
CHAPTER 12

Infinite-Dimensional Analysis

In this chapter we discuss foundations of differential calculus in infinite-
dimensional spaces and some related questions. In the finite-dimensional case
there are two different types of differentiability: differentiability at a point based
on the consideration of increments of the function and also a global differentia-
bility based on the consideration of the derivative as some independent object (as
this is done in the theory of distributions and in the theory of Sobolev spaces).
A similar, but more complicated, picture is observed in the infinite-dimensional
case. Here we consider only the first type of differentiability, although now the
second one plays an increasingly notable role in research and applications. At
present foundations of differentiable calculus in infinite-dimensional spaces are
usually not included in courses of functional analysis and are studied in courses of
optimization or calculus of variations. However, we have decided to include this
short chapter for a more complete representation of main directions of functional
analysis as well as due to its conceptual connections with the linear theory.

12.1. Differentiability and Derivatives

Similarly to the case of functions of two real variables one can consider partial
derivatives of functions on a linear space and one can also define derivatives in
the spirit of the classical “main linear part of the increment of the function”. We
start with differentiability along directions. Suppose we are given two real linear
spaces X and Y and a mapping F : X → Y . Suppose that Y is equipped with
some convergence (for example, is a locally convex space, as it will be the case
everywhere below). Let x0 ∈ X and h ∈ X . We shall say that F has a partial
derivative along h (or in the direction of h) if in Y there exists a limit

∂hF (x0) := lim
t→0

F (x0 + th) − F (x0)
t

.

Even if for every h ∈ X the partial derivative ∂hF (x0) exists, the mapping
h 7→ ∂hF (x0) can fail to be linear (see Example 12.1.3). It is often useful to have
not only the linearity of this mapping, but also the possibility to approximate F by
it “up to an infinitely small quantity of higher order”.

Various types of differentiability can be described by the following simple
scheme of differentiability with respect to a class of sets M. Let X, Y be locally
convex spaces and let M be some class of nonempty subsets of X .
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12.1.1. Definition. The mapping F : X → Y is called differentiable with
respect toM at the point x if there exists a sequentially continuous linear mapping
from X to Y , denoted by DF (x) or F ′(x) and called the derivative of F at the
point x, such that uniformly in h from every fixed set M ∈M we have

lim
t→0

F (x+ th) − F (x)
t

= DF (x)h. (12.1.1)

Taking for M the collection of all finite sets we obtain the Gateaux differen-
tiability (according to Mazliak [696], the correct spelling of Gateaux is without the
circumflex, unlike the French word “gâteaux”). Obviously, the Gateaux derivative
is unique if it exists. Thus, the Gateaux differentiability differs from the existence
of derivatives ∂hF (x) by the property that we require in addition the linearity of
the mapping h 7→ ∂hF (x) and also its sequential continuity.

If M is the class of all compact subsets, we arrive at the differentiability
with respect to the system of compact sets, which for normed spaces is called the
Hadamard differentiability. One can also use the differentiability with respect to
the system of sequentially compact sets (for normed spaces it coincides with the
Hadamard differentiability); it is equivalent to the property that, as tn → 0, tn 6= 0
and hn → h in X , we have [F (x+ tnhn) − F (x)]/tn → DF (x)h in Y .

Finally, if X,Y are normed spaces and M consists of all bounded sets, then
we obtain the definition of the Fréchet differentiability (of course, such definition
can be also considered for locally convex spaces; then this differentiability is called
the bounded differentiability).

The main idea of differentiability is a local approximation of the mapping F
by a linear mapping, i.e., the representation

F (x+ h) = F (x) +DF (x)h+ r(x, h),

where the mapping h 7→ r(x, h) is in a sense an “infinitely small quantity of higher
order” as compared to h. In the case of normed spaces the Fréchet differentiability
gives the following meaning to this concept of smallness:

lim
‖h‖→0

‖r(x, h)‖
‖h‖

= 0.

Symbolically this is denoted by r(x, h) = o(h). In the more general case of
differentiability with respect to M the smallness means the uniform (in h from
every fixed M ∈M) relation

lim
t→0

r(x, th)
t

= 0. (12.1.2)

It is easy to observe that this condition is equivalent to equality (12.1.1) if we set
r(x, h) := F (x+ h) − F (x) −DF (x)h. Of course, the concept of smallness can
be given another sense, which will lead to another type of differentiability. Thus,
as for functions on IR, the derivative plays the role of some tangent mapping.

12.1.2. Example. Let X be a Hilbert space and let f(x) = (x, x). Then we
have f ′(x) = 2x. Indeed,

(x+ h, x+ h) − (x, x) = 2(x, h) + (h, h) and (h, h) = o(h).
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Clearly, for mappings on the real line the differentiabilities of Gateaux, Hada-
mard and Fréchet coincide. In the space IRn with n > 1 the Hadamard definition
is equivalent to the Fréchet definition and is strictly stronger than the Gateaux
definition.

12.1.3. Example. (i) Let a function f : IR2 → IR1 be defined by the formula

f(x) = r cos 3ϕ, x = (r cosϕ, r sinϕ), f(0) = 0

in polar coordinates. At the point x0 = 0 the partial derivatives

∂hf(x0) = lim
t→0

t−1f(th) = λ cos 3α

exist for all h = (λ cosα, λ sinα) ∈ IR2, but the mapping h 7→ ∂hf(x0) is not
linear. To see this, it suffices to take the vectors (1, 0) and (0, 1).

(ii) Let us define a function f : IR2 → IR1 as follows:

f(x) =

{
1 if x = (x1, x2), where x2 = x2

1 and x1 > 0,
0 else.

At the point x = 0 the Gateaux derivative exists and equals zero, since for every
h ∈ IR2 we have lim

t→0
t−1f(th) = 0 because f(th) = 0 if |t| 6 δ(h), where

δ(h) > 0. There is no Fréchet differentiability at zero, because f(h) = 1 if we
take h = (t, t2).

For a locally Lipschitz (i.e., Lipschitz in a neighborhood of every point) map-
ping of normed spaces the Gateaux and Hadamard differentiabilities coincide.

12.1.4. Theorem. Let X and Y be normed spaces and let F : X → Y be
a locally Lipschitz mapping. If F is Gateaux differentiable at the point x, then
at this point F is also Hadamard differentiable and the corresponding derivatives
are equal.

PROOF. Let K be compact in X and ε > 0. Let F satisfy the Lipschitz
condition with constant L on the ball B(x, r) with r > 0, let K be contained
in the ball B(0, R), and let M := max(L,R, ‖DF (x)‖). We find a finite ε-net
h1, . . . , hm in K. There is a number δ ∈ (0, r/R) such that, whenever |t| < δ, for
every i = 1, . . . ,m we have

‖F (x+ thi) − F (x) − tDF (x)(hi)‖ 6 ε|t|.

Then, as |t| < δ, for every h ∈ K we obtain

‖F (x+ th) − F (x) − tDF (x)(h)‖ 6 ε|t| + 2Mε|t|,

since there exists hi with ‖h− hi‖ 6 ε, whence

‖F (x+ th) − F (x+ thi)‖ 6 M‖th− thi‖ 6 Mε|t|

and ‖tDF (x)h− tDF (x)hi‖ 6 Mε|t|. Thus, F is Hadamard differentiable at x.
It is clear that the Hadamard derivative serves as the Gateaux derivative, since the
latter is unique. �
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In infinite-dimensional Banach spaces the Fréchet differentiability is strictly
stronger than the Hadamard differentiability.

12.1.5. Example. The function

f : L1[0, 1] → IR1, f(x) =
∫ 1

0

sinx(s) ds (12.1.3)

is everywhere Hadamard differentiable, but nowhere Fréchet differentiable. The
same is true for the mapping

F : L2[0, 1] → L2[0, 1], F (x)(s) = sinx(s). (12.1.4)

PROOF. For the proof of differentiability of a mapping it is often useful to
find a candidate for the derivative, which is done by calculating partial derivatives.
For the function f we have the following equality:

f(x+ th) =
∫ 1

0

sin[x(s) + th(s)] ds.

Differentiating in t by the Lebesgue dominated convergence theorem we obtain

∂hf(x) =
∫ 1

0

h(s) cosx(s) ds.

It is clear that the Gateaux derivative exists and is given by the functional

Df(x)h =
∫ 1

0

h(s) cosx(s) ds.

Since ‖Df(x)‖ 6 1, with the aid of the mean value theorem for functions on the
real line we conclude that the function f is Lipschitzian (of course, this can be
verified directly). By Theorem 12.1.4 we obtain the Hadamard differentiability.

For the mapping F the reasoning is similar. Here we have the operators
DF (x) on L2[0, 1] and (

DF (x)h
)
(s) =

(
cosx(s)

)
h(s).

Let us see whether f and F are Fréchet differentiable. Let x = 0. Then f(x) = 0.
We have to check whether the relation f(h) − Df(0)h = o(‖h‖) holds. The
left-hand side equals ∫ 1

0

[sinh(s) − h(s)] ds.

Since the Taylor expansion of sinh(s)− h(s) begins with h3 and our space is L1,
we may suspect that the Fréchet differentiability fails here. In order to make sure
that this is true, we take for h elements of the unit ball for which f(th)− tDf(0)h
will not be uniformly o(t). Namely, let hk(s) = k if 0 6 s 6 1/k and hk(s) = 0
if s > 1/k. Then

f(thk) − tDf(0)hk = k−1 sin kt− t.

This quantity is not o(t) uniformly in k: it suffices to take t = k−1, which gives
t(sin 1 − 1). For an arbitrary point x the reasoning is similar. Let us fix a version
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of x. We consider the expression∫ 1

0

(
sin

(
x(s) + th(s)

)
− sinx(s) − th(s) cosx(s)

)
ds.

The functions cosx(s) and sinx(s) have a common Lebesgue point s0 ∈ (0, 1).
For every ε this point is a Lebesgue point for the function

sin
(
x(s) + ε

)
− sinx(s) − ε cosx(s).

Pick ε ∈ (0, 1) such that sin
(
x(s0) + ε

)
− sinx(s0) − ε cosx(s0) 6= 0. Set

hk = kIEk
, Ek = (s0 − k−1, s0 + k−1). For t = εk−1 we obtain the quantity∫

Ek

(
sin

(
x(s) + ε

)
− sinx(s) − ε cosx(s)

)
ds

of order of smallness Lk−1 = Lε−1t, where L 6= 0 is some number, since the limit
of this quantity multiplied by k/2 is sin

(
x(s0) + ε

)
− sinx(s0)− ε cosx(s0) 6= 0

as k →∞. Similar estimates work in the case of F . �

It is worth noting that if the function f is considered not on L1, but on L2,
then it becomes Fréchet differentiable.

12.1.6. Example. The function f given by formula (12.1.3) on the space
L2[0, 1] is everywhere Fréchet differentiable. The mapping F given by (12.1.4)
on C[0, 1] is everywhere Fréchet differentiable.

PROOF. A nuance making a difference in the properties of f on L1 and L2

is that the quantity |f(x + h) − f(x) − Df(x)h| with the aid of the inequality
| sin(x + h) − sinx − h cosx| 6 h2 is estimated by the integral of h2, which is
the square of the L2-norm (infinite for some h in L1). A similar reasoning applies
to the mapping F on the space C[0, 1]. Here ‖F (x + h) − F (x) − DF (x)h‖ is
estimated by ‖h‖2 in the case of the sup-norm, but not in the case of L2-norm,
when the indicated estimate leads to the integral of h4. �

Let us consider one more instructive infinite-dimensional example. It employs
the function that is frequently encountered in applications: the distance to a set.

