proved that such a smooth-
ing property holds also globally for the KdV Birkhoff map.

Remark 1.5. As a consequence of (1.8) one has

8,0 R 8,0 R
(I)N <B7 <]V2>> C B> <N2( +C‘50R)>, VR<RS7U7VNZ2 (19)

and the same estimate is fulfilled by the inverse map <I>J_\,1, possibly with a different R .
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Corollary 1.6. For any s > 0, 0 > 0 there exist strictly positive constants Rs , Cs », with the
following property. Consider the solution v(t) = (X (t),Y (t)) of the Toda Lattice corresponding to
initial data vy € B% (%) with R < R, then one has

S,0 R
In order to state a converse of Theorem 1.3 consider the second differential Q¥~ := d?® (0, 0)

of ® at the origin; QPN : P*7 — P57 is a quadratic polynomial in the phase space variables'.

Theorem 1.7. For any s > 0, 0 > 0 there exist strictly positive R,C, N, , € N, such that, for any
N > N, o, a € R, the quadratic form Q®N fulfills

sup HQ‘I’N(UW)}

UEB]E’U(N—}E)

> CR*N?72 | (1.11)

Ps,o
Remark 1.8. Roughtly speaking, one can say that, as N — oo, the real diffeomorphism ® n develops
a singularity at zero in the second derivative.

Using Cauchy estimate (see subsect. 3.2) one immediately gets the following corollary.

Corollary 1.9. Assume that for some s > 0, o > 0 there exist strictly positive R, R’ and o > 0,
o €R, Ny, €N, s.t., for any N > Ny ., the map ®x is analytic in the complex ball B (R/N%)

and fulfills
S,0 S,0 '
Dy (B (a)> cB (Na’> , (1.12)

then one has o/ <2(a—1).
Remark 1.10. A particular case of Corollary 1.9 is a < 1, in which one has that the image of a
ball of radius RN~ under ®y s unbounded as N — co.

A further interesting case is that of a = o', which implies o > 2, thus showing that the scaling
R/N? is the best possible one in which a property of the kind of (1.9) holds.

Remark 1.11. A state (X,Y) is in the ball BS°(R/N?) if and only if there exist interpolating
periodic functions (8, «), namely functions s.t.

pj =7 (]]\7> y 4T Qi = o <JJV> , (1.13)

which are analytic in a strip of width o and have a Sobolev-analytic norm of size R/N?. More
precisely, given a state (p,q) one considers its Fourier coefficients (p, §) and the corresponding X,Y
variables; define

;N1 ;N
a(z) = Z G (1 _ 6727rik/N) 2ok B(z) = Z e 2Tk
VNS VNS

Lactually according to the estimate (1.8) it is smooth as a map P*7 — P+l
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which fulfill (1.13). Then the Sobolev-analytic norms of a and 3 are controlled by ||(X,Y)|pe.o-
For example one has

l95allz: + sz 1058172 = 1(X, V)7

(e, B)Nr- = lledlzz + 18122 + 75—z ( Peo s

2 ) (2 )
where ||oz||iz = fol la(z)|® dz. In particular we consider here states with Sobolev-analytic norm
of order R/N? with R < 1. The factor 1/N in the definition of the norm was introduced to get
correspondence between the norm of a state and the norm of the interpolating functions.

Remark 1.12. As a consequence of Remark 1.11, the order in N of the solutions we are describing
with Theorem 1.3 is the same of the solutions studied in the papers [BP06] and [BKP09, BKP13b,
BKP13a].

Remark 1.13. The results of Theorem 1.3 and Theorem 1.7 extend to states with discrete Sobolev-
Gevrey norm defined by

N—1
| Xel® + [Vl

25 2crk]N (%) 5

1
X2, = — 1.14
(X, Y) || 5s 0, N (1.14)

k:l

where 0 < v < 1. As a consequence of Remark 1.11, these states are interpolated by periodic
functions with reqularity Gevrey v.

Our analysis is part of a project aiming at studying the dynamics of periodic Toda lattices
with a large number of particles, in particular its asymptotics. First results in this project were
obtained in the papers [BKP09, BKP13b, BKP13a]. They are based on the Lax pair representation
of the Toda lattice in terms of periodic Jacobi matrices. The spectrum of these matrices leads to a
complete set of conserved quantities and hence determines the Toda Hamiltonian and the dynamics
of Toda lattices, such as their frequencies. In order to study the asymptotics of Toda lattices for a
large number N of particles one therefore needs to work in two directions: on the one hand one has
to study the asymptotics of the spectrum of Jacobi matrices as N — oo and on the other hand, one
needs to use tools of the theory of integrable systems in order to effectively extract information on
the dynamics of Toda lattices from the periodic spectrum of periodic Jacobi matrices.

The limit of a class of sequences of N x N Jacobi matrices as N — oo has been formally studied
already at the beginning of the theory of the Toda lattices (see e.g. [Tod67]). However, as pointed
out in [BKP13b], these studies only allowed to (formally) compute the asymptotics of the spectrum
in special cases. In particular, Toda lattices, which incorporated right and left moving waves could
not be analyzed at all in this way. In [BKP13b], based on an approach pioneered in [BGPUO03], the
asymptotics of the spectra of sequences of Jacobi matrices corresponding to states of the form (1.13)
were rigorously derived by the means of semiclassical analysis. It turns out that in such a limit the
spectrum splits into three parts: one group of eigenvalues at each of the two edges of the spectrum
within an interval of size O(NN~2), whose asymptotics are described by certain Hill operators, and
a third group of eigenvalues, consisting of the bulk of the spectrum, whose asymptotics coincides
with the one of Toda lattices at the equilibrium — see [BKP13b] for details.

In [BKP13a] the asymptotics of the eigenvalues obtained in [BKP13b| were used in order to
compute the one of the actions and of the frequencies of Toda lattices. In particular it was shown
that the asymptotics of the frequencies at the two edges involve the frequencies of two KdV solutions.
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The tools used in [BKP13a] are those of the theory of infinite dimensional integrable systems as
developed in [KP03| and adapted to the Toda lattice in [HKO8b].

The present thesis takes up another important topic in the large number of particle limit of
periodic Toda lattices: we study the Birkhoff coordinates near the equilibrium in the limit of large
N to provide precise estimates on the size of complex balls around the equilibrium in Fourier
coordinates and the corresponding size in Birkhoff coordinates. Our analysis allows to describe the
evolution of Toda lattices with large number of particles in the original coordinates and to obtain
an application to the study of FPU lattices (on which we will comment in the next section).

We remark that the obtained estimates on the size of the complex balls are optimal. In our view
this is a strong indication that beyond such a regime the standard tools of integrable systems become
inadequate for studying the asymptotic features of the dynamics of the periodic Toda lattices as
N — 0.

The proofs of our results are based on a novel technique developed in [KP10] to show a Vey
type theorem for the KdV equation on the circle which we adapt here to the study of Toda lattices,
developing in this way another tool for the study of periodic Toda lattices with a large number
of particles. We remark that for our arguments to go through, we need to assume an additional
smallness condition on the set of states admitted as initial data: the states are required to be
interpolated by functions o and 3 with Sobolev-analytic norm of size R/N?, with R < 1 sufficiently
small. (In the papers [BKP09, BKP13b, BKP13a], the size R can be arbitrarily large.)

1.2 On the FPU metastable packet

In this subsection we recall the phenomenon of the formation of a packet of modes in the FPU chain
and state our related results. First of all we recall that the FPU («, 3)-model is the Hamiltonian
lattice with Hamiltonian function which, in suitable rescaled variables, takes the form

N—-1 9o
p,
Hrpu(p,q) = 5] +U(g; — gj+1) » (1.15)
j=0
.T2 373 $4
Ul =G+ 5 (1:16)

We will consider the case of periodic boundary conditions: gy = qn, po = PN -

Remark 1.14. One has

Hrpu(p,q) = Hroda(p,q) + (8 — 1)Ha(q) + H®(q),

where
N-1
(9 — le+1)”r2
H = Vi>2
l(q) Z (l I 2)| ) fetl )

7=0

H® .= -N"H,

1>3
Introduce the energies of the normal modes by
5|12 k)25 2
E; = [P +w ()" |4 , 1<kE<N-1, (1.17)

2

17



correspondingly denote by
Ey
the specific energy in the k' mode. Note that since p, ¢ are real variables, one has &, = Ey_p.
In their celebrated numerical experiment Fermi Pasta and Ulam [FPU65|, being interested in the
problem of foundation of statistical mechanics, studied both the behaviour of £ (t) and of its time

average
(E)(t) = % /0 £x(s)ds .

They observed that, corresponding to initial data with £ (0) # 0 and &,(0) = 0 Vk # I, N — 1,
the quantities & (t) present a recurrent behaviour, while their averages (£)(t) quickly relax to a
sequence &, exponentially decreasing with k. This is what is known under the name of FPU packet
of modes.

Subsequent numerical observations have investigated the persistence of the phenomenon for
large N and have also shown that after some quite long time scale (whose precise length is not yet
understood) the averages (£)(t) relax to equipartition (see e.g. [BGG04, BGP04, BP11, BCP13]).
This is the phenomenon known as metastability of the FPU packet.

The idea of exploiting the vicinity of FPU with Toda in order to study the dynamics of FPU
goes back to [FFM82], in which the authors performed some numerical investigations studying the
evolution of the Toda invariants in the dynamics of FPU. A systematic numerical study of the
evolution of the Toda invariants in FPU, paying particular attention to the dependence on N of
the phenomena, was performed by Benettin and Ponno [BP11] (see also [BCP13]). In particular
such authors put into evidence the fact that the FPU packet seems to have an infinite lifespan in
the Toda lattice. Furthermore they showed that the relevant parameter controlling the lifespan of
the packet in the FPU model is the distance of FPU from the corresponding Toda lattice.

Our Theorem 1.3 yields as a corollary the effective existence and infinite persistence of the
packet in the Toda lattice and also an estimate of its lifespan in the FPU system, estimate in which
the effective parameter is the distance between Toda and FPU.

It is convenient to state the results for Toda and FPU using the small parameter

1

M::N

as in [BP06].
The following corollary is an immediate consequence of Corollary 1.6.

Corollary 1.15. Consider the Toda lattice (1.1). Fix o > 0, then there exist constants Ry, Cy,
such that the following holds true. Consider an initial datum with

E1(0) = En-1(0) = R?e™27p* , &(0) = &(t)],_, =0, VE#LN-1 (1.19)
with R < Ry. Then, along the corresponding solution, one has
E.(t) < R*(1+ CiR)u'e % | V1<k<|N/2|, VteR. (1.20)

For the FPU model we have the following corollary
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Theorem 1.16. Consider the FPU system (1.15). Fiz s > 1 and o > 0; then there exist constants
R}, Ca, T, such that the following holds true. Consider a real initial datum fulfilling (1.19) with
R < R}, then, along the corresponding solution, one has

16R?pte 27k T 1
T ye— V1<k<|N/2 t] < .
]f2 I —_ —L /J? ||—R2‘u4 |/3_1‘+C2RM2

Ek(t) < (1.21)

Furthermore, for 1 < k < N — 1, consider the action I}, := M of the Toda lattice and let It (t)
be its evolution according to the FPU flow. Then one has

72 KoM g (E) | 1(t) — 1,(0)] < CsR?W®  for t fullfilling (1.21) (1.22)

Remark 1.17. The estimates (1.21) are stronger then the corresponding estimates given in [BP06],
which are

T
Eult) < Cuple™ ™+ Cop® . V1<K (N/2] L <

First, the time scale of validity of (1.21) is one order longer than that of [BP06]. Second we show
that as 8 approaches the value corresponding to the Toda lattice (1 in our units) the time of stability
improves. Third the exponential estimate of & as a function of k is shown to hold also for large
values of k (the u® correction is missing). Finally in [BP06] it was shown that T/u® is the time
of formation of the metastable packet. So we can now conclude that the time of persistence of the
packet is at least one order of magnitude larger (namely p=*) with respect to the time needed for
its formation.

Remark 1.18. We recall also the result of [HL12] in which the authors obtained a control of the
dynamics for longer time scales, but for initial data with much smaller energies.

Remark 1.19. Recently some results on energy sharing in FPU in the thermodynamic limit
[MBC14](see also [Car07, CM12, GPP12]) have also been obtained, however such results are not
able to explain the formation and the stability of the FPU packet of modes.

2 A quantitative Kuksin-Perelman Theorem

2.1 Statement of the theorem

In this section we state and prove a quantitative version of Kuksin-Perelman Theorem which will
be used to prove Theorem 1.3. It is convenient to formulate it in the framework of weighted ¢2
spaces, that we are going now to recall.

For any N < oo, given a sequence w = {wk}kj\[:17 wy > 1 Vk > 1, consider the space £2, of complex
sequences & = {&; }Y_ | with norm

(34 Zwk|£k|2 < o0 (1.23)

Denote by P¥ the complex Banach space P¥ := (2 &2 > (£,71) endowed with the norm ||(&,n) ||fu =
€112, + [Im]|% . We denote by P¥ the real subspace of P* defined by

P = {(&m ePY i m=E VI<k<N}. (1.24)
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We will denote by B™(p) (respectively Bf (p)) the ball in the topology of P™ (respectively P¥)
with center 0 and radius p > 0.

Remark 1.20. In the case of the Toda lattice the variables (&, m) are defined by

A AW N _ o (kY4
k:QdJZQQ%W,M:pN* mwN”N*7 1<k<N-1, (1.25)
2w (%) 2w (%)

and their connection with the real Birkhoff variables is given by

_ Stk Yk:&c—nk
V2 2
We denote by P! the Banach space of sequences in which all the weights wy, are equal to 1. For

X, Y Banach spaces, we shall write £(X,)) to denote the set of linear and bounded operators from
X to Y. For X =Y we will write just L(X).

Xy

1<k<N-1. (1.26)

Remark 1.21. In the application to the Toda lattice with N particles we will use a finite, but not
fized N and weights of the form w? = w3, _, = N3 k* e?*w (%), 1<k <|N/2].

Given two weights w' and w?, we will say that w! < w? iff wi < w,%, Vk. Sometimes, when
there is no risk of confusion, we will omit the index w from the different quantities.
In P! we will use the scalar product

N
(€ "), (€2P)), =Y ke +nims . (1.27)
k=1

Correspondingly, the scalar product and symplectic form on the real subspace Py are given for

¢h=(¢",¢") and € = (£2,€?) by

N
(€,€) :=2Re) &€,  w(¢ &)= (B, &), (1.28)
k=1

where E := —i.

Given a smooth F' : Py — C, we denote by X the Hamiltonian vector field of F', given by
Xp = JVF, where J = E~'. For F,G : P¥ — C we denote by {F, G} the Poisson bracket (with
respect to wp): {F, G} := (VF, JVG) (provided it exists). We say that the functions F, G commute
if {F, G} =0.

In order to state the main abstract theorem we start by recalling the notion of normally analytic
map, exploited also in [Nik86] and [BGO6].

First we recall that a map P" : (P¥)" — B, with B a Banach space, is said to be r-multilinear
if JBT(’U(I), ...,v(") is linear in each variable v(9) = (¢U), n()); a r-multilinear map is said to be
bounded if there exists a constant C' > 0 such that

|Pre®,. o) <o @ ) e e e P

w
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Correspondingly its norm is defined by
|2

= sup Hpr(vu)’ . ’”(T))H ,
o] o] <1 B

A map P" : P¥ — B is a homogeneous polynomial of order r if there exists a r-multilinear map
P : (PY)" — B such that }
P'(v) =P (v,...,v) YveP". (1.29)

A r- homogeneous polynomial is bounded if it has finite norm

1P|l := sup [[P"(v)]l;5-

lloll, <1

w =

Remark 1.22. Clearly ||P"|| < HPT . Furthermore one has |P"|| < e"|P"|| — cf. [Muj86].

It is easy to see that a multilinear map and the corresponding polynomial are continuous (and
analytic) if and only if they are bounded.

Let P : P¥ — B be a homogeneous polynomial of order r; assume B separable and let
{bn},~; C B be a basis for the space B. Expand P" as follows

Prw)=Pr(&m) = Y.  PRn'b,, (1.30)
[+ L=

where KaL € Né\]7 N() =NU {0}7 |K| = Kl + - +KN7 g = {é-]}JZl and é-K = gf(l ]I\§N7
L — L Ly
77 = 771 .. .T]N .
Definition 1.23. The modulus of a polynomial P" is the polynomial P" defined by
P = > [P

[K|+|L|=r
n>1

&% n"b,. (1.31)

A polynomial P is said to have bounded modulus if P" is a bounded polynomial.

A map F : P¥ — Bissaid to be an analytic germ if there exists p > 0 such that F': B¥(p) — B
is analytic. Then F' can be written as a power series absolutely and uniformly convergent in B (p):
F(v) =3",5¢ F"(v). Here F"(v) is a homogeneous polynomial of degree r in the variables v = (£, 7).
We will write F' = O(v™) if in the previous expansion F7"(v) = 0 for every r < n.

Definition 1.24. An analytic germ F : PY — B is said to be normally analytic if there exists
p > 0 such that
F) =Y Fr(v) (1.32)
r>0

is absolutely and uniformly convergent in B (p). In such a case we will write F € N,(P™,B).
N,(P™,B) is a Banach space when endowed by the norm

1], == sup [IE(v)]|s. (1.33)
veB (p)

Let U C PR be open. A map F : U — B is said to be a real analytic germ (respectively real normally
analytic) on U if for each point w € U there exist a neighborhood V' of u in P* and an analytic
germ (respectively normally analytic germ) which coincides with F on UNV.
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Remark 1.25. It follows from Cauchy inequality that the Taylor polynomials F" of F' satisfy

vl
pT

IE" ()l < E], Vv e BY(p) - (1.34)

Remark 1.26. Since Vr > 1 one has ||[F"|| < [|[E7||, if F € N,(PY,B) then the Taylor series of F
is uniformly convergent in B™(p).

The case B = P" will be of particular importance; in this case the basis {b;};>1 will coincide
with the natural basis {e;},;>1 of such a space (namely the vectors with all components equal to
zero except the j'* one which is equal to 1). We will consider also the case B = E(P“’l,’sz)
(bounded linear operators from P’ to ng), where w! and w? are weights. Here the chosen basis
is bji, = €; ® ey, (labeled by 2 indexes).

Remark 1.27. For v = (£,n7) € P!, we denote by |v| the vector of the modulus of the com-
1 2

ponents of v: o] = (jorl,... [owl), [osl == (&1, lgD). If B € N(P*' ,P") then dF(Jo])]u] <

dE(|v])|u| (see [KP10]) and therefore, for any 0 < d < 1, Cauchy estimates imply that dF €

Na_ap (P LPY PY7)) with

bal

(1.35)

1
|d7F‘p(lfd) S d7p ‘ p
where dF is computed with respect to the basis e; ® ey,.
Following Kuksin-Perelman [KP10] we will need also a further property.

Definition 1.28. A normally analytic germ F € Np(’Pwl,sz) will be said to be of class Aﬁip if
F = O(v?) and the map v — dF(v)* € Np(Pwl,E(Pwl,P“’z)). Here dF(v)* is the adjoint operator
of dF (v) with respect to the standard scalar product (1.27). On Agf}p we will use the norm

I1E|

art = |l pldE|, + pldEY,. (1.36)

Remark 1.29. Assume that for some p > 0 the map F € Alu'ﬁ 7 then for every 0 < d < % one has
2 2
Elyy < 20 E), and |FlL s <60 [ Fl| s
A real normally analytic germ F : BY' (p) — P2 will be said to be of class NP(P]}{I,’PH’{F)
(respectively Agf ,) if there exists a map of class p(Pw1 ,P") (respectively Ag? ,), which coincides
with F' on Bﬁ{l (p). In this case we will also denote by |F| , (respectively ||F']| 4,2 ) the norm defined
wl,p

by (1.33) (respectively (1.36)) of the complex extension of F'.
Let now F: U C P*" — P*’ be an analytic map. We will say that F' is real for real sequences

if F(UﬂPﬁ’l) C PfRf’z, namely F(&,n) = (F1(&,1), Fa(€,n)) satisfies Fy (€, &) = Fy(&,€). Clearly, the
restriction F'|; 5.1 is a real analytic map.
R

We come now to the statelment of th@1 Vey Theorem. ,
Fix p > 0 and let U : BY (p) = Py, ¥ = 1+ U with 1 the identity map and ¥° € AY, o
Write ¥ component-wise, ¥ = {(\I}j7$j)}j>1’ and consider the foliation defined by the functions
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{|\I/j(v)|2 /2}j>1. Given v € Py’ we define the leaf through v by

() |2 ()12
Fo = {uépﬁli ‘\Ijj(;m = |\Il]év)\ y Vj2 1} : (1.37)

Let F = Uueﬂg’ F, be the collection of all the leaves of the foliation. We will denote by T, F
the tangent space to F, at the point v € Pg’. A relevant role will also be played by the function
I ={I;};>1 whose components are defined by

Liw) = (&) =22 vi>1. (1.38)

The foliation they define will be denoted by F(©).
Remark 1.30. ¥ maps the foliation F into the foliation F(©), namely F©) = W(F).
The main theorem of this section is the following

Theorem 1.31. (Quantitative version of Kuksin-Perelman Theorem) Let w' and w? be weights
with w' < w?. Consider the space 77]};{1 endowed with the symplectic form wqy defined in (1.28). Let
p >0 and assume W : Bﬁ‘é’l(p) — Pﬁé"l, U =140 and V0 ¢ Agf o Define

€ = H\IJOHA:ip ) (1.39)

Assume that the functionals {5 |\I/j(v)|2}j21 pairwise commute with respect to the symplectic form
wo, and that p is so small that
€ <273, (1.40)

Then there exists a real normally analytic map R Bﬁ{l(ap) — Pﬂ’{l, a = 27 with the following
properties:

i) W*wy = wo, so that the coordinates z := W (v) are canonical;

~ 2
it) the functionals {é ’\I/J(v)‘ } pairwise commute with respect to the symplectic form wg;
Jj=1

iii) FO) = \Tl(]-'), namely the foliation defined by ¥ coincides with the foliation defined by \Tl;

i) U =1+ U0 with ¥° ¢ A’w"i ap and H\TJO‘ < 217¢,,

The following corollary holds:

Corollary 1.32. Let H : 77]17{1 — R be a real analytic Hamiltonian function. Let U be as in Theorem
1.31 and assume that for every j > 1, |¥; (v)|2 s an integral of motion for H, i.e.

{H, |9’} =0 Vj=>1. (1.41)

Then the coordinates (z;,y;) defined by x;+iy; = \I/j (v) are real Birkhoff coordinates for H, namely
canonical conjugated coordinates in which the Hamiltonian depends only on (x? + y?-)/?.
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Proof of Corollary 1.32. Since ¥ = 1 + W0, the functions ¥,;(v) can be used as coordinates in a
suitable neighborhood of 0 in Pg’. Let ¥ be the map in the statement of Theorem 1.31. Denote
Fi(v) i= }|Ti(v)
by {|\Ilj|2}j21 coincide (Theorem 1.31 #4)), each Fj is constant on the level sets of {|\Ilj|2}j21. It

follows that each F; is a function of {|‘~I/j|2}j21 only. Since Vj > 1, \\I'j|2 is an integral of motion
for H, the same is true for Fj, VI > 1. Define now, in a suitable neighborhood of the origin, the

coordinates (z, %) by z; = U;, z; = ¥;. Of course F = # By (1.41) it follows then that

2
. Since the foliation defined by the functions {F;};>1 and the foliation defined

1 /0H 0OH
0= {H, lel} = — (aZlZl — aZZZ[) . (142)

i
Since dW¥(0) = 1 (Theorem 1.31 iv)), ¥ is invertible and its inverse ® satisfies ® = 1 + ®° with
PO ¢ .Awf and H&)O’ <2 H\T'OH < 218¢; (Lemma 1.65 ii) in Appendix A).
P

wl,app

2 2
w w
'Awl,au Awl,ap

Expand now H o d in Taylor series in the variables (z, z):

Ho®(z,z) = Z H;’ﬁzaéﬁ.
r>2,
laf+]B]=r

Then equation (1.42) implies that in each term of the summation o = 3, therefore H o P is a
function of |21]2, ..., |2n|?. Define now the real variables (x,%) as in the statement, then the claim
follows immediately. O

2.2 Proof of the Quantitative Kuksin-Perelman Theorem

In this section we recall and adapt Eliasson’s proof [Eli90] of the Vey Theorem following [KP10]. As
we anticipated in the introduction, the novelty of our approach is to add quantitative estimates on
the Birkhoff map ¥ of Theorem 1.31. In Appendix A we show that the class of normally analytic
maps is closed under several operations like composition, inversion and flow-generation, and provide
new quantitative estimates which will be used during the proof below.

The idea of the proof of Theorem 1.31 is to consider the functions {¥;(v)};>1 as noncanonical coor-
dinates, and to look for a coordinate transformation introducing canonical variables and preserving
the foliation F(©) (which is the image of F in the noncanonical variables).

This will be done in two steps both based on the standard procedure of Darboux Theorem
that we now recall. In order to construct a coordinate transformation ¢ transforming the closed
nondegenerate form €2; into a closed nondegenerate form €2, then it is convenient to look for ¢ as the
time 1 flow ¢! of a time-dependent vector field Y. To construct Y* one defines Q; := Qy+¢(21 — Qo)
and imposes that

0= %L‘,:O g&t*Qt = (pt* ([:tht + Q1 — Qo) = (pt* (d(YtJQt) + d(Oq — Oé()))

where a1, are potential forms for ; and Qg (namely da; = Q;, ¢ = 0,1) and Ly is the Lie
derivative of Y'*. Then one gets
YtJQt +a; —ag=df (143)
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for each f smooth; then, if Q; is nondegenerate, this defines Y*. If Y generates a flow ¢ defined
up to time 1, the map ¢ := ¢'|,_, satisfies ¢*Qy = Q. Thus, given Qg and €, the whole game
reduces to study the analytic properties of Y and to prove that it generates a flow.

A non-constant symplectic form 2 will always be represented through a linear skew-symmetric
invertible operator E as follows:

Q) (wV;u®) = (B)u™;u®) | vuV u? e T,PY ~ PY. (1.44)

We denote by {F, G}q the Poisson bracket with respect to Q : {F, G}q := (VF,JVG), J:= E~L.
Similarly we will represent 1-forms through the vector field A such that

a()(u) = (A(w),u), YueT,Pg. (1.45)

Define wy := (¥ ~1)*wy, and let E,,, be the operator representing the symplectic form w;. The first

step consists in transforming w; to a symplectic form whose "average over F(O" coincides with wy.

So we start by defining precisely what “average of k-forms” means. To this end consider the

2

Hamiltonian vector fields X?l of the functions I; = %

given by

through the symplectic form wy; they are

X7 (v) =iV (v) = ive, VI>1. (1.46)

For every [ > 1 the corresponding flow ¢ = ¢, is given by
I

(bf(’l}) = (’U17"' »1}171,6itvl,vl+1,-~-) .

Remark that the map ¢} is linear in v, 27 periodic in ¢ and its adjoint satisfies (¢})* = q/)ft.
Given a k-form a on Py (k > 0), we define its average by

M;a(v) i/0 W((cb;)*a)(v)dt, j>1, and  Ma(v) :/T[(qb‘g)*a] do (1.47)

:271'

where T is the (possibly infinite dimensional) torus, the map ¢ = ((bfl oqbg"’ --+) and d@ is the Haar
measure on 7T .

Remark 1.33. In the particular cases of 1 and 2-forms it is useful to compute the average in term
of the representations (1.44) and (1.45). Thus, for v, v, u(® e Py, if

a(v)u™ = (A@); ), wE) (!, u®) = (B@)ut;u®)

one has
(Ma)(v)ut) = (MA)(v); u™) | with MA(v) = /T¢_9A(¢9(v)) do (1.48)

and

(Mw)(@) (@D, u®) = (ME)(0)u®; u®) . with ME(v) = [r 6B ()" do.  (1.49)
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Remark 1.34. The operator M commutes with the differential operator d and the rotations ¢°. In
particular M A(v) and ME(v) as in (1.48), (1.49) satisfy

P MA(w) = MA(¢%v), ¢*ME@w)u= ME(¢%v)¢’u, VO T.

We study now the analytic properties of w; and of its potential form «,,. In the rest of the
section denote by S := 3> 1/n? and by

= 1/e(325)"/2 2~ 0.0507 . (1.50)
Lemma 1.35. Let ® := U~! and w; be as above. Assume that €; < p/e. Then the following holds:
(i) Euy = —i+ Yoy, with T, € Ny, (PY, LPE,PY")) and

Tooy [p < s . (1.51)
1p
(i) Define

W, (v) := /01 Yo, (tv)tv dt , (1.52)

then W,,, € A”, . and |W,,

wt,udp
donw1 =wi; —Wwp -

1 ”Awf , =8 Moreover the 1-form aw,, = (W.,;.) satisfies
wL,pTp

<

(e
w >
.Aw1
\p

Proof. By Lemma 1.65 one has that & = (]l + \110)71 = 1+ ®° with ®° € A¥

2
wl,up

and ||<I>0
2 ||\I/0||A$§ ) < 2¢;. To prove (i), just remark that
E,, (v) = d®* (v)(=i)d®(v) = —i + d®°(v)*(—1)d®(v) — id®°(v) =: =i + T, (v)

and use the results of Lemma 1.65. To prove (i), use Poincaré construction of the potential of wq
which gives

g, (V)u = </0 E,, (tv)tv, u)dt = ag(v)u + (W, (v),u), W, (v) = /0 Ty, (tv)tv dt |

where o is the potential for wy. In order to prove the analytic properties of W,,, note that
W, (v) = fol(Hl(tv) + Hj(tv))dt where Hy(v) := —id®°(v)v and Hy(v) := d®°(v)*(—i)d®(v)v =

d®°(v)*(—iv+ H1(v)). Thus, by Lemma 1.65, one gets that [|Hy|| 4.2 = <2 H<I>0||sz < 4e; and
wl, pu2p wl,pup
[ Hzl| 42 <2 H@OHsz < 4e; . Thus the estimate on W, follows. O
wl,pu3p wl, p2p
Remark 1.36. One has Moy, —ag = Maw,, = (MWy,,-) and [|MWy, || 4wz < [[Wo,ll 4wz -
wl.udp wl udp

We are ready now for the first step.
Lemma 1.37. There exists a map § : Bﬂ%l(/ﬁp) — ’P]Rfl such that (1 — @) € Agf uop and

11— @l o2 | < 2% (1.53)
wt,up

Moreover ¢ satisfies the following properties:
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(i) ¢ commutes with the rotations ¢°, namely ¢°@(v) = ¢(¢%v) for every 6 € T.

(i) Denote &y := $*wy, then Mdy = wp.

Proof. We apply the Darboux procedure described at the beginning of this section with Q¢ = wq
and Q1 = Mw;. Then Q, is represented by the operator EZ,I = (—i+t(ME,, +1)). Write equation
(1.43), with f = 0, in terms of the operators defining the symplectic forms, getting the equation
Eilfft = —MW,, (see also Remark 1.36). This equation can be solved by inverting the operator
E!, by Neumann series:

V= —(—i4tMY,,) MW, . (1.54)

By the results of Lemma 1.35 and Remark 1.36, Yt is of class A%f 4p and fulfills

< 2% . (1.55)

2
1l gw
wl, udp

sup HYtH ,  <2|MWwW,
t€[0,1] A51’“4P

By Lemma 1.66 the vector field Y generates a flow ¢ : BY' (u®p) — P®’ such that @' — 1 is of
class A%f uSp and satisfies

gbt—]l{ <2 sup HYtH §2561.
]

sz 2
wh,up tef0,1 ANt 4,

Therefore the map ¢ = p!|;—; exists, satisfies the claimed estimate (1.53) and furthermore ¢* Mw; =
wo-

We prove now item (i). The claim follows if we show that the vector field Y* commutes with
rotations. To this aim consider equation (1.54), and define Jf (v) = (EL, (v))~'. By construc-

tion the operator E’Ll commutes with rotations (cf. Remark 1.34), namely V60, € T one has
PP Bl (v)u = B! (6% (v))¢%u. Then it follows that

¢"Y" (v) = =67 JL, (V) MWe, (v) = =L, (6 (v))$" MW, (v)
= —JL, (@™ (0)) MW, (6™ (v)) = Y (4% (v)).

This proves item (7). Item (i7) then follows from item () since, defining & = ¢*wy, one has the
chain of identities Mw, = Mp*w; = ¢*Mw; = wy. O

The analytic properties of the symplectic form @w; can be studied in the same way as in Lemma
1.35; we get therefore the following corollary:

Corollary 1.38. Denote by E;, the symplectic operator describing i, = @*w1. Then

<27LL

(i) By = —i+ Yo, with Yo, € Ny ,(PY, L(PY, PY")) and |Ts, o

utp

(ii) Define W(v) := fol Yo, (to)tv dt, then W € AY, and [|[W{| 4wz o< 27¢;.
wl,uTp

wh,uTp

Furthermore the 1-form aw := (W,.) satisfies daw = &1 — wp.
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Finally we will need also some analytic and geometric properties of the map
U:=plol. (1.56)
The functions {¥(v)};>1 forms a new set of coordinates in a suitable neighborhood of the origin
whose properties are given by the following corollary:
Corollary 1.39. The map V¥ : Bﬁ{l(ugp) — ’Pﬂ’é’l, defined in (1.56), satisfies the following proper-
ties:

(i) dP(0) =1 and ¥° =T — 1 € A% . with [P < 28¢;.

