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Preface

In the last few decades, once linear functional analysis was quite widely
and thoroughly estabilished, the interest of scientists in Nonlinear :Anal-
ysis has been increasing a lot. On the one hand the treatments of various
classical problems have been unified; on the other, theories specifically
nonlinear, of great significance and applicability, have come out.

This book provides an introduction to basic aspects of Nonlinear Anal-
ysis, namely those based on diflerential calculus in Banach spaces. The
matter is expressed in a geometric style, in the sense that the results
obtained are often a transposition to infinite dimensions of cvents which
are intuitive in R? or R3. Indeed, this was a primary characteristic of
the works of Pincherle, Volterra and Fréchet.

The topics treated can be divided into two main parts and are pre-
ceded by a short chapter in which some introductory material is recalled,
and also the main notation fixed.

In the first part, differential calculus in Banach spaces is discussed,
together with local and global inversion theorems.

The second part deals with bifurcation theory which in spite of its
elementary character is, perhaps, one of the most powerful tools used
in Nonlinear Analysis. Our attention is here devoted almost entirely to
the case of simple eigenvalues, but an accurate analysis of hypotheses is
made, in order to include, for example, also the celebrated Hopf theorem.

A specific feature of Nonlinear Analysis is that the theoretical setting
is strictly linked to applications, especially those related to differential
equations, where the power of nonlinear methods is expressed in a more
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striking way. Moreover, a relevant fact to be emphasized is that problems
that are often considered of formidable difficulty, once they are framed in
an appropriate functional setting, may be faced and solved quite easily.

It is, indeed, this aspect, peculiar to Nonlinear Analysis, that has
driven us to leave considerable space to applications to differential equa-
tions, including various important classical problems such as Bénard
Problem, the problem of water waves, the restricted three-body prob-
lem and some others. Thus, in addition to more elementary examples
and applications that usefully accomplish theoretical results, in separate
paragraphs and/or chapters, we deal with those problems which require
more care both in formulation and in resolution,

Tools, still of remarkable importance, such as the theory of Leray—
Schauder topological degree, or the critical point theory, which would
require wider theoretical background and more subtle arguments, are
left out in this treatise.

The book in its outlines is self-contained for a reader who, besides
infinitesimal calculus, is acquainted with fundamental results of Linear
Functional Analysis such as the Hahn-Banach Theorem, the “Closed
Graph” Theorem and the Fredholm Alternative Principle. Only some of
the problems dealing with partial differential equations require a certain
knowledge of Sobolev spaces and therefore, in just a few cases, we refer
to results contained in original papers.

This volume is partially based on an earlier booklet, published in Ital-
jan by the Scuola Normale Superiore di Pisa in the series “Quaderni”.
The authors wish to thank the Scuola Normale Superiore for the encour-
agement.

0

Preliminaries and notation

This chapter contains the notation and some preliminary tools used
throughout the book. Almost always, the results are not quoted in the
most general form, but in a way appropriate to our purposes; never-
theless some of them are actually slightly more general than we strictly
need. For more detail we refer to any book of (linear) Functional Anal-
ysis (for example [Y} or [Br| for topics reviewed in sections 0.1-0.4; to
[Br], [KFS], [GT] for 0.5-0.6).

0.1 Some notation and definitions

R™ will denote the n-dimensional Euclidian space with scalar prodnct
z -y and norm given by |z|> =z - z.

X.,Y,Z, ... denote {real) Banach spaces with norm ||.|| x, ||.]|v, ctc., re-
spectively (the subscript will be omitted if no possible confusion arises).
B(x*,r) denotes the ball {x € X : ||z — z*|| < r} and B(r) stands for
B(0,r).

If X* is the topological dual of X the symbol {.,.) will indicate the
duality pairing between X and X, .

Let {x,} be a sequence in X, We say that z,, converges (strongly) to
© € X, written as z, — z, if ||z, — z|| = 0 as n — oo; we say that =,
converges weakly to x, written as z, — z, if {t,z, —z) = 0asn— o0
for all ¢ € X*.

Let X bhe a Banach space and let V be a closed subspace of X. A
topological complement of V in X is a closed subspace W of X such that
VNw={0}and X =V @ W, VaW is called a splitting of X.

g ‘::'
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2 0 Preliminaries and notalion

Recall also that, associated with such a splitting, there are {continuons)
projections P and @ onto V and W respectively.

0.2 Continuous mappings

We will deal with continuous maps f : U — Y, where U is an open
subset of X. Continuity means that f(z,) — f(r) (strongly) for any
sequence o, strongly convergent to z € X. The set of all continuous
F:U = Y will be denoted by C(U,Y).

0.3 Integration

For continuous maps f : [2,b] — Y the definition of the Cauchy integral
is given as in the elementary case, as the (strong) limit of the finite sums
Ef(&)(t: — ti—1) (with obvious meaning).

From

IE:f&)(t: — o) S Ball F(E) (6 ~ tm )| < Bl FEN(E: — bim)
there follows immediately the inequality

b
‘ f ()t

0.4 Linear continuous maps

‘s fb Ir)lde.

The space of linear continuous maps A : X — Y will be denoted by
L{X,Y). The range of A, R(A), is the linear space {A{z) :z € X}.
Sometimes, when ¥ = X, we will use the notation L(X)} instead of
L(X,X). Equipped with the norm
4l = sup{ll A{z)|| : ll=ll <1},

L(X,Y) is a Banach space. The identity map in L(X) will be denoted
by Ix.

Hereafter, for linear maps, the notation Az or Ajx| may replace A(x).

An eigenvalueof A € L(X) is a u € C such that the equation Az = ux
has solutions = # 0. Any such solution is an eigenvector associated to p
and Ker {u] — A) is the eigenspace associated to . We will be mainly
interested in the case when A € L(X) is compact, namely when A is
completely continuous, if this is the case, the following results hold.

Theorem 0.1 (Fredholm Alternative) Let A € L(X) be compact
and g F# 0. Then

(i  Ker (uf — A) = {0} if and only if R(ul — A) =X,

L

yot | ""‘ﬁé-‘" i e e
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(i) R(ul—A) = Ker (I — A" ={ueX:{yu)y=0fordlye
Ker (ul — A%)}.

Moreover one has the following

Theorem 0.2 Let A € L{X) be compact and 2 # 0. Then

(i) Ker (uI — A) is finite-dimensional and Range(ul — A} is closed,

(i) the sequence Ker ({(uf — AY*)} (n € N) is increasing, that is Ker
(e — A)™) C Ker ((ud — A)™F!) for allm > 1,

{iii) there ezists a finile p € N such that Ker {(uf — A)?) =Ker ((¢] —
A)Y) if and only if ¢ > p.