12.1.7. Example. Let X be an infinite-dimensional normed space and let
K be a compact set. Set

f(x) = dist(x,K) = inf{‖x− y‖ : y ∈ K}.
Then the function f satisfies the Lipschitz condition, but is not Fréchet differen-
tiable at points of K. If K is such that αK ⊂ K whenever |α| 6 1 and the set⋃∞
n=1 nK is everywhere dense in X , then f has the zero Gateaux derivative at the

point 0 ∈ K. For example, one can take for K the compact ellipsoid

K =
{

(xn) ∈ l2 :
∞∑
n=1

n2x2
n 6 1

}
in the Hilbert space l2.

PROOF. Let x ∈ K. Then f(x) = 0. Suppose that at x there exists the
Fréchet derivative f ′(x). This derivative can be only zero, since for every nonzero
vector h the function t 7→ f(x + th) attains its minimum for t = 0. We shall
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arrive at a contradiction if we show that f(x + h) − f(x) − f ′(x)h = f(x + h)
is not o(‖h‖). For every n ∈ IN we find a vector hn such that ‖hn‖ 6 1/n and
the ball of radius ‖hn‖/4 centered at x+ hn does not intersect K. This will give
the estimate f(x + hn) > ‖hn‖/4. The compact set K is covered by finitely
many balls of radius (4n)−1 centered at points a1, . . . , ak. Let L be the finite-
dimensional linear space generated by these centers. There is a vector hn with
‖hn‖ = 1/n and dist (hn, L) = 1/n. This vector is what we need. Indeed, if
there exists a vector y ∈ K ∩ B(x + hn, ‖hn‖/4), then we obtain the following
decomposition: x = u + l1, y = v + l2, where l1, l2 ∈ L, ‖u‖ 6 (4n)−1,
‖v‖ 6 (4n)−1 and ‖x+ hn − y‖ 6 ‖hn‖/4. Therefore,

‖hn − (l2 − l1) + u− v‖ 6 (4n)−1,

and hence ‖hn − (l2 − l1)‖ 6 3(4n)−1 contrary to our choice of hn, because we
have l2 − l1 ∈ L.

Suppose now that K satisfies the indicated additional conditions. We show
that at the point 0 ∈ K the Gateaux derivative exists and equals zero. For this we
have to verify that for each fixed h ∈ X we have lim

t→0
t−1f(th) = 0. Let ε > 0.

By our condition there exists a vector v ∈ nK such that ‖h − v‖ 6 ε. Since
tv ∈ K whenever |t| 6 n−1 by our condition, we have f(tv) = 0 for such t.
Hence |t−1f(th)| 6 ε by the estimate |f(th) − f(tv)| 6 ‖th− tv‖ 6 |t|ε, which
holds by the Lipschitzness of f . �

In Exercise 12.5.20 it is suggested to verify that if, in addition, the set K is
convex, then f has the zero Gateaux derivative at all points of

⋃
06t<1 tK.

For normed spaces one can consider the strict differentiability, which is even
stronger than the Fréchet differentiability.

12.1.8. Definition. Let X and Y be normed spaces, let U be a neighborhood
of a point x0 ∈ X , and let f : U → Y be a mapping Fréchet differentiable at x0.
If for every ε > 0 there exists δ > 0 such that, whenever ‖x1 − x0‖X 6 δ and
‖x2 − x0‖X 6 δ, we have

‖f(x1) − f(x2) − f ′(x0)(x1 − x2)‖Y 6 ε‖x1 − x2‖X ,

then f is called strictly differentiable at the point x0.

We observe that a mapping strictly differentiable at x0 is continuous not only
at the point x0, but also in some ball centered at x0, since the definition and the
triangle inequality yield that in the ball of radius δ centered at x0 the mapping f
satisfies the Lipschitz condition with constant ‖f ′(x0)‖+ ε. Hence even for scalar
functions on the real line the strict differentiability does not reduce to Fréchet
differentiability.

If E is a linear subspace in X equipped with some stronger locally convex
topology, then one can define the differentiability along E (in the respective sense)
at the point x as the differentiability at h = 0 of the mapping h 7→ F (x+h) from E
to Y in the corresponding sense. The derivative along the subspace E is denoted
by the symbol D

E
F . When E is one-dimensional, this gives the usual partial

derivative ∂hF .
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12.2. Properties of Differentiable Mappings

The most important properties of differentiable mappings include the mean
value theorem and the chain rule, i.e., the rule of differentiating the composition.
The main role in obtaining multidimensional or infinite-dimensional versions of
classical results is played by the corresponding assertions for the real line. How-
ever, here there are some subtleties, especially in the infinite-dimensional case,
requiring some precautions. First we discuss the differentiability of compositions.
Suppose that X,Y and Z are locally convex spaces and mappings

F : X → Y and G : Y → Z

are differentiable in a certain sense. Is the mapping G◦F : X → Z differentiable
in the same sense? The answer depends on the type of differentiability. For
example, the composition of Gateaux differentiable mappings need not be Gateaux
differentiable.

12.2.1. Example. Let us define a mapping g : IR2 → IR2 by the formula
g : (x1, x2) 7→(x1, x

2
2) and take the function f : IR2→ IR1 from Example 12.1.3(ii).

Then the composition f ◦g : IR2 → IR1 is not Gateaux differentiable at the point
x = 0. Moreover, this composition has no partial derivatives at zero along the
vectors (1, 1) and (1,−1). Indeed,

f
(
g(x)

)
=

{
1 if x1 = |x2| > 0,
0 in all other cases.

Note that in this example the inner function is even Fréchet differentiable. It
turns out that if the outer function is Fréchet (or Hadamard) differentiable, then
the situation becomes better.

12.2.2. Theorem. Let X , Y and Z be normed spaces, let Ψ: X→Z be the
composition of two mappings F : X → Y and G : Y → Z, and let x0 ∈ X
and y0 = F (x0). Suppose that the mapping G is Hadamard differentiable at the
point y0. If the mapping F is differentiable at the point x0 either in the sense of
Gateaux or in the sense of Hadamard, then the mapping Ψ is differentiable at x0

in the same sense and
Ψ′(x0) = G′(y0)F ′(x0). (12.2.1)

If at the point x0 the mapping F is Fréchet differentiable and G is differentiable
at y0 also in the Fréchet sense, then Ψ is differentiable at x0 in the Fréchet sense
and (12.2.1) is fulfilled.

PROOF. First we observe that if F has the partial derivative ∂hF at x0, then
there exists the partial derivative

∂hΨ(x0) = G′(y0)∂hF (x0).

Indeed, F (x0 + th) = F (x0) + t∂hF (x0) + r(t) = y0 + t∂hF (x0) + r(t), where
‖r(t)/t‖ → 0 as t→ 0. In addition,

G(y0 + u) −G(y0) = G′(y0)u+ s(u),
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where lim
t→0

t−1s(tu) = 0 uniformly in u in every fixed compact set. Hence

Ψ(x0 + th) − Ψ(x0) = G′(y0)[t∂hF (x0) + r(t)] + s
(
t∂hF (x0) + r(t)

)
,

where
lim
t→0

t−1
[
G′(y0)r(t) + s

(
t∂hF (x0) + r(t)

)]
= 0

in the sense of convergence with respect to the norm in Z.
This yields Gateaux differentiability of the mapping Ψ in the case where the

mapping F is Gateaux differentiable.
Suppose that the mapping F is Hadamard differentiable at x0 and the mapping

G is Hadamard differentiable at y0. For every fixed compact set K ⊂ X we have

F (x0 + h) = F (x0) + F ′(x0)h+ r(h),

where lim
t→0

sup
h∈K

‖t−1r(th)‖ = 0. Therefore,

Ψ(x0 + h) − Ψ(x0) −G′(y0)F ′(x0)h

= G′(y0)[F ′(x0)h+ r(h)] −G′(y0)F ′(x0)h+ s
(
F ′(x0)h+ r(h)

)
= G′(y0)r(h) + s

(
F ′(x0)h+ r(h)

)
,

where lim
t→0

sup
h∈K

‖t−1G′(y0)r(th)‖ = 0 and

lim
t→0

sup
h∈K

∥∥t−1s
(
tF ′(x0)h+ r(th)

)∥∥ = 0.

The last equality follows from the fact that for every sequence tn → 0 and every
sequence {hn} ⊂ K, the sequence of vectors F ′(x0)hn+ t−1

n r(tnhn) is contained
in the compact set F ′(x0)(K) +

(
{t−1
n r(tnhn)} ∪ {0}

)
, because t−1

n r(tnhn) → 0
by the definition of Hadamard differentiability.

Finally, in the case of Fréchet differentiability the same reasoning applies with
balls in place of compacta. �

A closer look at the proof enables us to modify it for mappings of locally
convex spaces.

12.2.3. Theorem. Let X , Y and Z be locally convex spaces, let a mapping
Ψ: X→Z be the composition of two mappings F : X→Y and G : Y →Z, and let
x0 ∈ X and y0 = F (x0). Suppose that the mappings F and G are differentiable
with respect to the system of compact sets at points x0 and y0, respectively, and
assume also that the operator F ′(x0) takes compact sets to compact sets. Then Ψ
is differentiable at x0 with respect to the system of compact sets and

Ψ′(x0) = G′(y0)F ′(x0).

An analogous assertion is true if both mappings are differentiable with respect
to the system of bounded sets and the operator F ′(x0) takes bounded sets to
bounded sets.

Finally, if the mapping F is Gateaux differentiable at x0 and the mapping G
is differentiable at y0 with respect to the system of compact sets, then Ψ is Gateaux
differentiable at x0 and the chain rule for Ψ′(x0) indicated above is true.
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PROOF. The reasoning is analogous to the one given above. We only explain
the role of additional restrictions on the mapping F ′(x0) that are automatically
fulfilled in the case of normed spaces. We have the following representation:

Ψ(x0 + h) − Ψ(x0) −G′(y0)F ′(x0)h = G′(y0)r(h) + s
(
F ′(x0)h+ r(h)

)
,

and we have to show that, for every fixed set K from the class with respect to
which F is differentiable, for every sequence {hn} ⊂ K and every sequence
numbers tn → 0, we have

lim
n→∞

t−1
n G′(y0)r(tnhn) + t−1

n s
(
tnF

′(x0)hn + tnt
−1
n r(tnhn)

)
= 0.

Hence we have to ensure the inclusion of the sequence F ′(x0)hn + t−1
n r(tnhn)

to some set from the class K with respect to which the outer mapping G is differ-
entiable. For this the sequence of vectors F ′(x0)hn must belong to the class K,
since the sequence t−1

n r(tnhn) converges to zero and its addition does not influ-
ence containment in the classes of bounded or compact sets. �

An analogous assertion is true in the case of differentiability with respect to
the system of sequentially compact sets, since F ′(x0) is sequentially continuous
(here it is not required that the operator F ′(x0) take compact sets to compact sets).

12.2.4. Example. Suppose that a mapping F : X → Y between normed
spaces is differentiable at a point x0 in the sense of Gateaux, Hadamard or Fréchet
and that G : Y → Z is a continuous linear operator with values in a normed
space Z. Then the composition G◦F is differentiable at the point x0 in the same
sense as F .

