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Xt < u < . It remains to show that (P,) has a solution for ¢ = T~.

Take a sequence ty — T™,f, < T*. Problems (P4} corresponding to

values { = ¢; have solutions u;. From the preceding construction it is

easy to check that the u; converge to some u* which solves {Pp ).
This completes the proof of Theorem 2.5.

Remarks 2.10 X

(i) Improving Theorem 2.5, it has been shown [AmaH)] that for all
t < T*(F;) has at least two distinct solutions (the second one is found
by degree-theoretic arguments). See Problems (1) and {2) below for
another multiplicity result in this direction. For an extensive discussion
of elliptic equations with jumping nonlinearities we refer to [Fu].

(ii) A geometric description of the range of a differential operator more
in the spirit of Theorem 2.4 can be found in [MeS].

5

Bifurcation results

The structure of the solution set of a nonlinear functional equation can
be very complicated and often it could be convenient to assume a “ge-
netic” point of view, seeking for when new solutions are generated, near
a given one, after a small perturbation. A convenient device consists
in finding (or introducing) a parameter A, and studying an equation =
F()u) = 0 which possesses a fixed solution for all values of the pa-
rameter. An interesting phencmenon is when there is a “branching” of
new solutions of F(A,u) = 0 in correspondence with some value of the
parameter. This is the object of the “Bifurcation theory” we will discuss
in this chapter in its more elementary aspects.

1 Introduction
Let X, Y be two Banach spaces. We are interested in studying equations
of the type

om0 (1)

where

F:RxX-Y

is a map depending on a real parameter A.

As we will see in the next chapter, equations like (1.1) model a broad
class of problems arising in applications, where the parameter A often
has a physical interpretation: it can be the intensity of the loading in
some elasticity problems, the Rayleigh number in hydrodynamics, and
S0 On.
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S

Figure 5.1 This and the following bifurcation diagrams
are to be interpreted as suggestions only.

In this chapter we will always assume that F € C?(R x X,Y) and
that

F(A,0) =0 R.

If this is true, then Ll 1} has for all A the solution u = 0 which will
be réferred to as the arwwl soluliofis

S ={hu) eRx X w # 0, F()\ u) = 0} will denote the set of

E’ﬂ‘_f_ vial solutlonb ‘of (1. 1. T e
It can happen “that for some values of the parameter there are one

or more solutions of (1.1} that branch off from the trivial one. These

values of A are called the bifurcation points of (1.1) (Figure 5.1). More

precisely, we give the following definition:

Definition 1.1 We say that X~ is a bifurcetion point for F (from the
trivial solution) if there is a sequence {(An, 1,) € R x X with u, # 0 and -
F({ ., u,) = 0 such that

(Anstn) — {A*,0).

Another, equivalent, way to define a bifurcation point, is to require
that (A%, 0} belong to the closure (in R x X) of S, that is, that in any
neighbourhood of (A*,0) there is a peint (A, u) € S.

Let us begin our discussion by stating a result that follows immediately
from the Implicit Function Theorem.

Proposition 1.2 A necessary condition for A* to be a bifurcation point
for F is that the partial derivative Fo(A*,0) is not invertible.

Proof. Tf F,,(A*,0) € Inv({X, Y) then Thebrem 2.2.3 applies and there

é
i
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exists a neighbourhood © x V of (A*,0) such that
Fou)=0Mu)edxV,<=u=0
Therefore A* is not a bifurcation point for F.

An interesting case is when X =Y and
F(A uw) = du— Gu). (1.2)
In such a case F, (A%, 0) = A*T — G'(0} and Proposition 1.2 becomes
the following.

Proposition 1.3 If A is a bifurcation point for F of the form (1.2)
then A belongs to the spectrum o[G'(0)] of G'(0}.

It is quite natural to ask whether or not Proposition 1.3 can be in-
verted:

fAeolG'(B)], is A a bzfurcatwﬂ point for F ¢

We anticipate that, in this generality, the answer to the preceding
question is negative.

The particular case when F has the form (1.2) with G = A € L(X) is
particularly enlightening. Note that, if G is linear, then G'(0) = A and
the relationships between the bifurcation points for

F=X-A (1.3)
and the spectrum o(A) of A can be established in a precise fashion.

First of all, it is clear that the eigenvalues of A are bifurcation points
for F = (1.3).

Moreover, the following result can readily be proved.

Proposition 1.4 Let A € L{X) and F(A,u) = du— A(u). Then X* is
a bifurcation point for F if and only if A* belongs to the closure of the
eigenvalues of A,

Remarks 1.5

(1) As a consequence of Proposition 1.4, we deduce that in generel,
there might be points A belonging to the spectrum of A thai are not
bifurcation points for F of the form (1.3).

(ii) From Proposition 1.4 it also follows that X* can be a bifurcation
point for Al — A without being an eigenvalue of A,

We have seen that when F has the form (1.3} all the eigenvalues of A
are bifurcation points for F. The following example shows that in the
nonlinear case a value A* can be an eigenvalue of G'(0) without being a
bifurcation for F(A,u) = Au — G(u).-

=
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Example 1.6 Let X = Y = R? and consider the application G :
X — X defined by

Gla,y) =&+, y—2°).
The value A* = 1 is an eigenvalue of g’'(0) = I, but it is not a bifurca-
tion for

. F: (m‘l y) - A($9 y) - G(Ir y)
For let (z,y) be a solution of F = 0. From

Az =z +1°,

My =y—a°, }
it follows that

t +y* =0,

and hence (z,y) = (0,0). Therefore F' = 0 has only the trivial solution
and there are no bifurcation points for F.

2 Some elementary examples

In this section we will discuss a couple of simple examples, where the
existence of bifurcation points can be proved in a rather elementary way.