HAﬁ.MSP
(ii) FO = U (F), namely the foliation defined by ¥ coincides with the foliation defined by .
(iti) The functionals {3 ’\iljf}jzl pairwise commute with respect to the symplectic form wy.

Proof. By Lemma 1.65 the map ¢ is invertible in Bﬁ{l(uﬁp) and 7' = 1+ g, with g € A®

2
wl,ubp

and ||g||Au,? LS 26e;. Then U = 1 4+ ¥° where ¥ = U0 + go (1 + ¥%). By Remark 1.29,
wl 1u6p

H\I/OHsz . < 6utte;, thus Lemma 1.65 ) implies that PO e Aiﬁ? iy and moreover H\iIOHAwa \ <
wl,u7p ’ wl, u8p

6ulte; +27¢; < 28¢;. Ttem (44) and (i74) follow from the fact that, by Lemma 1.37 (i), (» commutes

with the rotations (see also the proof of Corollary 1.32). O

The second step consists in transforming @; into the symplectic form wy while preserving the
functions I;. In order to perform this transformation, we apply once more the Darboux procedure
with Q1 = @1 and Q¢ = wg. However, we require each leaf of the foliation to be invariant under the
transformation. In practice, we look for a change of coordinates ¢ satisfying

e =Q, (1.57)

Ii(e(w)) = Li(v), VI>1. (1.58)
In order to fulfill the second equation, we take advantage of the arbitrariness of f in equation (1.43).
It turns out that if f satisfies the set of differential equations given by

df (X7) — (o1 — a)(X7) =0, VI>1 (1.59)

then equation (1.58) is satisfied (as it will be proved below). Here o is the potential form of &1 and
is given by a1 := ag + aw, where ayy is defined in Corollary 1.38. However, (1.59) is essentially a
system of equations for the potential of a 1-form on a torus, so there is a solvability condition. In
Lemma 1.42 below we will prove that the system (1.59) has a solution if the following conditions
are satisfied:

d(ar — ao)lpre =0, (1.60)
M(Cl/,l — Oéo)‘T]:(O) =0. (161)

In order to show that these two conditions are fulfilled, we need a preliminary result. First,
for v € Py fixed, define the symplectic orthogonal of T, F 0) with respect to the form w' :=
wo + t(d;l — w()) by

(T, FO)4t .= {h € P wh(v)(u,h) = 0 Vu € TU]-"(O)} . (1.62)
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Lemma 1.40. Forv € Bﬁ{l(;ﬁp), one has T,F©) = (T, F©))4:.

Proof. First of all we have that, since for any couple of functions F, G and any change of coordinates
®, one has
{FO(I)7GOCI)}‘I>*wO = {FaG}wo °d,

it follows that
{Il,Im}w1 = {\\pl|2 7 \\pm|2} =0, Vim>1

wo
and
(I In}p, 007 ={liog ™ nop '}

but, by the property of invariance with respect to rotations of ¢ (and therefore of ='), I; 07! is
a function of {I;},~, only, and therefore the above quantity vanishes and one has VI, m

0={L(v), Im(v)},, = (VL(v), Js, (v)VIn(v)) = (vier, Jo, (v)vmen) YI,m > 1. (1.63)
Define X, := span {v;e;, [ > 1}. The identities (1.63) imply that Jy, (v)(2,) C L = i%,. By

Corollary 1.38 (i), Eg, (v) is an isomorphism for v € Bﬁé’l(/ﬁp), so the same is true for its inverse
Jo, (v). Hence Jg, (v)(3,) =iX, and X, = Eg, (v)(i¥,) and
1(X7, X7, ) = (Ea, (v)(ivier), ivmen) =0, VI,m>1. (1.64)

Since w! is a linear combination of wg and @y, the previous formula implies that wt(v)(X?l , X?m) =0
for every ¢t € [0,1] and v € Bﬁé’l(;ﬁp), hence T,F( C (T,F(©)4:. Now assume by contradiction
that the inclusion is strict: then there exists u € (T,F©)%¢, |lu|| = 1, such that u ¢ T,F©.
Decompose u = ut + uy with ut € T,F© and u; € (T,F®)*. Due to the bilinearity of w(v)?,
we can always assume that v = u . Then for every [ > 1

dI,(v)(—iu) = (VI (v), —iu) = (=X} (v), —iu) = (X} (v),u) =0  VI>1

since X7 (v) € T,F©. Hence iu € T,F© and therefore w(v)(—iu,u) = 0. Furthermore it holds
that

w'(0) (iu, u) = wo(—iu,u) = (Pu,u) = —1.
It follows that for v € BY' (15p) one has |[tMYs, )l p(put pory < 1/2, thus w'(v)(iu,u) = -1 +
R "R
(MY g, (v)iu,u) < 0, leading to a contradiction. O

We can now prove the following lemma:
Lemma 1.41. The solvability conditions (1.60), (1.61) are fulfilled.
Proof. Condition (1.60) follows by equation (1.64), since
d(ar — o) (X7, X7 ) =1 (X)), X7 ) —wo(X7, X7 ) =0, Vi,m > 1.

We analyze now (1.61). We claim that in order to fulfill this condition, one must have that &
satisfies M®@; = wp, which holds by Lemma 1.37 (i¢). Indeed, since

0= M(;Jl —Wo = M((;Jl —w()) = Md(a1 —Cko) = dM(Oél —Oéo),

there exists a function g such that M(a; —ag) = dg. But Mdg = M(M (o1 —ap)) = M (o —ap) =
dg, therefore ¢ = Mg, so g is invariant by rotations. Hence 0 = %|tzog(¢f) = g(X?l) = M(ay —
ao)(X?), VI > 1, thus also (1.61) is satisfied. O
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We show now that the system (1.59) can be solved and its solution has good analytic properties:

Lemma 1.42. (Moser) If conditions (1.60) and (1.61) are fulfilled, then equation (1.59) has a
solution f. Moreover, denoting h; == (a1 — ao)(X?j), the solution f is given by the explicit formula

fW)=>"fw),  fi(v) =M - M; 1L;h; (1.65)
j=1
where
1 2 . p
Ljg = 2 J, tg(o;)dt .
Finally f € Ny, (PE,C), Vf € Ny (PY , PY") and
£l -, <2Pan’p, |VS] . <2Me . (1.66)
9g

Proof. Denote by 6; the time along the flow generated by X?j, then one has dg(X?j) = 5, s0
J
that the equations to be solved take the form

of :
—— =h; > 1. 1.
89]‘ 75 Vi > ( 67)
Clearly a%ijhj =0, and by (1.60) it follows that
0 Oh; Ohy 0 ‘
I My = M2 = S = Oy = 1j>1
ag, Mihi = Migg = Mg = 5g Mitt =0, ¥hj =1,

which shows that M;h; is independent of all the 6’s, thus M;h; = Mh;. Furthermore, by (1.61)
one has Mh; =0, Vj > 1. Now, using that %ng = g— M;g, one verifies that f; defined in (1.65)
satisfies
‘ 0 ifl<y
%: My M;_1h; ifl=j
t Ml"'Mjflhl_Ml"'Mjhl 1fl>]

where, for j =1, we defined M --- M;_1hy = hy. Thus the series f(v) := 3,5, f;(v), if convergent,
satisfies (1.67). B
We prove now the convergence of the series for f and V f. First we define, for § € T,
0; )
Of =ty Vix1,

then by (1.65) one has

1) :/TJ_ 6,h;(0%) dbY | (1.68)
ij(v):/ ©;°0,Vh;(©%v) do (1.69)
TI
oy,

where 77 is the j-dimensional torus and df? = $2 - - - %. Now, using that

hy(v) = (W(0), X2 (v) = Re(iW;(0);)  Vj>1
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one gets that f;(|v]) < 2m h;([v]) < 2w W (|v])|v;|, therefore f([v]) < 3772 f(Jv]) < 2 [W(|0])l] 1 V]l
and it follows that |f ‘,‘1'71) <2r (W], w7 p. This proves the convergence of the series defining f.

Consider now the gradient of h;, whose k" component is given by

Vs (o), = e (175"

T)j) + 5j,k Re (IWJ (U)) .

81%

Inserting the formula displayed above in (1.69) we get that V f; is the sum of two terms. We begin
by estimating the second one, which we denote by (ij)@). The k' component of (Vf)?) =

> (Vf)@ is given by

(V)] = | S50 | = [ oo re@miefo) et (L70)
, Tk
J k
thus, for any v € Bﬁ{l(;ﬂp) one has [(lf(|v\))(2)]k <27 Wi(|v]) , and therefore

‘(Vf)@)‘ . <om W, < 72
— 'u'p

We come to the other term, which we denote by (V fj)(l). Its k' component is given by

(] = [ ey (15

Then V f;(|o]) < 2w 502 (vl vg| = 2w [dW (Jo]) ] v -
It follows that the k** component of the function (V)1 := Ej(ij)(l) satisfies

J
Vk

(egu)¢§-fvj) do . (1.71)

(LA < D@ LEND | < 2m YW ()

J k J

Therefore ‘(Vf)(l)‘ o <2m [W]l ywz < 72%. This is the step at which the control of the norm
wp wl,u7p

of the modulus dW* of dW* is needed. Thus the claimed estimate for V f follows. O

We can finally apply the Darboux procedure in order to construct an analytic change of coor-
dinates ¢ which satisfies (1.57) and (1.58).

Lemma 1.43. There exists a map ¢ : Bﬂ'{l(,ugp) — Pﬂg’l which satisfies (1.57). Moreover o — 1 €
Ny, (PE, PE), o — 1 = O(v?) and

|l — ]1|N9p < 2Me . (1.72)

Proof. As anticipated just after Corollary 1.39, we apply the Darboux procedure with Q¢ = wy,
Q=& and f solution of (1.59). Then equation (1.43) takes the form

Y= (—i+tYg,) NV -W), (1.73)
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where Y, and W are defined in Corollary 1.38. By Lemma 1.42 and Corollary 1.38, the vector
field Y is of class ./\/Hsp(?ﬁ{l,ﬂ%z) and

sup ‘Lt|#8p <2(2Me; +27¢;) < 213¢;.
te[0,1]

Thus Y generates a flow ! : Bﬁé’l(,ugp) — PIE’I, defined for every t € [0,1], which satisfies (cf.
Lemma 1.66)
¢! — 1|Mgp <2Me, Vte[o,1].

Thus the map ¢ := ¢'|,_, exists and satisfies the claimed properties. O

We prove now that the map ¢ of Lemma 1.43 satisfies also equation (1.58).

Lemma 1.44. Let f be as in (1.65) and @t be the flow map of the vector field Y defined in (1.73).
Then V1 > 1 one has I;(¢*(v)) = L;(v), for each t € [0,1].

Proof. The following chain of equivalences follows from Lemma 1.40 and the Darboux equation
(1.43):

L@ @) = hv) = 0= TI(p' W) = dR(Y'(v)) <= Y'(v) € TFO

= Y'(v) € (ILF)* = (Wi(Y'(v), X} (v))=0, VI >1)
— a1(X]) —ao(X]) =df(X?) VI>1.

In turn the last property follows since f is a solution of (1.59). O

We can finally prove the quantitative version of the Kuksin-Perelman Theorem.

Proof of Theorem 1.31. Consider the map ¢ of Lemma 1.43. Since dp(0) = 1, ¢ is invertible in
By’ (1%) and 7! = 1+ g1 with g1 € Ny, (P PE") and |ga] o) < 2[0 = 1] , < 2% (cf.
Lemma 1.64). Define now

uiop
U= <p71 oW,

It’s easy to check that \Tl*wo = wy, thus proving that U is symplectic. By equation (1.58) one has
I(¥(v)) = I(¥(v)) for every I > 1, therefore ¥ and ¥ define the same foliation, which coincides
also with the foliation defined by ¥, c.f. Corollary 1.39. Similarly one proves that the functionals

{% ’@;(U)‘}pl pairwise commute with respect to the symplectic form wy. We have thus proved

item i) — 7ii) of Theorem 1.31.
We prove now item iv). Clearly d¥(0) = 1, and V0 := ¥ — 1 = ¥° 4 g; o (1 + ¥9) is of
class ./\/'Hup(PD%l,PD%’Z‘). Moreover, by Remark 1.29 and Corollary 1.39 (i), one has |£|M11p <

28 |Q{u8p < ub2%; < pui'p by condition (1.40). Thus |1+ \i/0|u“p < % and by Lemma 1.63

an, t l91] 1o < 2% +2"%¢; < 2'0.

[

S, oo (1 8)

< ¥ o
#11 an wrp
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We are left to prove that U0 € Aiﬁf,u%' Since U*wy = wp, one has d¥(v)*(—i) ¥(v) = —i, from
which it follows that W0 satisfies

d9°(v)* = id¥°(v) (11 + difo(v))_l i

and therefore W0 € Al“ﬁ 2, With H\T'OHA ) < 217¢. O
wl 12

3 Toda lattice

3.1 Proof of Theorem 1.3 and Corollary 1.6.

We consider the Toda lattice with N particles and periodic boundary conditions on the positions
g and momenta p: gj+N = ¢j, Pj+N = Pj, VJj € Z. As anticipated in Section 1, we restrict to
the invariant subspace characterized by (1.2). The phase space of the system is P, where s > 0,
o >0 and it is defined in terms of the linear, complex, Birkhoff variables (£, 7) (defined in (1.25)).
We endow the phase space with the symplectic form 2 Qg = —i ZkN:_ll d€i N dny.

We will denote by Pﬁ’” the real subspace of P#? in which n, = fk V1l <k < N —1, endowed
with the norm (1.7), and by By (p) the ball in Py° with center 0 and radius p > 0. The main step
of the proof of Theorem 1.3 is the construction of the functions {¥;}1<;<ny—1. This is based on a
detailed analysis of the spectrum of the Jacobi matrix appearing in the Lax pair representation of
the Toda lattice. So we start by recalling the elements of the theory needed for our development.
Introduce the translated Flaschka coordinates [Fla74] by

(b,a) = O(p, q), (bj, a;) == (—pj, e2(@~%+1) _ 1), (1.75)

The translation of the a variables by 1 is useful in order to keep the equilibrium point at (b,a) =
(0,0). Recall that the variables b, a are constrained by the conditions

N-1

- N—1
b =0, [[ Q+a)=1.
j=0 §=0

<

Introduce Fourier variables (b, a) for the Flaschka coordinates by (1.3). In these variables

1Bl + 4]

Ej, 5

+ 0(a®), 1<k<N-1. (1.76)

The Jacobi matrix whose spectrum forms a complete set of integrals of motions for the Toda lattice

250 that the Hamilton equations become

p=i—r, e = —i—r (1.74)
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is given by [vMT76]

bo 1+ ag 0 14+an_1
1+ ag by 1+ a; :
L(b,a) := 0 1+a by 0 . (1.77)
: . " l+an_o
1+any_1 0 l+an_2 byv_1

It is useful to double the size of L(b, a), redefining

bo 1+ ao 0 0 0 1+an_1
1+ ao by : 0 0
: ' l4+an—2
Ly e 0 l+anv—2 by l+anv_1 ... 0 0
’ 0 0 1+an—1 bo 1+ ao 0
0 0 14 ao by
: : 14+an—2
l+anv_1 ... 0 0 0 1+anv—2 by
(1.78)

Consider the eigenvalues of Ly , and order them in the non-decreasing sequence
)\o(b, a) < )\1(b, G,) < )\g(b, a) <. < )\2]\],3([), @) < )\2]\772(1), a) < )\2]\],1([), a)

where one has that where the sign < appears equality is possible, while it is impossible in the
correspondence of a sign <. Define the quantities

’}/j(b, a) = )\2j(b7 a) — )\2]',1(177 a), 1 S j S N — ].7 (179)

7vj(b,a) is called j'* spectral gap. The quantities {’Y?}lgjqu form a complete set of commuting
integrals of motions, which are regular also at (b,a) = (0,0). Furthermore one has H(b,a) =
H(v}(b,a),...,v%_,(b,a)) [BGGK93|. A spectral gap is said to be closed if v;(b,a) = 0.

The following Theorem 1.45 ensures that the assumptions of Theorem 1.31 are fulfilled by the
Toda lattice.

Theorem 1.45. There exists €, > 0, independent of N, and an analytic map

€x

W (B2 (25).00) = P (Em) e (606 m) 06 m) (1.80)
such that:
(P1) U is real for real sequences, namely m = ¢k<§7g) k.

U2) For every 1 < j < N —1, and for (¢,v) € B>? (<5) N'Pr’, one has
N R

| 2

7= Fw (&) Wl = fw (£) les
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(U3) ¥(0,0) = (0,0) and d¥(0,0) = 1.

(U4) There exist constants Cy,Cy > 0, independent of N, such that for every 0 < e < e, the map
V0= W — 1 € Nynz (P59, PHE9) and [dU°]* € N n2 (P57, L(P*7,PsT19)). Further-

more one has

< Cye . (1.81)

2
90, e < Crngi |0

The main point is (¥4), in which the estimates of the domain of definition of the map ¥ holds
uniformly in the limit N — oc.

We show now how Theorem 1.3 follows from Kuksin-Perelman Theorem 1.31.

Proof of Theorem 1.3. Introduce the weights w' := {N3/2[k]3e vy (1@)1/2 Nt and w? o=
{N3/2[k] 3 eolklng (£ )1/2} and consider the map ¥ of Theorem 1.45 as a map from P*" in
itself. Since for any (¢,7) € Pw one has that

1€ Mllpur = N 1E M pes (1.82)

it follows by scaling that there exists a constant C3 > 0, independent of N, such that

W)L <o

Thus, for any p < p, = min (%, e*), U satisfies condition (1.40). Thus we can apply Theorem
1.31 to the map V¥, getting the existence of a symplectic real analytic map ¥ defined on B®' (aps)
which satisfies ¢) — iv) of Theorem 1.31.

By Lemma 1.65 the map ¥ is invertible in BY' (paps) and its inverse ® satisfies ® = 1 + ®° with
oY ¢ A ap.” To get the statement of the theorem simply reexpress the map ® in terms of real
varlables ( y), (X,Y) and denote such a map by ®y. O

Remark 1.46. By the proof of Theorem 1.3 above one deduces the estimate

sup |d®°(e, )"
1881, <Rovo /N

L(’])s,077)5+1.(7) S CS,O'RS,O' 9 (183)

for some Cs » > 0, independent of N.

The rest of this subsection is devoted to the proof of Theorem 1.45.

In the following it will be convenient to consider the variables (b, a) defined in (1.75) dropping
the conditions Z b =0 and H ( + a;) = 1. Equation (1.76) suggests to introduce on the
variables b, a the norm

1 < 25 20’ kN 2
b= g D max( <|bk| + 4ay)| ) (1.84)
k=0

;-.

1(b; @)

and to define the space

Cy7 == {(b,a) e RN xRN : ||(b,a)|

cow <00} (1.85)
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We will write C* for the complexification of Cg”.

In the following we will consider normally analytic map between the spaces P*“ and C*“. We need
to specify the basis of C*? that we will use to verify the property of being normally analytic. While
it is quite hard to verify this property when the basis is general, it turns out that it is quite easy to
verify it using the basis of complex exponentials defined in (1.3). Indeed the norm (1.84) is given
in term of the Fourier variables. For the same reason, it will be convenient to express a map from
C*7 to P as a function of the Fourier variables b, a.

We prove now some analytic properties of the map © defined in (1.75). In the following we will
denote by Oz the map O expressed in the (£,n) variables.

Proposition 1.47. The map Oz satisfies the following properties:
(©1) ©=(0,0) = (0,0). Furthermore let dO=(0,0) be the linearization of O= at (§,n) = (0,0). Then

By=0, Bp=—(tw(EN? _ 1<k<N-1
0 ; k (gw(N)) (§k+77N k:)7 =N ) (186)
w

Ao=0,  Ap=—imp (2w (L) (@ —nvor), 1<k<N-1L

where wy, := (1 — e 2T/NY /2 Y1 <k <N —1.

Moreover for any s > 0, 0 > 0 there exist constants Co,,Co, > 0, independent of N, such
that
||d@5(0,0

<Co,,  [|dO=(0,0)"] (1.87)

)||L‘/(7)S‘<T7CS,G') |£(Cs+2,a77;s+1,a) =

Co,

N

(©2) Let ©% := Oz — dO=(0,0). For any s > 0,0 > 0, there exist constants Ce,,Ce,, e« > 0,
independent of N, such that the map ©% € N, jn2(P%7,C5T17) and the map [dOL]* €
A/;*/NQ(PSJ’ E(cs+2,ﬂ, fPerl,a)), and

o2 = sw oL ., . < Co,c”.
=le/v2 T emlipes <oy 7= Vllessie = N2 .
Co,c€ ’
del]* = sup del(¢,n)* < Zoa€
‘[ =—le/N2 (&) [l ps,o <e/N2 “( 77) L(Cs+2i0 Pstlo) N2

The proof of the proposition is postponed in Appendix C. Note that the estimates (1.87) and
(1.88) imply that there exists a constant Ce; > 0, independent of N, such that for any p < &% one
has ©= € N,(P*7,C*7) and

=], < Co,p - (1.89)

We start now the perturbative construction of the Birkhoff coordinates for the Toda lattice, which is
based on the construction of the spectrum and of the eigenfunctions of Ly, (defined in (1.78)) as a
perturbation of the free operator Lg := Lb,a|(bya):(070). More precisely we decompose Ly , = Lo+L,,
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where

0 1 0 1 bo ap 0 anN-—1
1 0 1 : a b wm :
Lo = 0 1 0 0 s Lp = 0 al bg e 0 (190)
1 an_s
1 ... ... 1 0 anN—-1 .-« ... aAN-2 bel

and following the approach in [KP10, BGGK93, Kap91] we apply Kato perturbation theory [Kat66].
The next lemma characterizes completely the spectrum of Ly as an operator on C2V:

Lemma 1.48. Consider Ly as an operator on C*V | then its eigenvalues and normalized eigenvectors
are:

eigenvalues eigenvectors
k
A= -2,  foo(k) = 5 (<)
A1 =AY =—2cos (), fa10(k)= %{ve_lpjkv faj0(k) = ﬁel’”k ; 1<j<N-1
Myo1 =2, fan-10(F) = 75

where 0 < k <2N —1 and p; := (1 + %) . In particular the gaps of Lo are all closed.

The proof is an easy computation and can be found in [HKO08b].

0 0 415 —F|
D I

Remark 1.49. For 0 < j,k < |N/2] one has |)\8j =%
In particular if j # k then ’/\gj =A% = 1/N2

We use now Kato perturbation theory of operators in order to introduce the main objects needed
in the following and to give some preliminary estimates.

For 1 < j < N —1 let Ej(b,a) be the two-dimensional subspace spanned by the eigenvectors
corresponding to the eigenvalues Ag;_1(b,a) and A9 (b, a) of Ly ,. Analogously, let Ey(b, a) (respec-
tively En (b, a)) be the one-dimensional subspace spanned by the eigenvector of Ay (b, a) (respectively
Aan—1(b,a)). Introduce the spectral projector on E;(b, a) defined by

Piba) = ——— & (Lya—N"'d\,  0<j<N (1.91)
27 Jr,
where, for 1 < j < N —1, I'; is a closed path counter-clockwise oriented in C which encloses the
eigenvalues Ag;j_1(b, a) and A2;(b, a) and does not contain any other eigenvalue of L, ,. Analogously,
Iy (respectively I'y) encloses the eigenvalue A\o(b, a) (respectively Aoy _1(b,a)) and no other eigen-
value of Ly, .. P;j(b,a) maps C*V onto E;(b,a) and, as we will prove, is well defined for (b, a) small
enough. P;(0,0) will be denoted by Pjo and its range F;(0,0), which will be denoted by Ej, is
given by
Im Pjo = Ejo, Ejo = span (f2j,0, f2j-1,0) -

Define also the transformation operators

—1/2
Us(b.a) = (1= (Pj(b,a) = Po)?) " Pilba), 1<j<N-1. (1.92)
U, has the property of mapping isometrically Ejq into the subspace E;(b,a) spanned by the per-

turbed eigenvectors [Kat66]. Remark, however, that in general the image of an unperturbed eigen-
vector is not an eigenvector itself. We prove now some properties of the just defined objects.
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Lemma 1.50. There exist a constant Cs, > 0, independent of N, such that the map (b,a) —
Ly (b,a) is analytic as a map from C*7 to L (C*N). Moreover

”Lp(ba a)”[)(cw) <Cso Il (b, a)”csw . (1.93)
Then by Kato theory one has the corollary

Corollary 1.51. There ezist constants Cs o, €, > 0, independent of N, such that the following
holds true:

(i) The spectrum of Ly, is close to the spectrum of Lo; in particular for any (b,a) € B¢ (Ji,*z)

|)\2j (b, CL) — /\(2)] ;

/\2j—1(b7 CL) - Agj_1| S Cs,a’ ||(ba a)‘

o - (1.94)

(ii) One has that (b,a) — Pj(b,a) is analytic as a map from B¢ (&) to L(C*N). Moreover for

(b,a) € B¢ (&) one has

||Pj(ba a) — Pj0||g((c2N) <Cso H(b, a)

o - (1.95)

(i11) For each 1 < j < N —1, the maps U;, defined in (1.92), are well defined from B¢ (;[2) to
L(C?NY) and satisfy the following algebraic properties:

(U1) Im Uj(b,a) = E;(b,a);

(U2) for (b,a) real, one has U;j(b,a)f = U;(b,a)f;
(U3) for (b,a) real and f € Ejo, one has ||U;(b, a)f||C2N = || flla~-

Finally the following analytic property holds:

(U4) One has that (b,aa) + Uj(b,a) is analytic as a map from B¢ (<) to L(C*N). Moreover
for (b,a) € B¢" (&) one has

||Uj(b7 a) - Pj(b7 a)Hg cevy < Cs,o ||(b7 a) gw . (1~96)
(c2y)

The proofs of Lemma 1.50 and Corollary 1.51 can be found in Appendix D.

For 1<j <N —1and (ba)€ B€™? (;,2) define now the vectors

faj—1(b,a) := U;(b,a) f2j-1,0, and J2j(b,a) == U;(b, a) f2j,0 (1.97)

which by property (U1) belong to E;(b, a). Define also the maps

1/2 —
zj(b,a) := (Fw (%)) <(Lb,a — A3;) faj(b,a), fo; (b, CL)> ; (198
S —1/2 -_— :
wj(b, a) = (%w (%)) <(Lb,a - )‘gj—l) f2j—1(ba a), f2j—1(bv a)>
where (u,v) = > u;v; is the Hermitian product in C*V. Finally denote z(b,a) = (21(b,a), ..., 2n-1(b,a))
and w(b,a) = (wi(b,a),...,wn_1(b,a)), and let Z be the map

(b,a) — Z(b,a) := (2(b,a),w(b,a)). (1.99)
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The map ¥ of Theorem 1.45 will be constructed by expressing Z as a function of the linear Birkhoff
coordinates &, 7.

The properties of the map Z are collected in the next lemma which constitutes the main technical
step for the application of Kuksin-Perelman Theorem to the Toda lattice.

Lemma 1.52. The map Z, defined by (1.99), is well defined for (b,a) € B¢ (x). If b,a are

NZ
real valued and fulfill ||(b,a)||c..c < 2, then, for every 1 < j < N — 1, the following properties are
also fulfilled:

(Z1) zj(b,a)

(22) 73 = 3w (&) [0 = Fo (§) lw; (b, a)*;
(Z3) (0,0

I

S
<
—~
o

Q
~

w;(0,0) = 0; moreover the linearizations of z; and w; at (b,a) = (0,0) are given by

dz;(0,0)[(B, A)] = (2w (£))? (Bj - 2eﬁ”/NAj) ,
(1.100)

dw; (0,0)[(B, A)] = (2w (£))* (BN,J- - 2e—jiﬂ/NAN,j) .

The map dZ(0,0) = (dz(0,0),dw(0,0)) is in the class L(C*,P*7). Its adjoint dZ(0,0)* is
in the class L(P*°,C*T17). Finally there exist constants Cz,,Cz, > 0, independent of N,
such that for any s >0 and 0 >0

IZ(O,0)]| e ey < Cre 1AZ(0,0)" | g covnmy < Cz N2 (1.101)
(Z4) For any s > 0, o0 > 0, there exist constants Cz,,Cz,, €. > 0, independent of N, such that

for every 0 < € < €, the map Z° := Z — dZ(0,0) € N n2 (C*°,P*T17) and the map
[dZ°]* € Ne/n2 (Cs’ayﬁ(PS’g,CS“"’)). Moreover

€
sup "LO(ba a)| s+1l,0 < CVZ AT2
1(b.0)lco.r <e/N i N (1.102)

sup [ dZ0(0,0)*|| s e gerany < CziNe.
H(b7a)|‘cs.o'§6/N2 [’(P 7C+2 ) 4

The proof of the lemma is very technical, and is postponed in Appendix E.

Remark 1.53. In the limit of infinitely many particles, the linearization dz;(0,0)(b,a) at the
different edges of the spectrum are given by
d25(0,0)(B, A) ~ D2 N 1 ds(0,0)(BA) ~ D2 N <t
2w(j/N) 2w(j/N)
(1.103)
The ezistence of two different sequences is in agreement with the works [BKP13b, BKP13a], in
which the spectrum of the Lax operator associated to the Toda lattice is approximated, up to a small
error, by the spectrum of two Sturm-Liouuville operators associated to two KdV equations. More
explicitly, in [BKP13b] the following result is proved: take a, f € C*°(T) such that fT o= fT 8=0,
a; =1+ s>a(j/N) and b; = §=8(j/N). Then the spectrum of the Laz matriz (1.78) with a;,b; as
elements can be approximated at the two edges by the spectrum of the two Sturm-Liouville operators
L=—% 1 (8+2a) on C=(T).
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We are ready to define the map ¥ of Theorem 1.45: let

v PS’U — PS’07 (fﬂ)) = (¢(5,77)71/1(5777)) (1104)

defined by
UV=—-Z00z; 1ie ¢=—z00zg, 1) = —woBOx=. (1.105)

We show now that W satisfies the properties (1) — (¥4) claimed in Theorem 1.45.
Proof of Theorem 1.45. Property (¥1) and (¥2) follows by (Z1) respectively (Z2). We prove now
(¥3). By (©1) and (Z3) one has ¥(0,0) = (0,0). In order to compute d¥(0,0) = (d¢(0,0), di(0,0))

note that
d$(0,0) = —dz(0,0) dO=(0,0) = —(dz(0,0)F ') o (FdO=(0,0)) .

Let (B, A) = FdO=(0,0)(¢,n). Then (1.100) and (1.86) imply that, for 1 < j < N — 1,

M (B; 26/ &)

eiﬂ'j/ o
_ 1 ( (J/N)(£]+77N - %(@ nN— J)> =&

dg;(0,0)(&,n) = —

2w(j/N) 2w(j/N)

irj/N

where we used that 2e w; = iw (£). One verifies analogously that diy;(0,0)(&,m) = 7.

We prove now property (¥4), which is a consequence of the fact that the space of normally analytic
maps is closed by composition (see Lemma 1.63). Fix s > 0 and 0 > 0. Let 0 < € < CST*v where

5

Ceo, is the constant in (1.89). Since Z = dZ(0,0) + Z° and Oz = dO=(0,0) + OL, one gets that
W0 = 700z —dz(0,0) 0 0% . (1.106)

Thus properties (Z3), (©2) and estimate (1.89) imply that there exists a constant C' > 0, indepen-
dent of N, such that

Cée

|\IJOI Ps+l,o S N2 Y

= sup TO(&,m)
N el <o/ (¢ m)

which proves the first estimate of (¥4). We study now the adjoint map dW¥°(¢,n)*. Writing
dOz = dO=(0,0) + dOY one gets that

d¥(&,m)" = —d©=(0,0)" dZ°(O=(&,n))" — dOZ(&,1)* dZ°(O=(&, )" — dOZ (&, 1)* dZ(0,0)*
=1+II+1III

We estimate each term in the expression displayed above. In the following, if A € N,(P*7, L(P*7, PT1)),

we denote by
‘A|p = sup ||A(§>n)Hc(Ps,a,psHm) .
1€, lps.c <e/N?

We begin by estimating I:

Cor  Gup [dzO=(En)

_C
2 CZ4CO Ne < Ck,
N i€m)lps.o <e/N?

me/Nz < ||£(PS o, Cs+2 a)
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where in the first inequality we used the second estimate of (1.87) and in the second inequality we
used the second estimate in (1.102). Now we study IT:

Co,€ Ce?
N; CZ4C@5N6 < Wv

0946

ILI|, /2 < sup |dz%(©=(¢,m))*

N2 [ €mllpo. <e/N?

