
CHAPTER 7

Spectral Theory

This chapter is devoted to a branch of the theory of operators very important
for applications — spectral theory. More than any other chapter of the present book
spectral theory owes its creation and intensive development to problems in natural
sciences, in particular, in mechanics, physics, and chemistry.

7.1. The Spectrum of an Operator

The main object of spectral theory is the spectrum of a linear operator. Let
X be a Banach space. A bounded operator A : X → X is called invertible if it
maps X one-to-one onto X . By the Banach theorem the inverse mapping A−1

is automatically continuous. As in linear algebra, an important role is played by
the property of invertibility of the operator A − λI for various scalars λ, where
I : x 7→ x is the unit operator (the identity mapping).

7.1.1. Definition. The spectrum σ(A) of a bounded linear operator A on a
complex Banach space X consists of all λ ∈ C such that the operator A − λI is
not invertible.

For an operator on a real space similarly one defines the real spectrum. If
X = {0}, then the only operator is zero; it has also zero inverse, hence its
spectrum is empty. Usually this case is excluded from consideration; in the sequel
we also do not always explicitly state that a nonzero space is in question.

The complement of the spectrum is called the resolvent set of the operator A
and denoted by %(A). The points of the resolvent set are called regular points.
For every λ ∈ %(A) the operator

Rλ(A) := (A− λI)−1

is called the resolvent of A (one should bear in mind that sometimes the resolvent
is defined as the inverse to λI −A). For λ, µ ∈ %(A) we have the Hilbert identity

Rλ(A) −Rµ(A) = (λ− µ)Rµ(A)Rλ(A),
which is easily verified by multiplying both sides by (A− λI) from the right and
then multiplying by (A− µI) from the left.

By Banach’s inverse mapping theorem a point λ belongs to the spectrum if
and only if either Ker(A− λI) 6= 0 or (A− λI)(X) 6= X , where

Ker(A− λI) := {x : Ax− λx = 0}.
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In the first case λ is an eigenvalue, i.e., Av = λv for some vector v 6= 0 (called an
eigenvector). In the finite-dimensional space both cases can happen only simulta-
neously, but in infinite-dimensional spaces the situation is different.

7.1.2. Example. The operator Ax = (0, x1, x2, . . .) on l2 is injective, but not
surjective. The operator Bx = (x2, x3, . . .) on l2 is surjective, but not injective.
In both cases 0 belongs to the spectrum, but for different reasons. In addition,
A has no eigenvalues, but one can show that σ(A) = {λ ∈ C : |λ| 6 1}. The
Volterra operator on L2[0, 1] or C[0, 1] (Example 6.9.4(iv)) also has no eigenvalues
(if V x = λx, then x(t) = λx′(t), x(0) = 0).

As we shall see, the spectrum of every bounded operator (on a nonzero com-
plex space) is a nonempty compact set. First we establish the following important
fact.

7.1.3. Theorem. The set of invertible operators on a Banach space X (com-
plex or real) is open in the space L(X) with the operator norm. Moreover, if
an operator A ∈ L(X) is invertible and D ∈ L(X) is an operator such that
‖D‖ < 1/‖A−1‖, then the operator A+D is invertible.

PROOF. By Banach’s theorem it suffices to show that for every y ∈ X the
equation Ax + Dx = y is uniquely solvable. This equation is equivalent to the
equation

A−1(A+D)x = A−1y,

which can be written as A−1y − A−1Dx = x. Set F (x) = A−1y − A−1Dx and
observe that F is a contracting mapping, since

‖F (x) − F (z)‖ = ‖A−1D(x− z)‖ 6 ‖A−1‖‖D‖‖x− z‖,
where ‖A−1‖‖D‖ < 1. An alternative proof: if ‖D‖ < 1, then

∑∞
k=0D

k con-
verges in the operator norm and gives (I −D)−1. Now A+D = (I +DA−1)A,
hence (A+D)−1 is given by A−1

∑∞
k=0(−DA−1)k. �

It follows from the theorem that the resolvent set is open. This assertion can
be specified as follows.

7.1.4. Corollary. (i) Let A ∈ L(X). Then, whenever |λ| > ‖A‖, we have
λ ∈ %(A) and

Rλ(A) = −
∞∑
k=0

Ak

λ1+k
,

where the series converges in the operator norm.
(ii) For every point λ0 ∈ %(A), whenever |λ − λ0| < ‖Rλ0(A)‖−1, we have

λ ∈ %(A) and

Rλ(A) =
∞∑
k=0

(λ− λ0)kRλ0(A)k+1,

where the series converges in the operator norm.

PROOF. (i) We have A − λI = −λI + A, where ‖A‖ < |λ| = 1/‖(λI)−1‖.
Convergence of the series of −λ−1−kAk in the operator norm is obvious from the
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estimate ‖λ−kAk‖ 6 |λ|−k‖A‖k. It is straightforward to show that for its sum Sλ
we have Sλ(A− λI) = (A− λI)Sλ = I .

(ii) Convergence of the series with respect to the norm is justified similarly.
For its sum Sλ we have

Sλ(A− λI) =
∞∑
k=0

(λ− λ0)kRλ0(A)k+1
(
A− λ0I − (λ− λ0)I

)
=

∞∑
k=0

[
(λ− λ0)kRλ0(A)k − (λ− λ0)k+1Rλ0(A)k+1

]
= I.

Similarly, (A− λI)Sλ = I . �

7.1.5. Remark. If dimX < ∞, then the set of invertible operators is not
only open but is dense in L(X). In case of l2 this is not true: the shift operator
A : (xn) 7→ (0, x1, x2, . . .) cannot be approximated by invertible operators. In-
deed, if ‖A−B‖ < 1, then B cannot be invertible, since by the equality A∗A = I
we have ‖I − A∗B‖ 6 ‖A∗‖ ‖A − B‖ < 1, which by the theorem above gives
the invertibility of A∗B. If B were invertible, then also A∗ would be invertible,
hence also A. In this relation see also Exercises 7.10.112 and 7.10.113.

7.1.6. Theorem. The spectrum of every operator A ∈ L(X) on a complex
Banach space X 6= 0 is a nonempty compact set in the disc of radius ‖A‖ centered
at the origin in the complex plane.

PROOF. The inclusion σ(A) ⊂ {z ∈ C : |z| 6 ‖A‖} and the closedness of
σ(A) are already known. Let us verify that σ(A) is not empty. Suppose that
Rλ(A) exists for all λ ∈ C. Let ψ ∈ L(X)∗ and F (λ) = ψ

(
Rλ(A)

)
. By

assertion (ii) of the previous corollary F is an entire function, and by assertion (i)
whenever |λ| → ∞ we have |F (λ)| → 0. By the Liouville theorem F ≡ 0,
whence we obtain Rλ(A) = 0, which is impossible if X 6= 0. �

The obtained estimate of the radius of a disc containing the spectrum can be
sharpened.

The spectral radius of the operator A is defined by the formula

r(A) := inf
{
‖An‖1/n : n ∈ IN

}
.

It is clear that r(A) 6 ‖A‖, since ‖An‖ 6 ‖A‖n.

7.1.7. Proposition. We have

r(A) = lim
n→∞

‖An‖1/n.

In addition, r(A) = max{|z| : z ∈ σ(A)}.

PROOF. Let ε > 0. Let p ∈ IN be such that ‖Ap‖1/p 6 r(A) + ε. If n > p,
we have n = kp+m, where 0 6 m 6 p− 1. Then

‖An‖ 6 ‖Ap‖k‖Am‖ 6 M‖Ap‖k, M := 1 + ‖A‖ + · · · + ‖Ap−1‖.
Therefore,

r(A) 6 ‖An‖1/n 6 M1/n‖Ap‖k/n 6 M1/n
(
r(A) + ε

)kp/n
.
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Since M1/n → 1 and kp/n→ 1 as n→∞, we have

r(A) 6 lim supn→∞ ‖An‖1/n 6 r(A) + ε.

