Chapter II
Existence and Continuity Theorems

In this chapter we will prove the fundamental existence theorem for ordinary dif-
ferential equations, the Cauchy-Peano theorem. This local result will be extended
to a global existence and uniqueness theorem under somewhat stronger conditions.
Theorems about the continuous and differentiable dependence of the solutions on
all the data, including parameters, will be proved. These theorems are fundamental
for the qualitative study of ordinary differential equations.

Autonomous differential equations generate (local) flows. Because such flows,
and in particular also semiflows, appear in other connections (e.g. partial differ-
ential equations), we will study the fundamental properties of flows in metric
spaces.

The proofs are written — whenever possible — in such a way that they can be
extended to the infinite dimensional case. Minor necessary modifications will be
pointed out at the appropriate places. Ordinary differential equations in Banach
spaces play a role in nonlinear functional analysis — in particular in connection
with variational methods.

6. Preliminaries
We begin with a fundamental inequality.

(6.1) Gronwall’s Lemma. Let J be an interval in R, tg € J, and a, 3, u €
C(J,Ry). If we assume that

t
u(t) < a(t) + / Bs)u(s)ds|, VteJ, )
to

then it follows that

u(t) < a(t) + , Vteld ()

t .
/ a(s)Bs)e Js F@rdol 4o
(

to

Proof. With v(t) := f;; B(s)u(s) ds it follows from (1) that
o(t) = Bt)u(t) < a(t)B(t) +sgn(t —ty)B)v(t), Vte J
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Multiplying this inequality by

t t
/ B(s)ds } =exp {—/ sgn(s —tp)B(s) ds} ,
to to

we obtain yo < afy — 4w, and so (yv) —afy < 0. Now integrating and using
v(tg) =0, we get:

Y(t) :=exp {—

t

sen(t = to)u(®) < sen(t—to) | afyds/ (b
0

, Vteld

t
/t [a(s)B(s)v(9)/7(®)] ds
0

From (1) and the definition of ~ it follows that
u(t) < a(t) + sgn(t — to)v(t)

t t
/ a(s)B(s) exp { / B(o)do } ds
to s

which is the estimate for u, as claimed. 0

< a(t) + , Vted,

(6.2) Corollary. Let a(t) = ao(|t — to|), where ag € C(R4,R4) is a monotone
increasing function, and assume that

u(t) < a(t) + , Vteld

t
/ B(s)u(s)ds
to

Then we obtain the estimate
t
3(s)d.
w( < ae o PO e

Proof. Since a(s) < a(t) for |s—ty| < |t —tp], it follows from (2) that

|

t t
= a(t) [1 + sgn(t — tg) / B(s) exp{sgn(t — to)/ B(o)do} ds}
to S

t t
/t B(s)exp{| / B(o)dol} ds
0 S

u(t) < a(t) [l +

t
= a(t) exp {sgn(t —tg) [ B(o) da} , VteJ,
to

which is the assertion. O
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Lipschitz continuous functions play an important role in the theory of (ordinary)
differential equations. For this reason we want to study this class of functions more
carefully and explain their relation to the continuously differentiable functions.

Assume that X and Y are metric spaces and let T' be a topological space. A
function f : T'x X — Y is called uniformly Lipschitz continuous with respect to
x € X, if there exists a constant A € R, such that

d(f(t,x), f(t,T)) L Ad(x,T), Vr,T€ X, VteT.

Each A € R, with this property is called a Lipschitz constant for f. (Of course d
denotes the respective metrics in X and Y.)

The function f : T'x X — Y is called (locally) Lipschitz continuous with
respect to x € X, if every point (g, zg) € T X X has a neighborhood U x V
in T x X such that f|(U x V) is uniformly Lipschitz continuous with respect to
x € V. Finally, we set

CONTxX,Y)={f:TxX =Y |feCTxX,Y)
and f is Lipschitz continuous with respect to z € X }.

If T is a single point, and therefore f : X — Y, then we suppress the phrase
“with respect to x € X.” We then set

C(X,Y) = {f:X — Y| f is Lipschitz continuous}.
Of course we have
(X, Y) C C(X, Y),
and by definition
COY(Tx X, Y)YC O(Tx X,Y).