E(’Ps.u’ Cs+2,a) S

where we used the second estimate in (1.88) and again (Z4). Finally, using again (02) and the
second estimate of (1.101), one has

Co,¢
N2

Co,¢
N2

|m|e/N2 < ||@(070)*H£(7>s,a,cs+2,o) < CZ2N2 <Ce.

Collecting the estimates above one gets

(e

P N
/N2 ”(5777)”773,0 SE/]\T2 || ‘

L(Ps:o,Pstlo) S 36’67

and (04) follows. O
Proof of Corollary 1.6. Provided 0 < R < R , is small enough, one has that wg := Oy (vp) fulfills

R

||w0||735>a < m(l +CR) ,

and, denoting by w(t) the solution in Birkhoff coordinates, one has ||wo||p... = ||w(t)|/ps.. Thus,
provided 0 < R < R/, _ is small enough one has

R
lo@®llpec = 1@x(wED P < 151+ C'R)

which implies the thesis. O

3.2 Proof of Theorem 1.7

The proof is based on the construction of the first terms of the Taylor expansion of ®x through
Birkhoff normal form. To this end we work with the complex variables (£,7) (defined in (1.25))
and will eventually restrict to the real subspace Pp“.

Remark 1.54. Consider the Taylor expansion of ®n at the origin, one has

Oy =14+ Q™ + O(||(&,n)|[bes)

then Q®N is a bounded quadratic polynomial. Furthermore, since ® n is canonical, Q®N is a Hamil-
tonian vector field, i.e. there evists a cubic complex valued polynomial X, s.t. Q* is the Hamil-
tonian vector field of xa, -

We need a preliminary result about a uniqueness property of the transformation introducing
Birkhoff coordinates (called below Birkhoff map).
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Lemma 1.55. Let & and Yy be Birkhoff maps for Hroqe, analytic in some meighborhood of
the origin; assume that d®y(0,0) = dUn(0,0) = 1 and denote by xo, and xwv, the Hamiltonian
functions corresponding to Q®N and QYN respectively, then one has

{Ho; xon —Xwn} =0, (1.107)
where Hy is defined in (1.6).
Proof. By a standard computation of the Taylor expansion one has
Hroga 0 ®n = Hy+ {Ho, Xay } + Hi + h.ot.

where H; is the function

=

Hl(q) _ — (qj _6Qj+1)3

Il
=)

J
Since @ is a Birkhoff map, the function Hr,g, © @ is in Birkhoff normal form so in particular its
Taylor expansion contains only terms of even degree. Thus the cubic terms in the expansion above
must vanish: {Ho, xo, } + H1 = 0. The same argument holds also for the map ¥y, thus the thesis
follows. O

Remark 1.56. Writing as usual

Xon (ga 77) = Z XK,L&KUL )

|K|+|L|=3
one gets that, since
{Ho,xent=— > iw-(K—L)xir&n",
|K|+|L|=3

eq. (1.107) implies that, if for some K, L one has w-(K —L) # 0, then x k.1, is unique and coincides
with MIZ’K% with an obvious definition of Hy .

Lemma 1.57. In terms of the variables (§,m) one has

1 ki+kotks
N

P Z (_1) V Wk Wko \/Wks (&ﬁ €k2€k3 + My Mk les)
12V2N k1+ko+ks=0 mod N

1<k, k2,k3,<N—1

Hl(é.v’r/) =

kitko—k3
+3 Z (_1) N VWki \/Wko\/Wk3 (E’ﬁ Ek'z Ny + My Mk é-ks)

k1+ko—k3=0 mod N
1<k1,k2,k3<N-1

Proof. First remark that

1 N-l 2mijk 1 Nl 2rijk

N _ 2wik _2mij . _imk .  _ 2wijk
qj — @j+1 = —F— Qk(l—e N)e N = —— wge” N qre” N
A, PY VN &
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so that

1 Nt 3 N-1
7\'1]
6 QJ+1 6N3/2 Z Why qklwlmqkzwksqkse F (katharths) Z (hithatha)
JZO k1,k2,k3 =0
:3
1 k1+ko+ks R . R
- 6N1/2 Z (_1) N Wk Gk Wko Gk W3 ks -
kl +k2+k‘3:0 mod N
Substituting
fk —IN—k
Wk = V/w \f
and reorganizing the terms one gets the thesis. O

Lemma 1.58. For any s > 0, 0 > 0, there exists C' > 0 s.t. one has
Q% (9)]

where v = ((£1,0,0,...,0), (&,0,0,...,0)) € Pg°.

> CON? |0)|%e0 (1.108)

Ps,o

Proof. In this proof, for clarity we denote n; := &;, and similarly for the other variables. We are
going to compute the & component [Q*™ (9)]¢, of Q¥ (v) and exploit the inequality

Q™ (@) > L gseoz, 12 ‘Q‘I’N 2¢O )] ; (1.109)
poo 2 N2 E N | om V| '

the only monomials in x, contributing to such a quantity are quadratic in (£1,7;) and linear in
72, but due to the selection rule k; £ ko £ k3 = [N with a plus for the £’s and a minus for the n’s
the only monomial contributing to the r.h.s. of (1.109) is XkyifKnL with K := (2,0,...,0), and
L =1(0,1,0,0,...,0).

Since

2r 278 1
(K L)—2W17WQ—4SIHN72SIHWZ N3 +O<]V5> #O, (1110)

such a coefficient is uniquely defined and, for the x4, corresponding to any Birkhoff map, one has
1 wlw%/ 2
XKL = :
KL ™ V2N i(2w1 — ws)

Inserting in (1.109) one has that its r.h.s. is equal to

(1.111)

1/2
25¢° 2w2/ C" wiws 2 v wo

2
_— =~ 7 = —_— C —_—
V2N |XK’L| €] N 2w1 — wol €11 |2w1 — wo|

where C, C" and C" are numerical constants independent of N and we used the expansions of wq,
wo in 1/N as well as equation (1.110). O

Io]15... = CN? (o).

Proof of Theorem 1.7. The thesis immediately follows taking ||0]|p., = R/N® and imposing the
inequality (1.11). O
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Proof of Corollary 1.9. By Cauchy inequality and assumption (1.12) Q®~ fulfills

R N?2@

o
1™ @)lp..c < F Tz 1717 - (1.112)
Comparing this inequality with (1.108), one gets
R/ 2a—a’ 11 \T2
ﬁN >C"N= |
which in particular implies the thesis. O

4 FPU packet of modes: proofs.

In this section we prove the results stated in the subsection 1.2 about the persistence of the
metastable packet in the FPU system.

To clarify the procedure, we distinguish here between the (£,n) variables and the variables (p, q).
Thus, we denote by T : (£,7) — (p,q) the change of coordinates of the phase space introducing
the linear Birkhoff variables (£,7) defined in (1.25). Furthermore it is useful to use for the (p, q)
variables the following norms

N—
lgll?, =~ Z KIR) N (g (1.113)
k=0
and

Lemma 1.59. Fiz s > 1, 0 > 0, then there exist constants Cl,Cg > 0, independent of N, such
that for all (§,m) € P> and V1 > 2 one has

l

C I+1
X0 < —1 A 1.115
|| H,; T(fvn)"P, = (l+1) ||(£an>||73 ) ( )
l
Xio ey < 2 A 1.116
[ Xm,0m (€M)l po-1,0 < N(l+ ol 1€, p-. ( )
Proof. Define the difference operators by
S+t :{qgjto<j<n—1 = {gj — ¢j+1}o<j<n—-1, where gy = qo (1.117)

and the operator [S (q)]' by
{I8:@I'} =@ —g)'
so that 1
Xmor(&:m) = gy T (s-[se(rEm)', o) . (1.118)

By Lemma 1.70 and Remark 1.72 in Appendix B, there exists a constant C; , > 0, independent of
N, such that for every integer n > 1

IS=(@I),., < CH ISw@I < CEt e mli (1.119)
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where for the last inequality we have identified the couple (0, ¢) with the corresponding (&, ) vector.
Then the thesis follows just remarking that ||77*(q,0)| = |\qll, - and that S_ is bounded
as an operator from P*? to itself, while one has

Ps,o

|s,a :

lq

zlQ

||(S—(Q)7O)||ps—1,n <

O
Introducing the Birkhoff coordinates and using the standard formulae for the pull back of vector
fields® one has the following

Corollary 1.60. Fiz s > 1 and o > 0, then there exist constants R, ,,C1,Co > 0, independent of
N, such that for all w = (¢,9) € B> (Rs,/N?) one has

Ci

I+1
[ XHoToty (W)l pes < T ) Jwl Py (1.120)
X tozot () pe v S L2t (1121)
HioTodny \(W)|[ps—1,0 = N(l+1)' W|ps.o - .
Remark 1.61. Write R . }
Hrpy = Hppy oT o ®N = Hyoao + Hp (1.122)
where
Hroda = HrogaoTo®y , Hp:=(3—1)HyoTody+H® oTody , (1.123)

then, provided R is small enough the vector field of Hp fulfills the following estimates
X g, (w)]

[ X g7, (w)]

3 4
pre SC[1B= U0l +C 0l (1.124)

C
pete < 3 18— U wlle +C

f,‘,} : (1.125)

for all w € B*°(R/N?).

In the following we denote by v(t) = (£(t),£(t)) the solution of the FPU model in the original
Cartesian coordinates (we restrict to the real subspace). We denote by w(t) := ®5'(v(t)) the same
solution in Birkhoff coordinates.

Lemma 1.62. Fir s > 2 and 0 > 0. Then there evist R, ,,
with R < R, , implies v(t) € By’ (%) for

s,0

T, Cy > 0 such that vy € Bﬁ;’a (%)

T

t < .
1< a1+ R

(1.126)

3Namely
(@3 X](z) = dP ' (P () X (D (2))

which gives the vector field of the transformed Hamiltonian due to the fact that ® is canonical
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Proof. First consider wy = <I>71( 0) and remark that (provided R , is small enough) one has

wo € BY® ( ) Denote by M (w) := ||w] 33]];,0. Since {M, HToda} = 0, one has

M(w(t)) = M(wo) +/Ot {0 P} (u(s))ds (1.127)
Denoting M (t) := sup|sj<¢ M (w(s)), one has
M (w(t)) < M (wo) +/Ot HM;HP} (w(s))‘ ds (1.128)

pee) ds
< M (wp) + /Ot C M (t)? (m 1+ CM(t)1/2) ds

< M(wo) + |t|CM (1) (m T C’M(t)l/Q) : (1.129)

poe |8 =1+ C [[w(s)|

< artun) + [ (Coto)

where, in order to prove the second inequality we used {M ‘H p} = dMXg , and

”dM(w)HL(PS«’,(C) < Cllwllpes

which follows from an explicit computation. Taking ¢ as in the statement of the Lemma we have
that (1.128)-(1.129) ensures M (t) < 9M (w(0))/4, which implies w(t) € By? (3£) from which the
thesis immediately follows. O

Proof of Theorem 1.16. Inequality (1.21) is a direct consequence of Lemma 1.62. To prove inequality

(1.22) remark that I, = {I, Hp} = x}, 813_5: — Yk %I;P Thus

N-1 N—1 ~ ~
1 25s—2 20[k] k r7 1 2s—2 20(k] k aHP aHP
- N (L)Y I, Hp}| = — N (£ |z T8 -
b Sty |- S et e
N-—1 1/2 N—1 ~ 2 - 2 1/2
1 K222 ki 1 22 20k, , (K [ |OHP OHp
(N ’; w (%) Wi +27) N ; [kIv"e w (%) £ s

< 2wl [ Xa, (w)]

C
prre < 7 |18 =1/l

4 5
por + Clwlpes]

where in the last inequality we used (1.125). Using that |Ij(w(t)) — I (w(0))]| < fot ‘{Ik,f{p}(w(s))‘ ds,
one gets

§ 2 BN () () = T )] < 7 sup [18 = 1 o)l + € o]
k=1 s|

which, using w(t) € By? (3%) immediately implies the thesis. O
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A Properties of normally analytic maps

In this section we study the properties of the space Np(Pwl, 73“’2) and .AL)"? o defined in section 2,
with weights w! < w?. In particular, we consider the operations on germs defined in [KP10| and
perform quantitative estimates.

Lemma 1.63. Let w! < w? < w? be weights. Let G € Np(’Pwl7Pw2) with |G|, < o and F' €
N (PY*,P"). Then F oG € N,(P¥ ,P*") and |[Fo G|, < |F|, .

Proof. Exploiting the obvious inequality F o G(|v|) < F o G(|v|)(ct [KP10]), one has

[EoGl,= sup [EoG(jv])lys < sup  [JEG(0)]lys < sup  [E(Ju])ll,s = E], -

veBw! (p) veBw! (p) uweB®? (o)
U

Lemma 1.64. Let F € ./\/'p(P“’l7 Pv*), F = O(v?) and |E|, < p/e. Then the map 1 + F is
invertible in B (up), p as in (1.50). Moreover there exists G € NHP(PMI, Pv’), G = O(v?), such
that (1+ F)~' =1 -G, and

F
G|, < £, (1.130)
—Bp — 8

Proof. We look for G in the form G = ) ., G", with the homogeneous polynomial G™ to be
determined at every order n. Note that the equation defining G can be given in the form F(v —
G(v)) = G(v), which can be recasted in a recursive way giving the formula

e = 3 FT(le(v),n- ,G’“r(v)), Vn>2. (1.131)
r=2ki+--+kr=n
In the formula above ki,...,k. € N, and we write F = ZQQ F", where F" is a homogeneous

polynomial of degree r and F" is its associated multilinear map (see (1.29)). Moreover we write
G*(v) := v. We show now that the formal series G = Y ., G™ with G" defined by (1.131) is

normally analytic in B*' (11p). Note that

(DD DI S o (el () el (1)) (1.132)

r=2ki+--+k.=n

In order to prove that the series ) ., G" is convergent in Bv' (up), we prove that there exists a
constant A > 0 such that B

1B,
W = 88n2

IG" (o)l A" ol vn > 2. (1.133)

wl

The proof is by induction on n. We will use in the following the chain of inequalities

|E | <eIE <€ Bl /o0 vz,
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see [Muj86]. For n = 2, by (1.131) it follows that G2(v) = F2(v,v). Since

lolly: < e p ol s

620Dl < |2

it follows that (1.133) holds for n = 2 with A = w. We prove now the inductive step
n — 1 ~» n. Assume therefore that (1.133) holds up to order n — 1. Then one has

TN D SR SR )i

r=2ky+-+k.=n

([ciX(CHIIPRREy (e ()]

s
s Y el L
r=2ki+-+k.=n pr 8TST]{;1 L. kr

), elFLN"_ IE,
An P < A"
< oA lolin 3 (S ) < e Aol

r=2

where in the first inequality we used the fact that w!' < w?, in the second the inductive assumption
and in the last we used the hypothesis |F| p S p/e. Finally to pass from the second to the third line
we used the following inequality, proved in Lemma (1.67) below:

1 .
) e U )R e i (1.134)
ki+-thp=n 1 T
Hence, choosing up = 1/A = p/e(325)'/2 one proves (1.130). O

Now it is easy to prove the following lemma, giving closedness of the class A“’ under different
operations.

Lemma 1.65. Let w! < w? be weights and let j1 be as in (1.50). Then the following holds true:

€

i) Let F € Azf and G € A®,  with HGHA?@ < B2 Then H(v) := F(v+ G(v)) is of class

w,pp
giup and
|l g < 2]F] oo
wlipp wlp
it) Let F' € Awl and HFHAw <pl/e. Then (1+ F)~t =1+ G, with G € Awl up- Moreover
one has v
[Glas <20Fl g (1.135)

i) Let F € Agip, then the function H(v) := dF(v)v is in the class A* and

wl P

[H| gz < 2[F|| gu2
wh,up we,p
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iv) Let FO,G° € A%, with ||F°|

< L. Denote F = 1+ F°. Then H(v) := dG°(v)*(F(v))

2
w
’Awl NS

2
o s w
s in the class Awl,up and

HH”Awf <2 HGOHAwf :
w,up wh,p

Proof. i) Since H(|v]) < F(|v| + G(|v])) it follows that |H|,,6 < |F|,,, < |F|, Furthermore,
since dH (v) = dF (v + G(v))(1 4+ dG(v)) one gets that dH (Jv]) < dF(|v| + G(|v])) + dF(Jv] +
G(|v]))dG([v]), which implies that up|dH|,, < |dF|, (up + pp|dG|,,) < |dF|, up(1 + 1/e).
The adjoint dH (v)* is estimated analogously, thus the claimed estimate follows.

i) It follows from the formula dG(v) = [1 —dF (v — G(v))]"'dF (v — G(v)), arguing as in item ).
iii) It follows from dH (v)u = dF (v)u + d*F(v)(u,v), arguing as in item 7).

iv) To estimate H(|v|) and dH(|v|) one proceeds as in item 7). In order to estimate dH (|v|)*
remark that (see [KP10]) dH (v)*u = (dF°(v)* + 1)dG°(v)u + d,(dG°(v)*u)(F (v)), thus

dH (|o])*Jul < (dE2(Jo])" + 1)dGO(|v])]ul + djo) (dG2(|0])*[ul) (£(]v])) -

The claimed estimate follows easily.
O

Now we analyze the flow generated by a vector field of class Agf o Given a time dependent
vector field V;(v), consider the differential equation

(1.136)

We will denote by ¢!(v) the corresponding flow map whose existence and properties are given in
the next lemma.

Lemma 1.66. Assume that the map [0,1] 2t — V; € Alw“f p s continuous and furthermore fulfills

SUD[0,1] ||VtHAwf < p/e; then for each t € [0,1], o' —1 € Agi#p with w as in (1.50). Furthermore
one has '

O =1 ;2 <2 sup [|[Vi| 4oz 1.137

o =tz <2 s Vil (1.137)

Proof. We look for a solution u(t,v) = >+, u? (t,v) in power series of v, with u/(¢,v) a homoge-
neous polynomial of degree j in v. Expanding the vector field V;(v) = > <, V/"(v) in Taylor series,
one obtains the recursive formula for the solution -

n ¢
ul(t,v) = v, u"(t,v) = Z Z / V(b (s,0), ..., uk (s,0)) ds Vn > 2, (1.138)
=2 ky+--+hp=n "0

where V! is the multilinear map associated to V7 (see (1.29)). Arguing as in the proof of (1.64)

S
one gets the bounds

" s [Vil,
bt o)llye € ——gg A vl V=2, (1.139)

49



with A = %(325)1/2, from which it follows that |¢* — ]l‘up < SUPeqo,1] |E’p /8.
We come to the estimate of the differential of u(t,v) and of its adjoint. We differentiate equation
(1.138) getting the recursive formula

n t
du(t,v)¢ = Z Z / [&T(dukl(s,v)f,...,ukT(s,v)) +~-~—&—f/sr(ukl(s,v),...,dukT(s,v)g)} ds .
r=2 ky+-+kp=n "0
(1.140)
To estimate such an expression remark that, defining Ey;(v) := dV;(v) (where the differential is with
respect to the v variable only), one has

" By (b (s,0), b (5,0)) = VI (€, a2 (s,0), ..., ub(s,0))

which allows to write formula (1.140) as

du"(t,v)€ = Z Z /0 [dr_lES(ukz (5,0)...,uP (s,0))duf (s,0) + ...

=2 k14 +kp=n (1.141)
A dTTLE (R (s,0), L uFrt (s, 0)) du (s, v)¢] ds .

This formula allows to proceed exactly as in the estimate of w™, namely making the inductive
assumption that

SUDP¢e(0,1) ‘%‘

||M(tvv)”5(pw17pw2) = ZA" HU”Z)l

85n?
and proceeding as above one gets the thesis. Finally one has to estimate [du™]*, but again equation
(1.141) allows to obtain a formula whose estimate is obtained exactly as the estimate of du. O

We prove now a useful inequality.

Lemma 1.67. [Tre70] Let r € N be fived and S =}, 2. Then for every n € N it holds that

k2
1
2 r—1
n > e =T
k1y.kreN 1 r
ki+-+kr=n

Proof. The proof is by induction, the case n = 1 being trivial. For n > 1 one gets

1 n? 52 n
2 _ -2
n Z k2 k2 Z k’2j2 Z k2... k2 — Z k2j2 (45)"
kit-tkp=n kitg=n 1 kodeodke=j 2 T kti=k 1
by the induction assumption. Now it is enough to note that
2 2 n—1 n—1
n n 1 1 1
= —_— <2 —+ —) <4 — < 48.
P D LD Dl (el v ) 7 <
ke M7 R = k) sk =k i
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B Discrete Fourier Transform

In this section we collect some well-known properties of the discrete Fourier transform (DFT). For
u e CN, N €N, the DFT of u is the vector & € CY whose k" component is defined by

N-1
~ 1 2wijk /N
i :—E w;e2™Ik/IN VO<k<N-1. 1.142
FTUN &Y =r= (1.142)

=0

When the DFT is considered as a map, it will be denoted by F, i.e. F : u+> .
For any s > 0 and ¢ > 0 we endow CV with the norm [/, defined in (1.113). Such a space
will be denoted by C*.

Remark 1.68. Let j be an integer such that 0 < j < N —1. Then

N-1 L IN—1 . ‘ .
Z i27ik/N { 0 ifj#0 and Z g, eI/N {QWUZ, J even, j =2l
k=0

P N ifj=0 0 j odd

(1.143)

Remark 1.69. Fiz s > %} and 0 > 0. Then there exists a constant Cs , > 0, independent of N,
such that for every u € CV the following estimate holds:

sup |’U/j‘ < Cs70' HUHS,U .
0<j<N-1

For u,v € CV, we denote by u - v the component-wise product of u and v, namely the vector

whose jt* component is given by the product of the j** components of v and v:

(u-v); == u;v;, 0<j<N-1. (1.144)

We denote by u v the convolution product of u and v, a vector whose j*"* component is defined by

N-—-1
(wxv); =Y wpvj_p, O0<j<N-1, (1.145)
k=0

where in the summation above u and v are extended periodically defining vi4 v = vy for [ € Z.
The DFT maps the component-wise product in convolution:

Lemma 1.70. For s > % and o > 0 there exists a constant Cs » > 0, independent of N, such that
the following holds:

i) UV = = 1% D;
VN
(i) lu-vlly 5 < Csollully o vl o5

(iii) the map X : u ~ u?, has bounded modulus w.r.t. the exponentials, and | X(u)|, <

s,0 —

2
Cso Hu||s7o"

o1



Proof. Ttem (7) is standard and the details of the proof are omitted.
We prove now item (4i). To begin, note that, by periodicity, one has

1 N
||u||§’0 =% Z k)2 e2o 1k )2
keKY,

where the set
K?\, ={ke€Z:—-(N-1)/2<k<(N-1)/2} U{|N/2]}, (1.146)

while [k] := max(1, |k mod N|). By item (i), one has that

N-1 2
2 /\ 1 , L
ool = 5 2 WM 0P = 7 3 WP Y iy (1.147)
keKO keKS, =0

Introduce now the quantities

o [k]s ea|k|
Vol 2= [l]s [k _ l}s eolllealk=1| *

7125 1 [1128) 2o (k=L
For s > % and o > 0, it holds that ’y,%,l < 43“[’;_ll]]22j[l[]ljf 6)2:'” eza‘lktll‘ < 45 ([l}%s + ﬁ) , from

which it follows that there exists a constant C , > 0, independent of IV, such that

sup Z Y1 <C2, . (1.148)
0<k<N-1 15

By Cauchy-Schwartz one has

N—-1 N—-1
B1%e7 S i (ool = > i [10° €M Jiia] [ = 1] e [0y
=0 1=0

N-1 1/2 N_1 1/2
< (Z v) (Z 2 21 ? [l — 1% 27141 mn?) .
=0

=0

Inserting the inequality above in (1.147), one has

o N-1 2 N1 1/2
||’LL 'U”sg < ;}J (Zm&s 620\” ﬁl|2) <Z 28 20'|k 1] |'Uk l|2>

=0 k=0
< Collullyo 0l

We prove now item (iii). Consider X := FXF~!. By item (i) one has X : {t;}jez — {\F > Wt }tjez.
Thus X = X and the claim follows. O

Remark 1.71. Let Sy be the difference operators defined in (1.117). Let &y be the vectors whose
kth components are given by Wt =1— eF2mk/N - Then the following holds:
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(i) the map §i = FS+F~ 1 is a multiplication by the vector W : §i CU = Wy - U
(i1) ’S’;i(ﬁ)‘ <w - i, where w = {w (%)}kN;ll is the vector of the linear frequencies.

Remark 1.72. Consider ¢ = q(£,n) as a function of the linear Birkhoff variables defined in (1.25).
Then one has [Sa(a)| <€ lpe.r-

)

C Proof of Proposition 1.47

We prove now property (01). Let T : (§,17) — (p,q) be the map introducing linear Birkhoff
coordinated. Explicitly (p,q) = T'(&,n) iff (Po, do) = (0,0) and

(Pr, ) = %w (£) (& +nv-k), é(ﬁk —nN—k) |, 1<ESN-1.
iy/2w ()

Then Og = O o T and in particular dB=(0,0) = dO(0,0)T. Using the formula above and the

fact that dO(0,0)(P, Q) = (—P, $54(Q)), where S, is defined in (1.117), one obtains easily formula

(1.86). The estimate of Hd@ 0 0) HL(% o, coo) is trivial, and is omitted.

We prove now the estimate for ||d@_ (0,0)* H
one computes that (£,7) = dO=(0,0)*(B, A) iff

L(Cot1e, Py’ Using the explicit formula (1.86),

(&, i) = | —\/3w (£)B \/7 (%) \/T

for 1 <k < N — 1. Thus there exist constants C, Cg, > 0, independent of IV, such that

|d0=(0,0)" (B, A)|

Cs+l,0

N_1 1/2 c
s o 2 ~ -~ @
prr < ( > Ik 2“WwMOmMMWO < = (B, 4)

k=1

where we used that ‘w (%) ’2 < T35, Thus the second of (1.87) is proved.

We prove now property (02). Denote by O, the map p — —p and by ©, the map ¢ —
exp (354(q)) — 1. Then (b,a) = O(p, q) = (O4(p), ©a(q)). Introduce on C the norm [[Il5,, defined

n (1.113). Then ||O(p, q)||>... = ||®b(p)||§’g + H@a(q)Hig. The analyticity of p — Oy(p) is obvious.
Consider now the map ¢ — 0,(q). Expand O, in Taylor series with center at the origin to get

D=0, OLa) = (S (@), Vr>1 (1.149)

rlar
r>1

Consider ¢ as a function of the linear Birkhoff variables &, 7. Then Lemma 1.70 and Remark 1.72
imply that for any s >0, 0 > 0

|eita se@||, <GlEnl

<Oy
s+1,0

10 S CENTI(€ 1)z

Tew > ¥r>2, (1.150)
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where C1, Cy,C3 > 0 are positive constants independent of N. Therefore for e < C% one has

‘C5+la <Z

r>2 ”(5 n)”ps cr<6/N2
This proves the first estimate in (02). We show now that for any s > 0, ¢ > 0 one has
[dOL]* € N, /n2(P*7, L(C*T27, PsT1o)). Note that dO=(¢,n)* = T*dO(T(£,7))*. Using the ex-
plicit expression of T, one verifies that (&,n) = T*(P, Q) iff

's 202 2

0 rarr €
@5( Cs+l.0 S2>3203N N2r - N2

sup
€M ps.c <e/N?

OL(&,m)|

(ks 1) % % - QN (1.151)
\/ 2u (ﬁ)
for 1 <k < N — 1. Thus one has that for any s >0, 0 >0
177(0, Q)]

Using (1.149) one verifies that dO"(p,q)(P, Q) = W (0, Sy(q)mt- S+(Q)), Vr > 2, from
which it follows that

pea < (1.152)

—1

40" (p,q)* (B, A) = 0, S:(q) -s_(A)) . Wr>2.

(r—ll)!ZT (

Thus, using estimate (1.152), there exists a constant Cy > 0, independent of N, such that

S+(a(&m)

Then there exists Cs, ¢g > 0, independent of N, such that V0 < € < ¢y

r—1

<Cj
Ps+l,o -

S_(A)

|20z, (B, 4)| < CIN2 (€Ml 1B, A grsar -

s+1,0 s+1,0

sup del(¢,n)* < sup dOz(&,m)"
1(E)llps.o <e/N2 ) L(Cet2o, Petho) ;\l@m)\lps,aée/m ( £(Crte, pote)
r—1
T NTT— 2 € 056
<) CiN 7 S VT

r>2

D Proof of Lemma 1.50 and Corollary 1.51

Proof of Lemma 1.50. Since the map (b,a) — L,(b,a) is linear, it is enough to prove that it is
continuous from C*7 to £(C*V). In particular we will prove that

Il < _sup_ (1n+ 2500 (1.153)
0<j<N—1 J

This estimate, together with Lemma 1.69, proves (1.93). In order to prove (1.153), write L, =
D + At + A~ where D is the diagonal part of L, and A% are defined by

0 ao 0 anN—1
A+ = O ." 5 A_ =

an—1 0 an—2 0
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To estimate the norms of D, A* and A~ is enough to observe that for every 2 € C?" one has

2N—1 2 2
2 2 2 2 2
Dl i= 3 oyl < (| _sup 1)l el < (_suplosl) folfer.
= 0<j<N-1 0<j<N—1
where ||-||czn is the standard euclidean norm on C?V. Thus (1.153) follows. O

Proof of Corollary 1.51. Ttem (i) follows by standard perturbation theory, and the details are
omitted. We prove now item (). Let I'; be the circle defined by I'; := {A € C : ‘)\gj - )\‘ =5zt
counter-clockwise oriented. By item (i), for any [[(b, a)||ce.c < 5, A2j(b, a) and Xoj_1(b, a) are inside

the ball enclosed by I'j. Write Ly, — A= Lo — A+ L, = (Lo — A) (1 + (Lo — /\)_1 Lp); its inverse

(Lba— N = (Z (f (Lo —N)7" Lp)n> (Lo— A" (1.154)

n=0

is well defined as a Neumann operator when H(Lo — )\)_1 L, < 1. Since Ly — A is diagonal-

£(C2N)
izable with {(A} — X)}o<j<an—1 as eigenvalues, the norm of its inverse is bounded by the inverse of
the smallest eigenvalue:

. 1 )
sup zo-» Hch) < sw ‘A,%—A’ <2N (1.155)
’ 0<k<2N—1

€

where the last estimates is due to the form of I';. Therefore for 0 < € < ¢, and [|(b,a)/¢..c < Rz

one gets, using (1.93),

H(LO - LPHL(

cow 2N? < 20, se,

< Mplleeomy (B =07, 0 < Coo lB,0)

(CZN) ﬁ(C2N)

which proves the convergence of the Neumann series (1.154) for e, <
Substituting (1.154) in (1.91) we get, for 1 < j < N —1,

P;(b,a) = Py — % ﬁ (Z (— (Lo —A)~" Lp)”> (Lo — A) " dA. (1.156)

n=1

1
2Cs,0°

Since the series inside the integral is absolutely and uniformly convergent for (b,a) € B¢ (ﬁ) ,
(b,a) — Pj(b,a) is analytic as a map from B¢ (5&) to £L(C*N). Estimate (1.95) follows easily
from (1.156).

We prove now item (iii). Properties (U1l) — (U3) are standard [Kat66]. The analyticity of
the map (b,a) — U;(b,a) follows from item (i¢). Indeed, in order for U;(b,a) to be defined as a
Neumann series one needs || P;(b,a) — Pj0||£(CQN) < 1, which follows from (1.95). Estimate (1.96)

follows by expanding (1.92) in power series of P;(b,a) — Pjo. O

E Proof of Proposition 1.52

Denote by D : CN~=! — CV~1! the diagonal operator

; —-1/2
D : {gj}lngN—l — {Djfj}lfjﬁN—la where Dj = (%w (%)) / . (1157)
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Proof of properties (Z1) — (Z3). Property (Z1) follows from formula (1.98), since *:

zj(b,a) = Di{(Lb,a — A3;) Uj f25,0.Uj f25.0) = Dj (Uj fajo, (Lvsa — X3;) Ui fajo) =
= Dj <Ujf2j71,07 (Lb,a - /\Sj) Ujf2j71,0> = Dj <(Lb,a - )\gj) f2j71; f2j71> = 'wj(b7 a).