As a first example, let us consider the boundary-value problem
d2

dt2+.\(u w’)=0, tel0,x], (2.1)

1 w0} =u(r)=20 (2.1
For all values of the parameter A € R {2.1)-(2.1') has the trivial solution
u{t) = 0. To find other possible solutions we can work in the phase plane
and argue as follows. Multiplying (2.1) by
du
P=a
one finds immediately that any solution of (2.1) satisfies the energy
relationship
1, u?
2P + /\(— —-Z-) = ¢ (= constant). (2.2)

The integral curves in the phase plane (u,p) are represented in Figure
5.2,

We can distinguish between two families of integrals, which are sepa-
rated by curves that pass through the singular points (1,0) and {—1,0).
In particular, the closed curves correspond to periodic solutions of (2.1)
and we are interested in the arcs of those closed integrals that start from

5.2 Some elementary ezamples 83

-
=

Figure 5.2

Ay

points (0, p) and again reach the p-axis after a time equal to 7. From
the symmetry, such a time is an integer multiple of the semiperiod T
Let I's be an integral curve crossing the u-axisat u = £, with0 < £ <1
{see Figure 5.3).
Putting p = 0 and = = £ in (2.2) we can find the value of ¢ corre-
sponding to I'¢:

o= A(38 - 169, (2.3)

Let T(2,£) be the semiperiod of T'¢. From the symmetry, T(}, £) is

given by
du
T(ME) =2 / —
) p’
3

where 7y denotes the arc of I with p > 0.
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T p
Pe = \/fc
e
' »u
£ 1

Figure 5.3

Taking into account (2.2) and (2.3) one finds with easy calculations

3
dz
00 =2 [ e

1

- £dy

- 2! Viee = 3E? ~ 1]
1

_ 2] £dy
J VIZR(AE2 — 164) — M2 — Ledyh)

Y dy
VAL V=38 -0 - 382)]

Let us note explicitly that (2.4) allows us to extend T(), Jaté=0
by setting

T

2 [ 4y -
T(A,O)—\/Ab[\/(l_yg)_-\-/—x (2.5)

As anticipated before, I'; gives rise to a solution of the boundary-value

s |
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problem (2.1)-(2.1') whenever £ is such that
mT{AE)=n {2.6)

for some m € N.

For example, if £ is such that T(A,£) = m, then T'¢ corresponds to
a positive solution of (2.1} with (0} = 0 and p(0) = v/(0) = p; (see
Fig,5.3), u{m)} = 0 and p(7) = v'(7) = —p¢.

To discuss equation (2.6) we first deduce from (2.4) that, for any fixed
A, there result

aTng _
o T
T(AE)— +ooas £ 1.
Taking (2.5) also into account, we get that

{a) if A < 1 then T(A,£) > = for all £, and (2.1)-(2.1'} has only the
trivial solution u = 0,

{b) i A =1 then T(A,0) = = and £ = 0 is the only solution of (2.6),
and hence (2.1}~(2.1') has again the trivial solution only,

(¢} if1 < X< 4, then (2.6) (with m = 1) has a unique solution £ # 0
which corresponds to a positive solution ue of (2.1)-{2.1"). (More
precisely, as A | 1 the solution £ = £(A) as well a5 p¢ tends to 0;
correspondingly (2.1)-(2.1") has a family u) = ug(y) of (positive)
solutions, depending continuously on A, such that fusflcr — 0
as.A | 1, and we can say that the (positive) solutions of (2.1)-
(2.1') bifurcate from the trivial solution at the value A = 1 of the
parameter).

The discussion can be carried over showing that (see Figure 5.4)
(d) if k2 < A < (k+ 1)2 then (2.6) has k solutions &,..., € # 0,

S
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ALy

Figure 5.5

satisfying
RT(AN&G)=m (h=1,...,k).

Each £, corresponds to a solution of (2.1)-(2.1") with precisely fz — 1
nodes in (0,7). In particular we can say that there is a continious
family of solutions wy of (2.1)-(2.1'), with k& — 1 nodes in (0, ), such
that |luy|lcr — 0 as A | k2.

It is worth noting that, from the abstract point, of view, the boundary-
value problem (2.1)-(2.1'} gives rise to a functional equation of the type
(1.1). Here X is the Banach space of C2(0,) functions vanishing at
t=0andt=mY =C(0,7),and F: R x X — Y is given by (see also
Example 2.1.5)

d2
F(hu)= E-;t + AMu - u?).
There results
d?u
de?
and the values Ay = k? are precisely the eigenvalues of the linear problem

d?u

=T Au =0, u(0) =u(x) =0.

As a second example, we consider the buckling problem for an elastic
beam of length L.

We suppose that one edge of the beam is hinged, while the other one
is variable on the z-axis. The beam is compressed at the free edge by
a force of intensity K > 0. Denote by (z(s), y(s)) the coordinates of a
point A on the beam, as a function of the length s of the arc 0A, and let
@(s) be the angle between the tangent to the beam at A and the z-axis.
See Figure 5.5.

Fo(M\0):u - + A,
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Figure 5.6

In accordance with the Euler-Bernoulli theory, the curvature of the
beam.at any point is proportional to the momentum of the applied force.
Then there result

d .
Ky= —m% (x = constant), a—% = sin ¢, (2.7)
together with the boundary conditions
y(0) = y(L) = 0. (2.7)

From (2.7)-(2.7") we deduce
L |
— +Asing =0, s€[0,L},

ds? (2.8)
#'(0) = ¢'(L) =0,

where A = K/k > 0.
To study (2.8) we can proceed as before. We refer to Figure 5.6.
If we let p = d¢p/ds, conservation of energy yields

%p2 — Acos¢ = c = —Acos ¢y,

and the semiperiod of the (closed) curve passing through (g, 0) is given
by

d
T(\, do) = 2 f ?“"
J
# 2

B d6
VA of V(1 —w?sin? @)’
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ﬁ’ A
Al /\2 A3 /\Ic
Figure 5.7
where
w = sin =2
5

An arc of a closed curve joining two points of the z-axis corresponds
to a solution of (2.8) whenever
WT(A, ¢o) = L,

for some h € N,

Since T'(, .} is still strictly increasing and T'(}, ¢} — +00 as ¢ T 7,
we deduce:

(a) For 0 < A < x?/L? (2.8) has only the trivial solution ¢ = 0.