Finally, if X and Y are open subsets of the Banach spaces E and F|, respec-
tively, then COY(Tx X,Y) denotes the set of all continuous functions f:TxX —
Y which have continuous partial derivatives with respect to z € X. That is,

CONT X X, Y):={f e C(TxX,Y) | Dof € C(T x X, L(E, F))}.

With this notation we obtain the following elementary but important theorem.

(6.3) Proposition. Let E and F' be Banach spaces with D C E open and let T' be
an arbitrary topological space. Then
CONTx D, F)yC CY'(Tx D, F).
In particular, we have
c(D,F)c Cc'™(D, F),

that is, every continuously differentiable function is Lipschitz continuous.




92 Existence and Continuity Theorems

Proof. Let (ty,z9) € Tx D and f € COY(T x D, F) be arbitrary. Then there
exists a neighborhood U X V' of (g, xo) in T X D such that

|D2f(t,2) = Daf(to, 2o)|| S 1, V(t,2) € UXV.
With m := 1 + || Dy f(to, xo)|| we then have
1Dy f(t,2)|| £m < oo, V(t,x) e UXxV.

Without loss of generality we may assume that V' is convex. From the mean
value theorem we then obtain the estimate

| f(t, )= f(t, )| < sup ||D2f(t, T + sz —D)||l|x ~T| < m|lz -7
0<s<1
for all (t,x),(t,7) € U XV, which is our assertion. m|

The following proposition has significant technical importance. In particular, it
says that every Lipschitz continuous function defined on compact subsets is uni-
formly Lipschitz continuous.

(6.4) Proposition. Let X and Y be metric spaces and let T be a compact topo-
logical space. Suppose that K C X is compact and f € CO-(Tx X,Y). Then
there exists an open neighborhood W of K in X such that f|(T xW) is uniformly
Lipschitz continuous with respect to x € W.

Proof. By assumption, for every (¢, x) € T'x X there exists an open neighborhood
Uy XV of (t,x) in T'x X and some constant A(t,z) € R; such that

d(f(t,7), f(t,T)) < \t, 2)d(T, T)
for all (¢,7),(t,T) € Uy x V.. Without loss of generality we may assume that
Ve =Bz, e(2) = {y € X | d(y, ) < e(x)}
holds for some suitable e(x) > 0. Since T X K is compact, there exist (f;, ;) €
TxK,t=1,...,m, with
m
Tx K C | JU;, x Bz, e(z)/2).
=1

Consequently
m

W .= U B(x;, e(z;)/2)
1=1
is an open neighborhood of K in X.
First we will show that the set f(T'x W) has a finite diameter. To this end,
let (t,x),(s,y) € T x W be arbitrary. Then there exist indices 7,5 € {I,...,m}
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with (t,2) € Uy, XV, and (s,y) € Ut]. X Vg;. From this, from the compactness
of T'x T, and from the continuity of (¢, s) — d(f(¢, z;), f(s,x;)) it follows that

d(f(¢, ), f(s,9))
Sd(ft, @), ft, ) +d(f(t, x7), f(s,2)) +d(f(s,25), f(s,9)
< A, zp)e(x;) * o max d(f(t,xy), f(s,2)) + AL, zj)e(x)

=: M;; < oo.
With M :=max{M;; | 1 <i,j <m} we have
diam(f(T'xW)) < M < 0.
With
6 :=min{e(x)),...,e(xm)}/2>0
it follows that

A == max{A(t;, 1), ..., Mtm, Zm), 6 diam(f(T x W)} € Ry

is well defined.
Now let (¢,2),(t,y) € T x W be arbitrary. Then there is some 7 € {1,...,m}
so that (t,z) € Up, x B(z;, e(x;)/2). If d(z,y) < 6, then

d(y, z;) S d(y, z) + d(x, ;) < 6 + e(x;) /2 < e(xy)

and thus y € V;, = B(z;, e(z;)). Therefore (¢,y) € Uy, XV, and
d(f(t, x), f(t,9)) < At;, z)d(z, y) < Ad(z, ).
If, on the other hand, d(x,y) = 6, then
d(f(t, ), f(t,y)) < diam f(T x W) = [6~ diam f(T x W)]6 < Ad(z, y).

Therefore d(f(t, x), f(t,y)) < Ad(z,y) for all (t,x),(t,y) € TXW. O
After these preparations we return again to the differential equations. For the rest
of this section we make the following stipulations:

J C R is an open interval, E is an arbitrary Banach space (over K), D C E
is open and f € C(J x D, F).