We prove now (Z2). Using Lemma 1.51 (iv) and the fact that fo;0 = f2j_1,0, decompose fa; 0 and
f2; in real and imaginary part:

f2j,0 =€j0 +ihjo,  fo; =ej +1ih;

f2j—10 = €0 —ihjo,  f2j-1 = e; —ihy,

where
€50 = Re fgj,o, hj,o =1Im f2j70, and €5 = Re f2j = l]j@jp7 h]‘ =1Im fgj = Ujh]’,o.
The vectors {e;, h;} form a real orthogonal basis for E;(b,a). Let M;(b,a) be the matrix of the

selfadjoint operator Ly, — )\gj|E-(b o) with respect to this basis:
J )

o= (5 %)

The eigenvalues of M; are obviously Ag; — )\gj and Agj_1 — /\gj, hence
Tr Mj = o + B = (Agj =A%) + (-1 — A3;)
Det M; = a;3; — 07 = (Agj — AY;) (A2j—1 — AY;) -
Now observe that
zj(b,a) = D; ((Lp,a — /\gj) (ej +ih;), (ej —ihy)) =
= D; (Lo = A3;) €5:€5) = D (Lo, = Agg) hjs hy) + 2D; ((Lo.a = Agy) €5, h5) =
= (2w (£) " (0 - B; +i20)).
Finally one computes
(A2j — Aoj—1)” = (Tr M;)* — 4Det M; = (aj + B;)° — 4a;B; + 4o
= (aj — 53‘)2 + 40? = (Re zj)2 + (Im zj)2 = (%w (%)) |2, (b, a)l’.
We prove now (Z3). The first order terms of z; and w; in (b, a) are given by
dz;(0,0)(b,a) = D; (Lyfaj0, f250), dw;j(0,0)(b,a) = D; (Lyfaj—1,0, f2j—1,0) 1<j<N-1.
Using the explicit formula for fo;0 in Lemma 1.48, one computes

2N—-1
(Lpf2jo: F250) = 537 > e 4 ay_1 €203 els 4 el
=0

2N -1
_ 1 Z bie2TIUN 4 g 27 U=DI/N ipj | g i2nli/N cip; (1.158)
2N

1=0

= Tlﬁ (b5 + 269, ) = TIN (b5 — 2¢™/a,)

4to simplify the notation, we write f; = f;(b,a) and U; = U; (b, a)
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The formula for dz;(0,0)(b, a) immediately follows. The one for dw;(0,0)(b, a) is proved in the same
way and the details are omitted.

The estimate (1.101) for dZ(0,0) follows immediately. We estimate now the norm of dZ (0, 0)*.
One checks that (B, A) = dZ(0,0)*(¢,n) iff By=Ag=0and for 1 <k <N —1

L (et vn), ——(
—F/—\Ck N—-k)y —  —
V2w (%) V2w (%)

Thus there exist constants C,C’,Cz > 0, independent of N, such that

(B\ka;{k) _ eiﬂ'k/Ngk + eiﬂ(N—k)/NnN_k)

cr N1 [

1420, 0" (& mleess < 7 DK 2w ()
k=1

K]

2»&

(1€x? + Imel?) < CZN I, ) 1o

(%)°
where in the last inequality we used that [k]%;/w (%)2 < " N* for some constant C” > 0 indepen-
dent of N. Thus the second of (1.101) is proved.

zl=

Proof of property (Z4). We will prove that Z is normally analytic. Recall that, as mentioned in
the discussion before Proposition 1.47, the map Z is said to be normally analytic if Z := ZF is
normally analytic. With an abuse of notations, we omit the “check” from Z.

We begin by expanding the components of Z, denoted by Z;(b,a) := (2;(b,a), w;(b,a)), in
Taylor series with center at (b,a) = (0,0). The first two terms of the expansions are given by

[ 71 [
2j(b,a) = D;(Lpf2;.0, f25.0) + Dj(Ly (Lo = A3;) (1 = Pjo) Ly f2;.0, f2j.0) + O((b,a)?),
[ — 71 e —
wj(b,a) = Dj(Lpfaj—1,0, f2j—1.0) + Di(Lyp (Lo = A5;) (1= Pjo) Ly faj—1.0, f2j—1.0) + O((b, a)?).
(1.159)

To perform the Taylor expansion at every order it is convenient to proceed in the following way.
Write z;(b, a) = z;1(b,a) + zj2(b, a) and w;(b, a) = w; 1(b, a) + w; 2(b, a) where

zj1(b,a) = D; <(L0 — X3;) f25(b, a), fa; (b, a)> , zj2(b,a) = D; <Lpf2j(ba a), fa;(b, a)> , (1.160)
while w; 1(b,a) and w; 2(b, a) are defined as in (1.160), but with fo;_1(b, a) replacing f2;(b, a).

Expand 2 ¢(b,a), ¢ = 1,2, in Taylor series with center at (b,a) = (0,0): z;c(b,a) =>_, 5, 27 (b, a),

with 27 a homogeneous polynomial of degree n in b,a. We write an analogous expansion for
;

wj (b, a). Therefore one has
Zj (b, a) := (2} (b,a), w}(b,a)) = (271 (b,a) + 25 (b, a), w1 (b,a) + wj,(b,a)).

In order to write explicitly z?’g(b, a) as a function of b and a, one needs to expand the vectors
f2j(b,a) and f2;_1(b, a) in Taylor series of b, a. Rewrite (1.92), (1.97) as

f2(b,a) = Uj (b, a) faj0 = (]1 — (Pj(b,a) - Pj0)2)71/2<1 + (Pj(b,a) — PjO)) J25,0

and expand the r.h.s. above in power series of P;(b,a) — Pjo, getting:

fai(b,a) = > e (Pi(b,a) = Pio)™ fajo,  foy-1(b,0) = Y em (Pi(b,a) = Pio)™ faj10
m=0 m=0
(1.161)
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where the ¢,,’s are the coefficients of the Taylor series of the function ¢(z) = m Note that
Cokt1 = Cop = (—1)’“(72/2), where (72/2) = —1(=3—1)--- (=3 —k+1) is the product of k negative
terms, thus (—l)k(f}cﬂ) >0, Vk > 0, and therefore ¢,,, > 0, Vm.

By Corollary 1.51 (see also formula (1.156)) one has, in the ball B¢’ (e, /N?),

P;j(b,a) — Py = i Z(_wﬁ T™(b,a, ) (Lo — A) " dA (1.162)
n=1 J

where the T';’s are defined as in equation (1.91), and
T(b,a,)\) = (Lo—\)""L, .
Substituting (1.162) in (1.161) we get that
f2j(baa):f2j,0+z Z Cm Z f25m (b, a),
n>11<m<n  a=(a1,...,am)EN™, |a|=n
f35.m (b, a) =
(;ﬂ)m (—1)le! ]i - }éj T (b, a, A1) (Lo — A1)~ .. T (b, 4, A) (Lo — Am) ™" fojo dAr .. A,

(1.163)
An analogous expansion holds for fa;_1(b, a), with fo;_1 ¢ substituting f2; ¢ in the integral formula
above. In order to write explicitly the expression inside the integral, one needs to compute the
iterated terms T (b, a, A) f2;0 and T™ (b, a, A) f2j—1,0. The computation turns out to be simpler if
we express Ly, fa;0 in the basis of the eigenvectors of Lg. To simplify the notations we relabel the
eigenvectors of Ly in the following way:

go = foo, gn = fan-1,0, 95 = f25,0, 9—j = foj_10, for1<j<N-1
and the eigenvalues of L as

Xo=A0, A=Ay, Ai=AY, A= AY ., for1<j<N-1L

For every 1< j < N — 1 one has that g; = g—;, formally, one can also write gi+aN = i )\- = )\,J
and )\j+2N = )\J, as one verifies usmg the explicit expressions of the g;’s and )\ s. In this notation,

for A # Asj, one has (Lo — A\) " 'gi; = g+;/(As; — A). With a computation analogous to the one in
(1.158) (using also the second formula in (1.143)), one verifies that the projection of L,g; on the
vector gy is given by

1 R
<Lpgj)gk> = ﬁ (bJ k — 2C0S (/?\7;) a%) 5(j—k; even ), (1164)

where 6(;_p; even ) = 1 if j — k is an even integer, and equals 0 otherwise. Formula (1.164) implies
that L,g; is supported only on the vectors g; whose index k satisfies k = j — 2 for some integer [.
Therefore we can write

xl, 1 ~ -
T(b,a,\)g; = Z —L—gi_a, xé = (Lpgj, gj—2) = —= (bl —2cos (W) &l) ,
1KY, Aj—21 = A N

(1.165)
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where K9 is the set of indexes defined in (1.146). Note that |xj| < = <|bl| + |al\) uniformly in

7, and xl+N j. Iterating (1.165) one gets
B xiigiz by ...J}i-"_? Y
T"(b,a,)\) (LO —)\) 1gj = Z — A J—n tnot 9j—2i1—-—2ip, -
i1, ,in €KY ()‘j - )Hz:1( G—23 im )

More generally, for a vector o = (o, ..., ) € N with |a| =n and A, , A\, € T'j, one has

T (b, ay Am) (Lo — Am) ™= T (bya, A1) (Lo — A1)~ gy =

xj x] 2, ...x;”_%_m_%nil
= Y " — — 7 Gj—2ir——2i,
i1,enin €KY (/\j - )‘1) Hz:1 (/\j—z S im :“l) =1 (Aj_Q Z;*flr“*az in )\l+1)
' (1.166)
where
k-1 k
w=A for1 <l<ay, and pu; =\ for Zathlgngah, 2<k<m. (1.167)
h=1 h=1

To obtain the explicit expression of 2’ and w} , ¢ = 1,2, in terms of the Fourier variables b a, we

substitute (1.166) in (1.163) and the obtained result in (1.160). By (1.163), 27 is a sum of terms
of the form <(L0 — )\gj) fg‘j)pl,fgj,p2> over (p,a, ) € N2 x NP1 x NP2 with |p| = p1 + p2 < n and

|| + |8 = n. For |a| =7, || =n —r one gets

Ipl
3 B _ , i
<<L0 - )‘j) fgjﬁpl’fQj,P2> - < ) j{ % “ ;2 2 * - -37;'721'1,...,2“_1 X

X xlnx;" 212 .. x;'rj;in*”'f%wrz <gj_27;1_.“_27;7,,gj_QiT+1_‘.._2in>d)\l .. d)\‘p‘,
(1.168)
where, writing i = (i1, ,in),
s )

pfﬁ() ( J 22771:127” J «
Ky, T 1—1

= A0 Tl ( i=2 51 i ‘”) [T ( i—2 L i Al“) (1.169)

1
X

(5\] - >‘P1+1) H’ln:T-‘,-l (5\j_2 Zzl:lim, - ) Hp2 ' ( QEBIJI +ﬂl )\l+1)

and the fi;’s are defined as in (1.167), but with the multi-index replacmg «. Similarly, the term

275 is a sum of terms of the form <Lp I8 o1 fgj)p2> over (p, a, 3) € N2 x NP1 x NP2 with |p| < n and

|a| + 18] = n — 1. The term <L I35, pl’f2ﬁj p2> has an expression similar to (1.168), and for |a| =r
and |B] = n —1 —r the kernel x%5" A(i) is given by
1

(5\3 —Al)H;:1< j— QZM Lim /”) le ! (A] 2201-%— ey, )\l+1>
1

(j‘j B )‘p1+1) H?:r+2 (5‘j7221’ﬁ:l [— )sz ! (AJ 2261+ HBL )\l+1)

X

(1.170)
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Using the explicit form of the eigenvectors {gr} _(n_1)<x<y (see Lemma 1.48), one verifies that

n

(Gj—2ir——2ir Jj—2irs1——2in) =0 <j7 Z im> v {gN—j—2i—m2i IN——Bir 1= —2iy) = O ( Js Z lm> :

m=1

This is used to simplify the last term in (1.168). Moreover, using j = >

m=1

im and the identity
Aj = A_j, one gets that

Aj—2i, =

j—23 1 i ceey /\j—Qin—Qin,—l—"'—Qir+1 = )‘j—2 S L ime (1171)

>/>

Recalling the definition of the coefficients x (formula (1.165)), we can write, for ¢ = 1,2,

A 1 9 ] —1/2 i

], (b ) W (N W Z ’C Uil,bl P U’inﬁn (1172)
(i,L)eAn
where the set
A" :={(i,e) €Z" xN": iy € K¥;, u€{1,2}, VI<I<n},
the variables u = (u, 4y, , Ui, ., ) are defined by
wi, 1 = b, Us, 2 = Gy,

the kernels K7 (i, ¢) are defined for (i,¢) € A" by

~ i 2 Vm —1

’C;},{(l, L) = IC;L‘(I) (_2 cos (M)) , (1173)
{1<i<n}
Ky (i) = > el Y, SEP() (1.174)
r+s=n—(¢—1) (,B)ENPL X NP2
p=(p1,p2)€N?, |p|<n lee|=r, |Bl=5
and finally
n Ipl
SEEP) =0 ( 4, im < ) f f KPP (i) A .. A (1.175)
m=1

An analogous expansion holds also for w?; and w7,.
We need now to get estimates of the kernels K7 _, which will follow from estimates on the denomi-

YAl
nators of x7'" B
Lemma 1.73. Let p € I'; := {)\ €C: [A=AJ;| = min (2%2, <]2V]\72j>>}, where (j) = (1 + [j|? )1/2.
Then there exists a constant R > 0, independent of N, such that for every —(N ) <k <N one
has
RO - BNV =) + (N = k) /N?, if INJ2]+1<|j|<N
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Proof. Consider first the situation in which both the eigenvalues 5\j and g are in the low half of
the spectrum, namely 0 < |j|, |k| < |N/2]. In this case one has

3 3 T T T j T 4)5% — k?
Ak = Ml = A9 — A9 = Q‘COS (lk‘ ) cos(‘]| )‘ = 2|cos (7)) — cos (57)| > %

Therefore, for k # j, there exists a positive constant R; such that for Vu € T';

gy o Ai2=k ) G-k G+k)
> >
A T i o ’

Ak — Aj| —

-

(1.177)

where we used the inequality (j) < 2(j — k) (j + k), which holds since j, k are integers. If k = j,
then the claimed estimate follows trivially since [A\y — u| = (j)/2N2.

Consider now the case when )\ is in the low half of the spectrum, while Ay, is in the hlgh half; i.e.
0 < |j| < |N/2], while [N/2| < |k| < N. In this case the distance of the eigenvalues \; and Ak is
of order +, therefore the estimate (1.176) holds as well. More precisely, using cosz > 1 — 2z for
0<z< 7r/2 one has

AR =D o G=R) G+ E)
N = N2 ’

where the last inequality holds since (I) /N < 4, V|l| < 2N. The inequality above implies that

3 N N—|k|)m ks
IAk—/\J'I:lAgw—/\gm|=2‘003(( e )+COS(JW) =

3 s G G-k G+k  G) G-k G+E)
_ > — = > — > .
Ao =] 2 A= 4 aN? = N2 onz = e (1.178)
for some Rz > 0. Thus the first of (1.176) is proved.
The proof of the second inequality of (1.176) follows by symmetry and is omitted. O

We can now estimate the kernels K7 defined in (1.173).

Lemma 1.74. There exists a constant R > 0, independent of N, such that K?C(i,b), s =1,2
satisfy, for everyn > 2 and 1 < j < |N/2], the estimates

1
K2 (i,¢)] < R*N*"~D§ (]7 > u) - )
=1 ?:11 <Z§c:1 ik> <Z§g:1 ik _]>

Kiv—yeld.)] < RNFT00 (—j, y Z) 1 '
i) X)) )

Proof. We start by estimating /{?7’?’/3 (i), defined in (1.169) and (1.170). For every —(N—1) <k < N

(1.179)

and p € I'; one has ‘5% — u‘ > A] (2%2, <]2V]\72j>>, therefore
- ) p2—1 )
)\ — A1) H ( joayertter /\l+1) (Aj = Api41) H (A gyt /\l+1)
=1 =1

o )]
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O ¢
Let now 1 < j < [N/2]. By Lemma 1.73, formula (1.171) and the inequality % <2
J=2X0 1 im

(which is used to estimate just x77" A(i)), it follows that, for ¢ = 1,2,

RG] < 2 < 2ol i)

s , NI . - ; A\ 717!
: N— n—1 . N—
{mm (2(1]\1)2’ <2N’g))} 1=1 ’)\J 23y i /“’ [mm (2<zj\/>2‘7 (2N2j>)]

where
Rn—1 N2(n71)

:_11 <Z§€:1 Z'k> <Z§c:l ik — j> .

To estimate S7 ’f’B consider (1.175). The S ’f’ﬁ s are defined by integrating the kernels x%'" #

over I'; |p|-times. Since |T';| = 27 min <2<1<,>2, <12V]\_,2j>>, one gets

Sgl’ﬂ()‘ﬁ[min(%7u\zfv2 )}‘p‘ <J7Z”> ])Cﬁ ’<26< i )aa i, inn)-

Finally consider K} . From (1.173) one has |IC?’§(i, o) <2n

IC;{g(i)’, and from (1.174)

‘IC . <J7zzl> Z17"' 7in—1) Z Cp1Cps Z 1
r+s=n—(s—1) (ar,B) ENP1 x NP2
p=(p1,p2)EN?, |p|<n lee|=r, |8|=5
n
<C"s (j,zz‘l> aj(in,  in_1)
=1

thus the first estimate of (1.179) follows. The proof of the second one is similar, and is omitted. O
Define now K7 := K7, + K7 5. Then
D,

A A D,
n ~\ J n(s X . n ~\ J n(s i .
Zj (b’ a) - N”/2 E ICj (17 L) Wiyyog = Wi pips wj (ba a) - N”/2 E Hj (17 L) Wiyyoy » e Wiy yip s
(i,L)eAn (i,L)eAn

(1.180)
where H7 (i,¢) = K}'(—1,¢). The second formula holds since for b, a real one has w™(b, a) = 2"(b, a).

Corollary 1.75. Let A} := {(i,¢) € A" : X' 4 = j}. Then for 1 < j < |N/2] one has
supp K C A% and supp Kf_; € A .. Moreover

RnNQ(n—l)
.>n71 ’

I <
J

lage IK8=ilae, < (Lis)

where HIC;LHZ; I=SUP,, (1,2} Ziﬁ_uﬂ.nzj ‘]C;.L(i, L)‘Q.
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()? 1
Proof. Just remark that e <4 << ez + <k_j>2). O

We prove now bounds on the map Z™(b,a) := (z"(b, &), w" (b, a)).
Lemma 1.76. There exists a constant C > 0, independent of N, such that for any s > 0 and o > 0

|zbLian| .. <cmNe Y @@, vnz2 (1.182)

Proof. By formula (1.172) one has that for 1 < j < [N/2]

SilaD| < <2 S0 K60 ],

(ir)ery
D, (1.183)
ey (Bl1aD] < 5o D0 Kk G0 il |
(i)eAr;
Introduce A(i) := [i1]-- - [in], where [i,] = max(1,]iy]) V1 < r < n, and remark that for some
constant R > 0 one has R
sup  A()7H< =, Vj € Z.
i1tetin =] ()
Therefore, by Corollary 1.75,
| < =D, (s A7) X Pl
1+ Fin=J (L”EA}”
TRTNE 1 n 2 s\ —2s . 12s - 12s
B ey S S (RS XCI el I S PO )
N “7 N+ tin=—j .
(1)eAn,
Use now inequalities (1.181), the definition of D;, the fact that 2711l < e2olial. .. g20lin-1le20li=ir = =in—s|
and the bounds |u;,,| < |b;| + |a;|, to deduce that, for any n > 2,
1 LNv/2] , _ . 9 A 9
v 2 e () |z ainlan| + oot lan|*)
j=1
on N/2]
SNWFDW Do PN T ] iy P ],
Jj=1 (i,L)EAL;
< NYDCr (b, a)E
Since w™ (b, &) satisfies the same inequality, estimate (1.182) holds. O

Consider now the map (b,a) — dZ"(b,a)*, where dZ"(b,a)* is the adjoint of the differen-
tial of Z™. Explicitly, if £, 1 are vectors in CNV~! and h, g are vectors in CV such that (h,g) =
dZ™(b,a)*(€,m), then the j** components of h and g are given by

N-1 o W . N-1 PN wy .
(hy. g5) = (Z (2; (. a)ee + 2ok (m)m), ) (Z; (b6 + Gk (b )) - (L184)

k=1
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Denote by h, g the vectors of CY whose components are given by

N—-1
(hys 95) = (Z <2“Z’“<|b| aled + 25, |a|>|nk> (az’i T, |a|>|nk|>>

k=1 k=1
(1.185)

We begin to study the case n = 2.
Lemma 1.77. There exists a constant R > 0, independent of N, such that Vs > 0, 0 > 0 one has

[zl b (el Inp | ... < BN*(|(5,0)

Cst+2,0

oo 165 m)]

P - (1.186)
Proof. By (1.159), one computes that the second order terms Z2 = (22, w?) are given by

R(b,a) = B 3 (b — 2cos(U5227)ay ) (Bt — 2cos(5)an1) /(N_any — M)
1£0

wi(b,a) = Ze Z (IA)N,l - 2cos(%)d1v,l) (I;l,k - 2005(%”)611,;@) /()‘8(1%21) —9,).
1#0

Let h, g be as in (1.185) with n = 2. Using the explicit expressions for z,% and w%, one computes
that for 0 < j < | N/2]

=1 (Ibu—sl + 2lans1) DIl + )
A9

IA
2|~

IA
=
z IME 1M 103

|y
— 2(k—2j5) )‘gk|

(20 ([ |+ 2lannsl) Dillee] +foel) S (1be—s1 + 2lan—s1) Dilléel + i)

k= 5)0) S N —k+5)0)
o (|bk i1+ 2wl DIl +Imel)  (br—is] + 2fan-r—]) Dillex—il +Inn-l)
8 k=G " &+ G
< ﬁ L2 (|bk i1 2a) 9205+ ) ([oims o+ 2Hanv—icsl) 828 —a] £ el
T & k= 7)) (k+ 7))

where in the last inequality we used that Dy < N/(k)!/2. With analogous computations, one
verifies that

o] < N2 /2 <|5k+j|+2|dk+j|) (R)Y2 (&, + i) (|8j—k|+2|dj—k‘> (EYY2(|en—k| + [mn—k])
W= Ty o+ ) 0k) " k=) (R) '

k=1

Proceeding as in the proof of Lemma 1.70, one obtains that there exist constants C,C’" > 0,
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independent of N, such that

1 L2 _
LSS G2y 4y )
j=0
N-1 N-1
<o (Lt Gt + ) ) (TR0 0 + )
k=0 1=1
< C'NO|(b,a)llge.q [1(€,m)] %w (1.187)
where in the last inequality we used that [I ( L ) for [ integer. One verifies that g satisfies
the same inequality as (1.187). Thus estlmate ( 86) follows from the following inequality:
N—
| az2b1, 1a el 1) ‘Csm <= Z G2l (12 4 gy ) (1.188)

3:0
O
We study now dZ"(b,a)* for n > 3.
Lemma 1.78. There exists a constant R > 0, independent of N, such that for every s >0, o >0

andn >3
< RUN*H[(b,a) G-

Cs+2,0

il [[(307)] P (1.189)

|z (oL ab* el 1nD)|

Proof. Let h,g be as in (1.185). We concentrate on h only, the estimates for g being analogous.

Write h; = Zg:_ll gz’” Sk + ZN ' 8? Nk =: hj1 + hj2. By (1.180) one gets that

1 - n,l 1 - n,l
hin = Nz DAV (DE . u), R = N2 > B (Dnyu,. . )
=1 =1
where D is defined in (1.157), the multilinear map A?’l is defined by

n,l nl
A (hyu, E A G )iy iy,

(i,t)eEA™

B?’l is defined analogously but with kernel lS’;l’l(i,l,)7 and finally .A?’l and B;l‘l are defined for
1<j < [N/2] by

.A;‘J(i’[,) = ’CZ ((il,...,il_l,j,il+1,...,in), (Ll,...,Ll_l,l,LH_l,...,Ln)),
AN (G,0) =K ((21,...,11_1,—],21_,_1,...,zn), (Ll,...,Ll_l,l,Ll+1,...,Ln)),

while B;-l’l(i,b) = A?’l(fi, ¢) and B;i,’l_j(i,L) = A?\,’I_j(fi, L), see (1.180). By Corollary (1.75) it
follows that

supp A?’l = supp B%ij (o) rir 4+ i —a i+ i =g, u =1 AT

(,0) : i1+ iy — i Fin i =g, 4 =1} C AT

{
{

} nd n,l
supp AN_j = supp Bj
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Proceeding as in the proof of Corollary 1.75, one proves that there exists a constant R > 0,
independent of N, such that (see [KP10])

max H.An’l‘
1<i<n J A

Thus h, defined in (1.185), satisfies

n,l
ATt

n,l
Bj

n,l
By_;

RnNQ(n—l)
A) e Wn>3.  (1.190)

ar’ an’ (4)?

1 n
il < w775 D (A3 (1DgL ... Jul) + B} (1D, ful, .. Ju))
=1

where A”’ (R, u) = 3G ean |A (1 L)
way. Then using (1 190) and argumg as in the proof of Lemma 1.76, one proves the estimate

1. .
Uiy 0y - iy oo 4, ,,, and B?’ is defined in analogous

N-1
2(s+2) 2a[J]N|h | < RP"N*"7%||(b,a)|

1
N
j:O

N-1
2(n—1) 1 s 20
- (N SR D e + |m|2>>

< RN 2|0, a) 2%V 1 Em) | pecie

where in the last inequality we used that D? < [Jl\]f—jw (%) One verifies that g satisfies the same
7 g

inequality, thus estimate (1.189) follows. O

We can finally prove property (Z4). Let s > 0, 0 > 0 be fixed. By Lemma 1.76, 1.77 and 1.78,
there exists C7,Cs, €, > 0, independent of IV, such that for every 0 < € < €, it holds that

sup ||Z0 b,a)|| perr 0 < sup 12" (b, a)]|
(@llons <o/ pe nz;g (b, o0 <e /N

2

2(n—1) €" C]_E

<D RN G <
n>2

sup HdZO b,a) H oo ooty S up ||dZ"(b,a)*HL Ps.o Cst2,0
(b lon s <e/N2 Lo, Corte) = ,;guwamc”«/m (Peo, )

Pstl,o

n—1

nar2n—1_ €
n>2

66



Chapter 2

One smoothing properties of the
KdV flow on R

1 Introduction

In the last decades the problem of a rigorous analysis of the theory of infinite dimensional integrable
Hamiltonian systems in 1-space dimension has been widely studied. These systems come up in two
setups: (i) on compact intervals (finite volume) and (ii) on infinite intervals (infinite volume). The
dynamical behaviour of the systems in the two setups have many similar features, but also distinct
ones, mostly due to the different manifestation of dispersion.

The analysis of the finite volume case is now quite well understood. Indeed, Kappeler with

collaborators introduced a series of methods in order to construct rigorously Birkhoff coordinates
(a cartesian version of action-angle variables) for 1-dimensional integrable Hamiltonian PDE’s on
T. The program succeeded in many cases, like Korteweg-de Vries (KdV) [KP03], defocusing and
focusing Nonlinear Schrodinger (NLS) [GK14, KLTZ09]. In each case considered, it has been proved
that there exists a real analytic symplectic diffeomorphism, the Birkhoff map, between two scales
of Hilbert spaces which conjugate the nonlinear dynamics to a linear one.
An important property of the Birkhoff map ® of the KAV on T and its inverse ®~! is the semi-
linearity, i.e., the nonlinear part of ® respectively ® ! is 1-smoothing. A local version of this result
was first proved by Kuksin and Perelman [KP10] and later extended globally by Kappeler, Schaad
and Topalov [KST13|. It plays an important role in the perturbation theory of KAV — see [Kuk10]
for randomly perturbed KdV equations and [ET13b] for forced and weakly damped problems. The
semi-linearity of ® and ®~! can be used to prove 1-smoothing properties of the KdV flow in the
periodic setup [KST13].

The analysis of the infinite volume case was developed mostly during the ’60-’70 of the last
century, starting from the pioneering works of Gardner, Greene, Kruskal and Miura [GGKM67,
GGKMT74| on the KdV on the line. In these works the authors showed that the KdV can be inte-
grated by a scattering transform which maps a function ¢, decaying sufficiently fast at infinity, into
the spectral data of the operator L(q) := —d2 +q. Later, similar results were obtained by Zakharov
and Shabat for the NLS on R [ZS71], by Ablowitz, Kaup, Newell and Segur for the Sine-Gordon
equation [AKNS74|, and by Flaschka for the Toda lattice with infinitely many particles [Fla74].
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Furthermore, using the spectral data of the corresponding Lax operators, action-angle variables
were (formally) constructed for each of the equations above [ZF71, ZM74, McL75b, McL75a]. See
also [NMPZ84, FT87, AC91]| for monographs about the subject. Despite so much work, the analytic
properties of the scattering transform and of the action-angle variables in the infinite volume setup
are not yet completely understood. In the present paper we discuss these properties, at least for a
special class of potentials.

The aim of this paper is to show that for the KdV on the line, the scattering map is an analytic
perturbation of the Fourier transform by a 1-smoothing nonlinear operator. With the applications
we have in mind, we choose a setup for the scattering map so that the spaces considered are left
invariant under the KdV flow. Recall that the KdV equation on R

{@u(t,x) = —u(t,x) — 6u(t,x)Ou(t,z) , 2.1)

u(0,2) = g(z) ,

is globally in time well-posed in various function spaces such as the Sobolev spaces HY = HV(R,R), N €
Zs>o ( e.g. [BS75, Kat79, KPV93]), as well as on the weighted spaces H?N N L3,, with integers
N > M > 1 [Kat66], endowed with the norm || - [| g2~ + || - || 2, . Here L3, = L3;(R,C) denotes the

1

space of complex valued L*-functions satisfying ||q||12 := (ffooo(l + |:c\2)M\q(a:)|2da:> * < .

Introduce for ¢ € L3, with M > 4 the Schrodinger operator L(q) := —0? + ¢ with domain
HZ, where, for any integer N € Zso, HY := HN(R,C). For k € R denote by fi(¢,z,k) and
f2(q,z, k) the Jost solutions, i.e. solutions of L(q)f = k?f with asymptotics fi(q,z, k) ~ e** 2 —
0, folq,m, k) ~ e ** x — —co. As fi(q,-, k), fi(g,-,—k), i = 1,2, are linearly independent for

k € R\ {0}, one can find coefficients S(q, k), W(q, k) such that for k € R\ {0} one has

S(q, —k Wi(q, k
fQ(Q7x7k) :¥fl(q7xak)+ (q )fl(qaxa_k) )
_S(g, k) Wi(g, k) '
fl(q7$7k) - 2k f2(q,l‘,k) + Wf?(Q7x7 _k) .
It’s easy to verify that the functions W(qg,-) and S(g, -) are given by the wronskian identities
W(q7k) = [f27f1] (Q7k) = fQ(Qa'ra k)axfl(qvxak) _8xf2(anak)fl(ana k) ) (23)
and
S(qak) = [fl(qax7k)7f2<q7xa_k)]7 (24)

which are independent of z € R. For ¢ € Q the functions S(gq, k) and W (g, k) are related to the
more often used reflection coefficients r (¢, k) and transmission coefficient ¢(q, k) by the formulas

Wi Y T

ry(q, k) = VkeR\{0}. (2.5)

It is well known that for ¢ real valued the spectrum of L(q) consists of an absolutely continuous
part, given by [0,00), and a finite number of eigenvalues referred to as bound states, —\,, < -+ <
—A1 < 0 (possibly none). Introduce the set

Q= {q ‘R—=R, g€ L?:W(q,0)#0, ¢ without bound states} . (2.6)
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We remark that the property W(q,0) # 0 is generic. In the sequel we refer to elements in Q as
generic potentials without bound states. Finally we define

ONM .= 9N HNNL3,, NE€Zsoy, MEZLsy.

We will see in Lemma 2.25 that for any integers N > 0, M > 4, QMM is open in HY N L3,.

Our main theorem analyzes the properties of the scattering map ¢ — S(g, ) which is known to
linearize the KdV flow [GGKMT74|. To formulate our result on the scattering map in more details
let . denote the set of all functions o : R — C satisfying

(S1) o(—k) =0(k), VkeTR;
(52) o(0) > 0.
For M € Z>; define the real Banach space
HM ={feH{": fk)=f(-k), COYfelL?}, (2.7)
where ¢ : R — R is an odd monotone C**° function with

C(k)y=Fk for |k|<1/2 and ((k)=1 for k>1. (2.8)

The norm on H é\/[ is given by

2 2 2
1 Wrae == 1 W+ [[GOR £
For any N, M € Z>g let
IMN = 7 NHMNLY . (2.9)

Different choices of ¢, with ¢ satisfying (2.8), lead to the same Hilbert space with equivalent norms.
We will see in Lemma, 2.26 that for any integers N > 0, M > 4, .MV is an open subset of Héw NL%.

Moreover let Fi be the Fourier transformations defined by Fi(f) = fj;o eTHET £ (1) do. In this
setup, the scattering map S has the following properties — see Appendix B for a discussion of the
notion of real analytic.

Theorem 2.1. For any integers N > 0, M > 4, the following holds:

(i) The map
S QMM o FMN g S(q,0)

is a real analytic diffeomorphism.