The situation is similar for differentiable mappings of locally convex spaces
in the sense of Gateaux or with respect to the systems of compact sets, sequen-
tially compact sets or bounded sets if the operator G is linear and sequentially
continuous.

The next theorem characterizing Hadamard differentiability is also connected
with the theorem on the derivative of the composition.

12.2.5. Theorem. A mapping F :X→Y between normed spaces is Hadamard
differentiable at x0 ∈ X precisely when there exists a continuous linear mapping
L : X → Y such that for every mapping ϕ : IR1 → X differentiable at zero with
ϕ(0) = x0 the composition F◦ϕ : IR1 → Y is differentiable at the point 0 and we
have (F ◦ϕ)′(0) = Lϕ′(0).

PROOF. If F is differentiable, then the composition is differentiable too as
shown above. Suppose that we have numbers tn → 0 and vectors hn → h.
A mapping ϕ : IR1 → X will be defined as follows: ϕ(tn) = x0 + hntn and
ϕ(t) = x0 + th if t 6∈ {tn}. Then ϕ(0) = x0 and t−1[ϕ(t)−ϕ(0)] → h as t→ 0,
since this difference quotient equals hn if t = tn and equals h for all other t. We
have

F (x0 + tnhn) − F (x0)
tn

=
F

(
ϕ(tn)

)
− F

(
ϕ(0)

)
tn

→ Lϕ′(0) = Lh

as n→∞, which proves Hadamard differentiability of F at the point x0. �
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Note that if F and G are Gateaux, Hadamard or Fréchet differentiable at x,
then, as is easily seen, F + G is differentiable at x in the same sense and the
equality (F +G)′(x) = F ′(x) +G′(x) holds.

Let us proceed to the mean value theorem. We recall that if a function f is
differentiable in a neighborhood of the interval [a, b], then

f(b) − f(a) = f ′(c)(b− a)

for some point c ∈ (a, b). This assertion does not extend in the same form to
multidimensional mappings (even to mappings from IR1 to IR2). For example, let

f(x) = (sinx, cosx), x ∈ IR1.

Then f(2π) = f(0), although the derivative of f does not vanish at any point.
The right multidimensional analog of the mean value theorem deals with either
inequalities or convex envelopes of the sets of values. We recall that the symbols
convA and convA denote, respectively, the convex envelope and the closed con-
vex envelope of the set A in a locally convex space. The symbol [a, b] denotes the
line segment (closed interval) with the endpoints a and b of a linear space, i.e., the
set of all vectors of the form a+ t(b− a), t ∈ [0, 1]. Similarly we define (a, b).

12.2.6. Theorem. Let X and Y be locally convex spaces, let U be an open
convex set in X , and let a mapping F : U → Y be Gateaux differentiable at every
point in U . Then for every a, b ∈ U one has the inclusion

F (b) − F (a) ∈ conv {F ′(c)(a− b) : c ∈ (a, b)}. (12.2.2)

PROOF. Let E denote the set in the right-hand side. Let l ∈ Y ∗. The function
ϕ : t 7→ l

(
F (a+tb−ta)

)
is defined in a neighborhood of [0, 1] by our assumption.

In addition, it is differentiable in a neighborhood of [0, 1]. By the classical mean
value theorem there exists a point t ∈ (0, 1) such that

l
(
F (b)

)
− l

(
F (a)

)
= ϕ(1) − ϕ(0) = ϕ′(t) = l

(
F ′(c)(b− a)

)
6 sup
y∈E

|l(y)|,

where c = a + t(b − a) ∈ U . By a corollary of the Hahn–Banach theorem we
conclude that F (b) − F (a) ∈ E. �

Let us give a number of important corollaries.

12.2.7. Corollary. Suppose that in the situation of the previous theorem we
are given a sequentially continuous linear mapping Λ: X → Y (for example,
Λ = F ′(a)). Then for every a, b ∈ U one has the inclusion

F (b) − F (a) − Λ(b− a) ∈ conv {[F ′(c) − Λ](a− b) : c ∈ (a, b)}. (12.2.3)

PROOF. It suffices to apply the theorem above to the mapping F − Λ. �

12.2.8. Corollary. Let X and Y be normed space, let U be an open convex
set in X , and let a mapping F : U → Y be Gateaux differentiable at every point
in U . Then, for all a, b ∈ U , we have

‖F (b) − F (a)‖ 6 sup
c∈(a,b)

‖F ′(c)‖ ‖a− b‖. (12.2.4)



12.3. Inverse and Implicit Functions 521

PROOF. For every c ∈ U we have ‖F ′(c)(b− a)‖ 6 ‖F ′(c)‖ ‖b− a‖, which
by (12.2.2) gives (12.2.4). �

12.2.9. Corollary. Suppose that in the previous corollary we are given a
continuous linear mapping Λ: X → Y . Then, for all a, b ∈ U , we have

‖F (b) − F (a) − Λ(b− a)‖ 6 sup
c∈(a,b)

‖F ′(c) − Λ‖ ‖a− b‖. (12.2.5)

12.2.10. Corollary. Let X and Y be normed spaces, let U be an open convex
set in X , and let a mapping F : U → Y be Gateaux differentiable at every point
in U . Suppose that the mapping x 7→ F ′(x) from U to the space of operators
L(X,Y ) with the operator norm is continuous at some point x0 ∈ U . Then
the mapping F is Fréchet differentiable at the point x0. Moreover, F is strictly
differentiable at x0.

PROOF. Let ε > 0 be such that the ball B(x0, ε) = {x : ‖x − x0‖ < ε} is
contained in U . As shown above, for all h with ‖h‖ < ε we have

‖F (x0 + h) − F (x0) − F ′(x0)(h)‖ 6 sup
c∈B(x0,ε)

‖F ′(c) − F ′(x0)‖ ‖h‖.

By the continuity of F ′ at x0 we have

lim
ε→0

sup
c∈B(x0,ε)

‖F ′(c) − F ′(x0)‖ = 0,

which gives Fréchet differentiability. The strict differentiability follows easily
from estimate (12.2.5). �

If the derivative of the mapping F is continuous with respect to the operator
norm in a domain Ω, then F is called a C1-mapping in Ω.

12.3. Inverse and Implicit Functions

In this section we consider the local invertibility of nonlinear mappings and
existence of a functional dependence y = y(x) between solutions of equations of
the type F (x, y) = 0. Results of this kind are called, respectively, inverse function
theorems and implicit function theorems. At present there exists a well developed
theory covering such problems, but here we confine ourselves to some simplest
infinite-dimensional analogs of the facts known from finite-dimensional calculus.
Even these simplest theorems have many interesting and important applications.
The results presented here do not employ refined tools and techniques and are
applications of the contracting mapping theorem or some analogous reasoning.
However, the method of application is elegant and instructive. The idea is that a
given mapping is locally approximated by a simpler (in some sense) mapping. For
such a simpler mapping in this section we take the identity mapping and linear
invertible operators.

We start with the consideration of Lipschitzian homeomorphisms.

12.3.1. Theorem. Let U = B(a, r) be an open ball of radius r > 0 centered
at a point a in a Banach space X and let F : U → X be a mapping such that

‖F (x) − F (y)‖ 6 λ‖x− y‖ ∀x, y ∈ U,
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where λ ∈ [0, 1) is a constant. Then there exists an open neighborhood V of a
such that the mapping Ψ: x 7→ x+F (x) is a homeomorphism of V and the open
ball W := B

(
Ψ(a), r(1 − λ)

)
. The inverse mapping Ψ−1 : W → V satisfies the

Lipschitz condition with the constant (1 − λ)−1.
If, in addition, ‖F (a)‖ < r(1 − λ)/2, then Ψ is a homeomorphism of some

neighborhood of the point a and the open ball B
(
a, r(1 − λ)/2

)
.

PROOF. Replacing F by F − F (a), we can assume that F (a) = 0. Let us
apply Theorem 1.4.4 to the space T =W and the mapping (w, x) 7→w−F (x) from
W×U to X . All necessary conditions are fulfilled. In particular, the inequality
‖w − F (a) − a‖ = ‖w − a‖ < r(1 − λ) holds for all w ∈ W . Hence there exists
a continuous mapping f : W → U such that we have f(w) = w − F

(
f(w)

)
for

all w ∈W , i.e., Ψ
(
f(w)

)
= w.

Let us show that f is a homeomorphism fromW onto f(W ). It is clear that f
is an injective mapping. The mapping Ψ on U is also injective, since the equality
Ψ(u1) = Ψ(u2) yields that

‖u1 − u2‖ = ‖F (u1) − F (u2)‖ 6 λ‖u1 − u2‖.
This is only possible if u1 = u2. Thus, the mapping Ψ is a homeomorphism from
the set V := f(W ) onto W , inverse to f . The set V = Ψ−1(W ) is open by the
continuity of Ψ. In addition, a ∈ V , since Ψ(a) is the center of W .

The fact that f is Lipschitz with constant (1− λ)−1 is clear from the equality

f(w) − f(w′) = w − w′ + F
(
f(w′)

)
− F

(
f(w)

)
,

which gives the estimate ‖f(w) − f(w′)‖ 6 ‖w − w′‖ + λ‖f(w) − f(w′)‖, i.e.,
‖f(w) − f(w′)‖ 6 (1 − λ)−1‖w − w′‖. If, in addition, ‖F (a)‖ < r(1 − λ)/2,
then the ball B

(
a, r(1 − λ)/2

)
belongs to W . �

Now we apply the facts established above to differentiable mappings. First
we clarify the condition for the differentiability of the inverse mapping for a dif-
ferentiable homeomorphism.

12.3.2. Proposition. Let X and Y be Banach spaces, let U ⊂ X and V ⊂ Y
be open sets, and let F : U → V be a homeomorphism that is Fréchet differ-
entiable at some point a ∈ U . For Fréchet differentiability of the mapping
G = F−1 : V → U at the point b = F (a) it is necessary and sufficient that
the operator F ′(a) map X one-to-one onto Y .

PROOF. If the mapping G is Fréchet differentiable at the point b, then by the
chain rule we have G′(b)F ′(a) = IX and F ′(a)G′(b) = IY .

Suppose now that the operator Λ := F ′(a) is invertible. Passing to the map-
ping Λ−1F , we reduce our assertion to the case X = Y and F ′(a) = I . In
addition, we can assume that a = 0 and F (a) = 0. We have to show that
G′(0) = I , i.e., that

G(y) − y = o(‖y‖) as ‖y‖ → 0.

We have
F (x) = x+ ‖x‖ϕ(x), lim

‖x‖→0
‖ϕ(x)‖ = 0. (12.3.1)
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Since F is a homeomorphism, we have y = F (x), where x = G(y), for all y in
some neighborhood of zero, and for the corresponding x one has (12.3.1). Thus,

G(y) = x = y − ‖x‖ϕ(x).

We have to show that ‖x‖ϕ(x) = o(‖y‖). Let us find a neighborhood of zero
U0 such that ‖ϕ(x)‖ < 1/2 for all x ∈ U0. Then ‖x‖ 6 2‖y‖ for such x and
y = F (x), i.e., ‖x‖ ‖ϕ(x)‖ 6 2‖y‖ ‖ϕ(x)‖. It remains to observe that ‖x‖ → 0
as ‖y‖ → 0 by the continuity of G and hence ϕ(x) → 0. �

12.3.3. Theorem. Let F be a continuously differentiable mapping from the
open ball U = B(x0, r) in a Banach space X to a Banach space Y . Suppose
that the operator Λ := F ′(x0) maps X one-to-one onto Y . Then F maps some
neighborhood V of the point x0 one-to-one onto some neighborhoodW of F (x0),
moreover, the mapping G := F−1 : W → V is continuously differentiable and

G′(y) =
[
F ′(F−1(y)

)]−1
, y ∈W.