Since ε was arbitrary, this proves the first assertion.
Let us show that, whenever |λ| > r(A), the operator A − λI is invertible.

Dividing by λ, we arrive at the case λ = 1 and r(A) < 1. In this case the
series

∑∞
n=0A

n converges in the operator norm, since for all sufficiently large
n we have ‖An‖ 6

(
r(A) + ε

)n
, where ε > 0 is such that r(A) + ε < 1.

A straightforward verification shows that the sum of the indicated series serves
as the inverse operator to I − A. It remains to show that the disc of radius r(A)
contains at least one point of the spectrum. Otherwise by the compactness of the
spectrum we could find r < r(A) such that all λ with |λ| > r would belong to
the resolvent set. According to the corollary proved above this means that for
every continuous linear functional ψ on L(X) the function f(λ) := ψ

(
Rλ(A)

)
is holomorphic on the set |λ| > r. Outside the disc of radius ‖A‖ this function
is represented by the Laurent series −

∑∞
k=0 λ

−1−kψ(Ak). By the uniqueness of
expansion the same series represents the function f if |λ| > r. Let us fix such
λ ∈

(
r, r(A)

)
. Convergence of the indicated Laurent series for every ψ gives the

estimate supk ‖λ−1−kAk‖ 6 C < ∞ by the Banach–Steinhaus theorem. Thus,
‖Ak‖1/k 6 C1/kλ1+1/k, whence r(A) 6 λ, which is a contradiction. �

In the infinite-dimensional case very different operators can have equal spec-
tra. Let us consider examples.

7.1.8. Example. Let {rn} be all rational numbers in [0, 1], let A be the
operator on l2 given by the formula Ax = (r1x1, r2x2, . . .), and let B be the
operator on L2[0, 1] given by the formula Bx(t) = tx(t). Then both operators
have the spectrum [0, 1], although for A all numbers rn are eigenvalues, while
B has no eigenvalues. Indeed, {rn} ⊂ σ(A), whence [0, 1] ⊂ σ(A) by the
closedness of the spectrum. If λ 6∈ [0, 1], then there exists the inverse operator
Rλ(A)x =

(
(r1 − λ)−1x1, (r2 − λ)−1x2, . . .

)
.

Every point λ ∈ [0, 1] belongs to σ(B), since there is no function x ∈ L2[0, 1]
such that (t − λ)x(t) = 1 a.e. If λ 6∈ [0, 1], then the inverse operator for B − λI
is the operator by multiplication by the bounded function ϕ(t) = (t − λ)−1. The
operator B has no eigenvalues: the equality λx(t) = tx(t) a.e. is only possible if
x(t) = 0 a.e.

For an arbitrary linear operator A on a complex linear space and a polynomial
P (z)=

∑n
k=0 ckz

k with complex coefficients, the operator P (A) is defined by

P (A) =
n∑
k=0

ckA
k, A0 := I.

7.1.9. Theorem. (THE SPECTRAL MAPPING THEOREM) Let A be a bounded
linear operator on a complex Banach space X . Then, for every polynomial P of
complex variable, one has

σ
(
P (A)

)
= P

(
σ(A)

)
,

i.e., the spectrum of P (A) is the image of the spectrum of A under the mapping P .
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PROOF. Let us fix λ∈C. Let λ1, . . . , λn be the roots of the polynomial P−λ.
Then λ = P (λi) for all i = 1, . . . , n, P (z) − λ = c(z − λ1) · · · (z − λn) and

P (A) − λI = c(A− λ1I) · · · (A− λnI).
Let c 6= 0 (otherwise the assertion is obvious). We observe that the invertibility of
P (A) − λI is equivalent to the invertibility of all operators A − λiI , since they
commute. Indeed, if all these operators are invertible, then their product is also in-
vertible. If some operator A−λi0I is not invertible, then either Ker(A− λi0I) 6= 0
or (A − λi0I)(X) 6= X . Since by the commutativity of the factors we can put
A − λi0I either on the first place or on the last one, the same relation is ful-
filled for the whole product. Thus, λ belongs to σ

(
P (A)

)
precisely when there

exists a number i with λi ∈ σ(A). The latter is equivalent to the property that
λ ∈ P

(
σ(A)

)
. Indeed, if such i exists, then λ = P (λi) ∈ P

(
σ(A)

)
. If λ = P (z),

where z ∈ σ(A), then z is one of the numbers λi, i.e., λi belongs to σ(A). �

7.1.10. Remark. If A ∈ L(X), where X is a complex Banach space, then
σ(A) = σ(A∗) by Corollary 6.8.6(ii) and the equality (A − λI)∗ = A∗ − λI .
However, for a Hilbert space X the spectrum σ(A∗) is the set {z : z ∈ σ(A)}
complex-conjugate to σ(A), since here (A − λI)∗ = A∗ − λI , because A∗ acts
on X . Note that in case of a Hilbert space the equivalence of the invertibility of
the operators B and B∗ is obvious from the equality (BC)∗ = C∗B∗ and here
Corollary 6.8.6 is not needed.

Let us consider the following important example.

7.1.11. Example. (THE OPERATOR OF MULTIPLICATION BY A FUNCTION)
Let µ 6= 0 be a finite nonnegative measure on a space Ω and let ϕ be a bounded
complex µ-measurable function. Let us define the operator Aϕ of multiplication
by ϕ on L2(µ) by the formula

Aϕx(ω) = ϕ(ω)x(ω).
Then (i) A∗

ϕ is the operator of multiplication by the conjugate function ϕ, the
spectrum of Aϕ is the set of essential values of ϕ, i.e., the set of all numbers
λ ∈ C such that µ

(
ω : |ϕ(ω) − λ| 6 ε

)
> 0 for all ε > 0;

(ii) ϕ(ω) ∈ σ(Aϕ) for µ-a.e. ω;
(iii) ‖Aϕ‖ = ‖ϕ‖L∞(µ).
In addition, the operator Aϕ is selfadjoint precisely when ϕ(ω) ∈ IR1 for

µ-a.e. ω.

PROOF. (i) The operator Aϕ is bounded and ‖Aϕ‖ 6 ‖ϕ‖L∞(µ). The expres-
sion for the adjoint to Aϕ is clear from the equality∫

Ω

ϕ(ω)x(ω)y(ω)µ(dω) =
∫

Ω

x(ω)ϕ(ω)y(ω)µ(dω)

for all x, y ∈ L2(µ). Let us evaluate the spectrum of Aϕ. If λ is not an essential
value of ϕ, then for some ε > 0 for µ-almost all ω we have |ϕ(ω) − λ| > ε.
Redefining ϕ on a set of µ-measure zero, we can assume that this inequality is
true for all ω ∈ Ω. Then the operator of multiplication by the bounded function
1/(ϕ − λ) is inverse to Aϕ − λ · I . Conversely, let λ be a regular value. If λ is
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an essential value of ϕ, then the sets Bn = {ω : |ϕ(ω)− λ| 6 1/n} have positive
measures and hence the functions xn = IBn

/
√
µ(Bn) have unit norm. Moreover,

(Aϕ − λI)xn → 0, since
1

µ(Bn)

∫
Bn

|ϕ(ω) − λ|2 µ(dω) 6 n−2 1
µ(Bn)

µ(Bn) = n−2.