(b) For k2n?/L? < XA < (k +1)?x2/L? (2.8) has k nontrivial solutions
@1, .., ¢x. In additioh, for fixed k = 1,2,..., there exists a con-
tinuous family ¢, of nontrivial solutions of (2.8) whose C! -norm
tends to zero as A | Ay = k®n?/L2

The bifurcation diagram is drawn in Figure 5.7.

As for the preceding case, we can see that the functional equation
corresponding to (2.8) is

2
F(Aé) = :—Sf- + Asing =10

whith ¢ € X, the Banach space of functions of C?(0), L) such that ¢'(0) =
$(L) = 0.

The linearized equation Fy(A, 0} = 0 becomes

dy 0) = o
N =0,9(0) = 9D =0, (2.9)
whose positive eigenvalues are just
k2 2
M= k=12, ..

F

w2
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Note that X = 0 would also be a bifurcation point of F(A, ¢) =0, F
given by (2.9). Indeed, for A = 0, the equation F(0, ¢} = 0 has the family
of nontrivial solutions ¢ =const. However, these solutions correspond to
the trivial solution y = 0 of the physical problem (2.7).

3 The Lyapunov—Schmidt reduction

In this scction we dicuss a general procedure, introduced by Lyapnnov
[Ly 1-2] and Schinidt {Schm], which will be a basic tool hereafter, but
can also be useful in several other situations. It is a method we have
already used in Sections 3.2 and 4.1, for the specific problem studied
there.

Let F € C*{R x X,Y) be such that

F(A,0) =0.

According to Proposition 1.2 the possible bifurcation points for £ are
the values A* such that F,(A*,0) is not invertible. We set

L=F,(A,0),
V = Ker(L),
R=R(L),

and suppose that
{a) V has o topologicel complement W in X.

This means that there exists a closed subspace W of X such that

X=VeoW {(3.1)
and any v € X can be written in the form
v=u+t+w, vEV, we W (3.2)

On the range R of L we assume
(b) R is closed and has a topological complement Z in Y.
This means that ¥ = Z & R, with Z closed and such that Z i Rt = {0}.
For example, {a} and (b) hold true when V is finite-dimensional and R
has finite codimension, that is, when L is a Fredholm operator.

Next, let P and @ denote the conjugate projections onto Z and R,
respectively, :

Using (3.2) and applying P and @ one finds that F(A,u) = 0 is
equivalent to the system

PF(Av+w)=0, (3.3)

=0
QF(Av+w)=0, (3.3

—_—
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For later use, it is also convenient to set
F(Au) = Lu + (X u).
Using (3.2) and recalling that Lv = 0, one has
F(A u) = Lw + (A, v + w).
Recalling that Lw € R, we get @QLw = Lw. Then (3.3") becomes
Lw+ QM v+w)=0. (3.4)
We set
(X, v,w) = Lw + Qi v+ w)
and note that ® € C2(R x V x W, R). Moreover
B,(A*,0,0) : w — Lw + Q. (A", 0hw.
Since, by definition, (A, u) = F(A, u) — Ly, there results
@u(A,0) = Fu(A*,0) — L = 0. (3.5)
In other words, @, {A*,0) is the zero mapping in L(X,Y’) and therefore
it follows that ®,,(A*,0,0) = L|w-.

We remark that the restriction Llw of L to W, as a map from W to
R, is injective and surjective, Since R is closed, (L|w)~! is continuous
from R to W, namely

Llw € lso (W, R). {3.6).

Hence ®,,(A*,0,0) € Iso (W, R), the Implicit Function Theorem applies
to ¢ and (3.4) can be uniquely solved, locally, with respect to w. To be
precise, there exist

(i) a neighbourhood A of A*,
{ii) a neighbourhood Vofv=0inV,
(iii) a neighbourhood W of w =0 in W, and
(iv) a function v € C*A x V, W),
such that the unique solutions of (3.%”) in A x ¥ x W are given by
(A, v, (A, ).
In particular, for future reference, we remark that results .
¥(A,0) =0 for all A € A, 3.7)

Maoreover one has
Yu{AT,0) = 0. (3.8)

To sce this, we can use the Implicit Function Theorem or else we can
take into account that

Ly(Av) + Qu(d v+ y(Av)) =0 forall (M v)eAx)V.
Differentiating with respect to v at (A*,0), and letting T' = ~,(A", 0), we

i

g i)
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find
LTz + Qoo (X, vy(\",0))[x + Tx] =0 for all z € V.

Since ¥(A*,0) = 0 and using {3.5) we get that LI'r = 0 for all z € V,
and hence 's e VMW, ThusTx =0forallz € V.
After these preliminaries, we can substitute

w=y{A\v) : (3.9)
in (3.3') getting
P(F(Xv+v(Av)) =0 (3.10)

The equation (3.10} in the unknowns (A, v} € A x V is called the
bifurcation eguation and, together with (3.9), is equivalent (in AxVx W)
to the initial equation F(A,u) =0,

Obviously, the preceding reduction is useful if the bifurcation equation
is simpler than F = 0. This is the case when L is a Fredholm operator:
if dim(V) = p and codim{R) = dim(Z) = g, then (3.10) is a system of ¢
equations in the unknowns (A, v) € R x R,

4 Bifurcation from the simple eigenvalue

In Section 1 we saw that the possible bifurcation points of F(X,u) =0
are those A* such that F,(}* 0) is not invertible. To find sufficient con-
ditions for A* to be a bifurcation point, some restrictions are in order. In
this section we will study the case in which L = Fy,(A*,0) is a Fredholm
map Wlth mdex ZETo and w1th one- d1mem10nal kerne] In the case of

Glu) = M,

with G € C({X, X), G(0) =0 and G'(0) compact, this corresponds to
the case when A* is a simple eigenvalue of G'(0).

Let us take a map F € C*{R x X,Y) satisfying F(A,0) = 0 for all
A. We note explicitly that the condition F € C? could be weakened
assuming that F € C{IR x X,Y) and has mixed partial derivative Fyy x,
see Remark 4.3 (i).