A function w : J,, — D is called a solution of the differential equation
&= f(t,z) 3)
if the following holds:

(i) Jy C J is a perfect interval (i.e., int(Jy) # 0);
(i) we€ C'(Jy, D)
(iii) a(t) = f(t,u(?)), Vte Jy.
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If ¢ >0, then v : Jy — D is called an e-approximate solution of (3) if the

following holds:

(i) Jy C J is a perfect interval;

(i) u € C(Jy, D), and u is piecewise continuously differentiable (i.e., J,, can
be written as a finite union of perfect subintervals Iy,..., [}, so that u is
continuously differentiable on each Ij);

(iii) For every subinterval I C J,, on which u is continuously differentiable we
have

lla(t) = f(t,u@)|| <e, VteL

(6.5) Remarks. (a) Let J,, be a perfect subinterval of J and let w : J, — D. Then w is a
solution of the differential equation & = f(t,x) if and only if u € C(Jy, D) and
t
u(t) = ultp) + f(s,u(s)ds, Vte Jy, (C))

to

where ty € .J, is arbitrary.

This is an immediate consequence of the fundamental theorem of calculus. The trivial
fact that the integral equation (4) is equivalent to the differential equation (3) is of great
theoretical importance. It permits us, in fact, “to work in the space of continuous functions”
without regard to differentiability questions.

(b) Letwu: Jy — D be an e-approximate solution of the differential equation & = f(t, x).
Then we have
t
||u(t) = u(to) — f(s,u(s))ds|| < elt—tg], VteE Ju,
to

where ty € Jy, is arbitrary.

Proof. We consider the case ¢ > ty. (The case t < ty is treated analogously.) There exists
a decomposition ty =: 89 < 8] < + -+ < 8y, := t with u|[s;, $;41] € C'([s;, si+1], D) for
t1=0,...,m— 1. By the fundamental theorem of calculus we have

So+1
u(Siyy) — u(s;) = / u(s) ds.
Sy
From this it follows that

S+l

u(Sip1) =~ u(s;) = f(s,u(s))ds

EN

S+l
< / [|a(s) = f(s, u(s))|| ds < €(8541 = 8}),
S,

for2=0,1,...,m— 1. Now the assertion follows since

m-1

t
u(t) — u(ty) — f(s,u(s))ds = [u(si ) —u(s;)—
0 S, Z +1 .

1=0

Sr41

f(s,u(s)) (ls} . O

S,
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The following simple estimate will play a fundamental role later on.
(6.6) Lemma. Let f : JxX D — E be uniformly Lipschitz continuous with respect
to x € D and with Lipschitz constant \. If v : Jy — Dandv : Jy, — D

are, respectively, €,- and ey-approximate solutions of © = f(t,x), then for every
to € Ju N Jy we have:

llu(t) = vt)|| < {Ilutto) - v(to)]| + (1 + )|t — to e Mol
forallt € JyNJ,.

Proof. Using (6.5 b) and the identity

t
u(t) - v(t) = [U(t) —ulto) = [ f(s,u(s)) dé}

to

t
- [v(t) —o(to)— [ f(s,v(s)) ds} +[u(tp) — v(to)]

to

t
+ /t [f(S, U(S)) - f(87 U(S))]dsa
Jto

it follows that

[[u(®) — @) <(e1 + )|t —to] + [lulto) — vto)ll

t
+A / [|u(s) = v(s)|| ds
to
for all t € Jy, N Jy. Now the assertion follows from corollary (6.2). O

As a first application we prove the following uniqueness theorem “for Lipschitz
continuous right-hand sides.”

(6.7) Theorem. Let f € C%'=(J x D, E) and assume that v : Jy, — D and
v Jy — D are solutions of © = f(t, x) with u(ty) = v(ty), for some ty € Jy N Jy.
Then u = v holds identically on J,, N Jy.