Then we obtain xn = (Aϕ − λI)−1(Aϕ − λI)xn → 0 contrary to the equality
‖xn‖ = 1. (ii) The set Sϕ of essential values of the function ϕ can differ from
the set of its actual values. For example, let us define a function ϕ on the interval
(0, 1) with Lebesgue measure as follows: ϕ(t) = t if t 6= 1/2, ϕ(1/2) = 2. Then
the value 2 is assumed, but is not essential, while the number 1 not belonging to
the actual range of the function is essential. However, one can replace ϕ by a
µ-almost everywhere equal function ϕ̃ with values in the set of essential values
of ϕ. Indeed, for every point z ∈ C that is not an essential value of ϕ we find
an open disc U(z, r) with µ

(
ϕ−1

(
U(z, r)

))
= 0. The obtained cover of C1\Sϕ

contains a countable subcover by discs U(zj , rj). The set E =
⋃
j ϕ

−1
(
U(zj , rj)

)
has µ-measure zero. In particular, there are essential values (otherwise µ(Ω) = 0).
Outside E we make the function ϕ̃ equal to ϕ and on E we make ϕ̃ equal to
some essential value. This modification takes values in Sϕ. (iii) According to (i)
it remains to show that ‖Aϕ‖ > ‖ϕ‖L∞(µ). This is clear from the fact that the
largest essential value of the function |ϕ| is ‖ϕ‖L∞(µ). The equality Aϕ = A∗

ϕ is
equivalent to the property that the operators of multiplication by ϕ and ϕ coincide,
i.e., to the property that ϕ(ω) = ϕ(ω) for µ-a.e. ω. �

Note that the established fact does not extend to arbitrary infinite measures
(Exercise 7.10.89). The importance of the considered example will be clear from
the fact, which we prove later, that in such a form one can represent any selfadjoint
operator and any unitary operator on a separable space.

If µ is Lebesgue measure on [0, 1] and ϕ(ω) = ω, then σ(Aϕ) = [0, 1] and Aϕ
has no eigenvalues (Example 7.1.8). For a general Borel measure µ on [a, b] and
ϕ(ω) = ω, the spectrum of Aϕ is the support of µ, i.e., [a, b] without all intervals
of µ-measure zero, and eigenvalues are points of positive µ-measure.

7.2. The Quadratic Form and Spectrum of a Selfadjoint Operator

For a continuous linear operator A on a complex Hilbert space H we define
two functions

ΦA(x, y) = (Ax, y), QA(x) = (Ax, x).

The function QA is called the quadratic form of the operator A. The identity

4ΦA(x, y) = QA(x+ y) −QA(x− y) + iQA(x+ iy) − iQA(x− iy)

yields that the function ΦA and hence the operator A are uniquely determined by
the quadratic form QA (in the real case this is false!). The function ΦA, called the
bilinear form of the operator A, is linear in the first argument, conjugate-linear in
the second argument and continuous. Conversely, with the aid of such a function
one can construct an operator generating this form.
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7.2.1. Lemma. Let H be a complex Hilbert space and let Φ be a complex
function on H×H that is linear in the first argument, conjugate-linear in the
second argument and continuous in every argument separately. Then there exists
a continuous linear operator A on the space H such that Φ(u, v) = (Au, v) for
all u, v ∈ H.

PROOF. The mapping v 7→ Φ(u, v) is linear and continuous for any fixed
vector u. The Riesz theorem gives a uniquely defined vector Au for which
(v,Au) = Φ(u, v), whence (Au, v) = Φ(u, v). The linearity of Φ(u, v) in u
yields the linearity of the mapping u 7→ Au. If un → 0, then Φ(un, v) → 0 for all
vectors v ∈ H , i.e., Aun → 0 weakly and hence {Aun} is bounded. Hence the
operator A is continuous (see Theorem 6.1.3). �

For a selfadjoint operator A the following important identity is valid:

4Re(Ax, y) = QA(x+ y) −QA(x− y).

For the proof it suffices to rewrite the expression(
A(x+ y), x+ y

)
−

(
A(x− y), x− y

)
taking into account the equality (Ay, x) = (y,Ax).

7.2.2. Lemma. An operator A on a complex Hilbert space is selfadjoint
precisely when its quadratic form QA is real.

PROOF. If A = A∗, then

(Ax, x) = (x,Ax) = (Ax, x).

Conversely, if QA is a real function, then QA∗ = QA, whence A = A∗, since
the operator is uniquely determined by its quadratic form (recall that we consider
complex spaces). �

7.2.3. Theorem. (WEYL’S CRITERION) A number λ belongs to the spectrum
of a selfadjoint operator A precisely when there exists a sequence of vectors xn
such that

‖xn‖ = 1 and ‖Axn − λxn‖ → 0.

PROOF. If such a sequence exists, then λ ∈ σ(A), since otherwise

xn = (A− λI)−1(A− λI)xn → 0.

Suppose that there are no such sequences. Then

inf
‖x‖=1

‖Ax− λx‖ = α > 0,

whence
‖Ax− λx‖ > α‖x‖ for all x. (7.2.1)

In particular, Ker(A − λI) = 0. Let us set Y = (A − λI)(H) and show that
Y = H . Let a ⊥ Y , i.e., (Ax − λx, a) = 0 for all x. Then (x,Aa − λa) = 0
and hence Aa = λa. If a 6= 0, then λ must be real, because QA is real. Hence
Aa = λa contrary to the injectivity of A − λI . Thus, the closure of Y coincides
with H . Let y ∈ H . Pick yn = Axn − λxn → y. Using that {yn} is a Cauchy

7.2. The Quadratic Form and Spectrum of a Selfadjoint Operator
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sequence and applying (7.2.1) we conclude that {xn} is a Cauchy sequence. By
the completeness of H there exists x = lim

n→∞
xn, whence y = Ax−λx. Thus, the

operator A− λI is invertible . �

7.2.4. Corollary. If A is a selfadjoint operator and λ is a complex number
such that inf

‖x‖=1
‖Ax− λx‖ > 0, then λ is a regular number.

We observe that Weyl’s criterion and the previous corollary are also true in
the real case (see also Exercise 7.10.97).

7.2.5. Corollary. The spectrum of a selfadjoint operator is real.

PROOF. If ‖x‖ = 1, for all real numbers α and β we have

(Ax− αx− iβx,Ax− αx− iβx)

= (Ax− αx,Ax− αx) − (Ax− αx, iβx) − iβ(x,Ax− αx) + iβ(x, iβx)

= ‖Ax− αx‖2 + β2‖x‖2 > β2.

If β 6= 0, then we apply the previous corollary. �

7.2.6. Theorem. For every selfadjoint operator A (on a nonzero complex or
real Hilbert space) one has

‖A‖ = sup
{
|(Ax, x)| : ‖x‖ 6 1

}
= sup

{
|λ| : λ is a point of the spectrum A

}
.

In addition, the spectrum of A contains the points

mA = inf
‖x‖=1

(Ax, x), MA = sup
‖x‖=1

(Ax, x).

PROOF. Set M = sup
‖x‖61

|(Ax, x)|. It is clear that M = MA or M = −mA.

We have |(Ax, x)| 6 M‖x‖2 and M 6 ‖A‖, since |(Ax, x)| 6 ‖A‖‖x‖2. On the
other hand,

‖A‖ = sup
‖x‖61

‖Ax‖ = sup
‖x‖,‖y‖61

Re(Ax, y)

=
1
4

sup
‖x‖,‖y‖61

[
(A(x+ y), x+ y) − (A(x− y), x− y)

]
6

1
4

sup
‖x‖,‖y‖61

[
M‖x+ y‖2 +M‖x− y‖2

]
=

1
2

sup
‖x‖,‖y‖61

[
M‖x‖2 +M‖y‖2

]
= M.

Thus, M = ‖A‖. We can assume that M = MA, because in the case M = −mA

one can pass to the operator −A. Then there exist vectors xn such that ‖xn‖ = 1
and (Axn, xn) →M . This gives

‖Axn −Mxn‖2 = (Axn, Axn) − 2M(Axn, xn) +M2(xn, xn)

6 ‖A‖2 +M2 − 2M(Axn, xn) = 2M2 − 2M(Axn, xn) → 0.
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By Weyl’s criterion we obtain M ∈ σ(A). Taking into account that the spectrum
is contained in the disc of radius ‖A‖, this completes the proof of the equality
indicated in the formulation and the inclusion MA ∈ σ(A) in case MA = M .