The hypothesis that L = F,(A",0) satisfies assumptions (a) and (b)
of Section 3 needs to be specified here.

Keeping the notation of the preceding section, we set V' =Ker(L), R =
R(L) and let W and Z denote complementary subspaces of V' in X and
R in Y, respectively.

We will say that L (or F) satisfies Assumption (1) if
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(I-i) V is one-dimensional: 3u* € X,u* # 0 such that V = {tu* : t €
R}s
(I-ii} R is closed and codim (R) = 1.
According to (I-i) Z is one-dimensional and there exists a linear func-
tional 4 € Y™, 4 0, such that
R={yeY:(py =0}

We also use symbols P and @ to denote the projections onto Z and R,
respectively. _

With this notation, the bifurcation equation (see (3.10)) becomes

(g, F(O tu” + (A, tu")) = 0. (4.1)
It is convenient to set A = A* + u, and
Blent) = {0, FOA" + po, tu™ +y(A* + g, tu”))).

Note that 3 is a real-valued function defined in a neighbourhood U7 of
{0,0) € R x IR and is of class C? there, because F' and «y are 2.

The following properties of 4 will be used later (subscripts denote
partial derivatives):
(81) B(p,0) = 0 for all u; in particular,
(.82) ﬁ.u(oa 0) = ﬁ#,#(oro) =
(33) £.(0,0)=0.

To prove {31) we note that

B(1,0) = (3, FA" v(A" + g, 0))).

Since ¥(A,0) = 0 (see (3.7)) and F(X",0) = 0, (31} and (£2) follow.
Next, to prove ((33) we differentiate B with respect to t yielding ‘
Be(pe £} = {3, Fu(A* + oy tu” + (2% 4 o, b Y u® + v (A7 + g, tu" u™]).
Letting ¢ = 0 and taking into account that v(A* + ,0) = 0, we find

Bela, 0) = {0, Fu (A% + g1, v(A" o 1, D)™ + 10 (A 4 g1, 0)]}

= (¥ Fu(A" + p, 0)fu” + 9 (A" + 42, 0)u”]). (4.2)
Since v, (A7, 0) = 0 (see {3.8)), we infer
ﬁt(oa 0) = ("JJ,Fu()\’yOJU‘) = (’l/), Lu') = 01

proving (33).
Furthermore, from (4.2) it follows that

Brn(, 0) = (¥, Fu s (X" + 14, 0)fu” + 10 (X + 12, 0)u’])

+ (W, Fu(A" + 11, 0) 10,2 (A" + 12, 0)[u"]).
Here and always hereafter, we identify, according to Remark 1.4.4, the
mixed derivative such as F, 5 or 7, s with linear maps.

R

o
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Letting u = 0 one finds ‘
Be,u(0,0) = (3, Fu a (A7, 0)[u” + v, (A7, 0)u’]}
+<¢7 Fu()\': 0)70,»\(/\*5 0)[1"'])

= (¢, Fu a(A%,0)[w"]) + (&, Fu(A", 0)yy 2 (A%, 0)[w")).
Finally, since 9| = 0 and F,(X*,0)y,A(A",0)[x*] € R,
(1, Fu( A7, 0) 10,4 (A", O)[u’]) = 0,
and we infer
(54) ﬂt,tl(ow 0} = {1, Fu.»\(’\.vo){U*i)-
Furthermore, let us remark for future reference that, with direct cal-
culations, one finds

(B5) Bra(0,0) = {3, Fyy o (A, 0)[u*, w*]).

We are now in position to state the main result of this section.

Theorem 4.1 Suppose F € C3(R x X,Y) be such that F(4,0) =0 for
all A € R. Let A* be such that L = F,{)\*,0) satisfies assumption (I).
Moreover, letling M denote the linear map F, 5(A*,0), we assume that

Mu* ¢ R. (4.3}
Then X is a bifurcation point for F. In addition the set of non-frivial
solutions of F = 0 is, near (A*,0), a unigue C' cartesion curve with
paramelric representation on V.

Proof. According to the preceding discussion we have to solve the equa-
tion

By, t) =0,

where f is €2, In order to use the elementary Implicit Funetion Theo-
rem, we need to “desingularize” 3. For this, let us introduce the function-

Bu, )/t for t #0,
h(“’t):{ﬁg(f;,()) for £ = 0.

Using properties (31-4) it is easy to see that h is €', £(0,0) = 0 and
that

14(0,0) = 8,,,(0,0),

1
he(0,0) = 26.4(0,0).
Setting
o := h,(0,0) and b := k,(0,0)




[
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and using (#4) and (85) we find
a= (d’a Mu-)7

1
b= 5(1;:, Fy o (A7, 0Yuw”, w™]).

In particular, from Assumption (4.3) one deduces

a={, Mu") #0. (4.4)
Therefore the Implicit Function Theorem applies to £ = 0 yielding a
neighbourhood (—¢,£) of t = 0 and a unique function g & C(—¢,¢)
such that p(0) = 0 and h{u(t),t) = 0 for all ¢ € (—£,£). Since the
equation (g, t) = 0 is equivalent, for ¢ # 0 to (g, t) = 0, it follows that
the bifurcation equation (4.1) has been solved uniquely by u = p(t).

Then, according to the results of Section 5.3, one finds that
F(AT 4 (), tu” + y{(A* + pt), tu*)) = 0 for all ¢ € (—¢,€).

Note that tu* + y(A™ 4+ u(t), tu*) # 0O provided ¢ #£ 0. Therefore the
set & of nontrivial solutions of F'(A,u) = 0 is given, in a neighbourhood
of (A*,0), by the {unique) cartesian curve

A= A% 4 p(1),
w =t YA+ plt), e,
where t € (—¢,€),t # 0. This completes the proof of the theorem.