PROOF. The assertion reduces to the case Y = X and F ′(x0) = I if we pass
to the mapping Λ−1F . In addition, we can assume that x0 = 0 and F (x0) = 0.
Having in mind to apply Theorem 12.3.1, we write F as F (x) = x + F0(x),
where F0(x) = F (x) − x. By the continuity of the derivative at x0, there exists a
ball B(0, r) such that ‖F ′(x) − I‖L(X) 6 1/2 for all x ∈ B(0, r). By the mean
value theorem the mapping F0 is Lipschitz on B(0, r) with constant 1/2 (any
constant less than 1 would suit for us). In addition, F0(0) = 0. By the theorem
cited, in the ball W = B(0, r/2) we have a continuous inverse mapping G for F
that takes this ball to some neighborhood of zero V . Proposition 12.3.2 ensures
Fréchet differentiability of G at zero and the equality G′(0) = I . Note that so
far we have used only the continuity of the derivative at zero. Since we assumed
the continuity of the derivative at all points of U , in a neighborhood of x0 this
derivative is invertible, which shows the differentiability of the inverse mapping
in a neighborhood of the point F (x0). Finally, the continuity of the mapping

y 7→ G′(y) in this neighborhood follows from the formula G′(y) =
[
F ′(G(y)

)]−1

on account of the continuity of G and the continuity of the mapping A 7→ A−1 on
the set of invertible operators. �

We now obtain a criterion for F to be a diffeomorprhism.

12.3.4. Corollary. Let F be a C1-mapping from an open set U in a Banach
space X to a Banach space Y . In order F be a C1-diffeomorphism of the set U
onto an open set in Y , it is necessary and sufficient that F be injective and the
derivative F ′(x) be an invertible operator from X onto Y for all x ∈ U .

PROOF. The necessity of these conditions is obvious. Let us prove their suf-
ficiency. We already know that every point x in U possesses a neighborhood
Ux ⊂ U such that F is a C1-diffeomorphism of Ux onto some open ball Vx cen-
tered at F (x). Hence the set F (U) =

⋃
x∈U Vx is open. It follows from the results

above that the inverse mapping F−1 : V → U is continuously differentiable. �
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We have already noted that in Theorem 12.3.3 the existence and differentiabil-
ity of G at zero has been actually obtained under weaker conditions. Namely, we
only needed (under the assumption that x0 = 0 and F (x0) = 0) that the auxiliary
mapping F0(x) = F ′(0)−1F (x) − x be contracting in a neighborhood of zero.
This condition is certainly weaker than the continuity of the derivative at zero and
obviously follows from the strict differentiability of F at zero, which gives

F ′(0)−1F (x) − F ′(0)−1F (y) − x+ y = ‖x− y‖ψ(x, y)

with lim
x,y→0

ψ(x, y) = 0. Hence F0 is Lipschitz with an arbitrarily small constant

in a suitable neighborhood of zero. This gives the following result.

12.3.5. Theorem. Suppose that a mapping F from an open ball with cen-
ter x0 in a Banach space X to a Banach space Y is strictly differentiable at the
point x0 and the operator D := F ′(x0) maps X one-to-one onto Y . Then F
homeomorphically maps some neighborhood V of the point x0 onto a neighbor-
hood W of the point F (x0) and the mapping G := F−1 : W → V is Fréchet
differentiable at the point y0 = F (x0) and G′(y0) = D−1.

12.3.6. Example. Let X be a Hilbert space and let F (x) = Ax+B(x, x),
where A is an invertible linear operator on X and B : X×X → X is a continuous
mapping linear in every argument. Then F ′(x)h = Ah+B(x, h) +B(h, x), since
‖B(h, h)‖ 6 C|h|2, which is easily derived from the boundedness of B on some
ball centered at zero. Hence F ′(0) = A. Therefore, F maps diffeomorphically
some neighborhood of zero onto a neighborhood of zero.

Let us proceed to the implicit function theorem. Suppose we are given three
Banach spaces X,Y and Z and a continuously differentiable mapping F from
an open set U ⊂ X ×Y to Z. Suppose that for some point (a, b) ∈ U we
have F (a, b) = 0. We are interested in other solutions (x, y) to the equation
F (x, y) = 0, sufficiently close to (a, b). Moreover, we would like to represent
(locally) the set of solutions as a surface y = f(x). It turns out that for this we
need only one condition.

12.3.7. Theorem. Suppose that in the situation described above the derivative
F ′
Y (a, b) of the mapping F along Y at the point (a, b) is a linear isomorphism

between Y and Z. Then there exists a neighborhood Va of the point a in X ,
a neighborhood Wb of the point b in Y and a continuously differentiable mapping
f : Va → Y with the following properties: Va×Wb ⊂ U and the conditions

(x, y) ∈ Va×Wb and F (x, y) = 0

are equivalent to the conditions

x ∈ Va and y = f(x).

In particular, f(a) = b. Thus, in the domain Va×Wb all solutions to the equation
F (x, y) = 0 are given by the formula y = f(x).
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PROOF. We shall reduce this theorem to the inverse mapping theorem. For
this we consider an auxiliary mapping

F1 : U → X×Z, (x, y) 7→
(
x, F (x, y)

)
.

It is readily seen that this mapping is continuously differentiable and

F ′
1(x, y)(u, v) =

(
u, F ′

X(x, y)u+ F ′
Y (x, y)v

)
, u ∈ X, v ∈ Y.

Since F ′
Y (a, b) is a linear isomorphism between Y and Z, the mapping F ′

1(a, b)
is an isomorphism between X×Y and X×Z. Indeed, for any given h ∈ X and
k ∈ Z, there is a uniquely determined u = h and then we take

v = [F ′
Y (a, b)]−1

(
k − F ′

X(a, b)h
)

with F ′
1(a, b)(u, v) = (h, k). As shown above, there exists a neighborhood U0 of

the point (a, b) that is mapped by F1 diffeomorphically onto some neighborhood
W of the point

(
a, F (a, b)

)
= (a, 0). In U0 we can take a smaller neighborhood

of the form Va×Wb, where Va is a neighborhood of a and Wb is a neighborhood
of b. Let W0 = F1(Va×Wb). The diffeomorphism inverse to F1 can be writ-
ten in the form (x, z) 7→

(
x, ϕ(x, z)

)
, where the mapping (x, z) 7→ ϕ(x, z) with

values in Y is defined in a neighborhood of the point (a, 0) in X×Z. We let
f(x) = ϕ(x, 0) and show that we have obtained a desired mapping. Indeed, this
mapping is continuously differentiable. In addition, the conditions (x, y) ∈ Va×Wb

and F (x, y) = 0 are equivalent to the conditions (x, 0) ∈ W0 and ϕ(x, 0) = y by
the injectivity of the mapping F1 on Va×Wb. The set V ′

a := {x : (x, 0) ∈ W0}
is an open neighborhood of the point a. Replacing Va by a smaller neighborhood
Va ∩ V ′

a, we obtain the desired properties for f . We have actually proved even
more: for all z in some neighborhood of zero the solutions (x, y) to the equa-
tion F (x, y) = z belonging to a sufficiently small neighborhood of (a, b) have a
parametric representation y = ϕ(x, z). �

Differentiating the identity F
(
x, f(x)

)
= 0, we find that

f ′(x) = −
[
F ′
Y

(
x, f(x)

)]−1
F ′
X

(
x, f(x)

)
in a neighborhood of a. In particular,

f ′(a) = −[F ′
Y (a, b)]−1F ′

X(a, b).

It is clear from the proof that the obtained representation gives all solutions
(x, y) from a sufficiently small neighborhood of (a, b). But this assertion should
not be understood in the sense that in a sufficiently small neighborhood of a there
are no other differentiable mappings f with F

(
x, f(x)

)
= 0: we are talking only

about f such that y = f(x) belongs to a small neighborhood of b. For example,
for the equation x2+y2 = 1 on the plane in every neighborhood of the point a = 0
on the first coordinate line there are two differentiable functions f1(x) =

√
1 − x2

and f2(x) = −
√

1 − x2 for which x2 + f1(x)2 = 1 and x2 + f2(x)2 = 1. Here f1
uniquely defines solutions from a neighborhood of the point (0, 1) and f2 uniquely
describes solutions from a neighborhood of the point (0,−1).

It follows from our discussion that the mapping f is unique in the following
sense: if a mapping f0 from a neighborhood of the point a to the set Wb satisfies
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the equality F
(
x, f0(x)

)
= 0, then f0 coincides with f in some neighborhood of

the point a.
If we compare the theorem on the implicit function with the theorem on the

inverse function, then it is easy to observe that it corresponds to Theorem 12.3.3,
but not to Theorem 12.3.5. It is also possible to obtain an analog of the latter.

12.3.8. Theorem. Let F be a mapping from a neighborhood U ⊂ X×Y
of the point (a, b) to the space Z such that F (a, b) = 0 and lim

x→a
F (x, b) = 0.

Suppose that F is differentiable along the space Y at (a, b) and for every ε > 0
there is δ > 0 such that

‖F (x, y1) − F (x, y2) − F ′
Y (a, b)(y1 − y2)‖ 6 ε‖y1 − y2‖

if ‖x − a‖ 6 δ, ‖y1 − b‖ 6 δ, ‖y2 − b‖ 6 δ (for example, the derivative F ′
Y

exists and is continuous in U ). Suppose that the operator F ′
Y (a, b) from Y onto

Z is invertible. Then there exists a mapping f with values in Z defined in some
neighborhood Va of the point a and possessing the following properties: f(a) = b
and F

(
x, f(x)

)
= 0 for all x ∈ Va.

PROOF. Without loss of generality we can assume that a = 0 and b = 0. Pass-
ing to the mapping F ′

Y (a, b)−1F , we can also assume that Z=Y and F ′
Y (a, b)=I .

Let us find r0 > 0 such that U contains the ball of radius r0 centered at zero. For
every x ∈ B(0, r0) we consider the mapping Ψx : y 7→ y − F (x, y). By assump-
tion there exists r ∈ (0, r0) such that for all y1, y2 ∈ B(0, r), x ∈ B(0, r) we
have

‖F (x, y1) − F (x, y2) − (y1 − y2)‖ 6 1
2‖y1 − y2‖.

Hence for all x ∈ B(0, r) the mapping Ψx on the ball B(0, r) satisfies the Lip-
schitz condition with constant 1/2. By assumption there exists δ ∈ (0, r) such
that ‖F (x, 0)‖<r/2 if ‖x‖<δ. For such x we have ‖Ψx(0)‖=‖F (x, 0)‖<r/2.
Thus, we are under the assumptions of Theorem 1.4.4, which gives a mapping
f : B(0, δ) → Y with f(x) = f(x) − F

(
x, f(x)

)
for all x ∈ B(0, δ). Hence for

such points x we have F
(
x, f(x)

)
= 0. �

12.3.9. Remark. If in the situation of this theorem the mapping F is Fréchet
differentiable and its derivative is continuous at the point (a, b), then the mapping
f constructed above is differentiable at the point a and

f ′(a) = −[F ′
Y (a, b)]−1F ′

X(a, b).
This is proved in the same way as in Theorem 12.3.7.