For the proof of the inclusion mA,MA ∈ σ(A) we observe that

MA+cI = MA + c, mA+cI = mA + c, σ(A+ cI) = σ(A) + c

for every c ∈ IR1. Let us take c = ‖A‖. Since

|(Ax, x)| 6 ‖A‖‖x‖2,

we have 0 6 mA+cI 6 MA+cI , whenceMA+cI ∈ σ(A+ cI), i.e.,MA ∈ σ(A) in
any case. Finally, taking c = −‖A‖, on account of the equality σ(−A) = −σ(A)
we similarly obtain mA ∈ σ(A). �

7.2.7. Remark. It is obvious from our reasoning that

σ(A) ⊂ [mA,MA].

Of course, this follows at once from Weyl’s criterion, since if ‖Axn − λxn‖ → 0
and ‖xn‖ = 1, then (Axn, xn) → λ.

For a selfadjoint operator A on a real Hilbert space H its complexifica-
tion AC on the complexification HC of the space H acts by the natural formula
AC(x, iy) = (Ax, iAy) and, as one can easily see, is also a selfadjoint operator.
The realification of this operator (passage to the field IR forgetting the complex
structure) is the direct sum of two copies of the operator A. It is readily verified
that the spectra of A and AC coincide.

If A,B are selfadjoint operators with (Ax, x) 6 (Bx, x), then we write
A 6 B and B > A. In particular, A > 0 if (Ax, x) > 0 (as we know, in
the complex case this estimate gives the selfadjointness of A, but in the real case
the selfadjointness is required additionally). Such an operator is called nonnegative
or nonnegative definite. It follows from what we have proved above that A > 0
precisely when A = A∗ and σ(A) ⊂ [0,+∞).

7.3. The Spectrum of a Compact Operator

Spectra of compact operators possess peculiar properties. Let X be a complex
or real Banach space. Let us consider the operator I −K, where K is a compact
operator.

7.3.1. Lemma. Let K be a compact operator on X .
(i) The kernel of the operator I −K is finite-dimensional.
(ii) The range of the operator I −K is closed.

PROOF. (i) On the kernel of the operator I −K the operator I equals K and
hence is compact, which is only possible if this kernel is finite-dimensional.

(ii) Let yn = xn − Kxn → y. We show that y ∈ (I − K)(X). Suppose
first that supn ‖xn‖ <∞. By the compactness of K we can extract from {Kxn}
a convergent subsequence {Kxni

}. Since xni
= yni

+Kxni
, the sequence {xni

}
converges as well. Denoting its limit by x, we obtain y = x−Kx.
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We now consider the case where the sequence {xn} is not bounded. Set
Z = Ker(I −K) and

dn = inf{‖xn − z‖ : z ∈ Z}.
Since Z is finite-dimensional, there exist vectors zn ∈ Z with ‖xn−zn‖ = dn. We
show that the sequence {dn} is bounded. Suppose the contrary. We can assume
that dn → +∞. Set

vn = (xn − zn)/‖xn − zn‖.
Since (I −K)zn = 0 and supn ‖yn‖ <∞, we have

‖vn‖ = 1, vn −Kvn = (I −K)xn/‖xn − zn‖ = yn/dn → 0.

The sequence {Kvn} contains a convergent subsequence {Kvni}. Then {vni}
converges to some vector v ∈ X . Moreover,

v −Kv = lim
i→∞

(vni
−Kvni

) = 0,

i.e., v ∈ Z. However, this is impossible, since dist(v, Z) > 1, because

‖vn − z‖ =
1
dn

‖xn − zn − dnz‖ >
dn
dn

= 1 for all z∈Z, n∈ IN.

Thus, the sequence {dn} is bounded. Now everything reduces to the first case,
since (I −K)(xn − zn) = (I −K)xn = yn. �

Clearly, the lemma is also true for the operator I +K, since the operator −K
is compact too.

The next theorem is the main result of this section.

7.3.2. Theorem. Let K be a compact operator on a complex or real infinite-
dimensional Banach space X . Then the spectrum of K either coincides with the
point 0 or has the form

σ(K) = {0} ∪ {kn},
where all numbers kn are eigenvalues of K of finite multiplicity, which means that
dim Ker (K − knI) <∞, and the collection {kn} is either finite or is a sequence
converging to zero.

PROOF. By the noncompactness of I the operator K is not invertible and
hence 0 ∈ σ(K). Let λ ∈ σ(K) and λ 6= 0. We show that λ is an eigenvalue.
Suppose the contrary. Passing to the operator λ−1K, we can assume that λ = 1.
By the lemma the subspace X1 = (K − I)(X) is closed in X . In addition, we
have X1 6= X , since otherwise K − I would be invertible. Set

Xn = (K − I)n(X) = (K − I)(Xn−1), n > 2.

It is clear that Xn+1 ⊂ Xn, since X1 ⊂ X , whence X2 ⊂ X1 and so on. By the
lemma we obtain that all subspaces Xn are closed. They are all different by the
injectivity of K − I , since if

(K − I)(Xn) = (K − I)(Xn−1),

then Xn = Xn−1, whence we obtain Xn = · · · = X1 = X .
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According to Theorem 5.3.4 there exist vectors xn ∈ Xn such that ‖xn‖ = 1
and dist(xn, Xn+1) > 1/2. If n < m, we have

Kxn −Kxm = xn − xm + (K − I)xn − (K − I)xm,

where

−xm + (K − I)xn − (K − I)xm ∈ Xm +Xn+1 +Xm+1 ⊂ Xn+1.

Hence ‖Kxn − Kxm‖ > 1/2, i.e., {Kxn} contains no Cauchy subsequence
contrary to the compactness of K. The obtained contradiction means that λ is
an eigenvalue of K. By the lemma dim Ker(K − λI) < ∞, i.e., λ has a finite
multiplicity.

We now show that σ(K) has no nonzero limit points. Suppose that λn → λ,
where λn are eigenvalues and λ 6= 0. We can assume that λn are distinct and
|λn| > σ > 0. Let us take xn 6= 0 with Kxn = λnxn. It is readily seen that the
vectors xn are linearly independent. Denote by Xn the linear span of x1, . . . , xn.
It is clear that K(Xn) ⊂ Xn. By Theorem 5.3.4 there exist yn ∈ Xn with
‖yn‖ = 1 and dist(yn, Xn−1) > 1/2, n > 1. We have

yn = αnxn + zn, zn ∈ Xn−1.

Then for n > m we have

Kyn −Kym = K(αnxn) +Kzn −Kym = αnλnxn +Kzn −Kym

= λn(yn − zn + λ−1
n Kzn − λ−1

n Kym),

where −zn + λ−1
n Kzn − λ−1

n Kym ∈ Xn−1, because zn ∈ Xn−1, Kzn ∈ Xn−1,
Kym ∈ Xm ⊂ Xn−1. Since |λn| > σ and dist(yn, Xn−1) > 1/2, we have
‖Kyn −Kym‖ > σ/2. Hence {Kyn} contains no Cauchy subsequence, which is
a contradiction. �

7.3.3. Example. The Volterra operator V on L2[0, 1] or on C[0, 1] (see
Example 6.9.4(iv)) has no eigenvalues, i.e., σ(V ) = {0}.

7.3.4. Corollary. Let K be a compact operator on X . Then (I −K)(X) is
a closed subspace of finite codimension, i.e., X = (I −K)(X)⊕E, where E is a
finite-dimensional linear subspace.

PROOF. The closedness of (I − K)(X) is already established. According
to Lemma 6.8.1 this subspace is the intersection of the kernels of the func-
tionals in the kernel of I − K∗. Since dim Ker(I − K∗) < ∞ by the com-
pactness of K∗ (see Theorem 6.9.3), there are linearly independent functionals
l1, . . . , ln∈Ker(I −K∗) such that (I −K)(X) =

⋂n
i=1 Ker li. Let us take vec-

tors xi ∈ X with li(xj) = δij . Then X is the sum of (I −K)(X) and the linear
span of x1, . . . , xn. Indeed, for every x ∈ X we set z = x −

∑n
i=1 li(x)xi. This

gives lj(z) = lj(x) − lj(x)lj(xj) = 0 for all j = 1, . . . , n. �

It is clear that this corollary remains in force for λI −K with λ 6= 0, since
λ−1K is a compact operator. In the next section we use this observation.
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7.4. The Fredholm Alternative

We already know that if a nonzero number λ is not an eigenvalue for a com-
pact operator K on a Banach space X , then the operator K − λI is invertible and
hence the equation

Kx− λx = y (7.4.1)

is uniquely solvable for every y ∈ X . Here we sharpen this assertion and show that
the solvability of equation (7.4.1) for all y yields its unique solvability. In other
words, the nontriviality of the kernel of K − λI means that (K − λI)(X) 6= X ,
exactly as in the finite-dimensional case.

