CONTRACTION MAPPING THEOREM WITH PARAMETERS

S. SCHECTER

Let U be an open subset of a Banach space X, V an open subset of a Banach space Y, $T: U \times V \rightarrow V$ a continuous map. T is a uniform contraction if there is number $\lambda, 0<\lambda<1$, such that for all $x \in U$ and for all $y, y^{\prime} \in V,\left|T(x, y)-T\left(x, y^{\prime}\right)\right| \leq \lambda\left|y-y^{\prime}\right|$.
Theorem 1. Let $T: U \times V \rightarrow V$ be a uniform contraction. Let $g(x)$ be the unique fixed point of the mapping $T(x, \cdot)$ from V to V. Then:
(1) g is continuous.
(2) If T is C^{1} then g is C^{1} and $D g(x)=\left(I-D_{2} T(x, g(x))\right)^{-1} D_{1} T(x, g(x))$.

In a homework problem we show that the uniform contraction assumption implies that $\left\|D_{2} T(x, y)\right\| \leq \lambda$ for all (x, y). Since $\lambda<1, I-D_{2} T(x, y)$ is invertible.
Note that the equation $g(x)=T(x, g(x))$ implies that if T is differentiable, then $D g(x)$ is given by the formula. Also, once we know that $D g(x)$ is given by the formula, the formula implies that g is C^{1}.

Proof. The steps are:
(1) g is continuous.
(2) If T is C^{1}, then g is locally Lipschitz.
(3) If T is C^{1}, then g is differentiable, and $D g(x)$ is given by the formula.

By the above remark, step 3 implies that g is C^{1}.

1. g is continuous: We have

$$
\begin{aligned}
\left|g\left(x^{\prime}\right)-g(x)\right|= & \left|T\left(x^{\prime}, g\left(x^{\prime}\right)\right)-T(x, g(x))\right| \\
& \leq\left|T\left(x^{\prime}, g\left(x^{\prime}\right)\right)-T\left(x^{\prime}, g(x)\right)\right|+\left|T\left(x^{\prime}, g(x)\right)-T(x, g(x))\right| \\
& \leq \lambda\left|g\left(x^{\prime}\right)-g(x)\right|+\left|T\left(x^{\prime}, g(x)\right)-T(x, g(x))\right| .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|g\left(x^{\prime}\right)-g(x)\right| \leq(1-\lambda)^{-1}\left|T\left(x^{\prime}, g(x)\right)-T(x, g(x))\right| . \tag{1}
\end{equation*}
$$

Now fix $x \in U$. Because T is continuous,
given $\epsilon>0$ there exists $\delta>0$ such that

$$
\begin{equation*}
\text { if }\left|x^{\prime}-x\right|<\delta \text { then }\left|T\left(x^{\prime}, g(x)\right)-T(x, g(x))\right|<(1-\lambda) \epsilon \tag{2}
\end{equation*}
$$

By (2) and (1), if $\left|x^{\prime}-x\right|<\delta$ then $\mid g\left(x^{\prime}\right)-g(x \mid<\epsilon$. Therefore g is continuous at x. Since x was arbitrary, g is continuous.
2. If T is C^{1}, then g is locally Lipschitz: Assume T is C^{1}. Let $x_{0} \in U$. Choose $\epsilon>0$ and $C>0$ such that if $\left|x-x_{0}\right|<\epsilon$ and $\left|y-g\left(x_{0}\right)\right|<\epsilon$ then $(x, y) \in U \times V$ and $\left\|D_{1} T(x, y)\right\| \leq C$. Then choose $\delta, 0<\delta<\epsilon$, such that if $\left|x-x_{0}\right|<\delta$ then $\left|g(x)-g\left(x_{0}\right)\right|<\epsilon$. (This is possible because we showed g is continuous.) Let $\left|x-x_{0}\right|<\delta$ and $\left|x^{\prime}-x_{0}\right|<\delta$. Using (1),

$$
\left|g\left(x^{\prime}\right)-g(x)\right| \leq(1-\lambda)^{-1}\left|T\left(x^{\prime}, g(x)\right)-T(x, g(x))\right| \leq(1-\lambda)^{-1} C\left|x^{\prime}-x\right|
$$

Date: January 19, 2013.

Thus on the δ-neighborhood of x_{0}, g is Lipschitz with Lipschitz constant $(1-\lambda)^{-1} C$. Since x_{0} is arbitrary, g is locally Lipschitz.
3. If T is C^{1} then g is C^{1} and $D g(x)=\left(I-D_{2} T(x, g(x))\right)^{-1} D_{1} T(x, g(x))$: Let $A(x)=$ $\left(I-D_{2} T(x, g(x))\right)^{-1} D_{1} T(x, g(x))$, i.e., $A(x)$ is the unique solution of the equation

$$
A=D_{1} T(x, g(x))+D_{2} T(x, g(x)) A
$$

We must show that $D g(x)=A(x)$.

$$
\begin{gathered}
g(x+h)-g(x)-A(x) h=T(x+h, g(x+h))-T(x, g(x))-\left(D_{1} T(x, g(x))+D_{2} T(x, g(x)) A(x)\right) h \\
\left.=T(x+h, g(x+h))-T(x+h, g(x))-D_{2} T(x, g(x)) A(x)\right) h \\
+T(x+h, g(x))-T(x, g(x))-D_{1} T(x, g(x)) h \\
\left.\left.=\left(\int_{0}^{1} D_{2} T(x+h, g(x)+s(g(x+h)-g(x))) d s\right)(g(x+h))-g(x)\right)-D_{2} T(x, g(x)) A(x)\right) h \\
+\left(\int_{0}^{1} D_{1} T(x+s h, g(x)) d s\right) h-D_{1} T(x, g(x)) h \\
\quad=D_{2} T(x, g(x))(g(x+h)-g(x)-A(x) h) \\
\left.+\left(\int_{0}^{1} D_{2} T(x+h, g(x)+s(g(x+h)-g(x)))-D_{2} T(x, g(x)) d s\right)(g(x+h))-g(x)\right) \\
\\
\quad+\left(\int_{0}^{1} D_{1} T(x+s h, g(x))-D_{1} T(x, g(x)) d s\right) h
\end{gathered}
$$

Now we estimate $|g(x+h)-g(x)-A(x) h|$ the way we estimated $\left|g\left(x^{\prime}\right)-g(x)\right|$ in (1), and we estimate the two integrals. We get

$$
\begin{aligned}
& \quad|g(x+h)-g(x)-A(x) h| \\
& \leq(1-\lambda)^{-1}\left(\left(\sup _{0 \leq s \leq 1}\left\|D_{2} T(x+h, g(x)+s(g(x+h)-g(x)))-D_{2} T(x, g(x))\right\|\right)(g(x+h))-g(x)\right) \\
& \\
& \left.\quad+\left(\sup _{0 \leq s \leq 1} D_{1} T(x+s h, g(x))-D_{1} T(x, g(x)) d s \|\right)|h|\right) .
\end{aligned}
$$

Since g is locally Lipschitz by step $2, \mid g(x+h))-g(x)|\leq C| h \mid$. For $|h|$ sufficiently small, the two sups can be made as small as we want, say $\leq \epsilon$. Then for h small,

$$
|g(x+h)-g(x)-A(x) h| \leq(1-\lambda)^{-1}(\epsilon C+\epsilon)|h| .
$$

Therefore

$$
\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)-A(x) h}{|h|}=0,
$$

so $D g(x)=A(x)$.