12.4. Higher Order Derivatives

If a mapping F : X → Y between locally convex spaces is differentiable,
then a new mapping F ′ : x 7→ F ′(x) arises with values in the space of linear
mappings from X to Y . We can equipped this space with some locally convex
topology and study the differentiability of the mapping F ′, denoting its derivative
(in a suitable sense) by F ′′.
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In the case of Fréchet differentiability in normed spaces this leads to consid-
ering the derivative F ′ : X → L(X,Y ), x 7→ F ′(x) of a Fréchet differentiable
mapping F : X → Y of normed spaces. The space of operators L(X,Y ) is
equipped with the operator norm, so F ′ becomes a mapping with values in a
normed space and we can speak of its Fréchet differentiability at the point x. If
F ′ has a Fréchet derivative at x, then it is denoted by F ′′(x) or D2F (x). In this
case F ′′(x) ∈ L

(
X,L(X,Y )

)
.

We observe (see §12.5) that the space of operators L
(
X,L(X,Y )

)
can be

canonically identified with the space L2(X,X, Y ) of bilinear continuous mappings
from X×X to Y . To this end, to every operator Λ ∈ L

(
X,L(X,Y )

)
we set in

correspondence a bilinear continuous mapping Λ̂ by the formula

Λ̂(u, v) = [Λ(u)](v).

If Λ = F ′′(x), then the value of Λ̂ on the pair (u, v) is evaluated by the formula

Λ̂(u, v) = ∂v∂uF (x).

Conversely, to every continuous bilinear mapping B from X×X to Y we associate
a linear mapping Λ from X to the space of linear mappings from X to Y by the
formula

[Λ(u)](v) := B(u, v).

We have Λ ∈ L
(
X,L(X,Y )

)
and Λ̂ = B.

12.4.1. Example. Let X be a Hilbert space. Set f(x) = (x, x). Then
f ′(x) = 2x and f ′′(x) = 2I .

The higher order differentiability is defined by induction: a mapping F at a
point x0 has a derivative of order k > 1 if in some neighborhood of x0 there
exist derivatives DF (x), . . . , Dk−1F (x) and the mapping x 7→ Dk−1F (x) is
differentiable at x0.

The Fréchet derivative DkF (x0) of order k is often identified with a continu-
ous k-linear mapping from the space Xk to Y (see §12.5(ii)), i.e., the convention
is that DkF (x0) ∈ Lk(Xk, Y ).

12.4.2. Example. Let X and Y be normed space and let ψ : X → Y be
the continuous homogeneous polynomial of degree k generated by a continuous
symmetric k-linear mapping Ψk. Then the mapping ψ is infinitely Fréchet differ-
entiable and

Dψ(x)h = kΨk(x, . . . , x, h).
For the proof we write Ψk(x+h, . . . , x+h)−Ψk(x, . . . , x) using the additivity of
Ψk in every argument. We obtain the term kΨk(x, . . . , x, h) and a sum of terms in
which h enters as an argument of Ψk at least twice. So this sum is o(‖h‖), which
proves our claim.

12.4.3. Theorem. Let a mapping F between normed spaces X and Y have
a derivative of order k at a point x0. Then the multilinear mapping DkF (x0) is
symmetric. In particular, for k = 2 we have

D2F (x0)(u, v) = D2F (x0)(v, u).
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PROOF. It suffices to verify this assertion for scalar functions considering
compositions l◦F , where l is an element of Y ∗. Then everything reduces to the
case X = IRk known from calculus. For example, for k = 2 we have to take the
function f(t1, t2) := F (x0 + t1u+ t2v) on IR2. Then

∂

∂t1
f(t1, t2) = DF (x0 + t1u+ t2v)(u),

whence D2F (x0)(u, v) = ∂
∂t2

∂
∂t1
f |t1=t2=0. A similar equality with the inter-

changed partial derivatives in t1 and t2 is true for D2F (x0)(v, u). �

12.4.4. Theorem. (TAYLOR’S FORMULA) Let U be an open set in a normed
space X and let a mapping F : X → Y with values in a normed space Y have
Fréchet derivatives up to order n− 1 in U .

(i) If at a point x0 ∈ U there exists the Fréchet derivative DnF (x0), then, as
‖h‖ → 0, we have

‖F (x0 + h) − F (x0) −DF (x0)h− · · · − 1
n!
DnF (x0)(h, . . . , h)‖=o(‖h‖n).

(ii) If in U there exists the Fréchet derivative DnF (x) and ‖DnF (x)‖ 6 M ,
then, for every x ∈ U and every h ∈ X such that the interval with endpoints in x
and x+ h belongs to U , we have

F (x+ h) = F (x) +DF (x)h+ · · · +
1

(n− 1)!
Dn−1F (x)(h, . . . , h)

+
1

(n− 1)!

∫ 1

0

(1 − t)n−1DnF (x+ th)(h, . . . , h) dt. (12.4.1)

In addition, the following estimate holds:

‖F (x+ h) − F (x) −DF (x)h− · · ·

− 1
(n− 1)!

Dn−1F (x)(h, . . . , h)‖ 6 M
‖h‖n

n!
.

PROOF. (i) Let us apply induction on n. For n = 1 our assertion is true by
the definition of the Fréchet derivative. Suppose it is true for some n = k. If the
mapping F has the derivative Dk+1F (x0) at x0, then the mapping

G : h 7→ F (x0 + h) − F (x0) −DF (x0)h− · · ·

− 1
(k + 1)!

Dk+1F (x0)(h, . . . , h)

is differentiable in a neighborhood of zero. According to Example 12.4.2 we have

DG(h)v = DF (x0 + h)v −DF (x0)v − · · · − 1
k!
Dk+1F (x0)(h, . . . , h, v),

which can be written as

DG(h) = Ψ(x0 + h) − Ψ(x0) −DΨ(x0)v − · · · − 1
k!
DkΨ(x0)(h . . . , h),
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where Ψ(x) := DF (x). Applying the inductive assumption to the mapping Ψ, we
obtain the relation ‖DG(h)‖ = o(‖h‖k). Since G(0) = 0, we have the estimate
‖G(h)‖ 6 sup06t61 ‖DG(th)‖ · ‖h‖ = o(‖h‖k+1) by the mean value theorem,
which proves our assertion for n = k + 1.

(ii) In the proof of (12.4.1) we can assume that the space Y is separable,
since on the interval with endpoints at x and x + h the mapping F is continuous
and hence takes values in a separable subspace of Y . In addition, we can pass
to the completion of the space Y and assume that it is Banach (then the inte-
gral in (12.4.1) will be an element of the original space). The Y -valued mapping
t 7→ (1 − t)n−1DnF (x+ th)(h, . . . , h) is measurable and bounded by our condi-
tion, hence it is Lebesgue integrable (see Example 6.10.66). It suffices to verify
the equality of both parts of the regarded equality under the action of elements
of Y ∗. This reduces our assertion to scalar functions on the interval if we pass to
the mapping ϕ(t) = F (x+ th). The second assertion in (ii) is a simple corollary
of the first one. �

As in the case of real functions on IR, in applications the first two derivatives
turn out to be the most useful and frequently used. These derivatives describe the
behavior of the function in a neighborhood of a point of local extremum.

12.4.5. Theorem. Let U be an open set in a normed space X and let
f : X→ IR be a Gateaux differentiable function.

(i) If f has a minimum at the point x0 ∈ U , then Df(x0) = 0.
(ii) If the function f is twice Fréchet differentiable at the point x0 ∈ U and

has a minimum at this point, then D2f(x0)(h, h) > 0 for all h ∈ X .
(iii) Let the function f be twice Fréchet differentiable in U and let x0 ∈ U be a

point such that Df(x0) = 0 and for some λ > 0 we have D2f(x0)(h, h) > λ‖h‖2

for all h ∈ X . Then x0 is a point of a strict local minimum.

PROOF. Assertions (i) and (ii) follow from the one-dimensional case applied
to the function t 7→ f(x+ th), and (iii) follows from assertion (i) of the previous
theorem, giving the estimate f(x0 + h) − f(x0) > λ‖h‖2/2 for small ‖h‖. �

The condition D2f(x0)(h, h) > 0 ∀h 6= 0 is not sufficient here. For example,
for the function f(x) =

∑∞
n=1(n−3x2

n − x4
n) on the space l2 it holds for x0 = 0,

but x0 is not a point of local minimum.

12.5. Complements and Exercises

(i) Newton’s method (529). (ii) Multilinear mappings (530). (iii) Subdifferentials and monotone
mappings (534). (iv) Approximations in Banach spaces (535). (v) Covering mappings (536).
Exercises (537).

12.5(i). Newton’s method

The known Newton method of solving the equation f(x) = 0 with a smooth
function f on the interval [a, b] employs recurrent approximations

xn+1 := xn − f(xn)/f ′(xn), x0 = a.
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One can show that if f ′(x) 6= 0 on [a, b] and x∗ is the unique root of this equation,
then xn → x∗. In the infinite-dimensional case there is a modification of New-
ton’s method, the so-called Newton–Kantorovich method, worked out by L.V. Kan-
torovich. We shall give a typical result, referring for a more detailed discussion
to [312, Chapter XVIII]. Let X and Y be Banach spaces and let F : X → Y be a
Fréchet differentiable mapping in the ball B = B(x0, r) such that its derivative F ′

satisfies the Lipschitz condition with constant L, i.e., ‖F ′(x)−F ′(y)‖ 6 L‖x−y‖.
Suppose that the operator F ′(x0) is invertible . Then we can set

xn+1 := xn − [F ′(x0)]−1
[
F (xn)

]
.

These modified approximations possess worse convergence properties, but use the
derivative only at the point x0. LetM=

∥∥[F ′(x0)]−1
∥∥, k =

∥∥[F ′(x0)]−1
(
F (x0)

)∥∥,
h = MkL, let t0 be the least root of the equation ht2− t+ 1 = 0, and let r > kt0.

12.5.1. Theorem. If h < 1/4, then in the ball {x : ‖x − x0‖ 6 kt0} the
equation F (x) = 0 has a unique solution x∗, x∗ = lim

n→∞
xn, moreover, the bound

‖x∗ − xn‖ 6 kqn/(1 − q) holds, where q = ht0 < 1/2.

PROOF. Passing to the mapping [F ′(x0)]−1F , we can assume that X = Y ,
F ′(x0) = I , M = 1. In addition, we can assume that x0 = 0. Let us set
Ψ(x) = x − F (x). Since the derivative of the mapping x 7→ x − F (x) + F (0)
equals I − F ′(x), by the mean value theorem

‖Ψ(x)‖ = ‖x− F (x) + F (0) − F (0)‖ 6 ‖x− F (x) + F (0)‖ + k

6 sup
‖y‖6‖x‖

‖I − F ′(y)‖ ‖x‖ + k 6 L‖x‖2 + k 6 Lk2t20 + k = kt0

whenever ‖x‖ 6 kt0, so Ψ takes the ball {x : ‖x‖ 6 kt0} into the same ball. In
this ball Ψ is a contraction, since

‖Ψ′(x)‖ = ‖I − F ′(x)‖ 6 L‖x‖ 6 Lkt0 = (1 −
√

1 − 4h)/2 = q < 1/2

by the equalities h = Lk and t0 = (2h)−1(1 −
√

1 − 4h) in our case. It remains
to observe that xn+1 = Ψ(xn) and apply Theorem 1.4.1 with the estimate of the
rate of convergence obtained in the cited theorem. �

12.5(ii). Multilinear mappings

We recall that a mapping

Ψ: X1×· · ·×Xk → Y

from the product of linear spaces Xi to a linear space Y is called k-linear if for
any fixed k − 1 arguments Ψ is linear in the remaining argument. A mapping
that is k-linear for some k is called multilinear. If X1 = · · · = Xk = X , then
such a mapping generates the mapping ψk(x) := Ψ(x, . . . , x) from X to Y , called
homogeneous of order k. It is clear that ψk is also generated by any k-linear
mapping obtained from Ψ by an arbitrary permutation of variables. Hence different
k-linear mappings can generate the same homogeneous mapping. However, if Ψ
is symmetric, i.e., invariant with respect to all permutations of arguments, then it
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is uniquely recovered by ψk, which is shown below. The symmetrization of the
mapping Ψ on Xk is defined by

Ψ̃ : x 7→ 1
k!