7.4.1. Theorem. (THE FREDHOLM ALTERNATIVE) Let K be a compact
operator on a complex or real Banach space X . Then

Ker(K − I) = 0 ⇐⇒ (K − I)(X) = X,

i.e., either the equation

Kx− x = y

is uniquely solvable for all y ∈ X or for some vector y ∈ X it has no solutions
and then the homogeneous equation

Kx− x = 0

has nonzero solutions.

PROOF. If Ker(K − I) = 0, then by Theorem 7.3.2 we have 1 6∈ σ(K).
Hence (K − I)(X) = X . Conversely, suppose that

(K − I)(X) = X, but Ker(K − I) 6= 0.

As we know, the operator K∗ on X∗ is also compact (Theorem 6.9.3). We observe
that Ker (K∗ − I) = 0. Indeed, if f ∈ X∗ and (K∗ − I)f = 0, then

f
(
(K − I)x

)
= (K∗ − I)f(x) = 0 for all x ∈ X.

Since (K−I)(X) = X , we have f = 0. By Theorem 7.3.2 the operator K∗−I is
invertible. We now take a nonzero element a ∈ Ker(K−I). By the Hahn–Banach
theorem there is a functional f ∈ X∗ with f(a) = 1. Let g = (K∗− I)−1f . Then
(K∗− I)g(a) = f(a) = 1. On the other hand, (K∗− I)g(a) = g

(
(K− I)a

)
= 0,

which is a contradiction. Part of this reasoning could be replaced by a reference
to Corollary 6.8.6. �

7.4.2. Corollary. The Fredholm alternative remains in force also for an
operator K ∈ L(X) such that for some n ∈ IN the operator Kn is compact.

PROOF. Let 1 ∈ σ(K). Since Kn is compact and σ(Kn) is the image
of σ(K) under the mapping z 7→ z, the unit circumference can contain only
finitely many points λ1, . . . , λm from σ(K). Increasing n, we can assume that n
is a simple number and exp(2kπi/n) 6= λj for k = 1, . . . , n−1, j = 1, . . . ,m. Let
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θ := exp(2πi/n). Then θk differs from all λj with k = 1, . . . , n− 1, i.e., the op-
erators I−θkK are invertible. Hence the operator V = (I−θK) · · · (I−θn−1K)
is also invertible. Since

I −Kn = (I −K)(I − θK) · · · (I − θn−1K) = (I −K)V,

where V is invertible and commutes with K, we conclude that K − I and Kn− I
have equal kernels and equal ranges. �

Clearly, the Fredholm alternative remains in force for K−λI for all λ 6= 0, i.e.,
the solvability of (7.4.1) with every right-hand side is equivalent to the absence of
nontrivial solutions to the equation

Kx− λx = 0. (7.4.2)

As an application of the Fredholm alternative we prove the following impor-
tant result due to Weyl on the behavior of spectra under compact perturbations.

7.4.3. Theorem. Let X be a Banach space and let A be a bounded operator
on X . Then for every compact operator K on X , the spectra of the operators A
and A+K coincide up to the sets of eigenvalues, i.e.,

σ(A)\σp(A) ⊂ σ(A+K) and σ(A+K)\σp(A+K) ⊂ σ(A),

where σp(A) denotes the so-called point spectrum of A, i.e., the set of all eigen-
values.

PROOF. Let λ ∈ σ(A). We have to show that if the operator C := A+K−λI
is invertible, then λ is an eigenvalue of A. Let us consider the equality

A− λI = C + (A− λI − C) = C −K = C(I − C−1K).

Since λ ∈ σ(A), the operator I − C−1K cannot be invertible. By the Fredholm
theorem (which can be applied due to the compactness of C−1K), it has a nonzero
kernel: there exists a nonzero vector v such that C−1Kv = v. Then Kv = Cv,
whence Av = λv, as required. Applying this to the operators A+K and −K, we
obtain the second relation in the theorem. �

It is worth noting that the full spectra of A and A + K can be still very
different (Exercise 7.10.64).

The classic results of Fredholm were obtained in terms of integral equations.
Before turning to their discussion, we include yet another abstract result, also
belonging to the so-called Fredholm theorems and dealing with the connection
between the solvability of equations of the form (7.4.1) and (7.4.2) and analogous
equations with the adjoint operator. We recall that for any compact operator K
on X the adjoint operatorK∗ on X∗ is also compact. In addition, σ(K∗) = σ(K),
but if the space X is Hilbert and the adjoint operator K∗ is considered on X , then
we have σ(K∗) = σ(K).

We recall that by Lemma 6.8.1 the closure of the range A(X) of a bounded op-
erator is the intersection of kernels of functionals in the kernel of its adjoint A(X).
This gives the first assertion in the next theorem, since the range of K−I is closed
for a compact operator K by Lemma 7.3.1. But more can be said in this case.
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7.4.4. Theorem. Let K ∈ K(X), λ 6= 0. Equation (7.4.1) is solvable for
those and only those y which belong to the set{

z ∈ X : f(z) = 0 ∀ f ∈ Ker(K∗ − λI)
}

=
⋂

f∈Ker(K∗−λI)

Ker f,

called the annihilator of Ker(K∗ − λI) in X . In addition,

dim Ker (K − λI) = dim Ker (K∗ − λI) = codim (K − λI)(X). (7.4.3)

If X is Hilbert, then in place of K∗ − λI we take K∗ − λI .

PROOF. It suffices to consider λ = 1. The first assertion was explained in
the proof of Corollary 7.3.4. It was shown there that there are vectors x1, . . . , xn
in X and functionals l1, . . . , ln ∈ Ker (K∗− I) such that the kernel Ker (K∗ − I)
coincides with the linear span of the functionals l1, . . . , ln, li(xj) = δij for
all i, j, (K − I)(X) =

⋂n
i=1 Ker li, and the n-dimensional subspace E generated

by x1, . . . , xn complements the closed subspace (K − I)(X) to X . Thus,

dim Ker (K∗ − I) = dimE = codim (K − I)(X).

We now show that dim Ker (K − I) = n. The finite-dimensional subspace
X0 := Ker (K − I) can be complemented to X by a closed linear subspace X1

(Corollary 6.4.2). If dimX0 < n, then we can find an injective, but not surjective
operator K0 : X0 →E. Writing x in the form x = x0 ⊕ x1, x0 ∈ X0, x1 ∈ X1,
we obtain the operator K1 : X → X , x 7→ K0x0 +Kx. This operator is compact
by the compactness of K and the aforementioned corollary. The kernel of K1 − I
is trivial: if K1x = x, then x−Kx = K0x0 ∈ E, whence K0x0 = 0 and x0 = 0,
since E ∩ (K − I)(X) = 0 and KerK0 = 0. This gives x1 − Kx1 = 0 and
x1 = 0 by the injectivity of K − I on X1. In addition, the range of K1 − I
differs from X (not all vectors from E belong to it), which is impossible by the
Fredholm alternative. Similarly, if dimX0 > n, then there is a surjective operator
K0 : X0 → E with a nonzero kernel. This gives a surjective operator K1− I with
a nonzero kernel, which is also impossible. Thus, dimX0 = n. By the already
established facts the codimension of the range of K∗ − I is also n. �

Let us apply the established abstract results to the objects from which Fred-
holm’s theory was beginning — integral operators. Suppose we are given a com-
plex square integrable function (an integral kernel) K on [a, b]2 or, more generally,
on Ω×Ω, where (Ω,A, µ) is a space with a nonnegative measure. This ker-

nel defines a compact operator by the formula Kx(t) =
∫ b

a

K(t, s)x(s) ds on the

complex space L2[a, b] or a similarly defined operator on L2(µ). A straightforward
calculation shows that the adjoint operator K∗ is defined by the formula

K∗u(t) =
∫ b

a

K(s, t)u(s) ds,

i.e., corresponds to the integral kernel K∗(t, s) := K(s, t). If the kernel is real and
symmetric, then K = K∗. The first question of the theory of integral equations
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concerns the solvability of the equation

x(t) −
∫ b

a

K(t, s)x(s) ds = y(t) (7.4.4)

with a given right-hand side. The results obtained above lead to the following
conclusions concerning (7.4.4).