The (algebraic) multiplicity of u is the dimension of the linear subspace

UnenKer((p —~ A)*) = Ker({pd — A)P).
It is worth pointing out that the algebraic multiplicity of g is, in general,
different, from the geometric multiplicity, defined as the dimension of
Ker {uf — A) (algebraic and geometric multiplicity coincide for sell-
adjoint operators on Hilbert spaces). Hereafter, by the multiplicity of
an eigenvalue u # 0 of a completely continuous A € L{X) we will always
mean the algebraic multiplicity. An eigenvalue will be said to be simple
if its multiplicity is 1.

0.5 Function spaces

Let £ be an open subset of R™ with boundary 9§} and closure Q.
We will use standard notation for spaces of continuous or differentiable
real-valued functions C*(17) (k = 0), for Lebesgue spaces LP(Q) (1 < p <

o0) or L%(§2). In somc cases we will write C(0Y) instead of CY(£2). The
spaces above are Banach spaces under the norms defined, respectively,
by

el = sup {lu(z)| : x € Q},

lulick = >_ [DPullc (B is a multi index),
0<IA1<k

1/p
HullLe = L[lul”

(the symbol dz will be omitted whenever there is no ambiguity)
[l = = ess sup {|u(z)|: = € 2}.
For k > 0and 0 < a < 1, C**({]) denotes the space of Holder functions
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with exponent o, namely the u € C*(§0) such that, for all multi-index
8,18 =k
D? D
aup {IDPalz)= DAty yeﬂx#ﬂ
lz—yl*
“ For k =0 and o = 1, C%(Q) is nothing but the space of Lipschitz-
continuous functions on .
Equipped with the norm
llellgre = fullex +
8 —_DA
aup {22402 =D40)
|z =yl
C*<(Q)) is a Banach space.
In some cases, we shall also work with Sobolev spaces H*P(Q) (k >
1,p € {1, 00)) equipped with the norm
lullzger = > 1D%ul|Ls.
0|3 <k

The notation H* will stand for H*? while H¥({2) will denote the closure
of C§°(£1}, the space of C*° functions with compact support in {2, under
the norm ||| yx.2. Among others, let us recall the following result.

:a%eaw¢%|m=k}

Theorem 0.3 (Poincaré Inequality) Let § be bounded. Then there
erists a constant ¢ = ¢(1) such that

/|u|2 < cf |Vu|? for all u € Hj ().
t o3 o
As a consequence, [|Vul[2 is a norm in H}(Q) equivalent to |ju| g1.2.

In addition to the Poincaré Inequality one has that the embedding of
H}() in L3(§}) is compact (Rellich’s Theorem). Let us recall that X
is embedded in ¥, X — Y, if X C Y and the inclusion 1: X — Y is
continuous. If X — ¥ then 3 ¢ > 0 such that

lzlly < ellulx, for all w € X.

If the inclusion ¢ : X — Y is compact we will write X —— Y,
The following result is a particular case of the “Sobolev Embedding
Theorems”.

Theorem 0.4 Suppose that Q is bounded open set in R™, with bound-
ary O of class C®!, andletk > 1 and 1 < p < oo.

(i) Ifkp<n, then H*?(Q) — L), for all 1 < g < np/(n — kp).
(i) Ifkp=mn, then H5P()) — LY, for all ¢ € [1, 0).

0 Preliminaries and notetion 5
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(i) Ifkp > n, then HOP(Q) — C%*(R), where a = k—n/p if k—n/p <
L € 0,1) is arbitrary if k—nfp = 1 andp > L0 = 1 4f
k-nfp>1.

In addition, there result the following.

(i"y Ifkp < n, then H5P(Q)) —— L9(Q), for all 1 < q¢ < np/(n - kp).

(ii") If kp=n, then H*?(Q) —— L), for all g € [1,00).

(iii") If kp > n, then H>P(Q) —— C(Q).

0.6 Elliptic boundary value problems

Let (¢ be a bounded domain (i.e. open connected) in R™ with smooth
boundary 82 (this will always be understood hereafter) and let £ denote
the differential operator

i} ( 8
L= — | a;;(z) —) {0.1)
lﬁg‘_ﬁﬂ a:l:,' ' J 6.'Ej
where '
aij = ;i € Cm(ﬁ) (02)

£ is (uniformly) elliptic if there exists a > 0 such that
3 ag(@)ed = a|£;'|2 forallzeand £ € R"  (0.3)

1<i,j<n

- Throughout the book, any elliptic operator will be an elliptic operator

with smooth coefficients, namely an £ of the form (0.1) and such that
(0.2)-{0.3) hold.
Consider the Dirichlet Boundary Value Problem (b.v.p. for short)
—Lu=h{z)in £,
u = (ron 84, }

where h is given a function on £
Let k€ L2(82); a weak solution of (0.4) is a w € HI(Q) such that

Ju dv oo
3 f s Ba jhv, for all v € C3°(82).
Q

1<I,J<ﬂ

(0.4)

If u is a weak solution of (0.4) and u € C%({2), then u is a classical
solution.

Theorem 0.5 Suppose L is an elliptic operator. Then the following
results hold.
(i) Let h € LP(§)), 2 < p < oo. Then (0.4) has o unique (weak)
solution u € HY () N H2P(Q) and the following estimate holds:
lullz2e < ellAll£e

-

P,
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(i) Ifh e L®(R) then u € CY(f]) for any 0 < & < 1 and
[wllers < cflpfle=.

(i) Ifh € CO=(]) thenu € C*(Q) is o classical solution of (0.4) and
lullgz.e < cllhllco.a-

In the above ¢ stands for a posilive constent, depending on Q.

As a consequence of the preceding results, we can define an operator
K : L)) — L*(5Y) (the Green operator of —£ with zero Dirichlet
boundary conditions) setting K'u = v if and only if —Lv = u, v € H} ().
From the Rellich Theorem it follows immediately that K is compact.

Given a function m € L*(f), let us consider the linear eigenvalue
problem

=Lu = Amu in Q,
{0.5)

u =0 on 1.

An eigenvalue of (0.5} is a A such that (0.5) has a solution « # 0. Any
¢ # 0 satisfying (0.5) is an eigenfunction associated to the eigenvalue .
If we set p = 1/ and K (u) = K(mu), problem (0.5) is equivalent to
pu = K,u. The eigenvalues Ay of (05) correspond, through py = 1/A;
to the eigenvalues of K,,. The multiplicity of A is the multiplicity of .
In some cases we will write Ai.(m) or A, () to highlight the dependence
of the eigenvalues of {0.5) on m or {1

Theorem 0.6 Let m € L™(2), m > 0 and m(z) > 0 in a set of
positive measure.

(i) Problem (0.5) has a seque;':.ce
0< )\l(m) <,\2(m) <= )\k(m) < ...

of cigenvalues such that A.(m) — +00 as k — oo. The first eigen-
value Aj(m) is simple and the corresponding eigenfunctions do not
change sign in . We will let denote ¢, (sometimes only ¢) the
eigenfunction such that (a) ¢ > 0 in Q and (b) [, ¢? = 1.