∑
σ∈Sk

Ψ(xσ(1), . . . , xσ(k)),

where summation is taken over all permutations σ of the collection {1, . . . , k}. It
is clear that the symmetrization of a k-linear mapping Ψ on Xk generates the same
homogeneous of order k mapping as Ψ itself. Thus, a homogeneous mapping can
be always generated by a symmetric multilinear mapping.

A mapping ψ : X→Y is called polynomial or a polynom if

ψ(x) = ψn(x) + · · · + ψ1(x) + ψ0,

where ψ0 is a constant element of Y and ψk is a homogeneous of order k mapping
from X to Y , 1 6 k 6 n. In other words, there exist k-linear mappings Ψk such
that ψ(x) = Ψn(x, . . . , x) + · · · + Ψ1(x) + ψ0. We say that ψ has a degree at
most n; the exact degree of ψ is the minimal k for which ψ has a degree at most k.
The homogeneous polynomials ψk are called homogeneous components of ψ.

The next result shows that the homogeneous components are uniquely de-
termined by the polynomial and any homogeneous polynomial uniquely deter-
mines the symmetric multilinear mapping generating it. For an arbitrary mapping
ϕ : X → Y and every h ∈ X we define a mapping ∆hϕ : X → Y by the formula

(∆hϕ)(x) := ϕ(x+ h) − ϕ(x).

If h1, h2 ∈ X , then we set ∆h2∆h1ϕ := ∆h2(∆h1ϕ). Since

∆h2∆h1ϕ(x) = ϕ(x+ h1 + h2) − ϕ(x+ h1) − ϕ(x+ h2) + ϕ(x),

we have ∆h2∆h1ϕ = ∆h1∆h2ϕ. By induction let

∆hn
∆hn−1 · · ·∆h1ϕ := ∆hn

(∆hn−1 · · ·∆h1ϕ).

One can observe that ∆hn∆hn−1 · · ·∆h1ϕ is the sum of 2n functions of the form
x 7→ (−1)n−pϕ(x + hi1 + · · · + hip), where i1 < · · · < ip are indices from
{0, . . . , n}, and for ip = 0 we set hip = 0. It is easy to verify by induction that
∆hn∆hn−1 · · ·∆h1ϕ(x) is a symmetric function of the arguments h1, . . . , hn.

12.5.2. Theorem. Let ψ = ψn + · · · + ψ1 + ψ0 : X → Y be a polynomial
of degree at most n > 1. Let Ψn be an n-linear symmetric mapping such that we
have Ψn(x, . . . , x) = ψn(x). Then

(i) for every h ∈ X the mapping ∆hψ is a polynomial of degree at most n−1;
(ii) for any fixed h1, . . . , hn ∈ X , the mapping ∆hn · · ·∆h1ψ is constant and

equals n!Ψn(h1, . . . , hn).

The proof is delegated to Exercise 12.5.25.

12.5.3. Corollary. The homogeneous components of any polynomial ψ are
unique. If ψ is a homogeneous polynomial of degree k, then the generating sym-
metric k-linear mapping is uniquely determined by the relation

Ψk(x1, . . . , xk) =
1
k!

∆x1 · · ·∆xk
ψ(a),

where the right-hand side is constant in a.
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We now consider polynomial mappings of normed spaces. As in the case of
linear mappings, of particular importance are continuous polynomials. The next
assertion shows the equivalence of several natural conditions for the continuity.
Below the product X1× · · ·×Xk of normed spaces is equipped with the norm
(x1, . . . , xk) 7→ ‖x1‖X1

+ · · · + ‖xk‖Xk
.

The proofs of the following two theorems are delegated to Exercise 12.5.26.

12.5.4. Theorem. Let X and Y be normed spaces and let ψ = ψn+ · · ·+ψ0

be a polynomial mapping, where each homogeneous component ψk is generated
by a symmetric k-linear mapping Ψk. The following conditions are equivalent:

(i) all Ψk are continuous;
(ii) all homogeneous components ψk are continuous;
(iii) ψ is continuous;
(iv) ψ is continuous at some point;
(v) ψ is bounded on some ball of positive radius;
(vi) ψ is bounded on every ball.

12.5.5. Theorem. Let X1, . . . , Xk, Y be normed spaces, where k ∈ IN, and
let Ψ: X1× · · ·×Xk → Y be a k-linear mapping. The following conditions are
equivalent:

(i) Ψ is continuous;
(ii) Ψ is continuous at some point;
(iii) Ψ is bounded on a neighborhood of some point;
(iv) Ψ is bounded on every bounded set in X1× · · ·×Xk;
(v) there exists M > 0 such that ‖Ψ(x1, . . . , xk)‖ 6 M‖x1‖X1

· · · ‖xk‖Xk
.

Estimate (v) suggests the definition of the norm of a continuous multilinear
mapping Ψ by the formula

‖Ψ‖ := sup
{
‖Ψ(x1, . . . , xk)‖ : ‖xi‖Xi

6 1
}
.

The linear space Lk(X1, . . . , Xk, Y ) of all continuous k-linear mappings from
X1× · · ·×Xk to Y is a normed space with this norm (and is Banach if so is Y ).

Continuous multilinear mappings can be identified with operators in the fol-
lowing way. If Ψ is a bilinear continuous mapping from X1×X2 to Y , then we
associate to it the operator

ΛΨ ∈ L
(
X2,L(X1, Y )

)
, ΛΨ(x2)(x1) := Ψ(x1, x2).

It is not hard to verify that ‖ΛΨ‖ = ‖Ψ‖. Conversely, every operator ΛΨ of class
L

(
X2,L(X1, Y )

)
generates an element L2(X1, X2, Y ) by the indicated formula.

The described correspondence is one-to-one and is a linear isometry. Similarly, to
every element Ψ ∈ Lk(X1, . . . , Xk, Y ) we associate the operator

ΛΨ ∈ Lk := L
(
Xk,Lk−1)

)
,

((
ΛΨ(xk)

)
· · ·

)
(x1) := Ψ(x1, . . . , xk),

where L1 := L(X1, Y ). This correspondence is a linear isometry, i.e., one has

‖ΛΨ‖ = sup
‖x1‖61,...,‖xk‖61

‖Ψ(x1, . . . , xk)‖.
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This connection was already used in §12.4 when we discussed k-fold differentiable
mappings. Polynomial mappings of Banach spaces possess additional properties.

12.5.6. Theorem. If the spaces X1, . . . , Xk are Banach, then the continuity
of the multilinear mapping Ψ: X1× · · ·×Xk → Y is equivalent to its separate
continuity in every argument.

PROOF. Let x1 ∈ X1 and ‖x1‖X1
6 1. We consider the multilinear map-

ping Ψx1 : X2× · · ·×Xk → Y , Ψx1(x2, . . . , xk) = Ψ(x1, x2, . . . , xk). If k > 2,
then by induction we can assume that the continuity of every mapping Ψx1 is
known. The family of these mappings is pointwise bounded: if x2, . . . , xk are
fixed, then the quantity sup

{
‖Ψx1(x2, . . . , xk)‖ : ‖x1‖ 6 1

}
is finite by the con-

tinuity and linearity in x1. Hence it suffices to have the following analog of the
Banach–Steinhaus theorem for multilinear mappings: ifX1, . . . , Xk, Y are Banach
spaces and a family of continuous multilinear mappings Tα : X1× · · · ×Xk → Y
is pointwise bounded, then it is uniformly bounded on the product of the unit
balls. This analog follows at once from the isometric identification of multilinear
mappings and operators described above (and also is easily proved by the same
reasoning as in the case of operators). �

For incomplete spaces this theorem can fail. For example, if the space X of
all polynomials on [0, 1] is equipped with the norm from L1[0, 1], then the bilinear
function

Ψ(x, y) =
∫ 1

0

x(t)y(t) dt

is discontinuous, although it is continuous in every argument separately.
We have defined above polynomials with the aid of homogeneous compo-

nents. It is clear that the restriction of such a polynomial to every straight line is
a usual polynomial, i.e., for every a, b ∈ X the function ψa,b : t 7→ ψ(a+ tb) is a
polynomial in t of the form cnt

n + · · · + c0, where ck ∈ Y . This gives one more
option to define polynomials.

12.5.7. Theorem. (i) Let ψ : X → Y be a mapping between linear spaces
such that for every a, b ∈ X the mapping ψa,b of a real variable is a polynomial
of degree at most n. Then ψ is a polynomial of degree at most n.

(ii) Let X and Y be Banach spaces and let ψ : X → Y be a continuous
mapping such that for every a, b ∈ X the mapping ψa,b is a polynomial. Then the
degrees of such polynomials are uniformly bounded, hence ψ is a polynomial.

The proof is delegated to Exercise 12.5.27 (assertion (ii) is nontrivial!).

12.5.8. Corollary. A mapping ψ : X → Y between linear spaces is a poly-
nomial of degree at most n precisely when for every linear function l on Y the
composition l◦ψ is a polynomial of degree at most n. If Y is a normed space, then
it suffices to take continuous linear functions l.

12.5.9. Corollary. Let X and Y be Banach spaces and let ψ : X → Y be
a continuous mapping such that for all elements a, b ∈ X and every continu-
ous linear functional l on Y the function l◦ψa,b is a polynomial. Then ψ is a
polynomial.
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PROOF. It is clear from the previous theorem that the real function on the
space on X × Y ∗ defined by (x, l) 7→ l

(
ψ(x)

)
is a polynomial, so the degrees of

the polynomials l◦ψ are uniformly bounded. �

It is readily verified that without the assumption of continuity of ψ the theorem
can fail: it suffices to take a Hamel basis {vα} in X , pick a countable part {vαn

}
and set ψ(x) =

∑∞
n=1 x

n
n, where x =

∑
n xnvαn

+
∑
α6∈{αn} xαvα. It can also

fail in the case of an incomplete space, although, as one can show, in place of
completeness it suffices to require that X×X be a Baire space. On the incomplete
space of all finite sequences x = (x1, . . . , xn, 0, 0, . . .) with the norm from l2

the function ψ(x) =
∑∞
n=1

1
n!x

n
n is continuous, is polynomial on every finite-

dimensional subspace, but is not a polynomial on the whole space.