(1) The set of solutions to equation (7.4.4) with y = 0 has a finite dimension n,
and the same dimension has the set of solutions to the homogeneous equation
corresponding to the kernel K∗;

(2) if u1, . . . , un are linearly independent solutions to the homogeneous equa-
tion corresponding to K∗, then the set of all those y for which equation (7.4.4) is

solvable consists of the functions y for which
∫ b

a

y(t)ui(t) dt = 0, i = 1, . . . , n.

The same is also true for operators on real spaces given by real kernels.
Let us consider analogous questions for the integral operator K given by a

continuous real kernel K on C[a, b]. This operator is also compact. Hence we can
apply Theorem 7.4.4. However, this theorem employs the adjoint operator on the
adjoint space C[a, b]∗, which is the space of measures. It is natural to ask whether
in the study of the solvability problem for the equation x−Kx = y it suffices to
consider the adjoint operator

K ′x(t) =
∫ b

a

K(s, t)x(s) ds

only on functions from C[a, b] (the operator K ′ is the restriction of K∗ to the
subspace in C[a, b]∗ corresponding to measures given by continuous densities).
This turns out to be possible. Indeed, by the general theorem we have to investigate
the equation σ − K∗σ = 0 in C[a, b]∗, where K∗σ is the measure acting on
functions x ∈ C[a, b] by the formula

K∗σ(x) =
∫ b

a

Kx(t)σ(dt) =
∫ b

a

∫ b

a

K(t, s)x(s) ds σ(dt).

This means that the measure K∗σ is given by the continuous density

%(t) =
∫

[a,b]

K(t, s)σ(ds).

Hence the existence of nontrivial solutions to the equation σ−K∗σ = 0 in C[a, b]∗

is equivalent to the existence of nonzero solutions to the equation % − K ′% = 0
in C[a, b]. It should be noted that here we have used the continuity of K in both
variables (more precisely, it is important here that K∗ takes C[a, b]∗ to C[a, b]).
Let us consider the kernel K(t, s) = (3/2)ts−1/2, which is continuous only with
respect to one variable, but obviously generates a compact operator on C[0, 1] with
a one-dimensional range. The operator K∗ on C[0, 1]∗ also has a one-dimensional
range and the measure σ = s−1/2 ds satisfies the equation K∗σ = σ and spans
the subspace Ker (K∗ − I). By Theorem 7.4.4 the condition for the solvability of
the equation x−Kx = y is given by the equality∫ 1

0

y(s)s−1/2 ds = 0.



294 Chapter 7. Spectral Theory

If we act here by a formal analogy with the previous case and search eigenvectors
of the adjoint kernel only in C[0, 1] or L2[0, 1] (and not in C[0, 1]∗), then, having
seen that they are absent, we could arrive at the wrong conclusion about the
solvability of the equation x−Kx = y for all y.

Note that the continuity of the kernel K in the case of an interval or its square
integrability in the general case were only needed to verify the compactness of K.
Theorem 7.4.4 applies also to the operators on L2[0, 1] or C[0, 1] given by singular
kernels K(t, s) = K0(t, s)|t − s|−α, where α < 1 and a measurable function K0

is bounded in the case of L2[0, 1] and bounded and continuous in t in the case
of C[0, 1] (see Exercise 6.10.143). If the function K0 is continuous and α < 1/2,
then in the study of the solvability of the equation x−Kx = y in C[0, 1] it is also
sufficient to analyze the equation z−K ′z = 0 corresponding to the adjoint kernel
only in C[0, 1] and not in C[0, 1]∗. Indeed, for any y ∈ C[0, 1] the solvability of
the equation x−Kx = y in C[0, 1] is equivalent to its solvability in L2[0, 1], since
Kx ∈ C[0, 1] for all x ∈ L2[0, 1], which is easily verified by using the square
integrability of |s|−α with α < 1/2. In addition, all solutions to the equation
z −K ′z = 0 in L2[0, 1] also belong to C[0, 1].

7.5. The Hilbert–Schmidt Theorem

In a finite-dimensional space every selfadjoint operator is diagonal in some
orthonormal al basis. In an infinite-dimensional case a selfadjoint operator can
fail to have eigenvectors (for example, the operator Ax(t) = tx(t) on L2[0, 1]).
However, for compact selfadjoint operators there is a full analogy with the finite-
dimensional case. This is asserted in the following remarkable classic result.

7.5.1. Theorem. (THE HILBERT–SCHMIDT THEOREM) Suppose that A is
a compact selfadjoint operator on a real or complex separable Hilbert space
H 6= 0. Then A has an orthonormal eigenbasis {en}, i.e., Aen = αnen, where
the numbers αn are real and converge to zero if H is infinite-dimensional.

PROOF. We observe that A has eigenvectors. Indeed, by Theorem 7.2.6 the
infimum and supremum of the function QA(x) = (Ax, x) on the unit sphere
belong to the spectrum. If they are zero, then A = 0. If at least one of these
numbers is not zero, by the compactness of A it is an eigenvalue. All eigenvalues
of A are real. The eigenvectors corresponding to different eigenvalues are mutually
orthogonal. Indeed, if Aa = αa and Ab = βb, then

β(a, b) = (a,Ab) = (Aa, b) = α(a, b),

whence (a, b) = 0 if α 6= β. Therefore, by the separability of H there are at most
countably many eigenvalues. Every nonzero eigenvalue has a finite multiplicity
by the compactness of A. Let {αn} be all eigenvalues of A. In every subspace
Hn := Ker(A − αnI) we can choose an orthonormal basis (for αn 6= 0 such
bases are finite). The union of all these bases gives an orthonormal system {en}
in H . It remains to show that {en} is a basis. Denote by H ′ the closed linear
span of {en}. It is readily seen that A(H ′) ⊂ H ′, since A(Hn) ⊂ Hn for all n.
Let H ′′ be the orthogonal complement of H ′. We observe that A(H ′′) ⊂ H ′′.
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Indeed, if u ∈ H ′′, then for every v ∈ H ′ we have (Au, v) = (u,Av) = 0, since
Av ∈ H ′. As shown above, in H ′′ we have an eigenvector of A, which leads to a
contradiction if H ′′ 6= 0. Theorem 7.3.2 gives αn → 0. �

7.5.2. Remark. A similar assertion is true for nonseparable spaces H . Here
there exists a separable closed subspace H0 ⊂ H such that A(H0) ⊂ H0 and
A(H⊥

0 ) = 0. For H0 we can take the closure of A(H), which is separable due to
the compactness of A.