(ii) The maps A =S — F_ and B := S~' — F~! are 1-smoothing, i.e.
A:QNM 5 HM NI, and B:MN 5 HNTIALY,

Furthermore they are real analytic maps.
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As a first application of Theorem 2.1 we prove analytic properties of the action variable for the
KdV on the line. For a potential ¢ € Q, the action-angle variable were formally defined for k # 0
by Zakharov and Faddeev [ZF71] as the densities

k S(q, k)|?
M) i= R0 (14 BEI0) o0 —wg(st@h). KeRVIO) @10
We can write the action as
k 4k?
I = ——1 R . 2.11
0.k = -2 1ox (e ) PRV .11)

By Theorem 2.1, S(q,-) € ., thus property (S2) implies that limy_,o I(g, k) exists and equals 0.
Furthermore, by (S1), the action I(g,-) is an odd function in k, and strictly positive for k& > 0.
Thus we will consider just the case k € [0, +00). The properties of I(g,-) for k near 0 and k large
are described separately.

Corollary 2.2. For any integers N > 0, M > 4, the maps
QNJV[ — L%N-{—l([la +OO)7R) 9 q — I(Qa )|[1,oo)

and

k 4k?
QNM — HM([0,1],R) , g I(g,")]j0q + —in (4(k2+1)>

are real analytic.

Finally we compare solutions of (2.1) to solutions of the Cauchy problem for the Airy equation
on R,

v(0,z) = p(x)

Being a linear equation with constant coefficients, one sees that the Airy equation is globally in
time well-posed on HY and H*¥ N L3,, with integers N > M > 1 (see Remark 2.41 below).
Denote the flows of (2.12) and (2.1) by Ul,,,(p) := v(t,-) respectively Uf () := u(t,-). Our
third result is to show that for ¢ € H?>N N L3, with no bound states and W (g, 0) # 0, the difference
Ukav (@) — Uk, (q) is 1-smoothing, i.e. it takes values in H*N*!. More precisely we prove the
following theorem.

Theorem 2.3. Let N, M be integers with N > 2M > 8. Then the following holds true:

{8tv(t,x) = —dv(t, ) (2.12)

(i) QNM s invariant under the KdV flow.

(ii) For any q € QMM the difference U4y, (q) — Uk, (q) takes values in HN*' N L3, Moreover
the map

QN)]W X RZO _>HN+1 N L?Wa (qvt) = U;(dV(q) - Uﬁlzry(q)

is continuous and for any fixed t real analytic in q.
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Outline of the proof: In Section 2 we study analytic properties of the Jost functions f;(q,z, k),
j = 1,2, in appropriate Banach spaces. We use these results in Section 3 to prove the direct
scattering part of Theorem 2.1. The inverse scattering part of Theorem 2.1 is proved in Section 4.
Finally in Section 5 we prove Corollary 2.2 and Theorem 2.3.

Related works: As we mentioned above, this paper is motivated in part from the study of the
1-smoothing property of the KAV flow in the periodic setup, established recently in [BIT11, ET13a,
KST13]. In [KST13] the one smoothing property of the Birkhoff map has been exploited to prove
that for ¢ € HV(T,R), N > 1, the difference U4y (¢) — Uy, (¢) is bounded in HN*!(T,R) with
a bound which grows linearly in time.

Kappeler and Trubowitz [KT86, KT88] studied analytic properties of the scattering map S
between weighted Sobolev spaces. More precisely, define the spaces

o ={feL?:2°9lfe[>,0<j<n0<pB<a},
H = {feH" : 2’} fe’1<f<a} .

In [KT86|, Kappeler and Trubowitz showed that the map ¢ — S(g, ) is a real analytic diffeomor-
phism from Q@ N HVN to .7 N Hév_l’N, N € Z>s3. They extend their results to potentials with
finitely many bound states in [KT88]. Unfortunately, QN H™¥ is not left invariant under the KdV
flow.

Results concerning the 1-smoothing property of the inverse scattering map were obtained pre-
viously in [Nov96|, where it is shown that for a potential ¢ in the space W™!(R,R) of real-valued
functions with weak derivatives up to order n in L'

ale) = 3 [ P ikry g, b)dk € R R)
™ JR

Here c is an arbitrary number with ¢ > |¢||;: and x.(k) = 0 for |k| < ¢, x.(k) = |k| — ¢ for
¢ < |k| < ¢+ 1, and 1 otherwise. The main difference between the result in [Nov96] and ours
concerns the function spaces considered. For the application to the KdV we need to choose function
spaces such as HV N L3, for which KdV is well posed. To the best of our knowledge it is not known
if KdV is well posed in W™!(R,R). Furthermore in [Nov96| the question of analyticity of the map
q — 7+(q) and its inverse is not addressed.

We remark that Theorem 2.1 treats just the case of regular potentials. In [FHMP09, HMP11]
a special class of distributions is considered. In particular the authors study Miura potentials
q € Hl;i (R,R) such that ¢ = v/ + u? for some u € L'(R,R) N L?(R,R), and prove that the map
q — r4 is bijective and locally bi-Lipschitz continuous between appropriate spaces. Finally we
point out the work of Zhou [Zho98], in which L2-Sobolev space bijectivity for the scattering and
inverse scattering transforms associated with the ZS-AKNS system are proved.

2 Jost solutions

In this section we assume that the potential ¢ is complex-valued. Often we will assume that
q € L%, with M € Z>,. Consider the normalized Jost functions m1(q,, k) := e~ f1 (¢, z, k) and
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ma(q, z, k) = e*** f,(q, z, k) which satisfy the following integral equations

mi(q,z, k) =1+ o Dy(t — ) q(t) mi(q, t, k)dt (2.13)

x

ma(g, k) = 1 +[ Dl — 1) q(t) malq, £, k)dt (2.14)

where Dy (y fy e2iks g,

The purpose of this section is to analyze the solutions of the integral equations (2.13) and (2.14)
in spaces needed for our application to KdV. We adapt the corresponding results of [KT86] to these
spaces. As (2.13) and (2.14) are analyzed in a similar way we concentrate on (2.13) only. For
simplicity we write m(q, x, k) for mq(q, z, k).

For1<p<oo,M>landacR, 1<a<oo, 1< <00 we introduce the spaces

B ={f:R>C: (m)MferL’}, Lo%,L° —{f:[a,+oo)xR—>(C:||f|\L:>aL5<+oo}

where (z) := (1 + 22)'/2, L? is the standard LP space, and

||f||L;2aI/j = (/

a

“+o0

1/
()35 da)

whereas for a = o0, ||f||Lzo>aLﬁ = SUP,>, || (@, )| s - We consider also the space C’gZaLﬁ

C° ([a, +00), L?) with ||fHCo> 18 = Sup, s, ||f(z,-)[ s < co. We will use also the space Lg‘galﬁ of

@ o 1/«
functions f : (—o0,a] x R — C with finite norm ||fHLa< L8 = (ffoo | f(x,)|7s d:z:) . Moreover

given any Banach spaces X and Y we denote by L(_X, Y) the Banach space of linear bounded
operators from X to Y endowed with the operator norm. If X =Y, we simply write £(X).

For the notion of an analytic map between complex Banach spaces we refer to Appendix B.

We begin by stating a well known result about the properties of m.

Theorem 2.4 ( [DT79]). Let g € L}. For each k, Imk > 0, the integral equation
m(z, k) = 1+ / Di(t — 2)g)m(t, K)dt .z €R

has a unique solution m € C*(R, C) which solves the equation m" +2ikm’ = q(z)m with m(x, k) — 1
as x — +o0o. If in addition q is real valued the function m satisfies the reality condition m(q, k) =
m(q,—k). Moreover, there exists a constant K > 0 which can be chosen uniformly on bounded
subsets of L1 such that the following estimates hold for any v € R

(i) Im(w, k) = 1] < e"@/Wy(2)/[k], & #0;

(i) (k) 1) < K (1 max(—2,0)) [ (1 + [¢Dlat)lat) /(1 + k)

x

(i) e, )1 < 13 (1 D0l /1 + k)
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+oo
where n(z) = [ |q(t)|dt. For each x, m(z, k) is analytic in Imk > 0 and continuous in Imk > 0.
In particular, for every x fized, k — m(x,k) —1 € H*Y, where H*" is the Hardy space of functions

+o00
analytic in the upper half plane such that sup,- [ |h(k+iy)]? dk < co.

Estimates on the Jost functions.

Proposition 2.5. For any q € L3, with M > 2, a € R and 2 < 3 < +o0, the solution m(q) of
(2.13) satisfies m(q) — 1 € CgZaLﬁ N LiZaLQ. The map L3, 3 q— m(q) — 1 € ngaLB N LiZaL2
is analytic. Moreover there exist constants Cq,Co > 0, only dependent on a, 3, such that

Im(@) = Uleo_ zs < Cae ™ llallz, Im(a) = gz g2 < Colallyg (14 llallz , ')
(2.15)

Remark 2.6. In comparison with [KT86], the novelty of Proposition 2.5 consists in the choice of
spaces.

To prove Proposition 2.5 we first need to establish some auxiliary results.

Lemma 2.7. (i) For any q € L1, a € R and 1 < 8 < +o0, the linear operator
+oo
K(q) : CYs,L" = CO5 LP . f = K()[f)(, k) == / Dy, (t — x)q(t) f(t, k)dt (2.16)

is bounded. Moreover for anyn > 1, the n'"* composition K(q)" satisfies ||/C(q)"||5(co> L8y <

cn ||q\|zi /n! where C' > 0 is a constant depending only on a.

(ii) The map K : L} — L (C% ,L?), q — K(q), is linear and bounded, and Id — K is invertible.
More precisely, -

(Id—K)™': Lt = £(C%,LP), q— (Id—K(q))™"

is analytic and H(Id— IC)_1H£(L1 o5, 19) < Cllallzy
1C2>a

Proof. Let h € L* with + + % = 1. Using |Dg(t — x)| < |t — x|, one has

+oo +oo
/h(k)’C(Q)[f](%/f)dk < /dt\tfﬂﬁHQ(tﬂ||f(f,')||m 1Al Lo

IN

+oo
[ 1e=alla®iat ) 1o, e bl
a

+oo

and hence HIC(q)HL(ngaLB) < af [t —allg(t)|dt < C ||qHL%, where C' > 0 is a constant depending

just on a. To compute the norm of the iteration of the map &(g) it’s enough to proceed as above and
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exploit the fact that the integration in ¢ is over a simplex, yielding ||K(q)"||cgzaLg <Ccm ||q||7Ll% /n!

-1
for any n > 1. Therefore the Neumann series of the operator (Id - lC(q)) = > >0 K(@"

converges absolutely in £ (CgZaLﬁ ) Since K(gq) is linear and bounded in ¢, the analyticity and, by
item (i), the claimed estimate for (Id — K)~! follow. O

Lemma 2.8. Let a € R.

(i) For any q € L2,,, K(q) defines a bounded linear operator L?~ L? — L2, L?. Moreover the

3/2 z>a z>a
ntt composition K (q)" satisfies

n—1
V@) ez, 12y < O lall 2l /n = 1)

where C' > 0 depends only on a.

(ii) The map K : L3,y = L (L25,L%), q = K(q) is linear and bounded; the map

(Id—K)™": L3y — L (L25,L7%) g+ (Id—K(g)™"

r>a

is analytic and H(Id - /C)_lH <C (1 + Hq”L?W erIHL%) .

L(L5 5554 L%)

Proof. Proceeding as in the proof of the previous lemma, one gets for x > a the estimate

—+oo

+oo
K@U < [ o=l e e < ([ = aPla@P )" 1rle e

x

from which it follows that

oo 1/2
2
K@z 12 < /(t—x)2‘q(t)|2dt 1Az, pe = Cllallzz  Nfllzz 12
* L;:Za
proving item (i). To estimate the composition K(g)™ viewed as an operator on L2 ,L?, remark
that
1K) [f1(s )l 2 < / [t = allg(t)] - [tn = taallg(ta) [ [ f (tns ) 2 dt
z<t1<...<tp
+oo
9 5 1/2
< [ty = allg()] -+ ta-1 — tasllalta-DI( [ dn (b = ta-1)la(a)) 1Sl g2 gt
z<t1<...<tp tn—1 -
+oo +oo
) , \L/2 n—1
<([a-arla@rar) 1l e ([ - lawla)” /-
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Therefore

) R e gl
IK@" (M2 r2 < || [ (t=2)*|a(@)] dt IIfHLg,ZamW
T L;Za
lallzy

§HQ||L,2 HfHL2 JL2 ar
3/2

(n— D)

from which item (¢) follows. Item (i%) is then proved as in the previous Lemma. O

Note that for f = 1, the expression in (2.16) of K(q)[f], K(¢)[1](x, k) f Dy (t — x)q(t)dt is
well defined.
Lemma 2.9. For any 2 < 8 < 400 and a € R, the map L3 > q— K(q)[1] € CO JLPNL?

r>a
analytic. Furthermore

1K@ lleo, ro < Cillallz, 1K@z, 12 < Collallrs -

L? s

where C1,Co > 0 are constants depending on a and (.

Proof. Since the map g — K(q)[1] is linear in ¢, it suffices to prove its continuity in g. Moreover, it is
enough to prove the result for § = 2 and § = +00 as the general case then follows by interpolation.
For any k € R, the bound |Dy(y)| < |y| shows that the map k +— Dy (y) is in L*°. Thus

+o0

1@ < / (t— @)lq(t)]dt < / 1t~ alla(®)ldt < C lally

x

where C' > 0 is a constant depending only on a € R. The claimed estimate follows by noting that

lallz; < Cllglz-
Using that for |k| > 1, |Dp(y)| < ﬁ7 one sees that k ~ Dy(y) is L%-integrable. Hence k
Dy(t — 2)D_j(s — x) is integrable. Actually, since the Fourier transform F,(Dg(y)) in the k-

variable of the function k — Dy (y) is the function n — 1y 4 (n), by Plancherel’s Theorem

/ Dy(t —x)Dy(s —x) dk = — / Tj0,¢—2) (1) Lj0,5—g) (1) dn = — min(t — 2,5 — x).
oo T J oo 7r

For any x > a one thus has

(@) L)(x, )72

/- T K@), ) K@ T ) dk

// dtdsq /Dkt—m k(s —x)dk .

E2
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and hence

+o00 +oo +oo
K@ <> [ -0l [laids <> [ dsla)] [ 1t~ alla]de < Clals |

xr
(2.17)
where the last inequality follows from the Hardy-Littlewood inequality. The continuity in = follows
from Lebesgue convergence Theorem.
To prove the second inequality, start from the second term in (2.17) and change the order of
integration to obtain
o0
t

400 + +o0 S
1K@, e < / [t — al ()| / g(s)lds| < / la(s)] / (s—a)?lq(s)lds < C llal 2 llall 3 -
T L}>a a a

O
Proof of Proposition 2.5. Formally, the solution of equation (2.13) is given by
-1
m(q) ~ 1= (Id- K@) K@)1] (2.18)
By Lemma 2.7, 2.8, 2.9 it follows that the r.h.s. of (2.18) is an element of C% L N L2, L2
2 < 8 < 00, and analytic as a function of g, since it is the composition of analytic maps. o

Properties of Oym(q,x, k) for1 <n < M —1. In order to study dm(q, x, k), we deduce from (2.13)
an integral equation for 97'm(q,,-) and solve it. Recall that for any M € Zso, HY = HM(R,C)
denotes the Sobolev space of functions {f € L?| f € L2,}. The result is summarized in the following

Proposition 2.10. Fiz M € Z>4 and a € R. For any integer 1 <n < M — 1 the following holds:
(i) for g € L3, and x > a fized, the function k — m(q,z, k) — 1 is in Héwfl;

(ii) the map L3, > q — Ofm(q) € C'gZaL2 is analytic. Moreover ||8,?m(q)|\09> 2 <K ||q||L§w ,

where K can be chosen uniformly on bounded subsets of L3,.

Remark 2.11. In [CK87b] it is proved that if ¢ € LY, , then for every x > a fized the map
k — m(q,z, k) is in CM~2; note that since L3, C L}, |, we obtain the same regqularity result by
Sobolev embedding theorem.

To prove Proposition 2.10 we first need to derive some auxiliary results. Assuming that
m(q, z,-)—1 has appropriate regularity and decay properties, the n*" derivative d7'm(q, x, k) satisfies
the following integral equation

“+o0
opm(q,z, k)= (?) / 01 Dyt — 2) q(t) OF I m(q, t, k) dt . (2.19)

n
=0
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To write (2.19) in a more convenient form introduce for 1 < j <n and g € L2, the operators
Ki(a) : Cozal® = Clxo L2, f o Ki(a)[f)(w, k) = / O Di(t —x)q(t) f(t.k) dt  (2.20)
leading to

(1d— k(@) opmi) = Z() D0 I m(a)] + Ku(@lmla) 1]+ K@l | . 22)

In order to prove the claimed properties for 9}'m(¢q) we must show in particular that the r.h.s. of
(2.21) is in ng oL?. This is accomplished by the following

Lemma 2.12. Fizx M € Z>4 and a € R. Then there exists a constant C' > 0, depending only on
a, M, such that the following holds:

(i) for any integers 1 <n < M —1
(i1) the map L3, 3 q = Ka(@)[1] € C75,L? is analytic, and ||Kn(q)[1]llco_ 12 < Cllallz, -

(i2) the map L3, 3 q — Kn(q) € L (L25,L?, CY,L?) is analytic. Moreover

r>a

1Cn @ lco, o < lallzg, 1712, 1o -

(it) For any 1 <n < M — 2, the map L3; 3 q — K,(q) € L (CO

I>GL2) is analytic. Moreover one
has (@ fllco, 1> < C lall g, Iflco 1o

(iii) As an application of item (i) and (i), for any integers 1 < n < M — 1 the map L3, > q —
Kn(q)[m(q) —1] € CI,L? is analytic, and

2
1Kn(@)0n(@) = Uleo, 1o < Ko lall3s, -

where K} > 0 can be chosen uniformly on bounded subsets of L3,.

Proof. First, remark that all the operators g — IC,,(q) are linear in ¢, therefore the continuity in ¢
implies the analyticity in ¢q. We begin proving item ().
(11) Let p(z, k) = f 0P Dy (t — x) q(t) dt and compute the Fourier transform F, (¢(z,-)) with

respect to the k Varlable for x > a fixed, which we denote by @(z,§) = ffooo dk e*ep(z, k).
Explicitly

+oo

+oo +oo
B(a.6) = / dt (1) / ke % P Dy (t — ) = / 4(8) €7 Lpp.p g (€) .

T
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By Parseval’s Theorem |¢(z,)| . = % l¢(z, )| 2. By changing the order of integration
one has

+oo

6l = [ ewoP@ga = [[ s /mnnm (6 Ly (€)dE <

—00 [z,00) X [z,00)

“+oo +oo

<2 [arllle - P [ la(o] ds < ¢ - a0 / Ja(s)lds
t L

x t

2
<Ol .

where we used that by (A3) in Appendix A, ||(t — a) f lg(s)|ds

< Clalys

2
LtZa

(12) Let f € L2-,L?, and using [0} Dy (t — z)| < 2"t — z["*! it follows that

ea @l e <€ [ latelle = 2™ 15 e e < Clalgs, Ifllz e

by taking the supremum in the 2 variable one has K, (q) € £ ( z>aL2 Cg>aL2), where the
continuity in « follows by Lebesgue’s convergence theorem. The map ¢ — K\, (¢) is linear and
continuous, therefore also analytic.

We prove now item (i7). Let g € CgZaL2. From ||, (q)[g)(, )| ;2 < f )] [t—z " |lg(t, )|l = dt
it follows that ’

sup [0 @lo) ol < sl oo [ la(Ol1e = al™* e < Clgls, oo lalss,,
r>a = >

which implies the claimed estimate. The analyticity follows from the linearity and continuity of the
map q — K, (q).

Finally we prove item (iii). By Proposition 2.5, the map L2, 2 ¢ — m(q) — 1 € LI>aL2 i
analytic. By item (i2) above the bilinear map L2, x L25,L* 3 (q, ) = K,(q)[f] € CO>aL2 i
analytic; since the composition of analytic maps is analytic, the map L2 ., 3 ¢ — K, (q)[m(q)—1] €
CY,  L? is analytic. By (i2) and Proposition 2.5 one has

2
1Kn(@)in(@) = Ulleo_ 1o < Clallga, Im(@) = gz g < Ko lall}z

where K| can be chosen uniformly on bounded subsets of L3,. O

Proof of Proposition (2.10). The proof is carried out by a recursive argument in n. We assume
that ¢ — 6,Zm( ) is analytic as a map from L3, to C%, L? for 0 < r < n — 1, and prove that

r>a
Ly — C)5,L? - ¢ = 9¢m(q) is analytic, provided that n < M — 1. The case n = 0 is proved in
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Proposition 2.5.
We begin by showing that for every = > a fixed k — al?flm(q, x,k) is a function in H*, therefore
it has one more (weak) derivative in the k-variable. We use the following characterization of H!
function [Brell]:

f € H' iff there exists a constant C' > 0 such that ||7,f — f||;» < C|h|, VhE€ER, (2.22)

where (7, f)(k) := f(k + h) is the translation operator. Moreover the constant C' above can be
chosen to be C' = ||Opul| ;.. Starting from (2.21) (with n — 1 instead of n), an easy computation
shows that for every = > a fixed (73,)0; 'm(q) = 9y 'm(q, z, k + h) satisfies the integral equation

(Id = K(q)) (a0}~ 'm(q) — 0~ 'm(q))

+oo
:/ (0P Dio(t — ) — O Dy(t — a))a(t) (mla, b,k + ) — 1)t
T .
+ / (70~ Dy(t — ) — OF "V Dy(t — x))q(t)
+oo
+ / (@ Di(t — 2)) q(t) (m(g,t,k + h) — m(q,t, b)) dt
n—2 n— +00 ] ) )
+ Z < . 1) (/ (Th@L Dy (t — x) — 3Dy (t — x))q(t)dy " m(q, t, k + h) dt

+oo ) )
+ / A Dy(t — z) q(t) (10~ T m(q, t, k) — ag*lfﬂm(q,t,k))dt)

“+oo
+ / (7 Di(t — ) — Dy(t — 2)) a(t) O mlg, £,k + ) dt.

(2.23)
In order to estimate the term in the fourth line on the right hand side of the latter identity, use
item (i1) of Lemma 2.12 and the characterization (2.22) of H!. To estimate all the remaining lines,
use the induction hypothesis, the estimates of Lemma 2.12, the fact that the operator norm of
(Id — K(g))~" is bounded uniformly in & and the estimate

‘Thagpk(t — ) — O Dyt - x)( < C|t — «[i*? ||, VheR,
to deduce that for every n < M — 1
||Th8,?71m(q) - c?;;*l?n(q)HL2 < C|h|, VheR,
which is exactly condition (2.22). This shows that k — agflm(q, z, k) admits a weak derivative in

L?. Formula (2.19) is therefore justified. We prove now that the map L3, > g — dpm(q) € C25,L?
is analytic for 1 <n < M — 1. Indeed equation (2.21) and Lemma 2.12 imply that

)
a

where K’ can be chosen uniformly on bounded subsets of ¢ in L3,. Therefore 97m(q) € CY. ,L? and
one gets recursively [|0}m(q)llco_ 72 < K |lgl/12 , where K can be chosen uniformly on bounded
z>a

n—1
2
10Em@lco_ g < K (llallgs, + lals, + 3 lale,
j=1

o (o)

0
co.
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subsets of ¢ in L3,. The analyticity of the map q — 97m(q) follows by formula (2.21) and the fact
that composition of analytic maps is analytic. O

Properties of kojm(q,x,k) for 1 < n < M. The analysis of the M k-derivative of m(q,z, k)
requires a separate attention. It turns out that the distributional derivative 9Mm(q,x,-) is not
necessarily L2-integrable near k = 0 but the product k0 m(q,,-) is. This is due to the fact that
OM Dy (z)q(x) ~ xM+1g(x) which might not be L?-integrable. However, by integration by parts,
it’s easy to see that kO}M Dy (z)q(x) ~ 2Mq(x) € L?. The main result of this section is the following

Proposition 2.13. Fiz M € Z>4 and a € R. Then for every integer 1 < n < M the following
holds:

(i) for every q € L3, and x > a fized, the function k — k02m(q,x, k) is in L*;
(it) the map L3, 3 q — kdym(q) € Cls,L? is analytic. Moreover Hka/?m”ngaLZ < Killqll s,

where K1 can be chosen uniformly on bounded subsets of L3, .

Formally, multiplying equation (2.19) by k, the function k9;ym(q) solves

(Id — K(q)) (kdym(q)) = z_: (?) K;(@)107 7 m(@)] + Kn(@)[m(a) — 1] + Ku(@)[1] (2.24)

j=1
where we have introduced for 0 < j < M and g € L3, the operators

+oo
Ki(q) : CozgLl® = Cps L%, f = Ki(@)lf](, k) 1= / kOLDy(t — ) q(t) f(t k) dt.  (2.25)

x

We begin by proving that each term of the r.h.s. of (2.25) is well defined and analytic as a function
of q. The following lemma is analogous to Lemma 2.12:

Lemma 2.14. Fiz M € Z>4 and a € R. There exists a constant C' > 0 such that the following
holds:

(i) for any integers 1 <n < M

(i1) the map L3, > q I%n(q)[l] € ngaLQ is analytic, and Hl@n(q)[l}‘

er, o < Ol

(i2) the map L3, > q I@n(q) eL (L2 L2, C’gZaLz) is analytic. Moreover

r>a

rE Cllallzz, 1£lz r2 5

(ii) forany 1 <j< M -1 themapL?quH/%j(q)EE(C’O

wZaL2) s analytic, and

o 12 < C”Q”Lﬁ/[ Hf”chaL? :
r>a
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(iii) As an application of item (i) and (ii) we get
(i5i1) for any 1 <n < M, the map L3; 5 q — K,(q)[m(q) — 1] € CYs L? is analytic with

HK"(‘])[m(q) - 1]‘ < K7 llallzs, (2.26)

0
CmZaLZ

where K| can be chosen uniformly on bounded subsets of L3,;
iii2) for any 1 <j <n—1, the map L2, 3 ¢ — K;(gq " Im q)] € CO L? is analytic with
M J k z>a

&5 @i0r 7 mia))

2
LS Kbl (227)
z>a

where Kb can be chosen uniformly on bounded subsets of L3,.
Proof. (i) Since the maps ¢ — K,(q), 0 < n < M, are linear, it is enough to prove that these
maps are continuous.
(i1) Introduce @(z, k) f kOy Dy (t — x) q(t) dt. The Fourier transform F(¢(x,-) of ¢

with respect to the k—varlable is given by Fi (¢(z,-)) = ¢(x, &), where
+oo

+oo
o, ) = / dt q(t) / dk =2k kgr Dy (¢ — 7) = —(20)"1 / dt q(t) De(€" 14—y (€),

where 0¢(§™1+—51(§)) is to be understood in the distributional sense. By Parseval’s
Theorem |¢(z,-)| 2 = # l(z, )|l 2. Let C§° be the space of smooth, compactly
supported functions. Since

o0

9. )ls = sup | [ x(©) pl.€) de].
X€ECS®
Ixll 2 <1 —°
one computes
o0 —+oo o0 —+oo t—x
[ x@ o de|=| [ ata®) [ x©0 (€ 100-0) de| = | [ drao) [ de o)
o) x —00 x 0
+oo +oo t—x
<| [ dtqlt)x(t—z)(t—2)"|+n| [ dtq(t) [ dEx(©e
/ faa ]
+oo t—x
< lalls, Iz + | [ dtlatole -~ [ delxco)
x 0
f dé 1x(€)
<llglzz, Il +n / at a(Ollt = ol | < Clalz, Il
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(i)

(iid)

where the last inequality follows from Cauchy-Schwartz and Hardy inequality, and C' > 0
is a constant depending on a and M.

(12) As |kO) Dy (t — x)| < 2™|t —z|™ by integration by parts, it follows that for some constant
C > 0 depending only on a and M,

+oo
[fatairi@ ), <0 [ it=a Ol 15 5e e < Clallg, 170z, 1o

Now take the supremum over x > a in the expression above and use Lebesgue’s domi-
nated convergence theorem to prove item (i2).

The claim follows by the estimate

+oo
[Es@in@n],, <€ [ 1=l la@] 15 e de < Clallyy 17,

and the remark that ||g||,. <C ||qHL§W for0<j<M-1
J

By Propositions 2.5 and 2.10 the maps L%, 3 ¢ — m(q)—1 € C% L*NL2, L* and L3, 5 ¢ —
9y 'm(q) € %, L? are analytic; by item (i7) for any 1 < n < M—1, the bilinear map (g, f)
Kn(q)[f]is anal?tic from L3, xCY L? to CY%
is again analytic, item (%) follows. Moreover Kn(q)[m(q) — 1], K;(@)[07 7m(q)] € Cos . L7
since m(q, x, k) and 9ym(q, x, k) are continuous in the z-variable. The estimate (2.26) follows
from item (i7) and Proposition 2.5, 2.10.

L2. Since the composition of two analytic maps

O

Proof of Proposition 2.13. One proceeds in the same way as in the proof of Proposition 2.10.
Given any 1 <n < M, we assume that ¢ — kO, m(q) is analytic as a map from L3, to C% L? for
1 <r <n-—1, and deduce that ¢ — kd7m(q) is analytic as a map from L3, to C%-  L? and satisfies
equation (2.24) (with r instead of n). B
We begin by showing that for every = > a fixed, k — k@;’_lm(q,x,k) is a function in H!'. Our
argument uses again the characterization (2.22) of H'. Arguing as for the derivation of (2.23) one
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gets the integral equation

(Id — K(q)) (ma (k8 m(q)) — k8~ 'm(q)) =
+oo
= / (Th (kO ' Dy(t — x)) — k0P ' Di(t — 2)) q(t)(m(q, t,k + h) — 1) dt

T
“+oo

+ / (1h (kO ' Dyp(t — x)) — kO) ' Dy (t — ) q(t) dt

T
+oo

+ / (kO ' Dy(t — x))q(t) (m(g,t, k + h) —m(q,t,k)) dt
+oo

+ jz:jj (” j_ 1) ( / (Th<kang(t —2)) — k& Dy(t x)) a(t) O m(q,t, k + h) dt

T
“+oo

+ / k& Dy (t — ) q(t) (Tha;;**jm(q,t,k) —ag**jm(q,m)) dt)

+o00
+ / (ThDi(t — x) — Dy(t — x)) q(t) (k + h)dy 'm(q, t,k+ h)dt .

T

Using the estimates
7w Di(t — ) — Di(t — )| < Clt — 2|

and
‘Th(kagpk(t — ) — k&l Dy(t — x)‘ < Clt— it |n|, VheR,

obtained by integration by parts, the characterization (2.22) of H*, the inductive hypothesis, esti-
mates of Lemma 2.12 and Lemma 2.8 one deduces that for every n < M

|70 (kO m(q)) — ko) m(q)|| - < Clhl, VhER.
This shows that k +— k‘a,’;_lm(q, x,k) admits a weak derivative in L2. Since
kopm(q, z, k) = Ok (k0 'm(q, 2, k) — 0p~'m(q, 2, k) ,

the estimate above and Proposition 2.10 show that k — k0}m(q, z, k) is an L? function. Formula
(2.19) is therefore justified.

The proof of the analyticity of the map ¢ — k0;'m(q) is analogous to the one of Proposition 2.10
and it is omitted. O

Analysis of 0,m(q, z, k). Introduce a odd smooth monotone function ¢ : R — R with {(k) = &
for |k| <1/2 and ¢(k) =1 for k > 1. We prove the following

Proposition 2.15. Fiz M € Z>4 and a € R. Then the following holds:
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i) for any integer 0 < n < M — 1, the map L2, > q — 9%0,m(q) € CY L? is analytic, and
M k z>a
||0,?81m(q)H022aL2 < Ko ||q||L?w where Ko can be chosen uniformly on bounded subsets of L3,.

(ii) the map L3, 3 q— (O 0um(q) € Cs L? is analytic, and || 9.m(q)|| o 1. < K3 lall .z,
2 z>a
where K3 can be chosen uniformly on bounded subsets of L3, .
The integral equation for d,m(q,x, k) is obtained by taking the derivative in the z-variable of

(2.13):
+oo

Oum(g.e.k) = — [ M) gle)miq. 1) dr (2.28)

x

Taking the derivative with respect to the k-variable one obtains, for 0 <n < M — 1,

n +OO

O dam(q,z, k) == (") / R0 (24(t — )7 q(t) By I mlq, t, k) dt. (2.29)

j=o ™

For 0 < j < M introduce the integral operators
+oo
Gi(a) : Csal?® = C350 L%, q = Gi(@)[f](z, k) := — / D (2i(t — )7 q(t) (8, k) dt (2.30)
x

and rewrite (2.29) in the more compact form

n—1

opom(q) =3 (?) G,(@)[0y 7 m(q)] + Gn(@)[m(q) — 1] + Gu(a)[1]. (2:31)

Jj=0

Proposition 2.15 (¢) follows from Lemma 2.16 below.
The M derivative requires a separate treatment, as 9 m might not be well defined at k = 0.