We will also let ¢ denote the eigenfunctions corvesponding to A

normalized by
1 ifh=k,
f¢h¢k=5hk = {U :‘)frh#k_
]

When m =1 we usll simply write A instead of Ax(1).

(ii}) (Comparison property) If m < M in § then A {m) = M(M); of
m < M in e subset of positive measure then Ax(m) > M(M}). In
particular, if m < Ag(resp.> M) then Ap(m) > 1 (resp.< 1)

0 Preliminaries and notation 7

(iii) (Variational characterization) There results

du
Ax(m) = max /mv2:veﬂlﬂ,] aii— — =1,
() {ﬂ 6 [ Eega,

fv¢5=0, foralli:l,...,k—l}.

N
(iv) (Continuity property) Ai(m) depends continuously on m in the
L3 topology. '
(v) Let S¥ be a bounded domain, such that ' C Q. Then M(¥) =
Ae(Q2) forallk > 1.

Consider the non-homogenous b.v.p.

—Lu = Amu+h in §2, (0.6)
u =0 on 8%,
with, say, h € L*(Q).
From the Fredholm Alternative Theorem 0.1 we get the following.

Theorem 0.7

(i) If A is not an eigenvatue of (0.5), then (0.6) has o unique solution
for all h € L3(Q);

(ii) if A is an eigenvalue of (0.5), then {0.6) has a solution if and only
if fo e =0 for any k such that A = Ay '

According to Theorem 0.4 (iii) all the preceding discussion can be carried
over taking X = C%*(Q), h € C**(17) and m smooth.
The arguments above apply to Sturm-Liouville Problems

d d Y™~
5 (aau) +f8u=h{z) (0<z<m),
aqu(0) + byr'(0) = ayu{x) + byu'{x) =0,

where o € CY{[0,7]), B € C((0,7]), o, 8> 0on [0,7], and ag,bo, a1, b
are such that (a3 + 83)(a? + b%) # 0.

In fact, it is known [D1] that for all A € X := C([0, n]) there exists a
unique u € C2([0, 7)) satisfying (0.6) and hence the map K : h — K(h)
(is linear and) as an operator from X into itself is compact. It is also
known that such a K has a sequence of positive, simple cigenvalies
f1> Ha > ... > ig... such that gz — 0 as k — oo, Correspondingly,
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the linear Sturm-Liouville eigenvalue problem
—:—m (a%u) + = Au(z) (0 <z <),
agu{0) + bou'(0) = eyufm) + b/ (m) =0,
has a sequence of simple eigenvalues Ay = 1/p — 00,
Another classical result we will need is the Maximum Principle.

Theorem 0.8 Let  C R™ be a bounded domain with smooth boundary
and let X < A1 Ifu € C3HQ) UC(Q) is such that

—Lu 2 Au in £,
u > 0 on 39,
then v > 0 in 3.

1

Differential calculus

This introductory chapter is mainly devoted to the differential calculus
in Banach spaces. In addition to being a fundamental tool later on, the
treatment of the calculus at this level permits better understanding at
certain aspects, which might otherwise be neglected. -

We discuss in Section 1 the Fréchet and Géateaux derivatives as well
as their elementary properties. The diﬁ'eréhtiabili_ty of the Nemitski
operator is investigated in Section 2 and higher shd partial derivatives
are introduced in Sections 3 and 4, respectively.

1 Fréchet and Giteaux derivatives

The Fréchet-differential is nothing else than the natural extension to

Banach spaces of the usual definition of differential of a map in Euclidean

spaces. —
Let U be an open subset of X and consider a map F: U — Y,

Definition 1.1 Let w € U. We say that F is (Fréchet-} differentiable
at v if there exists A € L(X,Y") such that, if we set
R(h} = F(u + h) — F(u) — A(h),
there results
R(k) = o(||4i]), (L1)
that is

}

It
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Such an A is uniquely determined and will be called the (Fréchet) dif-
Jerential of F' at u and denoted by :

A = dF(u).
If F is differentiable at all uw € U we say that F' is differentiable in U.

Hereafter, when there is no possible misunderstanding, Fréchet differ-
entiability will be referred to simply as differentiability. A fow comments
on the preceding definition are in order.

{i) Let us verify that A is unique. Supposing the contrary, let B €
L{X,Y) satisfy Definition 1.1 and A # B. It follows that
AR — Bh||
(]
If A # B there exists A* € X such that a := ||Ah* — BR*| # 0.
Taking h = th*, t € R — {0}, one has
IA(th") — BEnt) _ |1An* — B _ o
fleh> i IR I2=11”
a constant, in contradiction with (1.2).
(ii) If F is differentiable at u then
F(u+ h) = F(u) + dF (u)h + o(|h]])
and F is continuous at the same point. Conversely if F € C(U,Y)
then it is not necessary to require in Definition 1.1 the continuity
of A. In fact (1.1) yields
A(h) = F(u+ h) — F(u) — of[|A[})
and the continuity of F' implies the continuity of A.
(iii) The definition of differentiability depends not on the norms but on
the topology of X and ¥ only. That is if, for example, ||.|| and
[|.]|| are two equivalent norms on X then F' is differentiable at »
in (X, |||} if and only if F is in (X, |[|.]|!) and the differential is the
same.

— 0 as|h]] — 0. (1.2)

Remark 1.2 The preceding comment {iii) could suggest the idea of
extending the notion of Fréchet differentiability to locally convex topo-
logical spaces. The most natural way would be the following: let the
topology of X (respectively Y) be induced by an infinite family of semi-
norms ||x; (resp. |.ly,;); define the differential of F° as the linear
continuous map A with the property that for all |.|y; there exists a
seminorm |.|x s such that |F(u + k) — F(u) — Ahly,; = o(|h|x,:). With
such a definition all the main properties of the differential (below) hold
true. Unfortunately, in dealing with the higher derivatives, there are

© 15 D i ke
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strong difficulties and people introduced new classes of spaces, such as
the “pseudotopological spaces”, where a differential calculus suitable for
the purposes of analysis can be carried out. These kind of topics, how-
ever, are beyond the purposes of our book.

Eiamples 1.3

(a) The constant map F(u) = ¢ is differentiable at any « and dF(u) =
Oforall ue X.

(b) Let A€ L{X,Y). Since A(u+h) — A(u) = A(h), it follows that 4
is differentiable in X and dA(u) = A.

(¢} Let B:X xY — Z be a bilinear continuous map. There results

B(w+ h, v+ k) — B(u,v) = B(h,v) + Blu, k) + B(h, k).
From the continuity at the origin it follows that
BBk, KY|| < cilhll kY.
Then B is differentiable at any (u,v) € X x Y and dB(u,v) is the
map (h, k) = B(h,v) + B{u, k).