There is another (variational) proof of this important theorem, which does not
use the spectral theory. The reasoning above shows that the main problem is to
establish the existence of at least one eigenvector. Such a vector can be found
by solving the maximization problem for the function Q(x) = |(Ax, x)| on the
closed unit ball (of course, if we already have the Hilbert–Schmidt theorem, then
it is clear that the maximum is attained at the eigenvectors corresponding to the
eigenvalues with the maximal absolute value). Denote by q the supremum of this
function and take unit vectors hn with Q(hn) → q. Pick a subsequence {hni}
weakly converging to some vector h. The sequence {Ahni} converges in norm
to Ah, whence (Ahni

, hni
) → (Ah, h) and Q(h) = q. It is clear that ‖h‖ = 1 if

‖A‖ > 0. It is now easy to verify that h is an eigenvector. For this it suffices to
show that Ah ⊥ h⊥, since in that case Ah = λh. Let e ⊥ h, ‖e‖ = 1. We can
assume that (Ah, h) > 0. Then for all real t we have (1 + t2)−1Q(h + te) 6 q,
that is,

q + 2tRe (Ah, e) + t2(Ae, e) 6 q + qt2.

This is only possible if Re (Ah, e) = 0. Since this is true for all e ∈ h⊥, we obtain
that Ah ⊥ h⊥.

Note also that in place of |(Ax, x)| we could search the maximum of the
function (Ax, x), provided that we assume additionally that it assumes a positive
value. If (Ax, x) 6 0, then we can pass to −A.

The reasoning presented above not only gives another proof, but also leads
to the following useful variational principle. Denote by Ln the collection of all
n-dimensional linear subspaces in a Hilbert space H .

7.5.3. Theorem. Let A be a compact selfadjoint operator on a real or com-
plex Hilbert space and let α1 > α2 > · · · > 0 be all positive eigenvalues of A
written in the order of decreasing taking into account their multiplicities. Then the
following equalities are valid for all n for which there exists αn > 0.

(i) The Courant variational principle:

αn = min
L∈Ln−1

max
x∈L⊥, ‖x‖=1

(Ax, x). (7.5.1)

(ii) The Fischer variational principle:

αn = max
L∈Ln

min
x∈L, ‖x‖=1

(Ax, x). (7.5.2)

PROOF. (i) Let L ∈ Ln−1. In the space Hn generated by the orthonormal
eigenvectors e1, . . . , en corresponding to the eigenvalues α1, . . . , αn, there is a
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unit vector h ⊥ L. Since for any x ∈ Hn we have (Ax, x) > αn(x, x), it follows
that

max
x∈L⊥,‖x‖=1

(Ax, x) > αn.

If we take L = Hn−1, then the equality is attained.
(ii) Let L ∈ Ln. Then L contains a vector h ⊥ Hn−1, where Hn is the same

as above. It is clear that (Ah, h) 6 αn(h, h). Hence minx∈L,‖x‖=1(Ax, x) 6 αn.
If we take L = Hn, then the equality is attained. �

Similar variational characterizations can be written for negative eigenvalues
(one can simply pass to −A).

Note that in the infinite-dimensional case it is necessary to separate positive
and negative eigenvalues. In the finite-dimensional case the stated equalities are
fulfilled for all eigenvalues written in the order of decreasing.

The next rather non-obvious result is clear from our discussion.

7.5.4. Corollary. Let A and B be compact selfadjoint operators on a real or
complex Hilbert space H such that (Ax, x) 6 (Bx, x). Let {αn} and {βn} be the
sequences of their positive eigenvalues written in the order of decreasing taking
into account their multiplicities. Then for every n we have αn 6 βn.

7.6. Unitary Operators

Let H be a complex Hilbert space and let A be a bounded operator on H . We
recall that σ(A∗) is the set complex-conjugate to σ(A) (Remark 7.1.10).

7.6.1. Definition. A linear operator U on a Hilbert space H 6= 0 is called
unitary if it maps H onto H and preserves the inner product, i.e.,

(Ux,Uy) = (x, y) for all x, y ∈ H .

A unitary isomorphism of nonzero Hilbert spaces H1 and H2 is a one-to-one
linear operator U : H1 → H2 preserving the inner product.

An equivalent definition of a unitary operator is the equality

U−1 = U∗

or two equalities
UU∗ = U∗U = I.

Note that to ensure that the operator U is unitary it is not enough to have
only one of these equalities if we do not require its invertibility. For example, let
Ux = (0, x1, x2, . . .) on l2. Then U preserves the inner product and U∗U = I ,
but UU∗ 6= I .

7.6.2. Example. Let Aϕ be the operator of multiplication on L2(µ) by a
bounded µ-measurable function ϕ considered in Example 7.1.11. Then the oper-
ator Aϕ is unitary if and only if |ϕ(ω)| = 1 for µ-a.e. ω. Indeed, the equality
AϕA

∗
ϕ = I gives the equality ϕ(ω)ϕ(ω) = 1 for µ-a.e. ω. Conversely, the latter

equality yields that AϕA∗
ϕ = I = A∗

ϕAϕ.
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7.6.3. Lemma. The spectrum of a unitary operator belongs to the unit cir-
cumference.

PROOF. Let U be a unitary operator. Then ‖U‖ = 1 and hence the spectrum
of U is contained in the unit disc. The same is true for U∗, but U∗ = U−1, which
excludes from the spectrum all inner points of the disc: if the operator U − λI is
not invertible, then so is I − λU∗, hence also λ−1I − U∗. �

7.6.4. Definition. An operator A1 on a Hilbert space H1 is called unitarily
equivalent to an operator A2 on a Hilbert space H2 if there exists a unitary
isomorphism J : H1 → H2 such that A1 = J−1A2J , i.e., we have a commutative
diagram

H1
A1−−−−→ H1yJ xJ−1

H2
A2−−−−→ H2

7.6.5. Lemma. A linear isometry of Hilbert spaces is a unitary isomorphism.

PROOF. Let J : H1 → H2 be a linear isometry. Then ‖Jx+Jy‖2 = ‖x+y‖2,
‖Jx‖2 = ‖x‖2, ‖Jy‖2 = ‖y‖2, whence (Jx, Jy) + (Jy, Jx) = (x, y) + (y, x),
i.e., Re(Jx, Jy) = Re(x, y). Replacing x by ix in the complex case, we obtain
the equality for the imaginary parts. Any isometry is surjective by definition. �

Characteristics of an operator that do not change under unitary equivalence
are called unitary invariants. For example, the spectrum and norm are unitary
invariants.

7.6.6. Lemma. Let H1 and H2 be Hilbert spaces, H0 ⊂ H1 an everywhere
dense linear subspace, and U : H0 → H2 a linear mapping preserving the inner
product. Then U uniquely extends to a linear mapping from H1 to H2 preserving
the inner product and having a closed range. If U(H0) 6= 0 is dense in H2, then
the extension is a unitary isomorphism.

PROOF. Let x ∈ H1. Let us take xn ∈ H0 with xn → x. Then the sequence
{Uxn} is Cauchy in H2 and hence converges to some element y ∈ H2. Set
Ux := y. It is clear from our assumption that y is independent of our choice of a
sequence converging to x. If zn → z, then

αxn + βzn → αx+ βz and αUxn + βUzn → αUx+ βUz,

whence U(αx+ βz) = αUx+ βUz. Thus, the extension is linear. In addition,

(Ux,Uz) = lim
n→∞

(Uxn, Uzn) = lim
n→∞

(xn, zn) = (x, z).

Since U preserves the norm, the set U(H1) is closed. If it is dense, then it
coincides with H2. �

A generalization of a unitary operator is a partial isometry. This is an operator
J that is defined on a closed linear subspace H1 in a Hilbert space H and maps it
with the preservation of norm onto a closed subspace H2 ⊂ H . It is clear that such
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an operator preserves also the inner product. However, it does not always extend
to a unitary operator. For example, the operator J : (0, x1, x2, . . .) 7→ (x1, x2, . . .)
isometrically maps a closed hyperplane in l2 onto the whole space and cannot be
extended to an isometry operator on all of l2. Every partial isometry V has a
maximal partially isometric extension Ṽ . Indeed, if H1 does not coincide with H
and V (H1) 6= H , then we take the orthogonal complements E1 := H⊥

1 and
E2 := V (H1)⊥. The following cases are possible: 1) the spaces E1 and E2 are
isometric and hence V can be extended to a unitary isomorphism, 2) E2 is larger
than E1, i.e., E2 is not isometric to E1, but has a closed subspace E′

2 isometric
to E1, which gives an isometry between H and V (H1) ⊕ E′

2, 3) E1 is larger
than E2, i.e., E1 is not isometric to E2, but has a closed subspace E′

1 isometric
to E2, which gives an isometry between H1 ⊕ E′

1 and H .
Let us note some properties of partial isometries. We recall that an orthogonal

projection is an operator of the orthogonal projecting onto a closed subspace (see
Corollary 5.4.6).