Theorem 4.1 becomes particularly expressive when ¥ = X and
F(’\s y) =du-— G’(u),
where G € C*(X, X) is such that G(0) = 0. As already seen in Section 1,
the possible bifurcation points of § are points of the spectrum of G0).
Here we will show that, when G'(0) is compact, any simple cigenvalue
A # 0 of G'{(0) is in fact a bifurcation point. A statement of this sort

will provide a first answer to the question posed in Section 1, after
Proposition 1.3. -

Theorem 4.2 Let G € C?(X, X)) be such that G(0} = O and such that
G'(0) is compact. Suppose that A* # 0 is a simple eigenvalue of G'(0),
in the sense that

dim(Ker(A*7 — G'(0))) = 1, {4.5)
Ker(\'I — G'(0)) N R(A"1 = G'(0)) = {0}. (4.6)
Then A* is a bifurcation point for F(A u) = du - G(u).

Proof. Here L = F,(A*,0) = A*T—G'(0), V =Ker(A\*I - G'(0)) = {tu" :

it

it
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t € R} and R = R(X T - G'(0)). Since G'(0) is compact, assumption
(1) follows immediately from {4.5).

Moreover, owing to the specific form of F', one has M = F, »(A",0) is
the identity map, and therefore @ = {4, %"} where, as before, ©* denotes
a vector spanning V. According to (4.6), v* ¢ i and thus a # 0, proving
{4.3). Then Theorem 4.1 applies and the result follows.

Remarks 4.3

(i) As anticipated, F' can be assumed of class C!, with continuous
mixed partial derivative F,, ». For a proof, which requires some techni-
cality, see [PA]. Similarly, onc can show that Theorem 4.2 holds provided
G e VX, X).

(il) The bifurcation results stated in Theorems 4.1 {or 4.2) do not
hold, in gencral, if we only assume that L satisfies (I), namely that
the dimension of Ker(L) and the codimension of R(L) are 1 without
assuming (4.3) or (4.6). To see this, we can slightly modify Example
1.6. To be precise, let X =¥ = R? and

Az —y—y° ; L
F(,\,:r,y)=( Ji\ Y ’Ey ) :' /\2’5
Y+ oooant
The same calenlations performed in Example 1.6 show that, if

F(az,y) =0,
then there results
¥ +yt =0
Hence F' (A, m,5) = ( has the trivial solution, only, and there are no

bifurcation points.
Here, the derivative of F with respect to w = (7) evalnated at (,0,0)

is the map
T At —y
F,(2,0,0): (y) — ( Ay )

Then, for A* = 0, we have that L can be identified with the matrix

0 -1
e=[5 3}

Thus V = R =span{«*}, with v” = ((1}), and (I) holds. On the other
hand, M is the identity and hence Mu* = u* € R. Note that Theorem
4.2 does not apply either. Indeed, the algebraic multiplicity of A =0 is
2, not 1 (in other words, (4.6) is not satisfied).

It is worth noticing that Theorem 4.2 applies only to maps of the
specific form F (A «) = Au ~ G(u). We mean that when X =Y but F
is not in the form Af — G, one has to use Theorem 4.1. In such a case,
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the condition V' N R = {0} does not play any role. To explain this, let
us consider the map F: R x R? - R?,

Fovan= () (N T

Ax+ay+ad) A+ 2 at
As before, for A =0, L= [0~} and V = R =span(}}, but now the
mixed derivative Fy, 1(0,0,0) is the matrix M = [} {] and M : (o) —

(1} € R, so that (4.3) holds true and A* = 0 is a bifurcation point for
F. With a rather elementary calculation one can solve the system

M —y—y’ =0,
Mz+y)+z¥ =0,

showing that the bifurcating branch has equation

Y= -z 4. s
A=—$2——I4—1—....}

(iii) When a = (3, F, (A", 0)[w*]} = 0 several different situations can
occur and a more careful analysis is required. In the analytic case, it
can be useful to employ the Newton polygon method to solve the bifur-
cation equation. For more details on this matter we refer to [VT)]. The
Newton polygon method has been exteuded to differentiable functions
by Dieudonné [D2].

(iv}) Assuming F more regular (say O, for simplicity) one can com-
plete Theorems 4.1 and 4.2 by some calculations which will allow us to
specify the behaviour of the bifurcating branch near (A*,
5.8).

Since w(t) solves h{u,t) = 0, there results {see the proof of Thecrem
4.1)

0} (see Figure

where (see earlier)
a= (¥, Fua(A, 0)[«")),
1
= 30 Fuu V7, 0", ).
Therefore if b # 0 we have
b
A=A"— -t+o(t)

and the bifurcating branch (A, u) € S can be parametrized (for |A — A%
small} in the form

u Yy w -
u=—3(A—A Jut +o(A— A%,

Z
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,\*/#
/

(a) case b#£ 0

(transcritical)

b
*
¥

-
A /

(Measeb=0, ¢c>0 (c)caseb=0, c <0
(supercritical) (suberitical)
Figure 5.8

We note that when & # 0 the equation ' = 0 has noutrivial solutions
both for A > A* and for A < A* (franscritical bifurcation}.
When & = 0 one finds

2c:=pu'"(0) = ——(1/) P (A7, 0)[u"]3). (4.7)
Ifb=0and c# 0 the bifurca.tmg branch has the form

Ao Aty 172
u=:f:( ) ~ut 4+ O(A =A%),
c

Note that the preceding formula shows that if ¢ > 0 (respectively, ¢ < 0)

then the bifurcating branch emanates on the right (respectively, left) of

A" (supercritical, respectively subcrilical, bifurcation).
It is worth remarking that, when F(A, ¢) = Au—G{u) and G is smooth,
the values of b and ¢ are given by the formulas

1
b= _Ew’ G (0)[u*, u*])

and

- & B E O

Remark 4.4 When F(A u) = Au — G(u), with & compact, that is,
G(u,) is relatively compact in X for any bounded soquence {u, }, it s
possible to use theCeray-Schauder topological degree and Theorem 4.2
can be greatly improved. Results of this sort are outside the scope of this
book and cannot be discussed here. However, owing to their relevance,
we shall give a review of the most important oncs in a short appendix
at the end of this chapter.

Postponing further examples to the next chapter we discuss here some
problems related to those studied in Section 2.