(d) Let H be a Hilbert space with scalar product (.|.) and consider the

map F:u— ||u||? = (ulu). From

llu + &% = full* = 2(ulh) + [inll?
it follows that F is differentiable at any v and dF(u)}h = 2(ulh).
Note that ||.|| is not differentiable at u = 0. For, otherwise, ||| =
AR + o{||R])) for some A € L(H,R). Replacing i with —h we
would deduce that |kl = —Ah + of{|R|} and hence [|&|| = o{||A]]},
a contradiction.

(&) IfX =R, U =(ab) and F: U — Y is differentiable at ¢t € U,
the differential dF(t) can be identified with dF(t)[1] € ¥ though
the canonical isomorphism i : L{R,Y) — Y, i(A) = A(1). For
example, if ¥ = R™ and F{t) = (fi{f))i=1,..,n: dF(t) “is" the
vector with components df;/d¢.

The main differentiation rules are collected in the following proposi-
tion.

Proposition 1.4

(i) Let F,G:U — Y. If F and G are differentiable at v € U then
aF + bG is differentiable at u for any a,b € R and

d(aF + b3)(w)h = adF(u)h + bdG(u)h.
(ii) (Composite-map formula) Let F : U = Y and G : V — Z with
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V > F(U), U and V open subsets of X and Y, respectively, and
consider the composite map
GoF:U— Z, GoF(u) := G(F(w)).
If F is differentiable at v € U and G s differentiable at v :=
F(u) € V, then G o F is differentiable ot u and
d(G o F)(u)h = dG{v)|dF(u)h].

In other words the differential of G o F at u is the composition of

the linear maps dF(u) and dG(v), with v = F(u).
The proofs of (i) and (ii) do not differ from those of the differentiation
rules in R".

Definition 1.5 Let F': U — Y be a differentiable in /. The map
F . U— L{X,)Y), F':u— dF(u),
is called the {Fréchet) derivative of F.

If F' is continuous as a map from U7 to L(X,Y) we will say that F'is
C! and write F/ € CY(U,Y).

Let us introduce the concept of weriational (or potential) operator.
Y =R, maps J : U — R arc usually called functionals and J’
turns out to be a map from U/ to L(X,R) = X* (the dual of X). In
particular, if X = H is a Hilbert space, J'(u) € H* for all v and the Riesz
Representation Theorem allows us to identify J'(u) with an element. of
H. To be precise, we give the following definition.

Definition 1.6 Given a differentiable functional J:U — R the gra-
dient of .J at u, denoted by V.J{u), is the element, of H defined by

(VJ{u)|k} = dJ(n)h, for all h € H. (1.3)
A map F : U — H with the property that there exists a differentiable
functional J : I/ — R such that F = V.J is called a wariational (or
potential) operator.

As for maps in R™, we can also define here a directional derivative,
usually called the Gateaux differential (for short, G-differential).

Definition 1.7 Let F: I/ — Y be given and let z € U/. We say that
F is G-differentiable at u if there exists A € L{X,Y’) such that for all
h € X there results
F(u+eh) — F(u)
&

— Ahase — 0. (1.4)

S e AR e i e

ik

Lt ey

1.1 Fréchet and Gdteaur derivatives

The map A is uniquely determined, called the G-differential of FF af‘*u.__.

and denoted by dgF(u).

Clearly, if F' is Fréchet-differentiable at u then F' is G-differentiable
there and the two differentials coincide. Conversely, the G-differentiabil-

ity does not imply the continuity of F; even: recall the elementary
example F : IR? — R? defined by

5%t 2

F(s,0) =0.
" The following result replaces the elementary “Mean-Value Theorem”
and plays a fundamental role in what follows.
For u,v € U let [u,v] denote the segment {tu+ (1 —tv:t € [0,1]}

Theorem 1.8 Let F : U — Y be G-differentiable at any point of U.
Given u,v € U such that [u,v] C U, there results

() — Fv)lf < sup{llde F(w)lf : w € [u,0]} [lu - v].

Proof. Without loss of generality we can assume that F(u} # F(v).
By a well-known corollary of the Hahn-Banach Theorem there exists
P e Y™, ||¢| =1, such that

(¥, F(u) — F(v)) = || F(u} = F(y)l. (1.5)

Let y(t) = tu + (1 — t)v, t € [0, 1], and cousider the map h:[0,1] - R
defined by setting

h(t) = (b, F®)]) = (o, Fltu + (1 - ).
From ~(t + 7) = 7(t) + 7{w — v) it follows that
hit+7) — h(t) _ <¢ Fiy(t + 7)) —F['Y(t)i>
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Since F is G-differentiable in U, passing to the limit in {1.6} as v — 0,
we find )

K (t) = (¥, daF(tu + (1 — t)v)(u — v)). (1.7)
Applying the Mean—Value Theorem to b one has
k(1) — R{0) = &'(8) for some @ € (0, 1). (1.8)
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14 1 Differential calculus

Substituting (1.5) and (1.7) into (1.8) we get
1P (u) ~ Fv)ll = k(1) — k{0) = #'(8)
— (%, F(fu+ (1 — 9)0)(u — v))
<l deF(Bu+ (1 - 0)o)|l [lu vl
Since |||l = 1 and 6u + (1 — f}v € [u,v] the theorem follows.

As a consequence we can find a classic criterion of Fréchet differentia-
bility.

Theorem 1.9 Suppose F : U — Y is G-differentiable in U/ and let
FL:U — L(X,Y), Fglu) =dgF(u),

be continuous at u*. Then F is Fréchet-differentiable at v* and dF(u*)

= dgF(u*).

Proof. We set
R(R) = F(u* + k) — F(u") —daF(u")h.
Plainly, R is G-differentiable in By, for £ > 0 small enough, and

daR(A) 1 k — dgF(u* + h)k — de F(u*)k. (1.9)
Applying Theorem 1.8 with [u,v] = [0, k], we find (note that R{0) = 0)
R < sup daR(th)| ||kl (1.10)

0<1<1

From (1.9) with th instead of £, we deduce
| deR(th) || = |dg F(u” +th) - da F(u")].
Substituting into (1.10) we find
IR(EN < oSup, lidaF(u* +th) - da F@’)| {4l

Since F{-is continuous,
sup |[dgF{u* +th) —dgF(u")|| — 0 as [|A]| — 0
0<e<1

and therefore R(h) = of||A]})-

In view of Theorem 1.8, to find the Fréchet differential of F' one can
determine dgF and show that F(; is continuous.
Let F € C(la, 8], X) and set (see subsection 0.3)

2() = [ Pk

Tt is immediately verifiable that @ is differentiable and #'(t) = F(t)
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(we are using the canonical identification between L(R, X) and X; see
Example 1.3 (e)). ¥ is called a primitive of F.
From Theorem 1.8 it follows that
f0(t) — B(s) || Ssup {IFE)I(t—s):s<E <t}
Hence, if F(€£} = 0 for all £ € fa,b], one has ® =constant. In particular,
& is, up to a constant, the unique primitive of F.