Proof. It suffices to prove the assertion for every compact perfect subinterval
I C Jy,NnJy, with tg € I. Since K = u(l)Uv(l) C D is compact, there exists
an open neighborhood W of K in D such that f | (I x W) is uniformly Lipschitz
continuous with respect to x € W (cf. proposition (6.4)). Now the assertion
follows from lemma (6.6). 0
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Problems

I. Show that, under the assumptions of lemma (6.6), the estimate
€1 +€
lluct) = ()] < Juto) - v(to)||e Mol + ‘Tz [e)‘“—t“l - 1]

holds for all ¢, ¢y € J,, N Jy. Also show that this estimate is sharper than the one in lemma
(6.6).

2. Show that the estimate in problem 1 is sharp, that is, it cannot, in general, be improved.

3. Give an example to show that the inclusions
C!(D,F) C C'(D, F) C C(D, F)

are proper (D C E is open; E, F' are Banach spaces).

7. Existence Theorems

In this section we let J C R be an open interval, E = (E, |-|) be a finite dimensional
Banach space over K, D C E be open and f € C(Jx D, F).
Moreover let (¢y, zg) € J x D and let the constants a, b > 0 be fixed so that

[to—a,to+al CJ and B(zg,b) C D,
and set R := [to—a, to + a] x B(xg, b).

(7.1) Lemma. Let M := max|f(R)| and o := min(a,b/M). Then for every ¢ >0
there exists an e-approximate solution

u € C([tyg— a, tg+ a],ﬁ(wo, b))
of x = f(t,x) with u(ty) = x¢ and
[ut) —u(s)| < M|t—s|, Vt,s€ [tyg—a,ty+al.
Proof. Since f|R is uniformly continuous, there exists some ¢ > 0 such that
|f(t,z) - f(t,T)| <€, V()T ER

with |t —¢] <6 and |z —T| < 6. We now partition the interval [ty — «, ty + «] into
subintervals

to—a=tpn<t_p1 < <t <trp<t1 <<ty =1+,

such that
max  |t;_y —t;| < min(6,6/M)

i=—n+l,..,n

holds.
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We then define inductively a polygonal curve, a so-called Euler polygon, by

py o ) + (=) f(t, ulty), if 20
YO = wltign) + (= b)) ftisy ultian)), if i <1,

where t; <t <t;,;. One easily verifies that u is defined on all of [ty — «, ty + ]
and that

u € C([tg— o, g + a],@(wo, b)),

as well as |u(t) — u(s)| £ M|t — s|, holds for all s,t € [tg— a, ty + a]. Moreover,
we evidently have

a(t) = f(t;, u(t;))
for all t € [t;,t;1]1 N [tg,00) and all t € [¢;_;,t;]1 N (—o0, tg], and also

ut) — u(t)| < &

for all t € [t;,t;41]1 N [tg,o0) and all ¢t € [t,_;,%;] N (—o0,ty]. From these facts it
follows easily that u is an e-approximate solution of & = f(t, x). O

For every ¢ > 0, this lemma furnishes an e-approximate solution on the fixed
interval [ty — o, g + a]. Now, if we knew that for some sequence ¢, — 0
the sequence of ¢;,-approximate solutions, (u¢, ), would converge uniformly to a
function v € C([tg — o, tg + ], F), then a simple limit argument would show
that v is a solution of the IVP & = f(t,z), x(tg) = xg. Such a convergent
subsequence exists, if the set of e-approximate solutions is relatively compact in
C([to — o, tg + a], E). Hence we need a criterion for the compactness of subsets
of C([tg — o, tg + ], E). Such a criterion is furnished by the following Arzéla-
Ascoli theorem. To this end, recall that for every compact topological space K
and every Banach space F' the space C'(K, F') is a Banach space with respect to
the sup-norm I1f]

v:=max || f(z)|].
¢ = max | @]
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(7.2) Lemma. (Arzéla-Ascoli): Let K be a compact metric space and let F' be
an arbitrary Banach space. Moreover, let M C C(K, F). Then M is relatively
compact (i.e., M is compact) if and only if the following holds:

(1) M is equicontinuous, that is, for every y € K and every ¢ > 0 there exists a
neighborhood V' of y in K such that

“f(-r)_f(y)”<6’ Vr € Vv erM.
(ii) M(y) = {f() | f € M} is relatively compact in F for every y € K.

If F is finite dimensional, then M is precompact if and only if M is equicontinuous
and bounded.

Proof. If F is an arbitrary Banach space, we refer to Lang [1] for a simple proof.
Proofs which apply to more general spaces can be found, for example, in Dugundji
[1] or Schubert [1].