Example 4.5 (Sturm-Liouville problems) Let J = [0,7],0 €
CHJI)LBeC(Iha,B>00nd, pe CHJ xR xR)and let ag, by, ay, by
be such that (a2 + b2} (a? + b}) £ 0.

N
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Consider the Sturm-Liouville b.v.p.

) d d du
—Lu = e (aa-iu) +,8u=/\u+p(z,u,a) ,z e J (4.8)
aou{0) + bow'(0) = ajuln) + bv'{7) =0, {4.8")

where A is a real parameter.

Setting X = {u € C?(J) : u satisfies (4.8)},Y = C(J), define F :
RxX =Y by

F(\u) = Lu + Au + p{u) (4.9)

{as usual we are using the same symbol p to indicate the Nemitski op-
erator associated with the real-valued function p) so that the solutions
of {4.8)-(4.8') are the pairs (A, u) € R x X such that F(A,u) = 0.

Suppose that p = p(z, s, £) satisfics

p(,0,0) = 0,p,(,0,0) =0 and pe(z,0,0) = 0.
As a consequence, onc has
F(X,0) =0 for all A,

F (A0 u— Lu+ A
Recall (see subsection 0.6) that the linear problem
~ Lu(z) = Malz) (= € J),
agu{0}) + bgu'(0) = ayufr) + b/ (m) = 0, }
has a sequence A, of positive, simple eigenvalues, such thai A — oo
as k — oo. Let ¢ be an eigenfunction of (4.10) corresponding to Ay,
normalized by t

"

/tpﬁd:r, = 1.

0
Let us apply Theorem 4.1 with A* = A, and w* = ¢, According Lo
subsection 0.4, one Tias

(4.10)

V= Ker[F,(A,0)] = Ry, R= R[F, (A, )] ={uec¥: futpkd:r: =0}.
0
Therefore (I} holds true. Furthermore we can define v hy (3, u} =
Jo wopdz.
Since Fya(Ak,0) i v — v, a = (, ) = [ widr = 1, proving (4.3).
In conclusion, applying Theorem 4.1 we infer that each Ay is a bifurcation
point for F = (4.9). Hence

For each k= 1,2,..., there is a continuous family uy of nontrivial
solutions of (4.8)-(4.8') such that fluy]lee — 0 as A — A
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Example 4.6 (Dirichlet Problems) Let 2 be an open bounded do-
main in R™ and consider the boundary-value problem

—Au = M+ p{z,u, Vu) in ,
1 = (b on 3%,

where p € C%(R x R x IR") satisfies p(x,0,0) = 0, p,(2,0,0) = 0 and
pe(z,0,0) = 0.

Since the discussion does not differ from that of the Sturm-Liouville
problem, we will be sketchy.

Let X = {u € C2*() : u = 0 on 81}, Y = C** () and F(\u) =
A+ At + p{u); one has that F(A,0) = 0 for all A and F,(A,0) is the
map v — Av + Av. Hence F,{}, 0) has a nontrivial kernel provided A is
an eigenvaluc of

—Av = v in Q,
} {4.11)

v=0on J

If Ay, is any simple eigenvalue of {4.11) with corresponding eigenfunction
k, normalized by f,pidz = 1, then (I) holds true. As before, one
has B = R(F,(M,0) = {u € Y : (¥, u) = [,upedz = 0}; since
Fur(h0) s v - v,a = {§,p5) = 1 and (4.3) holds, too. Thercfore,
from Theorem 4.1 it follows that

any simple eigenvalue of (4.11) is o bifurcation point for

P\ ) = Au + A + pu).
We note that, in particular, this result applics when we take the first
eigenvalue of (4.11).

To know the behaviour of the bifurcating branch we refer to Remark

4.5, For simplicity, let us take a (smooth) nonlinearity p depending on

u only.
Since here F,, ,,(Ax,0) : (v,w) — p"(0)vw, (4.4) becomes

1 . : 1 a
b= §<w; Fu,u()‘ ’0)[(Pky ‘Pk]) = EPH(U)] :p“,id;c,
Q
If p”(0) = 0, oue uses (4.7) yielding

c= —%p”'(ﬂ) f wida.
1t}
For example, if p(1z) = —u3, then b = 0 and ¢ > 0; hence the bifurcation
is supercritical that is, occurs for A > Ag, while, if p(u) = u?, thenc < 0
and the bifurcation is suberitical (see Figure 5.9).
We end this section with some further remarks on the geometric char-
acter of Theorems 4.1-4.2.
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)\k< " >Ak "

{2) Bifurcation portrait
for — Au= Ay —u?

(b) Bifurcation portrait
for — Au = Ay +u?

Figure 5.9

After the Lyapunov-Schmidt reduction, the problem of finding the
bifurcation points of F(A, %) = 0 is reduced to the search for the zeros
of 4 real-valued C? function 8 = B(u,t), with the properties that

B{p,0) = 0 for all g,
,6;_ (0., 0) - 0,
8.:00,0) #£ 0.

The proof we have carried out led us to find two branches of solutions:
that of the trivial zeros, and that of the nontrivial solutions, giving rise
to the bifurcation branch Suppose now that F is perturbed  through F
with [[F ~ F||g2 < £, with £ small. Perturbing F' through # will affect
the bifurcation equation in the sense that § = ( will be replaced by a
perturbed bifurcation equation 3 = 0, with |8 — Bllcz small. In general
it is possible to prove that the zeros of § become two branches that
do not cross themselves, in general, but are merely “close” (see Figure
5.10).

This kind of perturbation phenomenaon arises, for example, wilen one
deals with bifurcation problems from the point of view of numerical
analysis: approximation or truncation procedures can be viewed as per-
turbation.

For a discussion of this kind of problems, we refer to the paper by
Golubitsky and Schaeffer [GS].

5 A bifurcation theorem from a multiple eigenvalue

In this section we will discuss a result dealing with a case in which
Ker(L) is, possibly, not one-dimensional.

e
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(a) Solutions of 5 =90 (b) Solutions of =0

Figure 5.10

For simplicity, we consider an F € C°°(R x X,Y) and assume that
{a) and (b) of Section 3 hold true. Keeping the notation of §3, we set
L=F,(7,0)and write X = V@ WY = Z@ R, with V = Ker(L) and
R=R(L).