As a consequence we can obtain the following useful formula. Suppose
that [u,v] € U and let F € C'(U,Y). The map Foy:[0,1] =Y, Fo
¥(t) = F(tu+ (1 — t)v) is C! and

(Fov)'(t)=F'(tu+ (1 —t)v) [u—v]

Integrating from 0 to 1 we get

Fw-mw=/pm+u—mm—mz

fpﬁu+u—n@¢]m_u) (1.11)

Note that in the last integral F' is meant to take values in L{X,Y).

2 Continuity and differentiability of Nemitski operators

In this section we want to study the differentiability of an important
class of operators arising in nonlinear analysis: the so called “Nemitski
operators” we are going to define.

Nemitski operators

Let € be an open bounded subset of R™ and let M(§)) denote the class
of real-valued functions % : §2 — IR that are measurable on (2. Here, and
always hereafter, the measure is the Lebesgue one and will be denoted
by u; all the functions we will deal with in this section are taken in
M(Q).

Let f: 1 x R — R be given.

Definition 2.1 The Nemitski operator associated to f is the map de-
fined on M(§}) by setting

u(z) — f(z,ulz))-
The same symbol f will be used to denote both f and its Nemitski
operator.
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We shall assume that f is.a Carathéodory function. More precisely, :

we will say that f satisfies (C} if

(i) s— f(z,s) is continuous for almost every z €,
(ii) = — f(z,s) is measurable for all s € R. ‘

For the purpose of analysis it is particularly interesting when the

Nemitski operators act on Lebesgue spaces L# = LP(f}) (hereafter we

will write LP for LP{(2)) and we shall discuss this case in some detail.
Let us start by noticing that =

flu) € M(£2) for all v € M(R). (2.1)
Indeed, if v € M() there is a sequence xyn of simple functions such
that x, — u a.e. in . From (C) it follows that
f{xn) is measurable and f(x,) — f(u) a.e. in Q,

and from this we deduce that f(u) € M(€).

Continuity of Nemitski operators

Let p,g > 1 and suppose
|z, 8)| < atbis]”, a= f;—’, (2.2)

for some constants a,b > 0.

Theorem 2.2 Let §} © R™ be bounded and suppose f satisfies (C) and
{2.2). Then the Nemitski operator f is a continuous map from LP to L.

For the proof we need the following measure-theoretic result (see, for
example, [Br], Theorem IV.9).

Theorem 2.3 Let 4(}) < 0o and let u,, — w in LP. Then there exist
a sub-sequence u,, and h € L? such that b
Uy, — 4 a.c. in {2.3)

|tn, | < h ae in . (2.4)

Proof of Theorem £.2 From (2.1)-(2.2) it follows immediately that
flu) € L whenever v € LP.
To show that f is continuous from L” to L9, let u,,u € L be such that

| wp —ul|lzr — 0.
Using Theorem 2.3 we can find a sub-sequence {u,,, } of {u.} and h € L7

-
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satisfying (2.3)-(2.4). Since u,, converges almost everywhere to u, it
readily follows from (C) that

flun,) — flu) se in L {(2.5)
Moreover, from assumption (2.2) and (2.4) we infer
|Flun )] € a+blug, |* < a+b|R|™ € L. (2.6)

As an immediate consequence of the Lebesgue Dominated-Convergence
Theorem, (2.5)-(2.6) yield

1 () — F()][%0 = ] | (tung) = F@)]T = 0.
N

Since any sequence wu, converging to u in LP has a sub-sequence u,,
such that f(u,,) — f(u) in L7, we can conclude that f is continuous at
u, a5 a map from LF to L9,

Remark 2.4 Theorem 2.2 can be proved assuming that f satisfies
(2.2) with a replaced by a(z) € L.

Remark 2.5 It is possible to show that, if (C) holds and f(u) € L9 for
all w € LP, then f € C(LP, L9)}. For this and other kinds of arguments
we refer to [Val, p.154 and following.

Differentability of Nemitski operators

Our next result deals with the differentiability of Nemitski operators.
First some remarks are in order.

Let p > 2 and suppose f has partial derivative f; = 3f/0s satisfying
{C) and such that

[folz,5)| < a+blsfP~2 (2.7)

for some constants a,b > 0. Since f, satisfies {(2.7), Theorem 2.2 applies
and the Nemitski operator f, is continuous from LP to L", with r =
p/{p — 2). As a consequence, for the function f,(u)v defined by

fs(uyv sz — folz, u(z))v(x)

one has that f,(u)v € LP for u,v € LP, where p’ = p/(p — 1) is the
conjugate exponent of p.

Theorem 2.6 Let @ C R"® be bounded and suppose that p > 2 and f
satisfies (C). Moreover, we suppose that f{z,0} is bounded and that f
has partial derivative f, satisfying (C) and (2.7).

Then f . LP — L7 is Fréchet-differentiable on L? with differential

df{u) : v — fo{u)v.

-
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18 1 Differential calculus

Proof. Integrating (2.7) we find constants ¢,d > 0 such that
|z, 8)] < c+disfP,
and another application of Theorem 2.2 yields the continuity of f as a
map from L* to L¥', with ¢’ = p/(p — 1).
For u,v € LP we evaluate
w, v) = If(u+v) = flu) — folw)v o

/v

= [/ | (=, u(@) + v(=)) — f(z,u()) = fulz, u(@) @)
n

By the Mean-Value Theorem one has (for almost every z € (1)

1 @ 6(@) + () — f(z,u(2)) — folz, ul) (@)
1
= 0(2) [ fala,ulo) + Co(2)) — £, u(aNC] = o) o)
where ’
N
wla) = | alaru(e) +Cola) = folos =)l
a

With this notation and using the Hélder inequality we get that
- llp'
ol ) = [ [ @ dm]
0

< follzs ol ( -2 2) . (2.8)

Now, the norm |lw||r- can be estimated as follows:

1
ol < [ dz [ fala u(z) + Co(a) — folz w(@)I"dC
1]

Q
1

- [ a [ 112, u(z) + Co(@)) ~ fulz, u(z))|"de
Q

il
1
= 1+ - Ll (2.9)
0
As remarked before, f, is continuous from LP to L”. Hence
(e + o) = fu(w)lL- — O as |l e — O, ( €[0,1]. (2.10)

From (2.8),(2.9) and (2.10) it follows that w(u,v) = o(||lvllLe)-

For p = 2 the above result does not hold, in general. Indeed, under
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the preceding assumptions, the Nemitski operator f is G-differentiable
but, possibly, not Fréchet-differentiable. To be precise, let us assume
that (C) holds for f, f, and
|fa(z, 8)| < const. (2.11)
As before, it follows plainly that f is continucus from L? to L? and
the map v — f,(u)v from L? to L? is linear and bounded. In addition
one has the following

Theorem 2.7 Let 2 C R™ be bounded and let f and f, satisfy (C) and
(2.11). Then f: L? — L? is G-differentiable and dg f(u)fv] = f,(u)v.