+o0
Indeed for n = M the integral [ e2*(=) g(t) 0Mm(q,t,k) dt in (2.29) might not be well defined

near k = 0 since we only know that k'a,]ym(q, x,-) € L% To deal with this issue we use the function
¢ described above. Multiplying (2.31) with n = M by ¢ we formally obtain

M-1
otto.mta) = 3 (M )o@l mi] + COullm(a) - 1+ COua)i] + 6ot m(a)
j=1
Proposition 2.15 (i¢) follows from item (7i¢) of Lemma 2.16 and the fact that ( € L*°:
Lemma 2.16. Fiz M € Z>4 and a € R. There exists a constant C' > 0 such that
(i) for any integer 0 < n < M the following holds:
(i1) the map L3, 3 q = Gu(q)[1] € CP5,L* is analytic. Moreover 190 (@ Wllco_ 1o <
c ||CI||L§w : )
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(i2) The map L3; > q+— Gn(q) € L (LiZaL27CO L?) is analytic and

r>a

9@ Mo, = < Clallg, 1z o -
(ii) For any 0 < j < M —1, the map L3, 3 q — G;(q) € L (CI,L?) is analytic, and
1G5 (@ Mo, r2 < Cllallzs, Ifllco, 22 -

(ii) Foranyl <n <M —-1,0<j<n-—1and{:R — R odd smooth monotone function with
C(k) =k for |k| <1/2 and ((k) =1 for k > 1, the following holds:

(iii1) the maps Ly, > ¢ — Gi(@)[0; "m(q)] € CP5,L* and Ly, 5 ¢ — Gu(q)lm(q) — 1] €
ngaLQ are analytic. Moreover

where K} can be chosen uniformly on bounded subsets of L3,.
(ii42) The map L%, > q — Qo(q)[ga,i\/[m(q)] € 022aL2 s analytic and ||Q0(q)[C8,iV[m(q)] ||C(J> 12 <

G,(0)10; " m(@)]|

2
oo, L2’ 1Gn () [m(q) — 1]”022QL2 <K, ||Q||L§/I )

K} ||q||2L%/I where K} can be chosen uniformly on bounded subsets of L3,.

Proof. As before it’s enough to prove the continuity in ¢ of the maps considered to conclude that
they are analytic.

“+oo
(i1) For z > a and any 0 < n < M one has |G, (q)[1](z, )Hiz <C [ |t=z|q(t)]Pdt < C ||q||i?w )
The claim follows by taking the supremum over x > a in the inequality above.

(i2) For x > a and 0 < n < M one has the bound ||gn(q)[f]||022aLz <Clll.: ”fHLizaL“ which

implies the claimed estimate.

(#i) For x > a and 0 < 7 < M — 1 one has the bound

1G5 @ Mo 12 < Cllally,  IFlco, so < Clldlls, o, zo

(i731) By Proposition 2.10 one has that for any 1 < n < M —1 and 0 < j < n — 1 the map
L3, > q— 9, 7m(q) € C% ,L? is analytic. Since composition of analytic maps is again an
analytic map, the claim regarding the analyticity follows. The first estimate follows from item
(#4). A similar argument can be used to prove the second estimate.

(i4i2) By Proposition 2.13, the map L3, > ¢ — ¢9}m(q) € C:(v)ZaL2 is analytic, implying the claim
regarding the analyticity. The estimate follows from ||go [COMm(q)] ||C0 2 < Hq”wa Hca,iwm(q)uco 2
z>a z>a

O

The following corollary follows from the results obtained so far:

Corollary 2.17. Fiz M € Z>4. Then the normalized Jost functions m;(q,x,k), j = 1,2, satisfy:
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(i) the maps L3, > q — m;(q,0,-) — 1 € L? and L%, 3 q — k“07m;(q,0,-) € L? are analytic for
1<n<M-1[1<n<M]ifa=0 [a=1]. Moreover

m;(q,0,) = gz, [K*0Fm;i(q, 0,2 < Kullall 2,
where K1 > 0 can be chosen uniformly on bounded subsets of L?%,.

(i) For0 <mn < M—1, the maps L3, 5 q — 929,m;(q,0,-) € L? and L%; 5 q — (OM 0, m;(q,0,-) €
L? are analytic. Moreover

||8I?a$mj (qv 0, ')||L2 ’

Cal]cwaaimj(%ov ')HLQ < Ko ||q||L§w ,

where Ky > 0 can be chosen uniformly on bounded subsets of L3,.

Proof. The Corollary follows by evaluating formulas (2.13), (2.19), (2.29) at = 0 and using the
results of Proposition 2.5, 2.10, 2.13 and 2.15. U

3 One smoothing properties of the scattering map.

The aim of this section is to prove the part of Theorem 2.1 related to the direct problem. To
begin, note that by Theorem 2.4, for ¢ € L? real valued one has mi(q,x, k) = my(q,z,—k) and
m2(Q7 z, k) = mZ(qa z, _k); hence

Moreover one has for any ¢ € L3
W (g, k)W (g, —k) = 4k* + S(q,k)S (¢, —k) Vk e R\ {0} (2.33)

which by continuity holds for kK = 0 as well. In the case where ¢ € Q, the latter identity implies
that S(q,0) # 0.

Recall that for ¢ € L? the Jost solutions fi(q,z,k) and fa(q,z,k) satisfy the following integral
equations

—+oo

fiwd) = e+ [ D g0 5 myar (2.3
fQ(LU, k) = 6_“” + / Sink(%”q@)fg(t, k)dt . (235)

Substituting (2.34) and (2.35) into (2.4), (2.3), one verifies that S(q, k), W (g, k) satisty for kK € R
and q € L3

+oo

S@m:/a%@mmww, (2.36)
-~

W(q,k):2ik—/e’iktq(t)fl(q,t,k)dt. (2.37)
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Note that the integrals above are well defined thanks to the estimate in item (i7) of Theorem 2.4.
Inserting formula (2.34) into (2.36), one gets that

S(a,k) = F-(a.k) + O (3) .
The main result of this section is an estimate of

A(g, k) := S(q, k) — F-(q,k) , (2.38)

saying that A is 1-smoothing. To formulate the result in a precise way, we need to introduce the
following Banach spaces for M € Z>;

HM = {feHM " fk)=f(-k), ko}MfeL?},
HY = {fe HY ' f(R) = f(=k), COMfel?},

where ¢ : R — R is an odd monotone C* function with {(k) = k for |k| < 1/2 and ((k) = 1 for
k > 1. The norms on HM and Hé” are given by

1 eae o= e+ NROR e s I ar o= I e + 1ICOR £

Note that HM and H é\/[ are real Banach spaces. We will use also the complexification of the Banach

spaces above, in which the reality condition f(k) = f(—k) is dropped:
HYo={feH!": koY fel?,  HMN:={feH!": (o)ffel’}
Note that for any M > 2
(i)HY c HYG and HY. C HY., (i) fg€ HY.  Vfe€HM, g€ H). (2.39)
We can now state the main theorem of this section. Let L?\/I,]R = {f € L3, | f real valued }
Theorem 2.18. Let N € Z>o and M € Z>4. Then one has:
(i) The map q — A(q,-) is analytic as a map from L3, to Hé\fc.

ii) The map q — A(q,-) is analytic as a map from HY N L3 to L% ,. Moreover
C 4 N+1

2
1A ez, < Callalync:

where the constant C'4 > 0 can be chosen uniformly on bounded subsets of H(]CV nL2.

Furthermore for q € LiR the map A(q,-) satisfies A(q, k) = A(q, —k) for every k € R. Thus
its restrictions A : L?\/[,R — Hé” and A: HN N L3 — L3, are real analytic.

The following corollary follows immediately from identity (2.38), item (i¢) of Theorem 2.18 and
the properties of the Fourier transform:

Corollary 2.19. Let N € Z>q. Then the map ¢ — S(q,-) is analytic as a map from Hév N L2 to
L3.. Moreover

[15(q, )”L’;‘V <Cs HQHHCNHLZ

where the constant C's > 0 can be chosen uniformly on bounded subsets of Hév NnL3.
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In [KST13], it is shown that in the periodic setup, the Birkhoff map of KdV is 1-smoothing. As
the map g — S(qg, ) on the spaces considered can be viewed as a version of the Birkhoff map in the
scattering setup of KdV, Theorem 2.18 confirms that a result analogous to the one on the circle
holds also on the line.

The proof of Theorem 2.18 consists of several steps. We begin by proving item (i). Since
F_: L3, — HY is bounded, item (i) will follow from the following proposition:

Proposition 2.20. Let M € Z>4, then the map L3, 3 ¢~ S(q,-) € Hé\,/{c is analytic and
100, Maae, < Ks lal,
where Kg > 0 can be chosen uniformly on bounded subsets of L3,.

Proof. Recall that fi(q,z,k) = €**my(q,z, k) and fo(q, z, k) = e~*** my(q, 2, k). The z-independence
of S(gq, k) implies that
S(q7 k) = [ml(Q7 07 k)? ma (q7 O? _k)] . (240)

As by Corollary 2.17, m;(q,0,-) — 1 € H%C and 9;m;(q,0,-) € Hg{c, j = 1,2, the identity (2.40)
yields
S(q7 k) :(ml (Qa 07 k) - 1) aa:mQ(q7 Oa _k) - (m2(Q7 Oa _k) - 1) 8a:m1(q7 07 k)
+ 0:ma(q,0,—k) — 0, m1(q,0,k) ,

thus S(g,-) € Hé\,/{c by (2.39). The estimate on the norm [|S(q, -)||Hé\4C follows by Corollary 2.17. O
Proof of Theorem 2.18 (i). The claim is a direct consequence of Proposition 2.20 and the

fact that for any real valued potential ¢, S(q,k) = S(q,—k), F-(¢,k) = F_(¢q,—k) and hence
A(q, k) = A(q,—k) for any k € R. O

In order to prove the second item of Theorem 2.18, we expand the map ¢ — A(q) as a power series
of q. More precisely, iterate formula (2.34) and insert the formal expansion obtained in this way in
the integral term of (2.36), to get

sn(q, k
S(a, k) = F-(q,k) + ) gfn ) (2.41)
n>1
where, with dt = dtg - - - dt,,,
sn(g, k) = / eFog(to) H (q(tj) sink(t; — tj_l))eikt" dt (2.42)
An-f—l j=1

is a polynomial of degree n + 1 in ¢ (cf Appendix B) and A,,1; is given by
Api1 = {(t0,~~ o) eR . <<ty

Since by Proposition 2.20 S(q, ) is in L?, it remains to control the decay of A(q,-) in k at infinity.
Introduce a cut off function x with x(k) = 0 for |k| <1 and x(k) =1 for |k| > 2 and consider the
series

X(R)S (0. k) = (k) (g, k) + 3 Anla ) (2.43)

n>1
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Item (7i) of Theorem 2.18 follows once we show that each term W of the series is bounded

as a map from HY N L3 into L3, and the series has an infinite radius of convergence in L%, ;.
Indeed the analyticity of the map then follows from general properties of analytic maps in complex
Banach spaces, see Remark 2.46.

In order to estimate the terms of the series, we need estimates on the maps k — s,(q, k). A first
trivial bound is given by

n+1
(g, )l e < gty llalf" (2.44)

However, in order to prove convergence of (2.43), one needs more refined estimates of the norm of
k— s,(q, k) in L?V. In order to derive such estimates, we begin with a preliminary lemma about
oscillatory integrals:

Lemma 2.21. Let f € L*(R*,C) N L?(R*,C). Let o € R™, a # 0 and
g:R—=C, gk):= / et f(t) dt.

Then g € L? and for any component o;; # 0 one has

e ) 1/2 —
lgll e < / ( / 0] dti) dty...dt;. .. dty. (2.45)
Rn—=1 —o0
Proof. The lemma is a variant of Parseval’s theorem for the Fourier transform; indeed
ol = [ oW gmdk= [ e o dedsa. (2.46)
® RxR™ xR"™

Integrating first in the k& variable and using the distributional identity [ ek dk = %60, where dg
denotes the Dirac delta function, one gets

lol =5 [ FOF 8- (¢~ o) tds (247

R7 xR
Choose an index 4 such that a; # 0; then a - (t —s) = 0 implies that s; = ¢; + ¢;/o;, where
¢ = Zj# a;(t; — s;). Denoting do; = dtq---dt;---dt, and dd; = dsi---ds;---dsp, one has,
integrating first in the variables s; and t;,

1 -
||g||i2 = — / dO’idO'i Af(tly-~~’ti7-~-7tn)f(51>-~-7ti+Ci/ai7'~-a5n)dti

2m
Rr—1xRn—1
+oo 1/2 +0oo 1/2
< / daida](/ |f(t)|2dtz-) ~(/|f(8)|2dsi) (2.48)
Rr—1xRn—1 —00 —00

n—1

(oo
R —00
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where in the second line we have used the Cauchy-Schwarz inequality and the invariance of the

“+o0
integral [ |f(s1,...,ti +¢i/i,...,s,)* by translation. O

—00

To get bounds on the norm of the polynomials k — s, (g, k) in L% it is convenient to study the
multilinear maps associated with them:

§u t (HY NI 513,

(for -+ s fn) = 8alfor o s fn) = /A e*™ folto) [ [ (fj(tj) sin(k(t; — tj—1))) e'ttn dt .
ntl j=1

The boundedness of these multilinear maps is given by the following

Lemma 2.22. For eachn > 1 and N € Zxo, &, : (HY N L))"t — L3 is bounded. In particular
there exist constants C, n > 0 such that

180 (fos s Fudll 2, < Conv llfollgyaps - I fnllgynce - (2.49)

For the proof, introduce the operators I; : L' — L*°, j = 1,2, defined by

t

+o00
L(f)(t) = / fs)ds  L(f)(t) = / £(s) ds. (2.50)

It is easy to prove that if u,v € HY N L', then ul;(v) € HY N L' and the estimate [|u I;(v)]| yn <
ull s 10l v Bolds for j = 1,2,

Proof of Lemma 2.22. As sinx = (e® — e7%®)/2i we can write eikt"(l_[?:1 sin k(t; — tj_l))eikt"
as a sum of complex exponentials. Note that the arguments of the exponentials are obtained by
taking all the possible combinations of + in the expression to & (1 — tg) £ ... £ (tn — tn-1) + tn.
To handle this combinations, define the set

A, = {0 = (0})1<j<n : 0} € {il}} (2.51)

and introduce
do =#{1<j<n:o;=-1}.

For any o € A, define a, = (@j)o<j<n a8
040:(1—0'1), Olj:O'j—O'jJrlfOI‘].éan—l, an:1+0n.

Note that for any ¢t = (to,...,tn), one has a, -t = tg + Z?Zl oj(t; —tj—1) + ty.
For every o € A,,, a, satisfies the following properties:

(1) ao, ap € {2,0}, a; € {0, £2} VI < j <n—1; (it) #{jloy # 0} is odd. (2.52)

Property (¢) is obviously true; we prove now (i7) by induction. For n = 1, property (i) is trivial.
To prove the induction step n ~n+1,let ag =1—01,...,0n =0 — Opt1, Ony1 = 1 +0p41, and
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define &, :== 1+ o, € {0,2}. By the induction hypothesis the vector &, = (ao, ..., @n—1,ay) has
an odd number of elements non zero. Case &, = 0: in this case the vector (ag,...,a,—1) has an
odd number of non zero elements. Then, since a,, = 0, —0p41 = Gy — Q1 = —Qp41, One has that
(0n, any1) € {(0,0), (—2,2)}. Therefore the vector o, has an odd number of non zero elements.
Case &,, = 2: in this case the vector («o,...,a,—1) has an even number of non zero elements. As
an = 2 — apt1, it follows that (o, ant1) € {(2,0), (0,2)}. Therefore the vector o, has an odd
number of non zero elements. This proves (2.52).

As
, i A —1)% .
oikto ( H sin k(t; — tj_l))ezk:tn _ Z ((21;1 pikact
j=1 €A,

S, can be written as a sum of complex exponentials, §,,(fo, ..., fn)(k) = deA” %5,170(%, v fu)(K)
where

Sna(foreoos )K= [ € fofto) ot (2.53)

An+1

The case N = 0 follows directly from Lemma 2.21, since for each o € A,, one has by (2.52) that
there exists m with au, # 0 implying [[3,.0(fo,-- -, fa)ll L2 < Cllfmlle [Tz il L1s which leads
to (2.49).

We now prove by induction that 5, : (Hév NLY"*Tt — L3 for any N > 1. We start with n = 1.
Since we have already proved that §; is a bounded map from (L? N L')? to L2, it is enough to
establish the stated decay at oo. One verifies that

+oo —+o0
1

St =5 [ S ROBE0 -5 [ A0 Rk d

—00 —00

S F- o hi(f0) = 5o F- (i Bfo))

Hence, for each N € Zs>o, (fo,f1) = 31(fo, f1) is bounded as a map from (HY N LY)? to L%.
Moreover

151(fo, f)ll 2, < Ch (||f0 L)y + 1A I2(f0)||Hé\’> < Cun ol gy o 1l gyap: -

We prove the induction step n ~» n+1 with n > 1 for any N > 1 (the case N = 0 has been already
treated). The term $,4+1(fo,..., fnt1) equals

n

/ ™ fo(to) H (Sin k(tj — tj—l)fj(tj))eikt" sink(tn 1 — tn)e ) £ (E) dt
An+2

j=1
where we multiplied and divided by the factor e?**». Writing

sink(tpsr — tn) = (eik(tnﬂ—tn) _ efz‘k(tnﬂ—tn))/gi

+oo
the integral term [ e™*(nt1=t) sin k(t, 1 — t,) fay1(tns1) dtnt1 equals
tn
400 1
/ eQik(tn+17tn)fn+1(tn+1) dtn+1 - le(fn—&-l)(tn)-

tn

1
21
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Since fr11 € Hév, for 0 < j < N — 1 one gets fflj_gl — 0 when x — oo, where we wrote f,gj_zl =
O] fny1. Integrating by parts N-times in the integral expression displayed above one has

N-1 +oo
1 1 It J) (_1)N 2ik(tny1—t (N) 1
7 Z J+1 n+1<t )+ QZ(QZ]{Z)N / e (bnt n)fn-l-l( ’ﬂ+1>dtn+1 21 (f’ﬂ+1>( )

J=0

[\D

n

Inserting the formula above in the expression for §,y1, and using the multilinearity of §,, 41 one
gets

§n+1(f07~'~7fn+1) =

Sulfor oo fu F0) = infos oo fu D) (259)

—1)N , L ;
+ 25(2”1)1\[ /An+2 BZktofo(to)jl:[ (sm k(tj — tj—l) fj (t]’))62 kt”Jrlf?(li\[% (tn+1) dtn+1. (255)

[

We analyze the first term in the r.h.s. of (2.54). For 0 < j < N — 1, the function fr(lﬂzl € Hév*j
is in L* by the Sobolev embedding theorem. Therefore fn- f 7€ H(]CV ~I'A L. By the inductive

assumption applied to N — 7, 5, (fo,. .., fn" fv(zj+)1) ;- Therefore Wén(fo, U f(]) ) €
L3 , where y is chosen as in (2.43). For the second term in (2.54) it is enough to note that
foi(fnt1) € HYNLY and by the inductive assumption it follows that 3, (fo, ..., fu [1(fat1)) € L
We are left with (2.55). Due to the factor (2ik)" in the denominator, we need just to prove that
the integral term is L? integrable in the k-variable. Since the oscillatory factor e?*'»+1 doesn’t
get canceled when we express the sine functions with exponentials, we can apply Lemma 2.21,
integrating first in L? w.r. to the variable ¢, 1, getting

- 2:55)1z3, < Catrw |

H £l -

Putting all together, it follows that 3,1 is bounded as a map from (HY N LY)"*2 to L% for
each N € Z>( and the estimate (2.49) holds. O

n+1‘

By evaluating the multilinear map §,, on the diagonal, Lemma 2.22 says that for any N > 0,
n+1
Isn (g, )2, < Cov lalgyng» Vo1 (2.56)
Combining the L estimate (2.44) with (2.56) we can now prove item (i7) of Theorem 2.18:

Proof of Theorem 2.18 (ii). Let x be the cut off function introduced in (2.43) and set
A - X(k)Sn (Qa k)
Alg, k) == _—, 2.57
(@)= X (2.57)

We now show that for any p > 0, A(g, -) is an absolutely and uniformly convergent series in L3, 41
for ¢ in B,(0), where B,(0) is the ball in HY N L' with center 0 and radius p. By (2.56) the map



q+ ZNH M is analytic as a map from HY NL* to L%, being a finite sum of polynomials
- cf. Remark 2. 46 It remains to estimate the sum

N+
1 Sn )
AN+2(C], k) =A Z q

It is absolutely convergent since by the L estimate (2.44)
x(k)

> XT(‘” < > |5 s (g, )1 < C

n>N+2 5 n>N+2 Lyt n>N+
N+1

lall7

, (n+1)!

(2.58)

for an absolute constant C' > 0. Therefore the series in (2.57) converges absolutely and uniformly
in B,(0) for every p > 0. The absolute and uniform convergence implies that for any N > 0,
q— /~1(q7 -) is analytic as a map from HY N L! to L?\H_l.

It remains to show that identity (2.43) holds, i.e., for every ¢ € HY N L' one has xYA(q,-) = Alg, ")
in L, ;. Indeed, fix ¢ € HY N L' and choose p such that gl zrvap: < p. Iterate formula (2.34)

N’ > 1 times and insert the result in (2.36) to get for any k£ € R\ {0},

N/
sn(q, k
Stak) = F @k + 3 28D g n),

where

+
1
Sni4(g, k) = W/ e g(to) H ( ) sin k(¢ tj—l))fl(taN’-l-lvk) dt .

N’+2 j=1

By the definition (2.38) of A(q, k) and the expression of Sy displayed above

N/
k)sn(q, k ,
- Z % = X(k)SN’Jrl(qvk)a VN 2 1.

Let now N’ > N, then by Theorem 2.4 (i) there exists a constant K,, which can be chosen
uniformly on B,(0) such that

N'+2
llall s pN'+2

U
(N/+2)|_ pmﬁo, when N — 00,

IxSn41(g5 )l s, <
where for the last inequality we used that ||q|| <0 llall 13 for some absolute constant C' > 0. Since
limpy/ 0 27]:21 W = A(g, k) in L3, .4, it follows that x(k)A(q, k) = A(g, k) in L34 O

For later use we study regularity and decay properties of the map k + W(q, k). For ¢ € L? real
valued with no bound states it follows that W (q, k) # 0, V Im k > 0 by classical results in scattering
theory. We define

Qc:={qe L?: W(q.k)#0,VImk>0}, QM :=QcnHNNLE, . (2.59)

93



We will prove in Lemma 2.25 below that Q(]CV’M is open in H(]CV N L3,. Finally consider the Banach
space W21 defined for M > 1 by

WM ={feL>: ofecHMN "}, (2.60)

endowed with the norm || f||5ya = || fl| 7 + |0k fl|7720-1.
Note that H(é‘/l - Wé\/f for any M > 1 and

ghe HY. VgeHM, Vhe Wi . (2.61)
The properties of the map W are summarized in the following Proposition:
Proposition 2.23. For M € Z>4 the following holds:
(i) The map L3, > ¢ — W(q,-) — 2ik + F_(q,0) € H% is analytic and
IW(q.) — 20k + F— (00|, < Cw lall 2, -
where the constant Cyy > 0 can be chosen uniformly on bounded subsets of L?,.
(ii) The map QXM 5 g 1/W(q,-) € L™ is analytic.

(iii) The maps

?W(q,") 0,M CR'W (g, ")
QMg 20 e 12 for0<j<M-—1 and QXM sgw— 2k 07 c 2
¢ W(g,-) c W(g,-)
are analytic. Here ¢ is a function as in (2.8).
Proof. The z-independence of the Wronskian function (2.3) implies that
W(Q7 k) = 2ik ma (CL Oa k) ml(q7 Oa k) + [m2 (Qa 07 k)7 mi (Q7 07 k)] (262)

Introduce for j = 1,2 the functions m;(q, k) := 2ik (m;(q,0,k) —1). By the integral formula (2.13)
one verifies that

400 +o0o +oo
(g, k) = (e%kt - 1) q(t) (my(q,t, k) — 1) dt + eZkt q(t) dt — q(t) dt;
/ [ o]
. . . (2.63)
ma(q, k) = / (672ikt - 1) q(t) (ma(q,t, k) — 1) dt + / e 2Rt q(t) dt — / q(t) dt.

A simple computation using (2.62) shows that W(q, k) — 2ik + F_(q,0) = I + IT + III where

I :=1m1(q, k) + ma(g, k) + F_(g,0),

IT = iy (. k) (m2(q. 0,K) = 1) and  IIT = [ma(q. 0, k), mi (g, 0,k)]. (2.64)

We prove now that each of the terms I, I1 and 1] displayed above is an element of H é\,/{c- We begin
by discussing the smoothness of the functions k — (g, k), j = 1,2. For any 1 <n < M,

Opm;j(g, k) = 2in (%L_l(mj(q, 0,k) — 1) + 2ik 0ym;(q,0,k) .
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Thus by Corollary 2.17 (i), m;(q,-) € W and q — m;(q,-), j = 1,2, are analytic as maps from L3,
to W21, Consider first the term I17 in (2.64). By Corollary 2.17, ||I11(q, -)HHCMC < K gl 2, »
where Ky;; > 0 can be chosen uniformly on bounded subsets of L3,. Arguing as in the proof of
Proposition 2.20, one shows that it is an element of H é‘{c and it is analytic as a map L3, — H é\,/jc-
Next consider the term I1. Since mi(q,-) is in W and ma2(q,0,-) — 1 is in Héw(c, it follows by
(2.61) that their product is in Hé” It is left to the reader to show that L%, — HC c,q—1II(q)is
analytic and furthermore ||I11(q, )HHM < Kir ||q||L2 , where Kj; > 0 can be chosen uniformly on
bounded subsets of L3, .

Finally let us Consider term I. By summing the identities for 727 and s in equation (2.63), one
gets that

+o0 +oo

i (4, k) + (g, k) + F-(g,0) = / ¢ 4(t) my (g, 1, k) dit — / a(t) (ma(q. 1. k) — 1) dt
- . (2.65)
4 / €2kt () ma (g, , k) — / 4(t) (ma(g.t. k) — 1) dt.

We study just the first line displayed above, the second being treated analogously. By equation
+oo
(2.28) one has that [ e** q(t)mq(q,t, k) dt = 9,m(q,0,k), which by Corollary 2.17 is an element
0
of H g{\,/{c and analytic as a function L3, — H ‘c- Furthermore, by Proposition 2.10 and Proposition
+oo
2.13 it follows that k — [ q(t) (mi(q,t,k) — 1)dt is an element of Hé\fc and it is analytic as a

0
function L3, — Hév{c This proves item (i). By Corollary 2.17, it follows that HI(q,-)HHéMC <

K ||q||L?w, where K; > 0 can be chosen uniformly on bounded subsets of L3,.

We prove now item (i¢). By the definition of Qc, for ¢ € Q(%A the function W (g, k) # 0 for any k with
Imk > 0. By Proposition 2.20 (i¢) and the condition M > 4, it follows that W (q, k) = 2ik + L°;
therefore the map QO M 5 g 1/W(q) € L? is analytic.

Item (¢ii) follows immediately from item (¢) and (i7). O

Lemma 2.24. For any q € Q%*, W(q,0) < 0.

Proof. Let ¢ € Q%% and x > 0. By formulas (2.34) and (2.35) with k = i, it follows that f;(g, = ili)
( = 1,2) is real valued (recall that ¢ is real valued). By the definition W (q,ix) = [f2, f1] (¢, i) it

follows that for k > 0, W(q, ix) is real valued. As ¢ is generic, W (q, ix) has no zeroes for x > 0.
Furthermore for large x we have W(q,ix) ~ 2i(ix) = —2k. Thus W(q,ix) < 0 for k > 0. O

We are now able to prove the direct scattering part of Theorem 2.1.

Proof of Theorem 2.1: direct scattering part. Let N > 0, M > 4 be fixed integers. First we remark
that S(q,-) is an element of MV if ¢ € QV:M. By (2.32), S(q,-) satisfies (S1). To see that
S(gq,0) > 0 recall that S(q,0) = —W(qg,0), and by Lemma 2.24 W(q,0) < 0. Thus S(g, -) satisfies
(S2). Finally by Corollary 2.19 and Proposition 2.20 it follows that S(q, -) € #*V. The analyticity
properties of the map ¢ — S(q,-) and g — A(q,-) follow by Corollary 2.19, Proposition 2.20 and
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Theorem 2.18. O

We conclude this section with a lemma about the openness of QY™ and .MV,
Lemma 2.25. For any integers N >0, M > 4, QNM [Q(JCV’M] is open in HN N L3, [HY N L3,].

Proof. The proof can be found in [KT88]; we sketch it here for the reader’s convenience. By a
classical result in scattering theory [DT79|, W (g, k) admits an analytic extension to the upper
plane Imk > 0. By definition (2.59) one has Qc = {q € L3 : W(q,k) #0 VImk > 0}. Using
that (g, k) — W(q, k) is continuous on L3 x R and that by Proposition 2.23, ||W(q,-) — 2ik|| 1~ is
bounded locally uniformly in ¢ € L? one sees that Qc is open in L3. The remaining statements
follow in a similar fashion. O

Denote by H, é\,{c the complexification of the Banach space HM, in which the reality condition
f(k) = f(—k) is dropped:

HYo={feH!": o) fel?}. (2.66)
On HCA,/{C N L?V with M >4, N > 0, define the linear functional
To: HYNL% —C, hw h(0).

By the Sobolev embedding theorem T'g is a linear analytic map on Hé\,/{c N L%. In view of the
definition (2.9), #MN C Hé‘/f . Furthermore denote by yCM ' the complexification of MV Tt
consists of functions ¢ : R — C with R(c(0)) > 0 and o € Hé\jfc NL%.

In the following we denote by C™7(R,C), with n € Z>¢ and 0 < v < 1, the space of complex-
valued functions with n continuous derivatives such that the n** derivative is Holder continuous
with exponent ~.

Lemma 2.26. For any integers M > 4, N > 0 the subset ./MN [YCM’N] 18 open in Hé‘/[ nL%
[Hév_{c NL%].

Proof. Clearly Hé(c C H(%, and by the Sobolev embedding theorem Hg — C?7(R,C) for any
0 < < 1/2. Tt follows that ¢ — ¢(0) is a continuous functional on H{ ;. In view of the definition
of MN the claimed statement follows. O

4 Inverse scattering map

The aim of this section is to prove the inverse scattering part of Theorem 2.1. More precisely we
prove the following theorem.

Theorem 2.27. Let N € Z>q and M € Z>4 be fized. Then the scattering map S : QN-M — FMN
is bijective. Its inverse S™1 : SMN 5 QNM s reql analytic.

The smoothing and analytic properties of B := S~—! — F~! claimed in Theorem 2.1 follow now
in a straightforward way from Theorem 2.27 and 2.18.
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Proof of Theorem 2.1: inverse scattering part. By Theorem 2.27, S71 : MN 5 QNM g well
defined and real analytic. As by definition B = S~!' — F-! and S = F_ + A one has Bo S =
Id—FltoS=—-F 'oAor

B=—-FloAdoSt.

Hence, by Theorem 2.18 and Theorem 2.27, for any M € Z>4 and N € Z>o the restriction
B:MN 5 HNTIN L2, | is a real analytic map. O

The rest of the section is devoted to the proof of Theorem 2.27. By the direct scattering part
of Theorem 2.1 proved in Section 3, S(QN’M) C MN_ Furthermore, the map S : Q@ — .7 is 1-1,
see [KT86, Section 4]. Thus also its restriction S|gn a : QVM — #MN js 1-1.

Let us denote by H : L? — L? the Hilbert transform

H(w) (k) = —%p.v. / h ;’(f)kdk (2.67)

— 00
We collect in Appendix E some well known properties of the Hilbert transform which will be
exploited in the following.
In order to prove that S : QNV-M — #M:N is onto, we need some preparation. Following [KTS6]
define for o € MV

i 2
w(o, k) :=exp <;l(0’, k) + 57—[(1(0, ))(k)> , (o, k) :=log (4k2 j—(lit(l:_);z—k)) , keR (2.68)
and 1 (o, k) 2ik
R Atk T uem (2.69)
(0,k) := o(—k) k) = o(k) .
p+\0, E m ) p*(J7 ) T ’LU(O’, ]{3) :

The aim is to show that pi(o,-), p—(0,-) and 7(o,-) are the scattering data ry,r_ and ¢ of a
potential ¢ € QN-M.

In the next proposition we discuss the properties of the map o — I(c,-). To this aim we
introduce, for M € Z>, and ¢ as in (2.8), the auxiliary Banach space

WM ={feL>: f(k)=f(-k), OffeLl’forl<n<M-1, (O'feL?} (2.70)
and its complexification

Wit={fel>*: opfel’forl<n<M-1, (OYfel?}, (2.71)

both endowed with the norm Hf”%/V% = Hf||2Loo + ||3kf||§1£472 + ||C8fyf||2m.

Proposition 2.28. Let N € Z>¢ and M € Z>, be fived. The map SN — Héw, o —(o,) is
real analytic.