Let M denote the linear map Fy, 5 (A*,0) {recall Remark 1.4.4) and B
the bilinear map F, .. (A*,0); then, setting A = A* 4+ p wo find that the
equation I = 0 Lecomnes

1

Lu+ pMu+ EB('H., u) + (A + p,u) =0, (5.1)

where 1 is smooth and such that
DA =0, Y (X7,0) =0, P (A", 0) =0, ¥ (A5,0)=0. (5.2)

We seek solutions of the form u = p(v + w), withv € V and w € W.
Substituting into (5.1) we find
1 -
plaw + 42 My +w) + 5 p°Blo + w,v + w] + (A" + 41, plv +w) = 0.

Then, according to the Lyapunov -Schmidt reduction, the equation F =

0 is equivalent to the system

pEPM (v 4-u)+ -;—;LzPB['u+w, v+uw]+ PP(A" +p, (v +w)) =0, (5.37)

plw+ p? QM +w) + %jLZQB[U +1w, v+ w) + Q¥ (N + g, wlv +w)) =0,
(5.3)
where P and (@ indicate, as usual, the projections onto Z and R.
According to (5.2) we can write
YO + g, v+ w)) = 3P, v, w)

where J; is smooth.

I

!
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Hence (5.3’)-(5.3") are equivalent for s 0 to
1 -
PM{v+w) + EPBE’U +a, v 4w+ pPP(AT + p ple +w)) =0, (5.47)

1 .
L+ pQM (v +w) + ZpQB +w, v+ w] + p*QU(A" + 1, v +10)) = 0.

o (5.47)
With @ = (s, v, w) denoting the left-hand side of (5.4") there results
®(0,v,0) = 0 for all v € V as well as $,{0,2,0) = L|w; hence, for
any fixed v* € V, we can solve (5.4") uniquely with respect to w in a
neighbourhood of g2 = 0,v = v*; from (5.4") it follows readily that

w = pry(p, )

with ¥ smooth. Substituting into (5.4') we find the bifurcation equation

N(p,v) = PM(v+ py(u,v)) + %PB[“U + (g, 0), v + py{p, v)]

+uPYA" + o, p(v + py(pu))) = 0. (5.5)
Note that N is smnooth. Moreover, let us point out that v depends on
v* € V. We will show that if ©+* can be chosen in a suitable way then
(5.5) can be solved, giving rise to a bifurcating branch for F = 0. More
precisely one has the following.

Theorem 5.1 Suppose that V = Ker(L) has a topological complement
in X and R = R(L) is closed and has a topological complement in Y,
Morcover, letting M = F, 5(A*,0) end B = F, ,(\*,0), suppose there
exists v* € V, v* # 0, such that
(a) PMv* + IPB(v*,vi) =0,
{b) the linear map S:V =V, Sv = PMv + PB(v™,v) is invertible,
Then there is a branch of nontrivial selutions of F' = 0 bifurcating from
{A*,0) with equations
A=A+,
! } (5.6)

u = x{u),
where x{0) = 0 and x'(0) = v*.

Proof. From (a) it follows that N(0,v") = ¢; moreover N,(0,v*) = §,
which is invertible by (b). Then the Implicit Function Theorem applies
to N(pi,v) = 0. To be precise, there exists v = w(p), defined for ||
small, such that v(0) = 0 and

N, w(ps)) = 0.
Hence we find a bifurcation branch of the form

u(p) = p(v(p) + pey(p, v(w)).

i m';_i

ey
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Setting x(u) = plv{p) + py(p, v{n))), we get x’'(0) = v*. As a conse-
quence, u{p) # 0, |¢| small and > 0, and u = x(u} gives rise to a branch
of nontrivial solutions of F = 0. This proves that A* is a bifurcation
point for F' = 0 and completes the proof of the theorem.

Remarks 5.2

{i) The branch found in the preceding theorem might not be unique:
either because v* might be not uniguely determined, or because there
are other nountrivial solutions of F = 0, not in the form p{v 4+ w).

{(ii) The equation of the bifurcating branch is parametrized with re-
spect to p and thus indicates that Theorem 5.1 gives rise to a transcrit-
ical bifurcation.

Theorem 5.1 can be used to find a sufficient condition for the existence
of a bifurcation when dim(V} =dim(Z) = 1, but Theorem 4.1 does not
apply.

Let V = Ru*, and suppose that PM=* = 0. Then conditions (a) and
{(b) of Theorem 5.1 become
(a) PB*uw*]=0, -

(b') the linear map v — PBJv*,v] from V to Z is invertible.

If {a")-(b’} hold true then an application of Theorem 5.1 yields the

following.

Theorem 5.3 Suppose F € C*(R x X,Y) is such that F(),0) =0 for
all » € R. Let A* be such that L = F,(\",0) saetisfies Assumption (1)
and let V = Rux. Moreover, we set M = F, 3(), 0}, B = F,.(A",0)
and we assume that Mu* € R and that (a'}-(b') hold true. Then A* is
a bifurcation point for F.