Proof. According to Definition 1.7 we have to show that for all u,» € L?
there results

u+tv) — fu
far ) 2 10) g,
As in the proof of theorem 2.6 one finds

flu+tv) — fu)
i

—0ast— 0. (2.12)

L2

1
— futwp = [[falu+ G0) = £,

Letting

Ty = wy(u,v) = ][f,(u + (tv) — fo{u)ld¢,
0

2
1?2
{Q

1
< [tas [ 1fsa+ c) - futwllec
B! 0
When t — 0 then {{v — 0 a.e. in §I and hence

Fs(u+tv) — fo{u) > 0 ae in €,

onc has

flut tt;) —flw) _ ()

Since
|fa(x, u(z) + tCv(x)) — folz, u(x))|* < const.
the Lebesgue Dominated-Convergence Theorem implies

1
/ falut Ct) — falw)[?dC — 0, a5t 0, (2.13)
0

and (2.12) follows.
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The preceding theorem is completed by the following proposition.

Proposition 2.8 Let @ C R™ be bounded, suppose f and fo satisfy (C)
and (2.11) and let f be Fréchet-differentiable at some u* € L%, Then
there exists a{x), b(z) € M(Q) such that

Flz,u) = a(z)u + b(z).

Proof. Suppose first that v* =0 and f(z,0) =0.
Let D(y,§) denote the ball centred at y € £} with measure 8. Given
z* € 0 and A € R, consider the functions vs(z) € L*(§2) given by
vg(z) = A, for z € D(z",8),
vslx) =0, for z € \D(z", ).
Obviously vs ~ 0 in L? as § — 0.
Recall that if f is Fréchet-differentiable at u* = 0 then f'(0) = dc £(0)-
Hence f'(0)v = f,(0)v, and therefore
If (o) = fsOvellez g us5 0.
llvafic=
By a direct calculation one finds

1/2
”f('UJ) _ fﬂ(ﬂ)vﬁubg — 1 ‘f(:r’ A) ~f (.’L‘ 0))‘2
llvsll .2 |Alv/8 D(m[m
and hence
! 1/2
s | [ @D L@ ~o im0 @1
N TP )
If we sct ,
e = [[EN L@
(2.14) becomes ‘
1 Ua(z)dz — 0, as § — 0. (2.15)
D{x*.6)

Since for all 1 € L' and almost every y € §} there results

1 f P(z)dr — ¥(y), as 6§ — 0,

5
D(y.6)
we deduce from (2.15) that for all A € R there exists a null set Ny such
that for all ¥ & N one has ¥ (y) = 0.

i ¢
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' Taking A in a countable dense subset A of R and letting N = Ujea N
one infers that for all y N and all A € A there results 1, (y) = 0 that
is,

[y, 2) = fo(w, 0)A. (2.16)
Using the continuity of f(z,.), one deduces that (2.16) holds true for
all A € R and almost every y.
Lastly, let us set

g{z,u) = flm,ut+u'}~ fu’).
One has that g is Fréchet-differentiable at 0 and g{z,0) = 0. Applying
the preceding arguments to g, we find

Flzyu+u®) — f(u*) = folz,u)u
and the proposition follows.

Potential operators

We end this section by dealing with potential operators (Definition 1.6).
The results will not be used in the remainder of this book but are im-
portant in connection with variational problems.

Let H} = H}{S?) (where 2 is a bounded domain of R"} denote the
usual Sobolev space (see Subsection 0.5) with scalar product {.].) g1
and norm ||.||g1.2. Let n > 2 (if n = 1,2, the arguments we are going to
expand apply as well, with some modifications; see Remark 2.10 below).

Suppose [ satisfies (C) and

2

o) Satblsl” witho <220 =2 -1, (217)

Here 2* = 2n/(n — 2) and, by the Sobolev Embedding Theorem (see
Theorem 0.3 (i)), H} — L% and

([l 72+ < const.ffv||gre

By Theorem 2.2 it follows that

Fe LY, 1% with g = = » 2,

g n+2

In particular one has f(u) € L2/ ("+2) for all uw € H}. As a consequence,

f(w)v € L! for all w,v € H} and the equality

(N(u)|[v) g2 =[f(:r:,u(z:))v(:r:)dz:, u,v € H}, {2.19)
0

(2.18)

defines an operator N : H} — H}. Note that N is continuous. To see
this we evaluate

IN(u) = N(v)llsrz = sup {1 f [/ (z,u) — f(z,0)lwdz] : w]|ra < 1}
L¢3

A
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22 1 Differential calculus

< sup{||f(u) — F(O) | pansemrn 0] 2 2z <1}

< el flu) — fMlizansinsn
If %, — v in H} one has (by the Sobolev Embedding Theorem) %m — v
in L?" and (by (2-18)) f(um) — f(v) in [/ (7 +2)
Set

Flz,s) = f flz, t)dt.
0

From (2.17) it follows that there exist ¢,d > 0 such that
|F(z,8)| < c+dis|*. (2.20)
Then F(,u(.)) € L' for all u € H(C L*') and it makes sense to
define a functional ¢ : Hi — R by setting

o) = | Po,u(z))dz.
/

The functional ¢ 'ean be obtained by composition according to the fol-
lowing diagram g

g & o7 5 opee A0op o R
u = uw o FLu() — Flu) — [Flu@)de
Q

where o and 3 stand for the embedding of Hj into L%, of [3n/(n+2)
into L' respectively. Since F satisfies (2.20), Theorem 2.6 applies to F
as a map from L2 to L2/"+2} From Proposition 1.4(b) {derivative of
the composite map) it follows that ¢ is differentiable with

P'(u) v — ]f(:c, u(z))v(z)ds.
Q0

Then, recalling the definition of “gradient” (Definition 1.6), we have the
following

Theorem 2.9 Let 2 ¢ R™ be bounded and suppose f satisfies (C) and
(2.17). Then ¢ is a C? functional on H} with gredient

Vé(u) = N(u),
where N is defined in (2.19).