Proof. Denote by
4(k* 4+ 1)

Mo k) = s oo (k)
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We show that the map .#MN — W<M7 o — h(o,-) is real analytic. First note that the map
y(CM’N — L, assigning to o the function o(k)o(—k) is analytic by the Sobolev embedding theorem.
For o € fCM’N write 0 = 01 + 109, where o1 := Ro, 09 := Imo. Then

R(o(k)o(—k)) = o1 (k)o1(—k) — oa(k)oa(—k) . (2.72)

Now fix 0% € MV and recall that MV = 7N Héw N L%. Remark that 09 := Im¢® = 0, while
oV = Ro? satisfies 0¥ (k)o?(—k) > 0 and ¢9(0)2 > 0. Thus, by formula (2.72) and the Sobolev
embedding theorem, there exists V,o C YCM N small complex neighborhood of ¢° and a constant
Cyo such that

R(4k* + o(k)o(—k)) > Cpo , Yo € V,o0 .

It follows that there exist constants Ci,Cs > 0 such that
Rh(o, k) > C1 |h(o, k)| < Cqy Vk e R, Vo € V,o , (2.73)

implying that the map V,o — L*, 0 — h(0,-) is analytic. In a similar way one proves that
Voo — Wg[c, o — h(o,-) is analytic (we omit the details). If o(k) = o(—k), the function h(o,-) is
real valued. Thus it follows that .#*N — WgM , 0 — h(o,-) is real analytic.

We consider now the map o — [(o,:). By (2.73), l(0,k) = log(h(c,k)) is well defined for
every k € R. Since the logarithm is a real analytic function on the right half plane, the map
SMN 5 [ g — I(o,-) is real analytic as well. Furthermore for |k| > 1 one finds a constant
Cs > 0 such that |I(o,k)| < C3/|k|?, Yo € V0. Thus o — I(o,-) is real analytic as a map from
SMN o L2. One verifies that 9y log(h(o,-)) = az}éa)) is in L? and one shows by induction that
the map /M~ — Héw, o+ l(o,-) is real analytic. O

In the next proposition we discuss the properties of the map o — w(o, ).

Proposition 2.29. Let N € Z>o and M € Z>, be fized. The map SN — WéM, o — w(o,-) is
real analytic. Furthermore w(o,-) has the following properties:

(i) w(o, k) extends analytically in the upper half plane Imk > 0, and it has no zeroes in Imk > 0.
(ii) w(o, k) =w(o,—k) Vk € R.

(i4i) For every k € R
4k +1)
4k2 +o(k)o(—k)

w(o, k)w(o, —k)
Proof. By Lemma 2.60, the Hilbert transform is a bounded linear operator from Hé”{c to Hé\,/{o By
Proposition 2.28 it then follows that the map

FSMN 5 HY o= H((o,))

is real analytic as well. Since the exponential function is real analytic and dyw(o, ) = %ak(l(a, )+
iH(l(a,)))w(o, ), one proves by induction that N — W4M7 o — w(o,-) is real analytic. Prop-

erties (7)—(4i7) are proved in [KT86, Section 4]. O
Next we consider the map ¢ — ﬁ The following proposition follows immediately from
Proposition 2.29 and the definition ﬁ = ;:EZJ_%
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Proposition 2.30. The map .7V — Héwfl, o — w(}r 3 is real analytic. Furthermore the maps
2ik
FMN 12 s 1<n<M
U/(O’, )

are real analytic. The function ﬁ fulfills

(1) (w(;k)) = w(;_k) for every k € R.

(i1) ’w?;kk)‘ <1 for every k € R.

(iii) For every k € R
w(o, k)w(o, —k) = 4k + o(k)o(=k) .
In particular |w(o, k)| > 0 for every k € R and o € /M.
Now we study the properties of p4 (o,-) and p_(o,-) defined in formulas (2.69).

Proposition 2.31. Let N € Z>o and M € Z>y be fivzed. Then the maps &N — Hé” N L%,
o — p+(o,-) are real analytic. There exists C > 0 so that ||p+ (o, ')”H%OL?V <C HO‘HHéme?V, where

C depends locally uniformly on o € SN . Furthermore the following holds:

(i) unitarity: (o, k)1(0,—k) + ps(o,k)ps(o,—k) = 1 and p4(o,k)1(0,k) + p_(0,k)r(0,k) =0
for every k € R .
(ii) reality: T(o,k) = 7(0, —k), px(0,k) = px(o, —k);
(#i3) analyticity: (o, k) admits an analytic extension to {Imk > 0};

(iv) asymptotics: T(o,z) = 14+ O(1/|z]) as |z| = oo, Imz > 0, and pi(o,k) = O(1/k), as
|k| = oo, k real;

(v) rate at k =0: |7(0,2)| >0 for z# 0, Imz > 0 and |p+(0, k)| <1 for k # 0. Furthermore

7(0,2) =az+o0(z), a#0, Imz>0
1 +p:t(aa k) =Bk + O(k)a ke R;

Proof. The real analyticity of the maps .7V — Héw NL%, 0 — p+(o,-) follows from Proposition
2.30 and the definition py (0, k) = o(F, k)/w(o, k) (see also the proof of Proposition 2.32). Since

o+ —L— is real analytic, it is locally bounded, i.e., there exists C' > 0 so that |[p4 (o, ')HHé‘/’ﬂﬂLfv <

(07')
C HO’HHé\/[mL?V, where C' depends locally uniformly on o € .M. Properties (i), (i), (v) follow now
by simple computations. Property (iii) — (iv) are proved in [KT86, Lemma 4.1]. O
Finally define the functions
Ry(o,k) = 2ikpy(0,k) . (2.74)
Proposition 2.32. Let N € Z>o and M € Z>4 be fized. Then the maps MY — HM N L%,
o — Ri(0,-) are real analytic. There exists C > 0 so that ”Ri(a")HHé”mLi, < C”U”Hé”ﬁL?V’

where C' depends locally uniformly on o € MN . Furthermore the following holds:
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(i) Ry(o,k) = Ri(o,—k) for every k € R.
(i1) |Rx(o, k)| < 2|k| for any k € R\ {0}.

Proof. In order to prove the statements, we will use that R+ (o, k) = 2ik a(ij)) We will consider just
R_, since the analysis for R is identical. To simplify the notation, we will denote R_ (o, ) = R(o, -).

By Proposition 2.30(i3), |R(o, k)| < |o(k)|, thus R(o,-) € Lf\,. In order to prove that R(o,-) €
HY | take n derivatives (1 <n < M) of R(c,-) to get the identity

OPR(o, k) = wif Z( ) (aﬂ Q;kk)> 0o (k) + (ag%) o(k) . (2.75)

We show now that each term of the r.h.s. of the identity above is in L?. Consider first the term
I = w?;kk Oo(k). If 1 <n < M, then 0%o € L? and |2ik/w(o, k)| < 1, thus proving that I; € L?.
If n = M, let x be a smooth cut-off function with x(k) =1 in [-1,1] and x(k) =0 in R\ [-2,2].

Then one has

1 2k

I = mx(k)zika,ﬁfa(k) reyTite x(k)og'a (k) .

As 0 € SMN follows that k: = x(k)2ik0Mo(k) and k — (1 — x(k))0Mo(k) are in L2 By

Proposition 2.30, w(g 3 and w(a 5 are in L>°. Altogether it follows that I; € L? for any 1 <n < M.
Consider now I := Z;Lll ( ) (8% w?};i)) 9y 7o (k). By Proposition 2.30, (819C wQ;kk)) € H{

for every 1 < j < M — 1, thus by the Sobolev embedding theorem (8,1 w2;kk)) € L™ for every

1<j<M-1. As9;” JgeL?for1<j<n—1<M,it follows that I, € L2 for any 1 <n < M.
Finally consider I3 := <8,? w?;kk)> o(k). By Proposition 2.30, (82 wQ;kk)) € L?forany 1 <n <
M. Since 0 € L™, I3 € L? for any 1 <n < M.
Altogether we proved that R(o,-) € H¥ N L%. The claimed estimate on || R(o, ')HH&”OL?\, and

item (7) and (i) follow in a straightforward way. The real analyticity of the map 7N — Héw NL%;,
o — R(o, ) follows by Proposition 2.30. O

For o € #M:N | define the Fourier transforms

Falo) = Fi (p(0.0)) = = [ pulo )2k (2.76)
T JR
Then
a
£0,Felovy) = [ 2ikpalo et dk = L (Re (o)) (2.77)

In the next proposition we analyze the properties of the maps o — Fy(o,-).

Proposition 2.33. Let N € Z>o and M € Z>4 be fired. Then the following holds true:

(i) o Fy(o,-) are real analytic as maps from #*° to H' N L%. Moreover there exists C > 0
so that || Fy(o, ')”Hlng <C ||O'||Héu, where C' depends locally uniformly on o € #/MN.
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(ii) o~ F) (0,-) are real analytic as maps from SN to HNNL2%,. Moreover there exists C' > 0
so that || Fi (o, '>HHNmL§W < HUHHéVImLi,’ where C' depends locally uniformly on o € SN,
Proof. By Proposition 2.31, the map /4 — H2 N L%, ¢ — pi(o,-) is real analytic. Thus item (i)
follows by the properties of the Fourier transform. By Proposition 2.31 (ii), Fy(0,-) = Fi'(p+) is
real valued. Item (i7) follows from (2.77) and the characterizations

RicHY <— Fi'(Ry)eLl3 and Rycl?% <= Fi'(Ri)ecHY . (2.78)

The claimed estimates follow from the properties of the Fourier transform, Proposition 2.31 and
Proposition 2.32. U

We are finally able to prove that there exists a potential ¢ € Q with prescribed scattering
coefficient 0 € .#MN_ More precisely the following theorem holds.

Theorem 2.34. Let N € Z>o, M € Z>4 and 0 € SN be fivred. Then there exists a potential
q € Q such that S(q,-) = 0.

Proof. Let py := pi(o,-) and 7 := 7(0,-) be given by formula (2.69). Let Fy(o,-) be defined as
in (2.76). By Proposition 2.33 it follows that Fy(o,-) are absolutely continuous and F} (o,-) €
HN N L%, As M > 4 it follows that

/00 (1 + 2?)|F(0,x)| dz < oo . (2.79)

— 00

The main theorem in inverse scattering [Fad64] assures that if (2.79) and item (¢)—(v) of Proposition
2.32 hold, then there exists a potential ¢ € Q such that r1(q,-) = p+ and t(q,-) = 7, where r1 and
t are the reflection respectively transmission coefficients defined in (2.5). From the formulas (2.69)
it follows that S(gq,-) = o. O

It remains to show that ¢ € Q™™ and that the map S~! : ./M:N — QN:M ig yeal analytic. We
take here a different approach then [KT86]. In [KT86] the authors show that the map .S is complex
differentiable and its differential d .S is bounded invertible. Here instead we reconstruct ¢ by solving
the Gelfand-Levitan-Marchenko equations and we show that the inverse map .#*N — QNM,
o + q is real analytic. We outline briefly the procedure. Given two reflection coefficients pi
satisfying items (i)—(v) of Proposition 2.31 and arbitrary real numbers c¢; < c_, it is possible to
construct a potential g1 on [cy,00) using p4 and a potential g_ on (—oo, c_] using p_, such that ¢,
and ¢_ coincide on the intersection of their domains, i.e., q+|[c+,ci] = q_|[c+}ci]. Hence ¢ defined
on R by qlic, 400) = ¢+ and q|(—oc,c_] = ¢ is well defined, ¢ € Q and ri(q,-) = ps, i.e., p; and
p— are the reflection coefficients of the potential ¢ [Fad64, Mar86, DT79]. We postpone the details
of this procedure to the next section.

4.1 Gelfand-Levitan-Marchenko equation

In this section we prove how to construct for any o € ¥V two potentials ¢, and ¢_ with
g+ € HY. . n Lfmx% respectively ¢ € HN. . N L?M,@,Q, where for any ce Rand 1 <p < 0

2= {f1le+00) = C: Iy, < oo} (2.80)
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0o 1/p
where Hf||Lp> = (fj |f(z)]P dx) for 1 < p < oo and Hf||Loo> i= esssup,s, |f(z)|. For any
integer N > 1 define N

HY o= {1 le+00) = R Il <o0f,  Ifll5n Zna"fan, (2.81)

and for any real number M > 1 define

Brusei={f:+00) 5 Ci Ifllz, <o}, Iflg

M,z>

=@Ml (282)

where (z) := (1422)'/2. We will write HY . for the complexification of H)Y, .. For 1 < a, 8 < o0,
we define -

%Ll = { £ e, +00) x [0,400) = € |fllye 45 <o)

HN

z<c¢? z<c?

1/a
o +oo Al
where ”f”L?chfzo = (fc I f(x, )||L§20 d:c) . Analogously one defines the spaces L?
L?\/I,zgc and ngchgm mautatis mutandis.
Let us denote by Cp., := C°([0,00),C) and by CJ5, >, := C°([c,00) x [0,00),C). Finally we
denote by C9- L2, := C°([c,0), L2+) the set of continuous functions on [¢, 00) taking value in
L?.,.
y=>0

The potentials ¢y and g_ mentioned at the beginning of this section are constructed by solving
an integral equation, known in literature as the Gelfand-Levitan-Marchenko equation, which we are
now going to described in more detail.

Given o € ., define the functions Fy (o,) as in (2.76). See Proposition 2.33 for the analytical
properties of the maps o — Fi(o,-). To have a more compact notation, in the following we will
denote Fy , := Fy(o,").

Remark 2.35. From the decay properties of F’i’g one deduces corresponding decay properties of
Fy 5. Indeed one has

()" FL € L2y, = (x)" 'FLe Ly, =a™ ?Fy €Ly, , Ym=>2. (2.83)

The Gelfand-Levitan-Marchenko equations are the integral equations given by

+oo
Fiolz+y)+Ef o(z,y) + / Fio(x+y+2)Ey o(x,2)dz =0, y>0 (2.84)
0
0
F_o(x+y)+ E_,(z,y) + / F_o(x+y+2)E_ ;(z,2)dz =0, y<0 (2.85)
— 00

where E ,(x,y) are the unknown functions and Fi , are given and uniquely determined by o
through formula (2.76). If (2.84) and (2.85) have solutions with enough regularity, then one defines
the potentials ¢ and g_ through the well-known formula — [Fad64]
q+(x) = =0, E4 5(2,0), Ver <z <oo, q— () =0, E_ 5(2,0), V—-oco<z<c_.
(2.86)
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The main purpose of this section is to study the maps R . defined by
o Ry (o), Raic(o)(x) == FO,Ex »(2,0), x € [c,£00) . (2.87)

Theorem 2.36. Fix N € Z>o, M € Z>4 and ¢ € R. Then the maps Ry . [R_.] are well defined

on SMN and take values in Hévzc N L?W,a:Zc [Hivgc N L?VI’ISC]. As such they are real analytic.

In order to prove Theorem 2.36 we look for solutions of (2.84) and (2.85) of the form
E:I:,o(zv y) = *F:I:,o(x + y) + B:I:,a(xa y) (288)

where By ,(x,y) are to be determined. Inserting the ansatz (2.88) into the Gelfand-Levitan-
Marchenko equations (2.84), (2.85), one gets

—+o00 +o0
By o(z,y) + / Fyo(z 4y + 2)Byo (2, 2)dz = / Fro(@ty+2)Fg(et)ds, y>0,
0 0

(2.89)
0 0
B_ ,(x,y)+ / F_,(x+y+2)B_s(x,2)dz = / F_o(x4+y+2)F_s(z+2)dz, y <0.
—oo —o0
(2.90)

We will prove in Lemma 2.38 below that there exists a solution By , of (2.89) and a solution B_
of (2.90) with 9, By ,(:,0) € H, .. respectively 0, B_ ,(-,0) € H .. By (2.86) we get therefore

G+ = 0. F4 5 — 03B4+ 5(-,0) Ve<z < oo, G- = —0;F_ ; +0;B_,(-,0) V—-—oo<z<c.
(2.91)
Define the maps
Byic:ow— By.(o)

as
By (0)(x) = =0;Bt (2,0) Vax>c and B_ . (0)(x):=0,B_ ;(x,0) Vz<c, (2.92)

with By o(z,y) := Eyo(x,y) + Fr (2,y) as in (2.88). Now we study analytic properties of the
maps By . in case the scattering coefficient o belongs to .4V with arbitrary N € Zs(. Later we
will treat the case where o € /MO M € Z4.

Proposition 2.37. Fizx N € Z>¢ and ¢ € R. Then By . [B_ ] is real analytic as a map from
SN to H)Y . [H)-.]. Moreover

r>c
2
1Byl NB— el < K ol rs

where K > 0 is a constant which can be chosen locally uniformly in o € S4N,

The main ingredient of the proof of Proposition 2.37 is a detailed analysis of the solutions of
the integral equations (2.89)-(2.90), which we rewrite as

(Id + ,C;:ct,o) [B:t7o-(x’ )](y) = fi,o(m7 y) (293)

103



where for every « € R fixed, the two operators K, : L§>O — L321>0 and K, : L§<o — L§<0 are
defined by

+o00

Kt 1)) = / Fyo(zty+2)f(2)dz | feli,, (2.94)
00

Koo 1)) == / F_o(z+y+2)f(z)dz fert,. (2.95)

and the functions fi , are defined by
+oo
Foo(nyy) =+ / Foo(@+y+2)Fey(e+2)d. (2.96)
0

As the claimed statements for B4 . and B_ . can be proved in a similar way we consider By .
only. To simplify notation, in the following we omit the subscript ” 4+ ”. In particular we write
By =By, Fs =Fy o, fo = 10 and Ky o = K.

We give the following definition: a function A, : [¢,00) x [0,00) — R, which depends on ¢ € .7,
will be said to satisfy (P) if the following holds true:

(P1) hy, € CgZCLizo N Lizc[’;zo N ngc,yzo Finally h,(-,0) € Lizc-

(P2) There exists a constant K. > 0, which depends locally uniformly on o € H éc N L3, such that
2
ollie, gz, + ko O)lz. < Kellole nrs (2.97)

(P3) 0+ hy [0+ ho(-,0)] is real analytic as a map from .7+ to L2, L2, [L25,].
We have the following lemma:

Lemma 2.38. Fiz N >0 and ¢ € R. For every o € 4N equation (2.89) has a unique solution
B, € CSZCL?;ZO N LanchZEO' Moreover for all integers ni,ny > 0 with ny + no < N + 1 | the
function 071 0;)? B, satisfies (P).

Proof. Let N € Z> and c € R be fixed. The proof is by induction on j; +jo =n, 0 <n < N.
For each n we prove that 8J'9J* B, and its derivatives 85! 1972 B,, 03'9J>*! B, satisfy (P). Thus
the claim follows.

Case n = 0. Then j; = jo = 0. We need to prove existence and uniqueness of the solution
of equation (2.93). By Lemma 2.55 [Proposition 2.33 and Lemma 2.54] the function f, and its
derivatives 0y fo, Oyfs [Fo] satisfy assumption (P) [(H)- cf Appendix C]. Thus by Lemma 2.53
(i) it follows that B, = (Id + Ky)~" f, and its derivatives 9, By, 0y B, satisfy (P).

Note that if N = 0 the lemma is proved. Thus in the following we assume N > 1.

Case n — 1~ n. Let ji + jo = n. By the induction assumption we already know that 97! 8{;“ B,
satisfies (P). By Lemma 2.53 it follows that 9J'0J> B, satisfies

{(Id + Koo ) [0 Bo (2, ))(y) = f20x,y)  ifj2=0,

o R 2.98
O8O By () = f17 (2, ) 7250, (2.98)
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where

n

—+o00
o) = 0ol = Y () [ hFulaty )0 B2
1=
' ) 0 . (2.99)
) =000 fo(o) = Y- (1) [ 8o b+ )0 B
0

=0

In order to prove the induction step, we show in Lemma 2.57 that for any j; +jo =n,0<n < N,
fi192 and its derivatives 8, fi192, 9, fi192 satisfy (P). In view of identities (2.98) and Lemma
2.53 (i), it follows that 07972 B, and its derivatives 9J'*'972 B, and 8J'0J> ™! B, satisfy (P), thus
proving the induction step. O

Lemma 2.38 implies in a straightforward way Proposition 2.37.

Proof of Proposition 2.37. By Lemma 2.38, 97 B, satisfies (P) for every 1 < n < N + 1. In

particular for every 1 <n < N + 1, 0 — 9B, (-,0) is real analytic as a map from .#*V to L2,
2 . . N
and |\6;‘BU(~,O)||L3>C < K. HUHH?’CQL?\[. Thus the map ¢ — —0, B, (-, 0) is real analytic as a map

from 74N to H JJCVZ; The claimed estimate follows in a straightforward way. O

In the next result we study the case o € .#M:9 for arbitrary M > 4.

Proposition 2.39. Fiz M € Z>, and ¢ € R. For any o € /M0 the equations (2.84) and (2.85)
admit solutions Ey . The maps Ry . [R— ], defined by (2.87), are real analytic as maps from
M0 10 Ly Edgacd Moreover R o(@)la, o IR-e(o)lys, < Kellolpy, . where

:<c
K, > 0 can be chosen locally uniformly in o € #M9,
Proof. We prove the result just for R, ., since for R_ . the proof is analogous. As before, we

suppress the subscript "+” from the various objects.
Consider the Gelfand-Levitan-Marchenko equation (2.84). Multiply it by (x)™~3/2 to obtain

(Id+ Ke o) [(@)M 2By (,y)| = —(2)M P F(z +y). (2.100)
The function

ho(z,y) == —(@)M32F,(z +y)

satisfies ho(z,-) € L2-, and one checks that h, € C95 Lo, N CPs. <o We show now that
hes € LiZcLizo. By Lemma 2.42 (A3) and Proposition 2.33 for N = 0 it follows that

H<x>M73/2h 2

2 2
L:EZCLyEO

2 2
Iz, < Kellolip, -

+oo
<K, / (2)?M2|F, (2) [ di < KK, || ()™ F!

Consider now h,(x,0) = —(x)=3/2F,(z). By (2.83) it follows that hy(-,0) € L2,,. Finally
the map o+ hy [0 he(-,0)] is real analytic as a map from S0 to L22 L3~ (L3, 5/ ,5.)-
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Proceeding as in the proof of Lemma 2.51, one shows that there exists a solution E, of equa-
tion (2.84) which satisﬁes (i) (@)M3PE, € CO L35 N L35 Loy, (2)M*2Ey(z,-) € Chsy,
(PMSE(,0) € Ly (id) @M, || 0 < Kellolga . ) 0 = @M52E, [r -
E,(-,0)] is real analytic as a map from .#M:0 to Li>;Ly>o [L%\/[73/2 »>)- Furthermore its derivative
0. E, satisfies the integral equation B

r>c? L2

+oo
(Id+ Ky.0) (0zEy(x,y)) = —Fo(z +y) — / Fl(z+y+z2) Ey(z,2) d2. (2.101)
0

Multiply the equation above by (x)~3/2, to obtain (Id + K,) ((m)M_3/28$EU) = h,, where

+oo
ho(2,y) = —(@)M73/2R! (2, y) — / Fl(z+y+2) (@M 32E,(z,2)dz . (2.102)

where Rl (z,y) == F.(z 4+ y). We claim that h, € L2>cLy>0 and o > h, is real analytic as a map
MO 2, L2, By Lemma 2.42 (A0) the first term of (2.102) satisfies

H< >A4 3/2h/

o SEJ@MTE| < Kellollgy,
z>cy>0 >

and by Lemma 2.42 (A1) the second term of (2.102) satisfies
“+oo
[ Frat ) )M (0,2 dz < IF g |-

0 Lzchizo

< Kol -

m>c y>0

Moreover o — h, is real analytic as a map from .#M0 to Lx>cLy>0, being composition of real
analytic maps.
Thus, by Lemma 2.51, it follows that () ~%/20,E, € L2, L%,

< >A4—3/28w130HL2

K, ||or||HM and o — (-)M=3/29, E, is real analytic as a map from .70 to L2, L2 .

<
L12,>0 -

Con81der now equation (2.84). Evaluate it at y = 0 to get

+oo
E,(z,0) = —F,(x) — / Fy(z+ 2)Es(x,2)dz .
0

Take the z-derivative of the equation above and multiply it by (x)™ to obtain

+oo
()M 0, B (x,0) = — ()M Fp(a) - / (@)Y Fy (@ + 2) (@) M2 By (2, 2) d2

0
—+oo

- / ()32 F (x4 2)(x)M=3/20, B, (z, 2) dz .
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We prove now that 9, E,(-,0) € L?VI.,EZC and o — 0, E,(-,0) is real analytic as a map from .#M-0
to L%\/l,ch’ The result follows by Proposition 2.33 and Lemma 2.42 (A2). Indeed one has that
o+ F! [0 — F,] is real analytic as a map from .#M0 to L2, [L?,)/Q] and we proved above that

o (WMB32E, and o — ()M ~3/29,F, are real analytic as maps from .79 to L2, 125 O
Combining the results of Proposition 2.37 and Proposition 2.39, we can prove Theorem 2.36.

Proof of Theorem 2.36. It follows from Proposition 2.33, Proposition 2.37 and Proposition 2.39 by
restricting the scattering maps R4 . to the spaces SMN = 74N 0 M0, O

Using the results of Theorem 2.36 and Theorem 2.34 we can prove Theorem 2.27, showing that
S . . NM _y QN.M g real analytic.

Proof of Theorem 2.27. Let o € .#M:N_ By Theorem 2.34 there exists ¢ € Q with S(q,-) = 0. Now
let ¢y < ¢ < c_ be arbitrary real numbers and consider Ry ., (¢) and R_ ._(0), where R4 ., are
defined in (2.87). By classical inverse scattering theory [Fad64|, [Mar86| the following holds:

(l) R+vc+(o—)|w6[c+,c] = R_vc— (J)|w6[c,c,] )

(ii) the potential ¢, defined by
dc = R+7C+ (a)l[c,oo) + R—,C_ (0)]]-(—00,0] (2103)

is in Q and satisfies r{(qe,-) = p+(0,+), 7—(¢e,-) = p—(0,-) and t(g., ) = 7(o,-). Thus by
formulas (2.5) and (2.69) it follows that S(g.,-) = o.
Since S is 1-1 it follows that ¢. = ¢. Finally, by Theorem 2.36, .7~ — Hi\;ur N L?V17w26+,
0 Ry (0)and SN — HN.  NL3, .., 0~ R_. (0) are real analytic. It follows that
ge HVn L3, and the map S~! : o — ¢ is real analytic. O

5 Proof of Corollary 2.2 and Theorem 2.3

This section is devoted to the proof of Corollary 2.2 and Theorem 2.3. Both results are easy
applications of Theorem 2.1.

Proof of Corollary 2.2. Let N > 0, M > 4 be fixed integers. Fix ¢ € QN*™. By Theorem 2.1 the
scattering map S(q,) is in /M. Furthermore by the definition (2.10) of I(g, k) there exists a
constant C' > 0 such that for any |k| > 1

I 1

In particular I(g,-) € L%N_H([ R). By the real analyticity of the map g — S(g, ), it follows

1, 00),
that QM — L\, ([1,00),R), ¢ — I(q, M (1,00) is real analytic.
Now let us analyze I(g, k) for 0 < k < 1. By the definition (2.10) of I(q, k) one has

k a2\ ok Ak +1)
I(q; k) + —log (4(k2+1)> =qle <4k2 +5(q,k)S(q, k)) '
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By Proposition 2.28, the map .M~ — Héw([O7 1],R), 0 — (0, k) := log (%) is real
analytic.

Thus also the map QVM — Hé‘/l([O7 1,R), ¢ = 1(S(q),-) is real analytic, being composition of real
analytic maps. It follows that the map ¢ — —El(S (q), k) is real analytic as a map from QN-M to

T

HM([0,1],R). O
Forte R and o € Hé, let us denote by
Qo) (k) = e S o (k) . (2.104)

We prove the following lemma.

Lemma 2.40. Let N, M be integers with N > 2M > 2. Let 0 € MN. Then Q' (o) € ./MN,
vt > 0.

Proof. As a first step we show that Q!(c) € . for every t > 0. Since Q'(¢)(0) = o(0) > 0 and
Qt(o)(k) = Q(o)(—k), (o) satisfies (S1) and (S2) for every t > 0. Thus Qf(s) € &, Vt > 0.
Next we show that Q(c) € HX. N L3 Clearly |Q(0)(k)| < [o(k)|, thus Q'(0) € L%, Vt > 0. Now
we show that Q!(c) € Hé‘fc, vt > 0. In particular we prove that (OM Q! (o) € L?, the other cases

being analogous. Using the expression (2.104) one gets that
, M=l /a0 4 A u
(k)Y Q (o) (k) = et | ((R)OMa(k) + ( ) (—i24tk?)” (k)3 o (k) + (—i24tk®) " (K)o (k)
; J
Jj=1

As 0 € SMN the first and last term in the r.h.s. above are in L?. Now we show that for
1<73<M-1, |k|2j§8,iw_30 € L?. We will use the following interpolating estimate, proved in
[NP09, Lemma 4]. Assume that Jof := (1 — 02)%/2f € L? and (k)°f := (1 + |k|?)*/2f € L2. Then
for any 6 € (0,1)

H<k>9bJ(1—9)af

6 1-6
< ellf%: 115 - (2.105)

Note that (o € HY N L%, thus we can apply estimate (2.105) with f = (o, b=N,a= M, 0 = %,
to obtain that (k>%8l]y_j (Co) € L2. Since N > 2M, we have (k)9 77 (¢o) € L?. By integration
by parts

L2

M—j

RICR)O o(k) = (K500 (Co) — 3 (Mz_ j) RY0LC() O ()

=1

Since for any [ > 1 the function 8,2( has compact support, it follows that the r.h.s. above is in L2.
Thus for every 1 < j < M — 1 we have (k)2/¢(k)d,' 7o € L? and it follows that (M Qf(0) € L?
for every t > 0. O

Remark 2.41. One can adapt the proof above, putting ((k) = 1, to shows that the spaces HNQL?VI,
with integers N > 2M > 2, are invariant by the Airy flow. Indeed the Fourier transform F_
conjugates the Airy flow with the linear flow 2, i.e., Uﬁm,y =F toQltoF_.
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Proof of Theorem 2.3. Recall that by [GGKM74] the scattering map S conjugate the KdV flow
with the linear flow Qf(c)(k) := e =87 *g(k), ie.,

Ukav =S 1008, (2.106)
whereas Ujmy =F 'oQloF_. Take now q € ON-M “where N, M are integers with N > 2M > 8.
By Theorem 2.1, S(q) = S(q,-) € N, By Lemma 2.40 the flow Q preserves the space .M~
for every t > 0. Thus Qf o S(q) € SN vt > 0. By the bijectivity of S it follows that
S~10Qto S(q) € QV:M Wt > 0. Thus item (i) is proved.

We prove now item (i7). Remark that by item (i), Uk (¢) € L%, for any ¢ > 0. Since
Uﬁm,y preserves the space HY N L2, (N > 2M > 8), it follows that for ¢ € QM the difference

Ukav (@) — Ul (@) € HN N L3, ¥t > 0. We prove now the smoothing property of the difference
Ukav (@) = Ul (@). Since S71 = F-'+B,
Ukav(q) =F-' 0 Q" 0.5(q) + Bo Q' 05(q) (2.107)
and since S = F_ 4+ A,
FloQloS(q)=F loQoF_(¢)+F toQloAlg) .
Hence
Ukav (@) =Uliry (q) + F=1 0 Q' 0 A(q) + Bo Q' 0 S(g). (2.108)

The 1-smoothing property of the difference U y-(¢) — Uy, () follows now from the smoothing
properties of A and B described in item (ii) of Theorem 2.1. The real analyticity of the map
q = Ugqv(q) — Uk, (q) follows from formula (2.108) and the real analyticity of the maps A, B
and S. O

A Auxiliary results.

For the convenience of the reader in this appendix we collect various known estimates used through-
out the paper.