12.5(iii). Subdifferentials and monotone mappings

The geometric interpretation of the derivative of a function as a tangent line to
the graph leads to a very important concept of subdifferential of a convex function.
Let E be a real locally convex space, U ⊂ E a nonempty open convex set, and
let f : U → IR1 be a continuous convex function. A linear functional l ∈ X∗ is
called a subgradient of the function f at the point x0 ∈ U if

f(x) − f(x0) > l(x− x0)

for all x ∈ U . The subdifferential of f at x0 is defined to be the set ∂f(x0) of all
subgradients of f at x0.

It is clear that the set ∂f(x0) is convex. We show that, in addition, it is
nonempty. Indeed, since the supergraph Gf := {(x, t) : t > f(x)} is convex and
open, the point

(
x0, f(x0)

)
can be separated from Gf by a closed hyperplane in

E×IR1 of the form

{(x, t) : l(x) + αt = c}, l ∈ E∗, α, c ∈ IR1.

Note that α 6= 0, so we can assume that α = 1 and that l(x) + c < t for all
points (x, t) ∈ Gf , i.e., l(x0) + t > l(x) + f(x0) for all t > f(x), whence we
obtain l(x0) + f(x) > l(x) + f(x0), as required. If the function f is Gateaux
differentiable at x0, then the Gateaux derivative will be the unique element of the
set ∂f(x0).

Among the most important results about subdifferentials we should mention
in the first place the Moro–Rockafellar theorem and the Dubovitskii–Milyutin the-
orem. For continuous convex functions on locally convex spaces, the former gives
the equality ∂(f + g)(x) = ∂f(x) + ∂g(x), and the latter gives the equality
∂max(f, g)(x) = conv

(
∂f(x) ∪ ∂g(x)

)
. For simplification of technical details

we formulate these definitions and results not in their full generality.
The subdifferential of a convex function delivers the most important example

of a multivalued monotone mapping. In order not to leave the framework of single-
valued mappings, we mention a particular case of the general definition. Let X be
a locally convex space. A mapping F : X → X∗ is called monotone if

〈F (x) − F (y), x− y〉 > 0 ∀x, y ∈ X.
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For example, if the convex function f is Gateaux differentiable, then the mapping
x 7→ f ′(x) is monotone. Monotone mappings play an important role in applica-
tions. Mathematical models of many real world phenomena lead to differential
and integral equations with monotone mappings. Among the best known results
about monotone mappings we mention only the following two (see [93]).

12.5.10. Theorem. If H is a Hilbert space, F : H→H is monotone and con-
tinuous on finite-dimensional subspaces and lim

‖x‖→∞
‖F (x)‖=∞, then F (H)=H .

We observe that for every monotone mapping F : H → H that is continuous
on finite-dimensional subspaces, the mapping F + λI with λ > 0 satisfies the
conditions of the stated theorem and hence is surjective. Indeed,

‖F (x) + λx‖ > ‖F (x) − F (0) + λx‖ − ‖F (0)‖
> 〈F (x) − F (0) + λx, x‖x‖−1〉 − ‖F (0)‖ > λ‖x‖ − ‖F (0)‖.

The mapping F + λI is injective by the inequality

〈F (x) − F (y) + λx− λy, x− y〉 > λ‖x− y‖2.

Therefore, we obtain everywhere defined inverse mappings

Jλ := (λF + I)−1, λ > 0.

The mappings Fλ := λ−1(I − Jλ) are called the Yosida approximations of F .

12.5.11. Theorem. Let F : H → H be a monotone mapping continuous on
finite-dimensional subspaces. The mappings Fλ possess the following properties:

(i) Fλ is monotone and Lipschitz with constant λ−1;
(ii) for all λ, µ > 0 we have (Fλ)µ = Fλ+µ;
(iii) for all x, as λ→ 0 we have

‖Fλ(x)‖ ↑ ‖F (x)‖ and ‖Fλ(x) − F (x)‖ → 0.

The proof of a more general theorem can be found in [39, §3.5.3], [93, Chap-
ter 2]. Let us also note the following fact.

12.5.12. Theorem. Let a mapping F : H → H of a Hilbert space H be con-
tinuous on finite-dimensional subspaces. The following conditions are equivalent:

(i) F is monotone,
(ii) F is monotone and (F + I)(H) = H ,
(iii) for every number λ > 0, the mapping I + λ−1F is a bijection of H and

(I + λ−1F )−1 is a contraction.

12.5(iv). Approximations in Banach spaces

Let us make several remarks about approximations by differentiable mappings
in infinite-dimensional spaces. Let X be a separable Banach space with the closed
unit ball U . The proofs of the following facts can be found in the literature cited
below.

Every uniformly continuous real function f on U is uniformly approximated
by Lipschitz functions that are Hadamard differentiable. However, on the space
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C[0, 1] even the norm is not approximated uniformly on U by Fréchet differen-
tiable functions. On a Hilbert space, uniformly continuous functions are uniformly
approximated by functions with bounded and continuous second Fréchet deriva-
tives, however, on l2 there is a Lipschitz function that is not approximated uni-
formly on U by functions with uniformly continuous second derivatives. Thus,
even in the case of a Hilbert space the border between positive and negative re-
sults is passing between the continuity and uniform continuity of bounded second
derivatives of approximating functions.

The situation with approximation of infinite-dimensional mappings is even
more complicated. There exist uniformly continuous mappings from separable
Banach spaces to l2 which cannot be uniformly approximated by Lipschitz map-
pings. However, uniformly continuous mappings between Hilbert spaces possess
uniform Lipschitz approximations with bounded Fréchet derivatives. The prob-
lems of constructing smooth approximations are also connected with the existence
of smooth functions with bounded support on Banach spaces. Let us mention some
interesting facts.

12.5.13. Theorem. (i) On C[0, 1] there are no nonzero Fréchet differentiable
functions with bounded support.

(ii) If on a Banach space X and on its dual there are nonzero functions with
bounded support and locally Lipschitz derivatives, then X is a Hilbert space (up
to a renorming).

(iii) The existence of nonzero functions with bounded support and Lipschitz
derivatives is equivalent to the existence of an equivalent norm with a Lipschitz
derivative on the unit sphere.

(iv) On c0 there is a nonzero C∞-function with bounded support (on c0 there
is an equivalent norm that is real-analytic outside the origin).

(v) If X possesses a nonzero Ck-function with bounded support, then X
contains an isomorphic copy of either c0 or lk.

For a deeper acquaintance with this direction, see the books Benyamini, Lin-
denstrauss [56], Deville, Godefroy, Zizler [144] and the papers Nemirovskii, Se-
menov [699], Tsar’kov [710], and Bogachev [673].

12.5(v). Covering mappings

Here we discuss a number of interesting concepts and results connected with
elementary objects such as Lipschitz mappings and fixed points, but discovered
very recently. These concepts and results could be discussed already in the first
sections of the first chapter, but we have kept them for completing our considera-
tions, believing that for the reader, as for ourselves, it will be pleasant to learn in
the end that until the present discoveries of something simple and bright still occur
in the very basic things. The main object will be the concept of an α-covering
mapping introduced by A.A. Milyutin. A number of fundamental results have been
obtained in the papers Levitin, Milyutin, Osmolovskii [694], Dmitruk, Milyutin,
Osmolovskii [685] and effectively reinforced in the recent paper Arutyunov [668],
which we follow in our presentation. Closed balls in metric spaces X and Y will
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be denoted by the symbols B
X

(x, r) and B
Y

(x, r); in the case where X = Y we
omit indication of the space.

12.5.14. Definition. Let X and Y be metric spaces. A mapping Ψ: X → Y
is called covering with constant α > 0, or α-covering, if for every ball B

X
(x, r)

in X we have B
Y

(
Ψ(x), αr

)
⊂ Ψ

(
B

X
(x, r)

)
.

Note that any α-covering mapping is surjective, since the union of balls
B

Y

(
Ψ(x0), αn

)
with a fixed center x0 is the whole space Y .

The main result is the following remarkable theorem from [668].

12.5.15. Theorem. Let Ψ: X → Y be continuous and α-covering with
some α > 0 and let Φ: X → Y satisfy the Lipschitz condition with constant
β < α. Suppose that X is complete. Then there exists a point ξ ∈ X such that
Ψ(ξ) = Φ(ξ). Moreover, for every x0 ∈ X , there exists a point ξ = ξ(x0) such
that Ψ(ξ) = Φ(ξ) and d

X
(x0, ξ) 6 (α− β)−1d

Y

(
Ψ(x0),Φ(x0)

)
.

PROOF. Replacing d
Y
by d

Y
/α, we can pass to the case β < α = 1. There

is a point x1 ∈ X with Ψ(x1) = Φ(x0) and

d
X

(x0, x1) 6 d
Y

(
Ψ(x0),Φ(x0)

)
.

By induction we can construct points xn such that

Ψ(xn) = Φ(xn−1), d
X

(xn, xn−1) 6 βd
X

(xn−1, xn−2). (12.5.1)

Indeed, if points x0, . . . , xn are already found, there is a point xn+1 for which
Ψ(xn+1) = Φ(xn−1) and

d
X

(xn+1, xn) 6 d
Y

(
Ψ(xn),Φ(xn)

)
= d

Y

(
Φ(xn−1),Φ(xn)

)
6 βd

X
(xn−1, xn).

Using (12.5.1) and the formula for the sum of a progression it is easy to obtain the
estimate d

X
(xn, x0) 6 (1−β)−1d

Y

(
Ψ(x0),Φ(x0)

)
. The completeness ofX gives

a limit ξ of the sequence {xn} and this limit satisfies the desired conditions. �

Let us show how from this theorem one can obtain some known results.

12.5.16. Example. (i) Let X = Y be complete, f(x) = x, and let g be a
contracting mapping. Then we obtain a fixed point of g, taking α = 1 and β < 1
equal to the Lipschitz constant for g.

(ii) (Milyutin’s theorem) Let X be a complete metric space, Y a normed
space, Ψ: X → Y an α-covering continuous mapping, and let Φ: X → Y satisfy
the Lipschitz condition with constant β < α. Then Ψ + Φ is (α − β)-covering.
Indeed, we have to show that if x0 ∈ X and y0 ∈ Y , then there exists ξ ∈ X with
d

X
(x0, ξ) 6 (α − β)−1‖y0‖ and Ψ(ξ) + Φ(ξ) = Ψ(x0) + Φ(x0) + y0. To this

end, let Φ0(x) := Ψ(x0) + Φ(x0) +y0−Φ(x). It is clear that Φ0 is Lipschitz with
constant β. The theorem above gives a point ξ with Ψ(ξ) = Φ0(ξ), as required.

Exercises

12.5.17.◦ Let A be a Banach algebra (for example, the algebra of all bounded operators
on a Banach space). Prove that the mapping a 7→ ea, A→A is Fréchet differentiable and
find its derivative at zero.
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12.5.18.◦ Prove that the norm on l1 is nowhere differentiable.
HINT: given x ∈ l1, consider the maximal |xi|.

12.5.19.◦ Prove that the following mapping from L2[0, 1] to C[0, 1] is Fréchet differ-
entiable and evaluate its derivative:

F (x)(t) =

∫ t

0

Ψ
(
x(s), s, t

)
ds, where Ψ ∈ C1

b (IR3).

12.5.20. Suppose that in the situation of Example 12.1.7 the set K is compact, convex
and balanced and that

⋃∞
n=1 nK is dense inX . Show that f has the zero Gateaux derivative

at all points of
⋃

06t<1 tK.

12.5.21. Let µ be a nonnegative measure and p ∈ (1,+∞). Prove that the mapping
F : x 7→ |x|p from Lp(µ) to L1(µ) is Fréchet differentiable and DF (x)h = p|x|p−1h.