Remark 2.10 If n = 2 then the same result holds assuming f satisfies
(2.17) with any o < co. It suffices to repeat the above arguments using
the stronger form of the Sobolev Embeddings when Qc R
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3 Higher derivatives

Let F € C(U,Y) be differentiable in the open set U C X and consider
F':U—L(X,Y)

Definition 3.1 Let u* € U : F is twice (Fréchet-) differentiable at u”
if F' is differentiable at w*. The second (Fréchet) differential of F' at u*
is defined as

dA2F{u*) = dF'(u*).
If F is twice differentisble at all points of U we say that F is twice
differentiable in U,

According to the above definition d? F(u*) is a linear continuous map
from X to L{X,Y):
d’F(u*) € (X, L(X,Y)).
It is convenient to see d2F(u*) as a bilinear map on X. For this, let
L2(X,Y) denate the space of continuous bilinear maps from X x X — ¥
To any A € L{X,L(X,Y)) we can associate ®4 € Lp(X,Y) given by
O (u,u2) = [A{u)}(ug). Conversely, given ¢ € Lp(X,Y) and h €
X, ®(h,.) : k — ®{h, k) is a continuous linear map from X to Y; hence
to any ® € Lo(X,Y) is associated the linear application X — L(X,Y),
®:h— d(h,.)e L(X,Y).
It is easy to see that in this way we define an isomorphism between
L{X,L{X,Y)) and L2(X,Y). Actually, such an isomorphism is an isom-
etry because there results

k®llix.oxvy = sup [12(R)lzix,v)
lhi<1
= sup== sup ||[®(h,k}f} = ﬂ‘I’”Lg(x,v)-
lall<1 (I&(<1

In the following we will use the same symbol d?F(u") to denote the
continuous bilinear map obtained by the preceding isometry. The value

" of d2F(u*) at a pair (h, &) will be denoted by

d*F(u”)jh, k.
If Fis twice differentiable in U, the second (Fréchet) derivative of F
is the map F" : U — Lo(X,Y),
F' - u— d2F(u).
If F” is continuous from U to Ly(X,Y) we say that F € C*(U,Y).
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Examples 3.2

(i) If A € L(X,Y) then A € C*X,Y) and d?A4[h, k] = 0 for all
(hk)e X x X.
(i) Let X = C([0,1]) and F : X — X, F : u(t) — w®(t). F €
C?*(X,X) and
d2F(u) : (R(t), k(t}) — Zh{)K().

The following proposition can be useful for evaluating d*F(u).

Proposition 3.3 Let F : U — Y be twice differentioble at u* € U,
Then for all fired h € X the map Fy, : X — Y defined by seiting

Fy(u) = dF(u)h
is differentiable at u* and dF, (u*)k = F"{u*)[h, k].

Proof. F, is obtained by composition

U L(x,Y) 2y

u — dF (u) — dF(u)h
between the derivative u — dF(u) and the “evaluation map” é,», which
associates to each 4 € L{X,Y) the value A(h) € Y. Since &}, is linear,
the result follows by the composite mapping formula 1.4-(ii).

We have seen that F'(u) can be regarded as a bilinear map. More
precisely one has the following

Theorem 3.4 IfF : U — 'Y is twice differentiable at u € U, then
F'(u) € Ly(X,Y) is symmetric.

Proof. For h,k € X with h, k € B(g) (¢ small enough), we set
Wlh, k) = Flu+h+ k) — Fu+ h) — Flu+ k) + F(u),
) = Flu+h+8) - Flut+),
and consider, for h fixed, the map g : B(e) = ¥,
g+ K = Bl K) — F()[h, ] = (k) — 7 (0) ~ F" (), k.
Since F' is differentiable in If and F”{u}(h) : & — F"(u}[h, k] is lincar
(as a map from X to L(X,Y)), Theorem 1.8 yields
(k. k) — F(u}[h, &1
< sup{{ldva(th) — F"(u)(R)]| : 0 < ¢ < THI &
= sup{{ldF{u+ h + tk) — dF{(u + k)
— F'{u)(h)]| : 0 < ¢ < 1}kl (3.1)

apwididiematlly: aashide
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Since F is twice differentiable at v € U, one has
Fllu+ h+tky = F'{u) + F'(u)(h + th) + w(h + tk),
Fllu+tk)y = F'(u) + F"(u)(tk) + w{tk),

with w(v} = of||v]}). Hence

Fllu+ h+tk) — F'(u + th) = F"(u)(h) + w(h + th) — w(ik). (3.2)

Using {3.1) and (3.2) and taking into account that w(v) = o{|jvl]) we
get, that

(k. k) — F"(u)[h, k]| < sup{llw(h + tk) — w(tk)]} : 0 < t-< 1}jik}}

< e(llRll + 2([&[1) 1, (3.3)
provided [[A]f and ||k|| are sufficiently small.
Exchanging the roles of k, k we get (for ||&[), ||kl| small)
bk, b) = F7 @)k, h]l| < sup{|lw(k +th) — w(th)]| : 0 <t <1} A

< e(Jlkl + 2[R} 124 (3.4)
Since (R, k) = vp(k, h) we deduce from (3.3) and (3.4)
|F” ()b, k] ~ F(u}lk, B)|| < e(201k)® + 201847 + 2|tk 1]
< 3e(|lklI? + [Inl13). (3.5)

Inequality (3.5) has been proved for ||&|, |%|| smail enough, but holds
true for all ||&, ||k], because F"(u)[h, k] is homogeneous of degree 2.
Since £ is arbitrary, (3.5) inplies that F"(u)[h, k] = F"{u)[k, i] for all
k.

To define (n + 1)-th derivatives (n > 2) we can proceed by induction.

Given F : U — VY, let F be n times differentiable in /. The nth
differential at a point x € U will be identified with a continnous n-lincar
map from X x X x ... x X (n times) to ¥ (recall that, as before, there
is an isometry between L(X, ..., L{(X,¥)}... and L, (X, ¥)).

Let F09) . U — L,(X,Y) denote the map —

F oy d"Fu),

The (n + 1)-th differential at »* will be defined as the differential of

F®) namely
d Y F(u”) = dF™(w%) € L(X, La(X,Y)) & Loy (X, ).

We will suy that F € C*(U, Y} if F is n times (Fréchet) differentiable
in U and the nth derivative F(™) is continuous from IJ to Ln(X,Y). The
value of d"F(u*) at (hy,...,h,) will be denoted by

d"F(u*) Ry, .o hal
If h =Ry =... = h, we will write for short d™F(u*)[k]™.
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26 L Differential calculus

In order to extend Theorem 3.4 to higher derivatives some prelimi-
naries are in order. Given a map G : I/ — Ln(X,Y) and the point
h = (hy,...,hn) € X x ... x X, we can associate G with the map
G[h] : U — Y defined by setting

Glh)(u) = G{u)[h, ..., hn].