When M is relatively compact, then consequently M is bounded. If M is
bounded (in C(K, F') of course), then evidently M(y) is bounded in F' for every
y € K. Therefore M(y) is relatively compact when F' is finite dimensional (and
hence isomorphic to K%My With this the last assertion follows from the general
case. a

After these preliminaries we can now easily prove the following fundamental
existence theorem.

(7.3) Theorem. (Cauchy-Peano): Assume that f € C(J x D, E). Then the IVP
&= ft,x), x(ty) = o,

has at least one solution u on [ty — ., to + a] with u([tg — o, to + a]) C B(z, b).
Proof. For each n € N*, lemma (7.1) implies the existence of a %-approximate
solution uy, on Jy = [ty — a, ty + a] such that up(Ja) C B(zg, b) and

[un(t) —un(s)| < M|s—t|, Vs,t€ Jq. (1
From (1) follows, in particular, that the set

M ={up |n e N*} C C(Jq, E)

is equicontinuous. Moreover, it follows from (1) that

lun(®] < |un(to)| + M|t —to| < [xo| +b,

for all n € N* and all t € J,. Consequeiltly M is bounded in C(Jq, E) and
by lemma (7.2) M is precompact in C(Jq, F). Therefore there exists some
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u € C(Jqo, E) and a subsequence (un,) of (un) such that up, — u in CJa, E),
as k — oco. So (uy, ) converges uniformly to u on Jo. By (6.5 b) we have that

t
1
unk(t)—:vo—/ f(s,un, () ds| < —|t—to],
to n

for all + € J, and all £ € N. Since the convergence is uniform, it follows that
we can take the limit under the integral and we get

t
u(t) — xog— / f(s,u(s))ds =0, Vt€ J,.
Jto
The assertion now follows from this and (6.5 a). O

From theorem (7.3) and theorem (6.7) we immediately obtain the following
proposition.

(7.4) Local Existence and Uniqueness Theorem. Assume that f € CO1=(J x
D, E). Then the IVP
T= j(ta "E)a ,T(fo) =2

has a unique solution u on [ty — o, tg + .

(7.5) Remarks. (a) The solution of the IVP in theorem (7.3) is, in general, not unique,
as is shown by example (5.2b).

(b) The method used in the above proof is also numerically useful. The Euler polygons can
very simply be obtained by an algorithm which can easily be programmed on a computer.
In general, however, only the convergence of a subsequence can be guaranteed. A better
result is obtained if

f|R is uniformly Lipschitz continuous with respect to x € B(xg, b). Then the entire sequence
of en-approximate solutions, (u,, ), converges uniformly on J o, = [to—a, to+al, asn — oo,
to the unique solution u of the IVP

&= f(t,z), x(to)= o,
whenever €, — 0. We have the error estimate
[tte,, (1) — u(t)| < enlt - t0|e’\|t_t(",

where A denotes a Lipschitz constant.

In fact, from lemma (6.6) it follows that
|“f'n,(t) - “’(m,(t)| < (67l + fm.)ae)\a, Vt € 70(,

and for all n, m € N. Hence (ue, ) is a Cauchy sequence in the Banach space C(Ja, E).
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(c) The above error estimate shows that the method of Euler polygons is not very well suited
to numerically approximate the solution over a large time interval. One develops methods
(e.g., multistep methods) in the theory of “numerical integration of ordinary differential
equations” which are better suited for these purposes. O

The central result of this section is the following theorem.

(7.6) Global Existence and Uniqueness Theorem. Assume that
fec=(JxD,E).

Then for every (ty, zg) € J X D there exists a unique nonextendible solution

u(-, tg, xg) : J(tg,xg) — D
of the IVP

&= f(t,z), x(to) = xo. ()
The maximal interval of existence J(tgy,xq) is open:

J(to, To) = (t™(to, 20), t* (to, T0)),
and we either have
t =t (tg,xg) =infJ, resp. t" =t (ty, o) = supJ,
or
Jim, min {dist(u(t, to, 20), dD), [u(t, to, z0)|”! } - 0.

(Here of course we mean the limit as ¢t — ¢~ when ¢t~ > inf J, and t+ — t* when

t* < sup J, respectively. Moreover, we use the convention: dist (z, () = 00.)