12.5.22.◦ For z ∈ C let f(z) = exp(−z−4) if z 6= 0 and f(0) = 0. Show that f as a
function on R2 has all partial derivatives ∂nx∂

k
yf on the whole plane, but is discontinuous

at the origin, hence is not differentiable.

12.5.23.◦ Let H be the Hilbert space l2 of two-sided sequences x = (xn), n ∈ Z, let
{en} be its natural basis, and let T be the linear isometry such that Ten = en−1. Let us
consider the second order polynomial mapping

f(x) = T
(
x+ ε

(
1 − (x, x)

)
e0

)
, ε ∈ (0, 1/2).

Show that f takes the closed unit ball U to U and is a diffeomorphism of some neighbor-
hoods of U and a homeomorphism of U , but has no fixed points.

12.5.24. Prove that a function ψ on IRd is a polynomial if ψ is a polynomial in every
argument.

HINT: apply the induction on d. For this assume that d > 1 and that for d − 1 the
assertion is true. The elements of IRd will be written in the form (x, y), where x ∈ IRd−1

and y ∈ IR1. For every x ∈ IRd−1 the function y 7→ ψ(x, y) is a polynomial of some
degree. By the Baire theorem there is n ∈ IN and a set M ⊂ IRd−1 dense in some ball B
such that for every x ∈M and all y we have ψ(x, y) = an(x)yn + · · ·+ a1(x)y+ a0(x),
where aj is some function on IRd−1. Substituting y = 0, 1, 2, . . . , n we obtain n + 1
polynomials ψ(x, k), k = 0, 1, . . . , n, on IRd−1. For every x ∈ M we have n + 1
equalities ψ(x, k) = an(x)kn + · · · + a1(x)k + a0(x). There are numbers cij , where
i, j = 0, 1, . . . , n, independent of x, for which

ak(x) = ck0ψ(x, 0) + ck1ψ(x, 1) + · · · + cknψ(x, n),

since the determinant of this system with respect to ak(x) (the Vandermonde determinant)
is not zero. Let us consider the polynomials pk(x) :=

∑n
j=0 ckjψ(x, j) and the polynomial

ϕ(x, y) :=
∑n
k=0 pk(x)yk. For any x ∈ M the functions y 7→ ψ(x, y) and y 7→ ϕ(x, y)

are polynomials of degree n and coincide at n + 1 points y = 0, 1, . . . , n. Hence they
coincide for all y. Thus, the function ψ coincides with a polynomial on the set M×IR1,
i.e., ψ − ϕ = 0 on this set. By the inductive assumption for every fixed y the function
x 7→ ψ(x, y)−ϕ(x, y) is a polynomial. Since this polynomial vanishes on the setM dense
in the ball, it is identically zero. Hence ψ(x, y) = ϕ(x, y) for all (x, y).

12.5.25. Prove Theorem 12.5.2 by induction on n.
HINT: for n = 1 the assertion is verified directly. Suppose that it is true for n−1 > 1.

We have ∆hψ = ∆hψn+∆h(ψn−1 + · · ·+ψ0) = ∆hψn+ϕ, where ϕ is a polynomial of
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degree at most n − 2 by the inductive assumption. In addition, by using the multilinearity
and symmetry of Ψn we obtain

∆hψn = Ψn(x+ h, . . . , x+ h) − Ψn(x, . . . , x) = nΨn(x, . . . , x, h) + η(x),

where η is a polynomial of degree at most n−2 and the argument x enters Ψn(x, . . . , x, h)
n − 1 times. Thus, ∆hψ is the sum of the homogeneous polynomial nΨn(x, . . . , x, h) of
degree n− 1 and the polynomial ϕ+ η of degree at most n− 2, which completes the proof
of assertion (i). We now make an inductive step to justify (ii). As already shown, we have
∆hnψ = ϕn−1 + · · · + ϕ0, where ϕk are homogeneous polynomials of degree k and

ϕn−1(x) = gn−1(x, . . . , x), gn−1(x1, . . . , xn−1) = nΨn(x1, . . . , xn−1, hn).

It remains to use the inductive assumption for the polynomial ∆hnψ of degree at most n−1,
which shows that ∆h1 · · ·∆hn−1(∆hnψ) is the number (n− 1)!gn−1(h1, . . . , hn−1).

12.5.26. Prove Theorems 12.5.4 and 12.5.5.
HINT: each of the assertions (i)–(iv) implies the next one and (vi) implies (v). Show

that (v) implies (i) (then also (vi)) by induction on n. For n = 1 this is true, since ψ1 = Ψ1

is a linear mapping. Suppose that the implication in question is true for some n − 1 > 1.
By assumption there is a ball B(a, r) with r > 0 on which ‖ψ(x)‖ does not exceed
some M . We know that n!Ψn(h1, . . . , hn) = ∆h1 · · ·∆hnψ(a) is the sum of 2n terms
of the form (−1)n−pψ(a + hi1 + · · · + hip), where i1 < · · · < ip are indices from
{1, . . . , n} and hip = 0 for p = 0. If we take vectors hi with ‖hi‖ 6 r/n, then
a+ hi1 + · · ·+ hip ∈ B(a, r). Hence ‖Ψn(h1, . . . , hn)‖ 6 2nM whenever ‖hi‖ 6 r/n.
This yields the estimate ‖Ψn(x1, . . . , xn)‖ 6 2nM(nR/r)n whenever ‖xi‖ 6 R, which
gives the continuity of Ψn at zero. By the additivity of Ψn in every argument we obtain
the continuity of Ψn everywhere. The proof of Theorem 12.5.5 is similar.

12.5.27. Prove Theorem 12.5.7 and Corollary 12.5.8.
HINT: (i) If X = IRk, then the assertion is easily verified by induction on k with the

aid of the fact that ψ is a polynomial in every variable. Hence the restriction of ψ to every
finite-dimensional space is a polynomial of degree at most n. It follows that the mapping
Ψn : (x1, . . . , xn) 7→ ∆x1 · · ·∆xnψ(0) is multilinear and the restriction of the mapping
ψ(x)−Ψn(x, . . . , x) to every straight line is a polynomial of degree at most n− 1. Using
induction on n, we obtain our claim. (ii) Show that the degrees of the polynomials ψa,b
are uniformly bounded. In the case of IRd this is true even without the assumption about
the continuity of ψ, which can be derived from Baire’s theorem (Exercise 12.5.24). In
the infinite-dimensional case we also use Baire’s theorem, but in another way. For every
n ∈ IN let us consider the set

Mn :=
{

(a, b) ∈ X×X : ψa,b has a degree at most n
}
.

By our condition, the union of all Mn is X×X . By Baire’s theorem some Mn1 is dense
in some ball U of radius r > 0 centered at (u0, v0). Then U ⊂ Mn1 . Indeed, let
(un, vn) → (u, v) in U and (un, vn) ∈ Mn1 . By the continuity of ψ for all t ∈ IR1

we have ψ(u + tv) = lim
n→∞

ψ(un + tvn). It is not hard to verify that the pointwise limit

of polynomials of degree at most n1 on the real line is also a polynomial of degree at
most n1. Thus, (u, v) ∈Mn1 . Passing to the function x 7→ ψ(x− a), we can assume that
a = 0. Thus, whenever ‖u‖ 6 r and ‖v − v0‖ 6 r, all functions ψu,v are polynomials
of degree at most d. It follows that all functions ψu,v possess this property. Indeed, let us
fix u1, v1. Let us consider the restriction of ψ to the three-dimensional space E generated
by u1, v1 and v0. We can assume that E = IR3, v1 = e1, u1 = e2, v0 = e3, where
ei are the vectors of the standard basis (if the vector v0 belongs to the two-dimensional
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space generated by u1 and v1, then the problem becomes even simpler). We are given the
function ψ that is a polynomial on every straight line and for all u from some ball centered
at zero and all v from a ball centered at e3 the polynomials ψu,v have a degree at most n.
We already know that such a function is a polynomial. Hence it is clear that its degree does
not exceed n. For the proof of Corollary 12.5.8 observe that if for every linear function
l the composition l◦ψ is a polynomial of degree at most n, then for every a, b ∈ X we
have l

(
ψ(a + tb)

)
= cn(a, b, l)tn + · · · + c0(a, b, l), where the functions l 7→ ck(a, b, l)

are linear. Hence there exist elements vk(a, b) in the second algebraic dual to Y such that
ψ(a + tb) = vn(a, b)tn + · · · + v0(a, b) for all t ∈ IR1. Substituting t = 0, 1, . . . , n, we
obtain that the elements vk(a, b) are linear combinations of the elements ψ(a + kb) ∈ Y ,
since the determinant of the corresponding linear system is nonzero (this is the so-called
Vandermonde determinant). Thus, vk(a, b) ∈ Y , so Theorem 12.5.7 applies. In the case of
a normed space Y the same reasoning works with continuous functionals on Y .

12.5.28. Let H be a Hilbert space and F : H → H . Prove that F is monotone
precisely when ‖x− y‖ 6 ‖x− y + λF (x) − λF (y)‖ for all λ > 0 and x, y ∈ H .

12.5.29. Let H be a Hilbert space and let F : H → H be a monotone mapping
continuous on finite-dimensional subspaces. Prove that for every v ∈ H the function
x 7→

(
F (x), v

)
is continuous. Give an example where F itself is not continuous.

12.5.30. Let X be a Hilbert space and let {Tt} be a one-parameter group of linear
operators onX with ‖Tt‖ = 1 such that for some h ∈ X the bound ‖Tth−h‖ 6 C|t| holds
whenever t ∈ [−1, 1]. Prove that the mapping F : t 7→ Tth is continuously differentiable
on IR1 and Lipschitz with the constant ‖F ′(0)‖ 6 C.

12.5.31. Let X,Y be metric spaces, let X be complete, and let F : X → Y be con-
tinuous and satisfy the following condition: for every ε > 0 there is δ > 0 such that the
closure of F

(
U(x, ε)

)
contains U

(
F (x), δ

)
for all x ∈ X , where U(a, r) is the open ball

of radius r centered at a. Prove that F takes open sets to open sets.
HINT: see [418, p. 17, Lemma 3.9].

12.5.32. (J. Vanderwerff) Let X be an infinite-dimensional Banach space. Show that
on X there is a continuous convex function that is not bounded on the closed unit ball.

HINT: take a sequence of functionals fn ∈ X∗ with ‖fn‖ = 1 that is weak-∗ conver-
gent to zero and set f :=

∑∞
n=1 ϕn(fn), where ϕn are even continuous convex functions

on the real line with ϕn(t) = 0 for all t ∈ [0, 1/2] and ϕn(1) = n.

12.5.33.∗ (Shkarin [705]) Prove that on an infinite-dimensional separable Hilbert space
there is an infinitely Fréchet differentiable function f such that f(x) = 0 if ‖x‖ > 1, but
f ′(x) 6= 0 if ‖x‖ < 1. Moreover, there is a polynomial of degree 4 with this property.

HINT: consider H = L2[0, 1], f(x) =
(
1−(x, x)

)(
(Ax, x)+2(ϕ, x)+4/27

)
, where

Ax(t) = tx(t), ϕ(t) = t(1 − t).

12.5.34.∗ Prove that there exists an infinitely Fréchet differentiable function f on l2

that is bounded on the closed unit ball, but does not attain its maximum on it.
HINT: use the previous exercise.
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