We can immediately see (see Proposition 3.3) that if G is differentiable

at u then G[h] is differentiable at u and there results
d(Gh])(w) : v — dG(u)[v, k1. .., hta)- . (3.6)

Let F be n times differentiable on I/ and set h = (ha,...,hy). Ap-

plying (3.6) to G = d"~'F, we find that
d(d™ F[h)){(u)[h1] = d" F(u*)[ha, ..., hal. (3.7)

Theorem 3.5 IfF:U — Y is n times differentiable in U, then the
maep

(R1y-e oy hn) = d*F(u*}hy, ..., hal

is symmeltric.

Proof. The result is true for n = 2 (Theorem 3.4). By induction on n,
let the claim hold for n — 1 > 2. Then
A" R (W)lhe, - - Ry Ry Bl
=d" ' F(w)hg, . s By ey iy ey )
Applying (3.7) to h(u) = A" F(u)[ha, ... iy By, oo B we get
that
d"F(u')[h‘l,hg,... ,hi,...,hj,...,hn]
= d"F(u")[hy, hay- -y Rgyens By oo linds {3.8)
Similarly, letting G(u) = d"~2F(u)[hy, ..., ha), one has
d2G(u*}[hi, he) = A" F(u™) |1, Ao, ha, . - Br], =~
and from Theorem 3.4 it follows that
dVF(u*)[h1, ha, ha, + .y ha) = A2G (w7 )[R, Ry
= d2G(u*)[ha, ] = A F(u*)ha, h1, ks, .., Pl (3.9)
The symmetry of d™F{u") is an immediate consequence of {3.8) and
{(3.9).

4 Partial derivatives, Taylor’s formula

Let us consider two Banach spaces X,Y and let (u*,v*) € X x Y. Define
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mappings o, : X = X XY and 1,- : Y — X x Y as follows.
gy (1) = (u,v");
Tu~ (y) = (u*,u).
Notice that the derivatives of - and 7,- are respectively, the linear
maps
g:=doy,. : h— (1,0,
T:=dry i k= (0,k).
Let ¢ be an open subset of X x Y, (u*,v*) € Qand F: Q — Z.

Definition 4.1 if the map F o g, is differentiable at u* we say that
F is differentiable with vespect to w at (w”,v*). The linear map d[F o
oy |(u) € L(X, Z) is called the partial dertvative of F' at (x*,v*) with
respect to u and denoted by d, F(u”, v*).

Similarly, if F o 7,- is differentiable at v* we say that F is differen-
tiable with respect to v at (u¥,v”) and the linear map d|F o 7,-|(v*} €
L(Y, Z) is called the v-partial derivative of I at (u*,v*) and denoted by
dy F{u*,v*).

The preceding definition is equivalent to requiring that there exist a
linear map A, € L(X, Z) (resp. A, € L{Y, Z)), such that

F{u" + h,v") — F(u*,v") = A, (k) + o(|| h]]),
Flu, v + k) = Flu*,v*y = A, (kY + o(|[k|).
The following result is an immediate consequence of Definition 4.1 and

the differentation rule 1.4 (ii}.
t

Proposition 4.2 If F is differentiable at (u*,v*) then F has partial
derivatives with respect to w and v al (u*,v") and we have

d, F(u*, v™)(h) = dF (", v")o(h) = dF(u*,v*}(h,0),
dpF(u", 0" )(k) = dF(u’, v )7 (k) = dF(u*,v* )0, k).
In quite similar way onc can define higher partial derivatives. For

example, if F has w-partial derivative at all {u,v) € @, we can define
the map F, : @ — L{X, Z) by setting

Fo(u, v} = dy F(u,v).

Then the partial derivative d,, , F'(u",v") is the v-derivative at (u*,v")
of F,, namely

dy o F(u”,v") = do[Fy](u*, 7).
The map £, , 1 Q — LY, L(X, Z)) will be defined by setting
Fyo(u,v) = dy o Fu,v).
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Moreover, if F is twice differentiable at (u*,v*), then d,F(u*,v*) is
the bilinear map from X x Y to Z given by

(h, kY = F'{u*,v*)[oh, TK]. {4.1)
The notation d™ .., will be employed to indicate

0 mee = de (472).

-t
The definition of partial derivative given above permits us to obtain
in a rather straightforward way all the classical resuits of calculus.
For example one can prove the following.

Theorem 4.3 Suppose that

{i) F has u- and v-derivatives in a neighbourhood N of (u*,v") € Q,
(1) Fy. and F, are continuous in N.
Then F is differentiable at (u*,v*).
As another example, we can use (4.1) and Theorem 3.4 to show
duF (1", v")[h, k] = F"(u*,v")[oh, 7k
Y= Pt v)irk, oh] = dy o F(ut, vk, ],

which is nothing else than the classical Schwarz Theorem.

Taylor’s formula

Let F € C"(Q.Y) and let u,u + v € @ be such that the interval
[w,u+v] Q.
Set. y{t) = u+tu, t € [0,1] and let ¢ : [0,1] — Y be defined by
B(t) = Fv(¢)).
Using Proposition 1.4 (ii) and (3.7) it follows readily that the function
¢ is C™ and there result
#(t) = dF(u + to)[vl,
?"(t) = d2F{u 4 t)[v]?,
™ () = d™Flu + tv)[o]™.
By elementary calculations one has

B(1) = $(0) + ¢'(0) + %45"(0) PV

= 1)!96‘")(0)

1
+ fgél_)' /(1 — )" o™ (t)dt,
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and hence
Flu+v) = Fu) + dF(u)fv] + -

+ ﬁ 0/(1 - t)n—ld(n)F(u + tv)[v]dt.

" The last integral can be written as
1

1
— (1= )T P L) dE[o]"
(n—1)! 0/
= éd"F(u)[v]” + e(u, v)[v]"™, (4.2)
where
1
&e(u,v) = IF—I_W f(l—t)“"[d(”)F(u-i-tv)—d(")F(u)]dt —0asv — 0.
0

Lastly, let us write explicitly the form of (4.2) when F' = F(u,v) is
defined on Q C X % ¥ with values in Z and is C*, that is, has continuous
partial derivatives up to order n. We write (u,v) instead of u and set
w = {h, k) = oh + vk. If we use Proposition 4.2 the mth term in (4.2)
becomes

%d(m)F (w,v)[w]" = ;nl—;d("‘)F(qL, o)oh + Th]™
= %!-d(m)[«"(u, ) Z (’;‘) [oh] (k]
\
- % > (?)d(m)F (u,v)[ah]e[rk]’”-*f
= o 3 (7 )t ome A

—

Remark 4.4 (on notation) Hereafter we will often deal with maps
F:Rx X — Y depending on a real parameter A. In such a case
the mixed derivative Fy, 5(A,,u,) is a linear map from R to L(X,Y) :
Fux(Xo, 1) € L(R,L{X,Y)}). Then, in accordance with what we re-
marked in Example 1.3 {¢), we can and will identify F, 5 (2., 1) with
the linear map A — F, »(X,, ua)[#, 1.
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