Proof. Let (tg,z9) € J X D be fixed. By theorem (7.4) there exists some a >0
such that the IVP (2) has a unique solution w on J := [tg— «, g + a]. Again, by
theorem (7.4) there exists some (3 > 0 such that the IVP

&= f(t,x), x(tyg+a)=ulty+ ),

has a unique solution v on 7067%3 = [to+ a—fB,ty + a+ #]. Now, using theorem
(6.7), we have u=v on J, N 7067/;. It then follows that the function

Uy = u, on za
" v, on Ja 35

defined on Jo U J, g, is a solution of the IVP (2) and is a proper extension of
u. Since a similar argument can be made at ty — a, we see that u can be properly
extended to the right and to the left.

We now set
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t* =t (tg, z0) := sup{ 3 € R | (2) has a solution on [ty, 3] }
and
t” =t (to, o) := inf{y € R | (2) has a solution on [, ty] }.
Then, based upon the uniqueness theorem (6.7), there exists a unique solution
u = ul-, tg, zo) : J(tg, zo) = ,t") = D

of (2) so that u cannot be extended. In particular, it follows that J(tq, zq) is open,
because otherwise we can apply the above argument to extend u past either +* or
t.

Consider the case t* < sup J, and assume there exist some ¢ > 0 and a sequence
t; — t* such that ¢; < t* and

|u(t;)] £1/2¢ and dist(u(t;),0D) > 2¢, VieN. 3)
Without loss of generality we may assume that €2 < 1/2. Moreover, let
M :=max{|f(t,x)| | to <t <th, |x| < 1/e, dist(z,dD) > €}
and 0 < 6 < ¢/M. We then have

|u(t; + )| < 1/e and dist(u(t; + s),0D) > €

4
for all i € N and 0 < s <min{é,t* —t,}. )

Indeed, if (4) were false, there would exist some & € N and some
B € (0,min{é,t" — t;.}] with |u(ty, + s)| < 1/e and dist(u(t;, + s),dD) > ¢ for
0 < s £ and either

|u(ty + ) =1/e or dist(u(ty +3),0D) =e.
We then would have

|f(t +s,u(ty +s)| <M, forall0<s<g,
and therefore (cf. 6.5 a)

tp+3
[uty, + B) — ulty)| < / ' | f(s,u(s))|ds < M < OM <.

ty

Consequently, we would get
luty. + B)| < |utp)| + € £ (1/2e) + € < 1/,
since € < 1/2¢ (because €2 < 1/2), and
dist(u(ty. + 3),0D) = dist(u(ty.), dD) — |u(ty, + 5) — u(t)| > 2e — € = €.

But this contradicts the choice of 5.
Because of (4) we obtain, for all i € N with t* — ¢, < §, the estimate
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[u(t) — u(s)| < SMlt-s|, Vs,te€l[tjth). 5)

t
/ | f(r,u(T))| dT

If now (t}.) is an arbitrary sequence such that ¢} < ¢* and ¢ — t*, then (5) shows
that (u(t;c)) is a Cauchy sequence in E. Therefore the limit

y:= lim u(t})
k—o00

exists and y € D, since dist(u(t),dD) = ¢ for t close to t*. It also follows from
(5) that the limit
th
lim f(s,u(s))ds

k—oo Jt,

exists. If now (sj) is some other sequence with s;, — t* and s; < t*, then it
follows similarly that

lim u(s;) =z € D.
k—o0
Hence (5) implies that

|y—z|=kli}n;o|u(t2.)—u(s;‘,)|SMA‘an;o|t2_—s/\.|=0.

From this we obtain
= lim wu(?),
Y t—t*
and a similar argument shows that

. +

t t
lim+ f(s,u(s))ds = f(s,u(s))ds,

t=t* Jtg to

i.e., the improper integral on the right converges. If we now set

_Ju@), fort - <t<tt
'U(f) = { v, for t = t+,

we see that
veC((t,t'], D)

and
t
v(t) = xg +/ f(s,v(s)ds, Vte it t].
to

Therefore v is a solution of the IVP (2) on the interval (¢, ¢*], which contradicts
the choice of t*. This shows that (3) cannot hold. We therefore have

Jim min{dist(u(®), 0D), [u(®) "'} = 0.