An application
Let us apply Theorem 5.1 to the following problem: given a continuous
2mr-periodic function h, to find 2r-periodic solutions of

w4 du o+ hu? =0, (5.7)

We set X = C2, ¥ = Cy,, where C§, (resp. () denotes the
space of 2a-pericdic C* functions (resp. continuous functions), and let
F:RxX =Y,

F(A ) = 1" + Au+ hu®. (5.8)

Here Lv = v" + Jv, Mv = v and Blu,vf = 2huw. For A = X* =
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k? V = Ker(L) is two-dimensional and spanned by {cos kt,sin kt}.
Moreover, Z = span {cos kt, sin kt}, too, and R = R(L) is L*-orthogonal
to Z. As for the corresponding projection P : ¥ — Z, one has that
Ph = (ay cos kt, by sin kt) where

P
ap = % fh(t) cos kt dt,
0

27
b = %/h(t) sin kt dt.
0

If we write v = A cos kt+ B sin kt condition (a) leads us to find nontrivial
solutions of the system
2
A+ % [(A cos kt + Bsin kt)2h(t) cos kt = 0,
n
2
B+ % f(A cos kt + B sin kt)?k(t) sin kt = 0.
0

This system is of the form

(5.9)

A+P(A,B) =0,
B+ Q(A,B) =1,

where P, @ are homogeneoils polynomials of degree 2, whose coelficients
depend on k. From the geometrical point of view, the solutions can be
thought of as the intersections of two conics crossing through the origin
transversally to each other. So they intersect in another point in the

projective plane. This interseetion is not on the “line at infinity”, that
is, A, B € R, provided the systemn -

P{A,BY=0,

Q{A,B)=0,

has the trivial solution A = B = 0 only. It is easy to see that this is
the case for all h € Y'\Y;, for some thin set ¥y (in the sense of Baire).
Then, for a “generic’ h (5.9) has a nontrivial solution (A", B*) € R%;
as for condition (b}, it also holds for all & up to a thin set. Then we
can conclude that, for all A € ¥, up to a set of first category in V', each
A=k% k=1,2,..., is abifurcation for F given by (5.6); each bifurcating
branch gives rise to a family of 2r-periodic solutions of (5.5).
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Appendix

In this short appendix we want to review some very important bifurca-
tion results, which require tools other than the Local Inversion Theorem.
We will deal with equations of the type

F(Au)=du—-Gu)=0, {A1)
where & satisfies
(G1} G € C(X, X) and is differentiable at u = 0, with (compact) deriva-
tive A = G7(0),
{G2} G is compact.
It is always understood that G{0} = 0.

Theorem Al (Krasnoselskii, [Krl]) Suppose that (G1-2) hold and
let A* be an eigenvalue of A with odd {algebraic) multiplicity. Then A~
is o bifurcation point for F.

Roughly, the proof relies on the following arguments. If, supposing the
contrary, A* is not a bifurcation point then there exist a ball D around
=0 and £ > 0 such that

F{hu)#0forall Ae[A—e A+e|, foralluedD. (A2)

In view of (A2), it makes sense to consider the Leray-Schauder topolog-

ical degree, d(F), D,0), of Fy := F(},.), with respect to D and u = 0,
and, by the homotopy invariance of the degree, one has
d{Fy-—e, D,0) = d(Fy-4e, D, 0). (A3)

On the other hand, if necessary taking D smaller, the degree of F) can
be evaluated by lingarization: more precisely, if A is not an cigenvalue
of A = G'(0), then one has

d(Fy, D,0) = d(\] — 4, D,0) = (=1)F, (A4)
where k denotes the sum of the (algebraic) multiplicities (see subsection
0.4) of the eigenvalues p of A, with u > A,

Let. o denote the sum of the {algebraic) multiplicities of the cigen-
values g of A, with g > A%, and m* that of A*. If necessary taking e
smaller, we can assume that A* is the only eigenvalue of A in the interval
[A — =, A +&]. Then from (A4} we infer

d(Fx-1e, D,0) = (~1)™,

A(Fs-_e, D,0) = (~1)™+™"

Since m” s odd, it follows that d(Fx-_., D,0} # d(Fr- 1, D,0), in con-
tradiction with (A3). This proves that A* is a bifurcation point.

R
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4 X

AT A* AT A i
{b) A possible bifurcation
diagram in case (ii)

() Possible bifurcation
diagrams in case (i)

Figure 5.11

Actually, the global nature of the topological degree can be used to
improve Theorem Al as follows.

Theorem A2 (Rabinowitz, [R2]) Suppose that (G1-2) hold and lci
X be an eigenvalue of A with odd (algebraic} multiplicity. Then from
\* there branches off a continwum (namely a closed connected set) ¥ of
nontrivial solutions of F =0 such thal either

(i) X is unbounded, or
{(ii} T meets another eigenvalue i # A* of A.

Theorem A2 applies to a large variety of problems. Among others, we
mention Sturm-Liouville problems [CrR], existence of positive solutions
of nonlinear eigenvalue problems [AH], existence of vortex rings in an
ideal fluid [AmiT)].

A last result which is worth recalling deals with the case in which G is
a variational operator. To be precise, let us assume that X is a Hilbert
space and that there exists ¢ : X — R, such that G = Vy. Note that
in such a case {A1) becomes Vg(x} = du, whose solutions can be found
as critical points of g on the Hilbert sphere |ju| = p, the parameter A
playing the role of the Lagrange multiplier.

Theorem A3 (Krasnoselski, [Krl]) Suppose G € C'(X,X) is a
wvariational operator and satisfies (G2). Then any eigenvolue of A =
('(0) is a bifurcation peint for F' =0,

For a proof using Morse Theory, see {IMP). Improvements can be found
in [B5] and [Mar).

T |

6

Bifurcation problems

There is a broad variety of problems arising in applications that can
be handled by the Bifurcation Theorem stated in Section 5.4. In the
present chapter we will discuss some of them. We have tried to choose
problems that are relevant from the physical point of view but that do
not need too much technicality. Only one of them, the Bénard Problem
discussed in Section 2, is not self-contained. Indeed, thc analysis of
linearized equations requires some delicate tools that would need much
more space. Neverthless, the relevance of the problem has driven us to
include it in this chapter, even if we had to be sketchy in several points.

1 The rotating heavy string

Following the formulation of Kolodner [Koj, we consider a string with

uniform density p and length = 1, hung at the origin of the coordinates

(the z-axis will be considered to be pointing downwords) in R*. The

points on the string will be parametrized through the arclength s € [0, 1]

and denoted by x(s, £) = (x(s, £}, y{s, t), 2(s,1)). It is convenient to take

s in such a way that x{1,t) = (0,0,0) is the fixed endpoint of the string.
The.equations of the motion are

PXue = pg + (sz)s (1-1)
together with
[xof? =1, (12)