Lemma 2.42. Fixz an arbitrary real number c. Then the following holds:

(A0) The linear map Ty : L%/Q,xzc — Lizcl’;zo defined by

9= To(g)(x,y) == g(z +y) (2.109)
is continuous, and there exists a constant K. > 0, depending on c, such that
1To(o)lz2, 12, < Kellgllzz , - (2.110)
(A1) The bilinear map T : L?:Zc X LiZc — Lizcl’?go defined by
(9,h) = Ti(g, h)(z,y) == g(z + y)h(z) (2.111)
18 continuous, and
ITao W) ls g, < Nollp Iz, - (2.112)
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A2) The bilinear map To : L2< x L2o L?., — L2 defined by
xr>c y>0 r>c

+oo
(9. 1) — To(g, ) (x) := / o(z + 2)h(z, =) dz
0

s continuous, and there exists a constant K. > 0, depending on c, such that

120 M)l s, < Kellglpa, Whlge o -

(A8) (Hardy inequality) The linear map T3 : L7\, ,~. — L

m,rx>c

defined by

—+o0

g Ta(g)(x) == / o(2)dz

x

is continuous, and there exists a constant K. > 0, depending on c, such that

1Tl < Kelall,e

mtl,z>c

x L2

r>c

(A4) The bilinear map Ty : L%

a>e ngo — Lichizo defined by

+oo
(9.1) = Ta(g, 1) (2, y) = / g(z +y + 2)h(z, 2)dz
0

s continuous, and there exists a constant K. > 0, depending on c, such that

1Talg, W)l 2, ro < Bellgllpr, Allea, ra -

(A5) The bilinear map Ts : LiZc X L%,ch — LiZCLzQIZO defined by

+oo

(g, h) — Ts(g,h)(z,y) := /g(x+y+z)h(ax+z)dz
0

18 bounded and satisfies

1T5(g, M)z ra < Kellgllza, NP

1z>c

(2.113)

(2.114)

(2.115)

(2.116)

(2.117)

(2.118)

Proof. Inequality (A1), (A4) can be verified in a straightforward way. To prove (A0) make the

change of variable £ = x + y and remark that

—+00 +00 “+o0o
[ [t asdy < k. [ e clla)ds
c 0 0
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We prove now (A2): using Cauchy-Schwartz, one gets

—+o0 —+oo —+oo

“+o0
/ g<z+z>h<x,z>dz / / s | | [ 2P ds | do <ol W02 s,
0

0

In order to prove (A3) take a function h € L7 and remark that

—+oo +oo —+oo +oo

[ asn@ @m [ o] =| [ a9 [“@ra@ad < & [ a@mige) [ ne)a
c x c +Oo f ‘h |d (&
<K [ ds (e g e < Ko™ gl e,

Cc

where for the last inequality we used the Hardy-Littlewood inequality.
To prove (A4) take a function f € L2, L2, define Q. = [¢,00) x RT x RT and remark that

/|g<x+y+z>||h<x,z>| ()| dedy dz <
Qe

< ([lote+y+ P drayaz) " [lgte+y+ 2] 5G)P dvdyaz)

<lgllga Mollge, _ Wlle se

z>c 1;>0

where the first inequality follows by writing |g| = |g|*/? - |g|*/? and applying Cauchy-Schwartz.
To prove (A5) note that

+oo

[ sy gl [ el de.
0 Lyzo
By (A3) one has that z)| dz < K. H(x>h||L2> , then (A5) follows. O
L2 z>c

x>c

B Analytic maps in complex Banach spaces

In this appendix we recall the definition of an analytic map from [Muj86].

Let E and F be complex Banach spaces. A map P* : E¥ — F is said to be k-multilinear if
Pk (u',...,u*) is linear in each variable u7; a multilinear map is said to be bounded if there exist
a constant C' such that

|5t )| < o] ] vt e
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Its norm is defined by

HP’“H = sup Hpk(ul,...,uk)H.
wEE, |lui||<1

A map PF . E — F is said to be a polynomial of order k if there exists a k-multilinear map
P* : E — F such that 3
P*(u) = P*(u,...,u) Yu€E.

The polynomial is bounded if it has finite norm

1P == sup ||P*(u)]].
Jull<1

We denote with P*(E, F) the vector space of all bounded polynomials of order k& from E into F.

Definition 2.43. Let E and F be complex Banach spaces. Let U be a open subset of E. A mapping
f:U — F is said to be analytic if for each a € U there exists a ball B,.(a) C U with center a and
radius r > 0 and a sequence of polynomials P* € 7)’“(E7 F), k>0, such that

o0
flu)=>_ P*u—a)
k=0
is convergent uniformly for u € B.(a); i.e., for any € > 0 there exists K > 0 so that

<e

K
Hf(U) - Pu-a)

k=0

for any u € By(a).
Finally let us recall the notion of real analytic map.
Definition 2.44. Let E, F be real Banach spaces and denote by FEc and F¢ their complexifications.

Let U C E be open. A map f: U — F is called real analytic on U if for each point u € U there
exists a neighborhood V' of u in Ec and an analytic map g : V — Fg such that f =g on UNV.

Remark 2.45. The notion of an analytic map in Definition 2.43 is equivalent to the notion of a
C-differentiable map. Recall that a map f : U — F, where U, E and F are given as in Definition
2.438, is said to be C-differentiable if for each point a € U there exists a linear, bounded operator

A: E — F such that
o 1500 = 5@ = Al = )

u—a [ —all g

=0.

Therefore analytic maps inherit the properties of C-differentiable maps; in particular the composition
of analytic maps is analytic. For a proof of the equivalence of the two notions see [Muj86], Theorem
14.7.

Remark 2.46. Any P* € P*(E,F) is an analytic map. Let f(u) = > °_  P™(u) be a power
series from E into F with infinite radius of convergence with P™ € P™(E,F). Then f is analytic
([Muj86], example 5.3, 5.4).
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C Properties of the solutions of integral equation (2.93)

In this section we discuss some properties of the solution of equation (2.93) which we rewrite as

+o0
g(w,y) + / Fo(x+y+2)g(z,2)dz = hy(z,y) . (2.119)
0

Here 0 € 4N N > 0, h, is a function h, : [c,+00) x [0,+00) — R, with ¢ arbitrary, which
satisfies (P). We denote by

hllg = WAz s + 8GOz - (2.120)
Furthermore F,, : R — R is a function that satisfies

(H) The map o +— F, [0+ F!] is real analytic as a map from .74 to H' N L2 [L3]. Moreover
the operators Id + Ky o : L~y — Liso with K, , defined as

+oo
Koalfl) = [ Falo+y+2) f(2)dz (2.121)
0

are invertible for any x > ¢, and there exists a constant C,, > 0, depending locally uniformly
on o € H?)(C N L%, such that

sup ||(Id + Ky o C, . (2.122)
r>c

)_1Hc(L§ZO) <

Finally o — (Id + K, ,)~" are real analytic as maps from .#*N to L(L2. L2+
Remark 2.47. The pairing
L(Lichizo) X Lichizo - Lichizm (H, f) — H[f]
is a bounded bilinear map and hence analytic. Let now o +— hy, be a real analytic map from #*° to

Lazcchizo and let K, as in (H). Then by Lemma 2.54 (iii) it follows that o — (Id + K,) " [he] is

real analytic as a map from .#*° to Li>cL§>0 as well.

Remark 2.48. By the Sobolev embedding theorem, assumption (H) implies that F, € C°7(R,C),
y< i

By assumption (H) the map (c,00) — L(L?+), = — K, is differentiable and its derivative is

the operator
+oo

Koolflo) = [ Filaty+2) 7)1z (2.123)

0
as one verifies using that for x > ¢ and € # 0 sufficiently small

+oo
</ ‘FU(ZH)_F"(’Z) ~ ()| 2
L(L2.0) 7 €

H IC:E+E,0' - K:

z,0
’ _IC/I,J

(2.124)

+oo +oo
1 €
SH/ /|Fé(z+s)—F<'T(z)\dzds < sup /|Fé(z+s)—F(',(z)\dz
€l 1Jo

Is|<lel
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and the fact that the translations are continuous in L'. Therefore the following lemma holds

Lemma 2.49. K, , and thus (Id + K,,)~' is a family of operators from L;zo to Lizo which
depends continuously on the parameter x. Moreover the map (¢,00) — E(L;ZO), z = Kyo is
differentiable and its derivative is the operator K, , defined in (2.123).

Lemma 2.50. Let F, satisfy assumption (H), and g, € CB‘ZCL?/ZO N Li_ZCLf/ZO be such that

||90||L326L§20 < K. HUH?I?@L% and SN — LiZCLzzo, o — go be real analytic. Then

400

Fr(z,y) ::/Fg(m—l—y—I—z)gg(x,z)dz
0

satisfies (P).
Proof. (P1) For e # 0 sufficiently small
[Fa(e+ )~ Fa, )l < 1B te) = Fole s ool el
+1Foll 1 lgo (2 + € 1) — go (2, ')HLizo

which goes to 0 as ¢ — 0, proving that Fr € C95 L2, Furthermore, by Lemma 2.42 (A4),
Fpe L2 L2, and fulfills

xz>c T y>
2
IPalle, po < IE g lgolle, po < Kellolhe g - (2.125)

Now we show that Fr € C95. 5o Let (2n)n>1 C [¢,00) and (yn)n>1 C [0,00) be two sequences

such that z, — 2o, yn — yo. Then Fy(z) + yn + )90 (Tn,*) = Fo(x0 + Yo + *)go(0,+) in L, as
n — o0o. Indeed B

||Fa($n + Yn + ')ga(xru ) - Fa(fEO + yo + ')gJ(J;Oa ')||Li>0 <
<|Fo(n +yn++) — Fo(zo +yo + ')||L2>0 90 (zn, ')||L?>
z> y=>0
H1Fo (2o +yo + )2 1195 (@ns ) = 9o (z0, )2

and the r.h.s. of the inequality above goes to 0 as (@, yn) — (20,%0), by the continuity of the
translations in L? and the fact that g, € C’QZCLEZO. Thus it follows that Fr(zp, yn) — Fr(zo,%0)
asn — oo, i.e., Fg € C:gZC,yZO'
We evaluate Fr at y = 0, getting

+oo

Fr(z,0) = / Fy(z+ 2)g95(z,2)dz .

0

By Lemma 2.42 (A2), Fr(-,0) € LiZc and fulfills

2
PRGN e < IFollgo lgollie re, < Kellols nps, - (2.126)

(P2) Tt follows from (2.125) and (2.126).
(P3) It follows by Lemma 2.42 (A2) and the fact that Fg and Fg(-,0) are composition of real
analytic maps. O
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We study now the solution of equation (2.119).

Lemma 2.51. Assume that h, satisfies (P) and F, satisfies (H). Then equation (2.119) has a
unique solution g, in Cos L2~ N L35 L2~ which satisfies (P).

Proof. We start to show that g, exists and satisfies (P1). Since h, satisfies (P) and F, satisfies
(H), it follows that for any x > ¢, g,(x,-) := (Id + K4 o) " ![hs(x,-)] is the unique solution in L@%ZO
of the integral equation (2.119). Furthermore, by (2.122), ||g. (=, -)||L2> < Cy ||ho(z, -)HL2> , which
y=0 y>0
implies
||go—HL§ZCL§20 < Cs ||h0||Lich2 ‘ (2.127)

y=>0

Since h, € Cs L2+, Lemma 2.49 implies that g, € C)

r>c
9o € C0s L2oo N L3 L2y Now write

L~ as well. Thus we have proved that

+oo

o(0.) = o) = [ Fulio +y+ 2)ga(a,2)de (2.128)
0

By Lemma 2.50 and the assumption that h, satisfies (P), it follows that the r.h.s. of formula
(2.128) satisfies (P). O

The following lemma will be useful in the following:

Lemma 2.52. (i) Let F, satisfy (H), and g, € CO5 L2+ (NL25 L2~ be such that ||90||L320L§20 <

2 4,N 2 2 :
K. HUHHZ‘,CQL?\; and SN — Lis Lyg, 0+ go be real analytic. Denote

+oo
D, (z,y) = / Flx+y+2)g.(x,2)dz . (2.129)
0

Then ®, € ngch/zo ﬂLiZCLzzo, the map SN — Lichizm o — @, is real analytic and
2
190 ls s < Kellolis s, - (2130)

where K. > 0 depends locally uniformly on o € Hétc NnL%.

(i1) Let g5 as in item (i), and furthermore let g, € CPs. >0 and go(-,0) € L2-,. Assume

furthermore that 0,9, satisfies the same assumptions as g, in item (i). Then ®,, defined in
(2.129), satisfies (P).

(iii) Assume that F, satisfies (H) and that the map S*N — H,.., 0 by is real analytic with
Hb”HHizc < K. HJH?I?,CﬂL% Then the function

do(2,y) = Fo(x + y)by ()

satisfies (P).
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r>c

Proof. (i) Clearly ||®,(z, -)HL2> <||F| 11 |90 (2, -)HL2> , and since g, € L2 L2 it follows that
y=>0 y>0 =

P, € L7 L2, with ”q)"”Lichzzo < ||F¢/7HL§ Hg"”Lichigo’ which implies (2.129). We show now

that ®, € CgZCL?JZO' For € # 0 one has

1o (@ + €)= B, Yz < IFLC+€) = Fallga g0, )z, + 1F2l oo oo (o 4 €)= g, Mgz, -

The continuity of the translation in L' and the assumption g, € C95 L2 imply that || @, (z + €, -) — o (z,-) ||L2> —
2 Z y=0
0 as € = 0, thus ®, € CP5 L2 . The real analyticity of o — ®, follows from Lemma 2.42 (A4)
and the fact that ®, is composition of real analytic maps.
(7i) Fix & > ¢ and use integration by parts to write
“+ o0

O, (x,y) = —Fy(x + y)go(x,0) — / F,(x+y+2)0.9,(x,2)dz (2.131)
0

where we used that since F,, € H' [g(x,") € H;zo}, lim, o0 Fo(z) =0 [limy o g5 (z,y) = 0]. By
the assumption and the proof of Lemma 2.50 (P1), ®, € Cs. 5o We evaluate (2.131) at y = 0
to get the formula o

+o00
(I)U(JT,O) = _Fa(x)ga(xvo) - / Fo(x + Z)ang(I,Z) dz .
0

Together with Lemma 2.42 (A2) we have the estimate

2
190,02 < 1ol (oo (s O)le + 1090l gz ) < Kellolh ony, - (2132)

Estimate (2.132) together with estimate (2.130) imply that ®, satisfies (P2). Finally o — ®,(-,0)
is real analytic, being a composition of real analytic maps.
(4i7) We skip an easy proof. O

If the function h, is more regular one deduces better regularity properties of the corresponding
solution of (2.119).

Lemma 2.53. Consider the integral equation (2.119) and assume that F, satisfies (H). Assume
that hy, Ozhe, Oyhs satisfy (P). Then g, solution of (2.119) satisfies (P). Its derivatives 0,9,
and 0yg, satisfy (P) and solve the equations

(Id + Ku.0) [0090] = uho — Kb 5[96] (2.133)
9y9o = Oyho — K5 4 [90] - (2.134)

Proof. By Lemma 2.51, g, satisfies (P).
O0ygo satisfies (P). For € # 0 sufficiently small, we have in Lzzo

9o (T,y +€) — go(,y)
€

=V (z,y)
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where

+oo
ha ) _ha ) Fa _Fo'
U (2,y) = (x y+ez (z.y) / (x+y+e+zz (x+y+z)gg<x’z) & (2.135)
0
Define .
) (x,y) == Oyho(x,y) — / Fo(z+y+2)go(r,2)dz .
0

Since dyh, and g, satisfy (P), by Lemma 2.52 (4) it follows that W) € C9, L2 (N L2, L2, the

. : 2
map 4N — L2, L2, o — WY is real analytic and || W) <K, ||a||Hé L3, Further-

Iz 12
LchLyZO

more one verifies that

ga(x’ -+ 6) - gg(m, )

_ . € D) — po . : 2
Oygo(2,-) = !51(1) ; = 213(1) U (z,-) = U (z,-) in L5 -
Thus 0yg, fulfills
+oo
0,9(0.) = Oyhal9) — [ Fylaty+ 2)gale,2)dz (2.136)
0

ie., 9,9, satisfies equation (2.134). Since 9,9, = VY, g, satisfies the assumptions of Lemma 2.52
(). Since Oyh, satisfies (P) as well, it follows that 0,g, satisfies (P).

0:9o satisfies (P). For € # 0 small enough we have in Lizo

(Id+ Koreo) {9"“ +6) =902, ')] = o5 (z,)

€ o

where
+o0
D (z,y) == ho(@ & E’yi —hal®,y) / Folwtytet ZZ —Folotyt Z)ga(x,z)dz :
0
Define

—+oo
(2, y) == Opho(z,y) — / F (x4 y+ 2)go(z,2)dz .
0

Proceeding as above, one proves that ®0 satisfies (P), and

gii% P (z,-) = ®2(x, ") in Lzzo :

Together with Lemma 2.49 we get for z > ¢ in L2

gd(x + €, ) B gg(x, ) _ hH6 (Id+ IC;E+57(7)_1 @Z(:C, ) _ (Id+ Icml’d)—l @2($’ ) )
e—

(2.137)

0295 (x,+) = lim

e—0 €
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In particular (Id+K,) (0,9, (,-)) = ®%(z,-). Since ® satisfies (P), by Lemma 2.51, 9,9, satisfies
(P). Formula (2.137) implies that

“+o0o “+o0
090 (2, y) + / Fy(x+y+ 2)0:90(x,2) dz = Ophe(z,y) — / Flx+y+2)gs(x,2)dz, (2.138)
0 0

namely 0,.g, satisfies equation (2.133).

D Proof from Section 4

D.1 Properties of K and fi ,.

z,0

We begin with proving some properties of IC;U and fyi 5, defined in (2.94) and (2.96), which will
be needed later.

Properties of Id + lCig. In order to solve the integral equations (2.93) we need the operator

Id+ K, to be invertible on L7, (respectively Id+ K, to be invertible on L2 (). The following
result is well known:

Lemma 2.54 ([DT79, CK87a|). Let o € #*° and fir c € R. Then the following holds:
(i) For every x > c, IC;G : 12/>0 — L32;>o is a bounded linear operator; moreover

+o0
‘ + + :
gi HIC‘”"THE(Lf,zo) <1, and ||IC$,UHE(L§ZO) < / |FLo(§)|dE—0 if x— +o0.

x

(2.139)

(i) The map KF : L35 Loso — L2s Lo, f K [f], where KE[f)(z,y) == K}, [f](y), is linear
and bounded. Moreover the operators Id + K are invertible on LiZCLizo and there exists a
constant K. > 0, which depends locally uniformly on o € .#*°, such that

H(Idi/cj)’IH <K.. (2.140)

LL5 LYse)

(iii) o — (Id + ICj)71 are real analytic as maps from S*° to E(LiZCL?lZO).

z,0

Analogous results hold also for KC , replacing LichgQ/zo by Lich;%gO'

Properties of f+ ». First note that fyi ,, defined by (2.96), are well defined. Indeed for any
o € 40 Proposition 2.33 implies that Fy , € H' N L3 C L% Hence for any z > ¢, y > 0 the
map given by z = Fy o(x +y + 2)Fy o(x 4 2) is in L}.. Similarly, for any > ¢, y > 0, the map
given by z = F_ ,(z +y+2)F_(x+2)isin Ll .
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In the following we will use repeatedly the Hardy inequality [HLP&8|
“+oo
(x)™ / g(z)dz < K. ||<x>m+1gHL2 , Vm>0. (2.141)
T>c
x L2

z>c

The inequality is well known, but for sake of completeness we give a proof of it in Lemma 2.42
(A3).

We analyze now the maps o — fi ,. Since the analysis of fi , and the one of f_ , are similar,
we will consider fy , only. To shorten the notation we will suppress the subscript ” 4+ 7 in what
follows.

Lemma 2.55. Fiz N € Z>q and let 0 € S*N. Let f, = fi . be given as in (2.96). Then for
every ji,ja € Lo with 0 < ji 4 jo < N + 1, the function 850 fo satisfies (P).

Proof. We prove at the same time (P1), (P2) and (P3) for any ji,j> > 0 with j; 4+ jo = n for any
0<n<N+1.

Casen = 0. Then j; = j, = 0. By Proposition 2.33, for any N € Z> one has F, = F, , € H'NL3.
(P1) We show that f, € CSZCLzzo. For any x > ¢ fixed one has || f, (z, .)||L§20 <N Follp1 |1 Fo(z + -)||L§20,
which shows that f,(x,-) € Lizo- For € # 0 sufficiently small one has

|‘fo(x+€a') - ftT(xW)HL§0>C S ||F<7HL1 ||F0(x+€+ ) - FU('TJ'_ ')||L§>0
FEolet) = Pl |Fle + )l

which goes to 0 as € — 0, due to the continuity of the translations in LP-space, 1 < p < oo.
Thus f, € CP L2~

We show now that f, € L2..L2,. Introduce h,(z,y) := Fy(z +y). Then h, € L2, L2,
since for some C,C’ > 0

Voollzz, sz, < CNFellzz, . < C'llols, (2.142)

>

where for the first [second] inequality we used Lemma 2.42 (A0) [Proposition 2.33 (¢)]. By
Lemma 2.42(A4) and using once more Proposition 2.33 (i), one gets

2
Vfollie, 2., < C"IFollis, Wholliz, 2., < C" I Fsllig Whollia, 1z, < C" lols

(2.143)
for some C”,C",C"" > 0. Thus f, € L2 L2,

To show that f, € ngc,yzo proceed as in Lemma 2.50.

Finally we show that f,(-,0) € L2 . Evaluate (2.96) at y = 0 to get f,(z,0) = +fooF02(z) dz.

Using the Hardy inequality (2.141), F,,(z) = — f;oo F!(s) ds and Proposition 2.33zone obtains
1o Oz, < 1@F2 2 < M) Follye WEslls, < Kel@Erl IFols,

2
< K@ Fall o IFolpe, < K2 oW oz, - (2.144)

for some constants K., K., K > 0. Thus f,(-,0) € L?

x>ct
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(P2) It follows from (2.143) and (2.144).

(P3) By Proposition 2.33 (i), /%% — HL N L3, o — F, is real analytic and by Lemma 2.42 (A0)
sois S — L2, L2, 0+ hy. By Lemma 2.42 (A4) it follows that /%0 — L2 L2,
o — fo is real analytic. Since the map o — f,(+,0) is a composition of real analytic maps, it
is real analytic as a map from .#*" to Lizc.

Case n > 1. By Proposition 2.33, F, € HN¥*! and ||F,||yns < C' ”U”H?,c”L?v' By Sobolev

embedding theorem, it follows that F, € CN’”Y(]R7 R), v < % Moreover since limg_, 1o Fip(z) = 0,
one has

+oo
Oz fo(x,y) = Os / Fyo(y+ 2)Fy(2)dz = —F,(x 4+ y)Fy(x) . (2.145)

Consider first the case j; > 1. Then j, < N. By (2.145) it follows that
o -1 ,. 1 A ‘
L G L ) (2.146)
1=0
where F\" = OLF,. Thus 951072 f, is a linear combination of terms of the form (2.148), with
by = Féjl*l*l) satisfying the assumption of Lemma 2.56 (i), thus 94! 8?32 fo, with j; > 1, satisfies
(P).
Consider now the case j; = 0. Then 1 < jo <n < N+1. Since Oy Fp(z+y+2) = 0. F,(x+y+2) =
F!(x +y + z), by integration by parts one obtains
+oo
jo _ jo—1 j—1 /
0 folay) = —FP Vet pFaa) = [ B D@ty DFatads. (2147
0

Then, by Lemma 2.56 (i) and (i7), 92 f5 is the sum of two terms which satisfy (P), thus it satisfies
(P) as well. O

Lemma 2.56. Fiz c € R, N € Z>q and let 0 € S*N. Let F, be given as in (2.76). Then the
following holds true:

(i) Leto — by be real analytic as a map from SN to H), ., satisfying Hbg||H/1>‘ < K. ||a||HZL L2,
where K. > 0 depends locally uniformly on o € Hé,('c N L%. Then for eivery integer k with
0 <k < N, the function
Hz(z,y) == F¥ (z + y) by () (2.148)
satisfies (P).
(ii) For every integer 0 < k < N, the function
“+oo
Galz,y) = / F¥ (2 4y + 2)FL(x + 2)dz (2.149)
0

satisfies (P).
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(iii) Let N > 1 and let G, be a function satisfying (P). Then the function
“+oo
Fr(z,y) = / Fl(x+y+2)Go(x,2)dz (2.150)
0

satisfies (P).
Proof. (i) Hg satisfies (P1). Clearly Hg(z,-) € LiZO and by the continuity of the translations in
L? one verifies that |Hg(x + ¢,-) — Hg(x, ~)||L§>0 — 0as € — 0, thus proving that Hg € C95 L2 +.

We show now that Hp € Lichzzo- By Lemma 2.42 (A1), Proposition 2.33 and the assumption
on b,, one has that

2
IHal e, 2, < ClFsllgna lbollie < KelloWys g, (2.151)

where K. > 0 can be chosen locally uniformly for o € H é,(c NL%.

For0O<k<N, Fék) IS CO(R, R) by the Sobolev embedding theorem. Thus Hy € C;JZC,yZO'
Finally we show that Hg(-,0) € Lizc. We evaluate the r.h.s. of formula (2.148) at y = 0, getting

Hpg(z,0) = F®) (2)by(2) .

It follows that there exists C' > 0 and K. > 0, depending locally uniformly on o € H, 21,«: N L%, such
that
2
PR Ol < sl ol < Kellolla ons, - (2.152)

where we used that both F* and b, are in Hl. .

Hp, satisfies (P2). It follows from (2.151) and (2.152).

Hp, satisfies (P3). The real analyticity property follows from Lemma 2.42 and Proposition 2.33,
since for every 0 < k < N, Hp, is product of real analytic maps.

(i1) Gr satisfies (P1). We show that Gr € L2, L7~ By Lemma 2.42 (A5) and Proposition
2.33 it follows that -

2
1Grllzz, gz, < I1Follyes 1ol < Kelloliys s, (2153)

where K. > 0 depends locally uniformly on o € H{ NL%. One verifies easily that Gr € C95 L.
In order to prove that G € ngc,yzm proceed as in Lemma 2.50.
Now we show that Gg(-,0) € L2, .. We evaluate formula (2.149) at y = 0 getting that

r>c*
Gg(z,0) = / F®) (2 4 2)F' (x4 2)dz .
0
Let bl (x,2) := F.(xz + z). By Lemma 2.42 (A0) and Proposition 2.33 one has

Iz sa, < ||(@)/2E;

x>c T y>0

< Kellolls s, -
z>c o

121



where K. > 0 can be chosen locally uniformly for ¢ € H, é,c N L%. Thus by Lemma 2.42 (A2) one
gets

IGR(, Oz < K.

k 2
FO| o Weis, s, < Kelloliy s, (2.154)

where K, > 0 can be chosen locally uniformly for ¢ € H, 2{@ NL%.

Gr satisfies (P2). It follows from (2.153) and (2.154).

Gr satisfies (P3). The real analyticity property follows from Lemma 2.42 and Proposition 2.33,
since for every 0 < k < N, G is composition of real analytic maps.

(i1i) Fr satisfies (P1). By Lemma 2.52 (i), Fr € C95 L5, N L2 L2, and

r>c
2
IPalls pe < 0ESg 1Gale g < Kellole s, -

Proceeding as in the proof of Lemma 2.55 (P1) one shows that Fp € ngc,yzO' Since F. € HY,
N > 1, F! is a continuous function. Thus we can evaluate Fg at y = 0, obtaining Fr(z,0) =

“+ o0
| Fi(x+ 2z)Gs(x, z) dz. By Lemma 2.42 (A2) we have that
0

2
||FR("O)”L§ZC < HF‘;HL?EZC HGU“I/ichizo < Ke ”G”Héc”L?\f :
The proof that Fg satisfies (P2) and (P3) follows as in the previous items. We omit the details. O

Lemma 2.57. Let N > 1 be fived. For every ji,jo > 0 with 1 < j; + jo < N, the function fi1J2
defined in (2.99) and its derivatives 0, f192, 9, fi32 satisfy (P).

Proof. First note that by Lemma 2.55 the terms 97! 0 f, and its derivatives 851872 f,, 81972+ f,
satisfy (P). It thus remains to show that

+oo
F]E’kz(ac,y) = / oM, (x+y+2) 0% B,(x,2)dz k1 >1, k2 >0, ki+ka=n<N (2.155)
0

and its derivatives 3yF]§’k2, &CF%”” satisfy (P). Remark that, by the induction assumption in the
proof of Lemma 2.38, for every integers ki, ko > 0 with k1 + ko < n, 8’;18’;2 B, satisfies (P).

F’E’kz satisfies (P). If ky = 1, it follows by Lemma 2.56 (ii7). Let k; > 1. By integration by
parts k1 — 1 times we obtain

k1—1

Fike(zy) = > (=108 ~'F, (x +y)(020L B, ) (x,0)
=
' (2.156)

+oo
—i—(—l)kl_l/Fc’,(x—i—y—i—z)@fzafl_lBg(x,z)dz,
0

where we used that for 1 < I < k; — 1 one has F\™ " € H! (852071 B, )(x,-) € H,l, thus
lim, o0 F&* 7 (2) = 0 [limy oo 952851 B,)(2,y) = 0]. Consider the r.hs. of (2.156). It is a
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linear combinations of terms of the form (2.148) and (2.150). By the induction assumption, these
terms satisfy the hypothesis of Lemma 2.56 (i) and (¢7). It follows that F’E’kz satisfies (P), and in
particular there exists a constant K, > 0, depending locally uniformly on o € H éc N L%, such that

k1,ko
|

k1,ka2
2 12 JrHFR ("O)HH

x>c y>0 x>c

< Kellolls rz, - (2.157)

ayF%’kQ satisfies (P). For e # 0 sufficiently small, by integration by parts ki-times we obtain

1,k k1,k k k1—1 kq—1
FRl *(7,y +e) 7FR1 *(z,9) :zl:(_l)lam Folx+y+e) =05 Fy(z +y) (aiczai—lBU)(x’o)

€ €
=1
Nala F
Jr(il)kl/ vz +y+etz)— ”<x+y+z)8§285130(x,z)dz,
€
0

where once again we used that for 1 < [ < k; one has F{*' ™) ¢ H! (0820, By ) (x,) € H,5l,
thus lim, e Fo7 Y (2) = 0 [limy o0 0520. " By)(,y) = 0]. Define also

k1
0,F 0+ (a,) == 3 (~1) 9, (o + ) (0201 By ) (1, 0)
=1
. (2.158)
0 [ Fiwty+ 200 Ba(o.2) d
0

Consider the r.h.s. of equation (2.158). It is a linear combinations of terms of the form (2.148) and
(2.150). By the induction assumption, these terms satisfy the hypothesis of Lemma 2.56 (i) and
(#31). It follows that f)yFI;%l’kQ satisfies (P) and one has

for some constant K/ > 0, depending locally uniformly on o € H, éc N L% . Furthermore one verifies
that

k1,k2
afll]:—"R

2
< Kellolas nrg, (2.159)

Kk
L2 + HayFRL 2(.’())‘
>0

2 2
LiscLys Lisc

Fkhkz(xv'_ke) _Fkth(xW) k1,k .
R R = 0,Fp " (z,-) in L;zo .

lim
e—0 €

81;F1;%1’k2 satisfies (P). The proof is similar to the previous case, and the details are omitted.
This conclude the proof of the inductive step. O

E Hilbert transform

Define H : L?*(R,C) — L*(R,C) as the Fourier multiplier operator

(H(v))(§) = —isign(§) 9() -
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Thus H is an isometry on L?(R,C). It is easy to see that H|Hév : HY — HY is an isometry for
any N > 1 - cf. [Duo01]. In case v € C}(R,C) with ||| e, [|[zv(2)| L~ < 0o, one has

H@W)(k) = -~ Tim v(F)

dk’
T e—0t |k'—k|>e kK —k

and obtains the estimate |H(v) (k)| < C(||v']|oo + ||zv(2) |00 ), where C' > 0 is a constant independent
of v and k.
Let g € CH(R,R) with ||¢'|| e, |zg(x)||L~ < co. Then define for z € C* := {2z € C: Im(z) > 0}

the function
1 [ g(s
flz)=— / L)ds
T o S— 2
Decompose i into real and imaginary part

1 1 s—a . b

s—2 s—a—ib (s—a)2+b2+z(s—a)2+b2

to get the formulas for the real and imaginary part of f(z)

Re f(z) :% /_OO (S_a())zwg(s)ds , (2.160)
Im f(2) :*71 /jo %g(s)ds. (2.161)

The following Lemma is well known and can be found in [Duo01].

Lemma 2.58. The function f is analytic and admits a continuous extension to the real line.
Furthermore it has the following properties for any a € R:

(i) Ty g T f(a + bi) = H(g)(0).
(i1) limy o+ Re f(a + bi) = g(a).
(i1i) There exists C > 0 such that | f(z)]| < HC Vze{z:Imz>0}.

K

(iv) Let f(z) be a continuous function on Imz > 0 which is analytic on Imz > 0 and satisfies
Re flr = g and |f(2)| = O(ﬁ) as |z| — oo, then f = f.

The next lemma follows from the commutator estimates due to Calderon [Cal65]:

Lemma 2.59 ([Cal65]). Let b: R — R have first-order derivative in L>. For any p € (1,00) there
exists C > 0, such that
I#H,0] 0zgll 1o < Cllgll o -

We apply this lemma to prove the following result:
Lemma 2.60. Let M € Z>, be fized. Then H : Hé\,/([c — Hé\,/([c is a bounded linear operator.
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Proof. Let f € Hé\ﬁ:. As the Hilbert transform commutes with the derivatives, we have that
H(f) € HY~*. Next we show that if (9} f € L2, then COMH(f) = (H(OM f) € L?. By Lemma
259 withp=2,g= a,@“lf and b = (, we have that

[SH@OY | 12 < PO D o + 11} O S]] o < Ufllzrae, + C |08 F| o < 00
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