The argument at the point ¢~ is similar. a
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(7.7) Corollary. Let f € C%'=(J x D, E) and

v¥(to, x0) = {u(t, to, xo) | t € [to, t*(to, 20))}.
(@) If v*(tg, zo) is bounded, we either have t* = sup J or dist(u(t, to, xg),0D) — 0
as t — t*.

(b) If v*(tg, xo) is contained in a compact subset of D, then t* = sup J.

Similar assertions apply to t~ and
v (to, xo) = u((t", tol, to, o) -

The above result can be expressed somewhat imprecisely as: either the solution
exists for all time, or it approaches the boundary of D (where the boundary of D
includes the “point at infinity” (|z| = 00)).

A useful criterion, implying the boundedness of all solutions of the differential
equations (for finite time), is given by the following proposition. Example (5.2 a)
shows that it cannot be improved significantly.

(7.8) Proposition. Assume there exist a, 3 € C(J,Ry) N LI(J, R) such that
|f(t,0)| < alt)|z| + B(t), V(t,z) € Jx D, ©6)

(i.e., f is linearly bounded w.r.t. x € D). Then every solution of & = f(t,x) is
bounded.

Proof. Let u: J, — D be a solution of & = f(t,x). Then it follows from (6) and

remark (6.5 a) that
t
/ 0(s)ds
to

The assertion is now a simple consequence of Gronwall’s lemma (6.1). m|

lu(t)| < |u(to)| + + , VteJy.

t
/ a(s)|u(s)| ds
to

We obtain now easily the following fundamental global existence and unique-
ness theorem for linear differential equations by applying the above results.

(7.9) Theorem. Let A € C(J, L(E)) and b € C(J, E). Then the linear (nonhomo-
geneous) IVP

&= A(t)xr +b(t), x(ty) = xo,
has a unique global solution for every (g, zg) € J X E.

Proof. We set f(t,x) := A(t)x +b(t) and choose a fixed (s, y) € J X E. Moreover,
we choose some 6 > 0 so that [s—6,s+ 6] C J. Then for all (¢t,z) € J X E with
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|t —s| <6 we have:

|f(s,9) = ft, @) <|A(s) = AD)| |y
+ ( max |A(T)|) |z —y| + |b(s) = b(t)|.

|T—s|<6
This shows that f € C(J X E, E). Also D, f(t,x) = A(t) and therefore Dy f €
C(J x E, L(F)). It follows that

feCY(UxE,E)yCCc®"(JxE,E)
(cf. proposition (6.3)). Finally, f is linearly bounded because
|f(t, )] < JA@D)||z| + |b(D)], V(t,z)e JxE.

Now the assertion follows from proposition (7.8) and theorem (7.6). 0O

(7.10) Remarks. (a) The Cauchy-Peano theorem is wrong if dim £ = co. For a counter-
example we refer to Deimling [1]. If a and b are chosen so small that f|R is bounded,
then the local existence and uniqueness theorem (7.4) remains also true in case the Banach
space E is infinite dimensional. (The boundedness of f|R in this case can no longer
be deduced from the compactness, but rather, it follows from the continuity.) From the
uniform Lipschitz continuity of f|R with respect to z € B(z, b) and from the compactness
of [tg—a, top+a], one can easily deduce that f|R is uniformly continuous. Then lemma (7.1)
remains correct and the limit can be taken (without compactness), as in remark (7.5 b). For
a different proof, one which is based on the historically important Picard-Lindeldf iteration
and also applies to the infinite dimensional case, we refer to the problems at the end of
this section.

(b) In the infinite dimensional case the global existence theorem (7.6) remains true with the
same proof if one makes the additional assumption: f is bounded on bounded subsets of D
which have a positive distance from 0D. One should note that the latter assumption is only
used to say something about the behavior of u(-, ty, zg) as t — .

(c) Based on (b), one easily verifies that theorem (7.9) remains also true in case dim F = oo.

(d) Ordinary differential equations in infinite dimensional Banach spaces play a role in
some areas of nonlinear functional analysis. For further details in the case dim E = oo,
we refer to the books by Deimling [1] and Martin [1].

Problems

1. Banach Fixed Point Theorem. Let X be a complete metric space and f : X — X a
contraction, i.e., there exists some « € (0, 1) such that

d(f(x), fy) < ad(x,y), Vr,yeX.