7.6.7. Proposition. Let V ∈ L(H). The following conditions are equivalent:
(i) the operator V is a partial isometry on the orthogonal complement of its

kernel;
(ii) V ∗V is an orthogonal projection onto some closed subspace;
(iii) V = V V ∗V .
In this case KerV ⊥ = V ∗V (H) and V ∗ is also a partial isometry from V (H)

onto KerV ⊥ vanishing on V (H)⊥.

PROOF. If V isometrically maps H1 onto V (H1) and vanishes on H⊥
1 , then

V ∗ vanishes on V (H1)⊥ and isometrically maps V (H1) onto H1. Indeed, the
equality (V x, y) = (x, V ∗y) yields that V ∗y = 0 if y ⊥ V (H1) = V (H).
Whenever y ∈ V (H1), i.e., y = V z with z ∈ H1, we have V ∗y ⊥ KerV , i.e.,
V ∗y ∈ H1. Then (V x, y) = (x, z) = (x, V ∗y) for all x ∈ H1, whence V ∗y = z.
Hence V ∗V is the projection onto H1, whence V = V V ∗V .

Let V ∗V be the orthogonal projection P onto a closed subspace H1. Then
V = 0 on H⊥

1 and V is an isometry on H1, since

(V x, V x) = (V ∗V x, x) = (Px, x) = (Px, Px).

It is clear that we also have the equality V = V V ∗V . Finally, suppose that V
satisfies the latter equality. Then V ∗V = (V ∗V )2, i.e., the selfadjoint operator
A = V ∗V satisfies the identity A = A2. It is readily seen (this is done below in
Lemma 7.9.1) that A is an orthogonal projection. �

It follows that an operator V is a maximal partial isometry defined by zero on
the orthogonal complement of the subspace on which it is an isometry if and only
if either V ∗V = I or V V ∗ = I (i.e., one of the operators V or V ∗ is isometric on
all of H).

Extensions of isometric operators will be considered in Chapter 10 in con-
nection with extensions of symmetric (unbounded) operators. In the next section
partial isometries are used for obtaining the so-called polar decompositions of
operators.
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7.7. Continuous Functions of Selfadjoint Operators

Any linear operator A on a space X can be substituted as an argument of
a polynomial f of one variable to obtain the operator f(A). Here we establish
a highly nontrivial fact that selfadjoint operators can be substituted in arbitrary
continuous functions of one variable.

7.7.1. Lemma. Let A be a selfadjoint operator on a nonzero complex Hilbert
space and let P be a polynomial with complex coefficients. Then

‖P (A)‖ = max
t∈σ(A)

|P (t)| 6 max
t∈[−‖A‖,‖A‖]

|P (t)|. (7.7.1)

PROOF. Let P (t) =
∑n
k=0 ckt

k. Then

P (A)∗P (A) =
n∑
k=0

ckA
k

n∑
k=0

ckA
k = Q(A),

Q : t 7→P (t)P (t) is a polynomial, P (A)∗P (A) is selfadjoint. Hence

‖P (A)‖2 = sup
‖x‖61

(
P (A)x, P (A)x

)
= sup

‖x‖61

(
P (A)∗P (A)x, x

)
= ‖P (A)∗P (A)‖

= sup
λ∈σ(P (A)∗P (A))

|λ| = sup
t∈σ(A)

|P (t)P (t)| = sup
t∈σ(A)

|P (t)|2,

where the third and forth equalities follow from Theorem 7.2.6, and the last but
one equality is obtained from Theorem 7.1.9. �

In the real case the same is true for real polynomials.
With the aid of this lemma it is easy to define continuous functions of a self-

adjoint operator. We recall that an algebra is a linear space L equipped with
an associative multiplication (a, b) 7→ ab for which (λa)b = a(λb) = λab,
(a+ b)(c+ d) = ac+ bc+ ad+ bd for all a, b, c, d ∈ L and all scalars λ (see
Chapter 11). The most important examples for us is the algebra L(H) of bounded
operators on a Hilbert space H and the algebra C(K) of continuous complex func-
tions on a compact space K. A homomorphism of an algebra is a linear operator
J with J(ab) = J(a)J(b).

7.7.2. Theorem. Let A be a selfadjoint operator on a complex Hilbert space
H 6= 0. There is a unique homomorphism J of the algebra C

(
σ(A)

)
to the

algebra L(H) such that
1) J(P ) = P (A) for every polynomial P : IR1 → C,
2) ‖J(f)‖ = sup

t∈σ(A)

|f(t)| for all f ∈ C
(
σ(A)

)
,

3) J(f)∗ = J(f) for all f ∈ C
(
σ(A)

)
.

A similar assertion is true in case of real spaces H and C
(
σ(A)

)
.

PROOF. For every polynomial f we set

J(f) := f(A).
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For every f ∈ C
(
σ(A)

)
there exists a sequence of polynomials fn uniformly con-

verging to f on the compact set σ(A) on the real line. By the lemma the sequence
of operators fn(A) is Cauchy in L(H) and hence converges in the operator norm
to some operator J(f) ∈ L(H). It is important that this operator does not depend
on the approximating sequence: if polynomials gn also converge uniformly to f
on σ(A), then the polynomials f1, g1, f2, g2, . . . converge as well, which proves
our assertion. If polynomials ϕn converge in C

(
σ(A)

)
to a function ϕ and poly-

nomials ψn converge to a function ψ, then ϕ(A)ψ(A) equals

lim
n→∞

ϕn(A) lim
n→∞

ψn(A) = lim
n→∞

ϕn(A)ψn(A) = (ϕ · ψ)(A),

since the polynomials ϕnψn converge to the function ϕψ. Thus, we have con-
structed a homomorphism. Moreover, ‖f(A)‖ = lim

n→∞
‖fn(A)‖, which proves 2).

In addition, J(f) = J(f)∗. The proof also shows the uniqueness of a homomor-
phism with the indicated properties. �

Letting f(A) := J(f) for each continuous function f on the whole real line,
we obtain the equality ‖f(A)‖ = sup

t∈σ(A)

|f(t)|.

7.7.3. Corollary. Let f ∈ C
(
σ(A)

)
and f(t) > 0 for all t ∈ σ(A). Then the

operator f(A) is selfadjoint and f(A) > 0.

PROOF. The function
√
f > 0 is continuous on σ(A). Hence the operator

B=
√
f(A) is selfadjoint. Since we have f(A)=B2 and (Ax, x)=(Bx,Bx)>0,

the operator f(A) is selfadjoint and nonnegative. �

Taking the function f(t) =
√
t on [0,+∞) in case of an operator A > 0, we

obtain the operator
√
A.

7.7.4. Corollary. If A > 0, then the operator
√
A is selfadjoint, nonnegative

and A =
√
A
√
A.

Note that the operator
√
A is the only nonnegative operator the square of

which equals A (Exercise 7.10.73).

7.7.5. Corollary. For every bounded operator A on a Hilbert space H , the
operator

|A| := (A∗A)1/2

is well-defined and nonnegative. The operator |A| is called the absolute value
of A.

PROOF. We have (A∗Ax, x) = (Ax,Ax) > 0. �

7.7.6. Example. Let Aϕ be the operator of multiplication on L2(µ) by a
bounded µ-measurable function ϕ considered in Example 7.1.11. The operator Aϕ
can be substituted in an arbitrary bounded Borel function f on the complex plane
(not necessarily continuous), by defining f(Aϕ) as the operator Af◦ϕ of multipli-
cation by the bounded µ-measurable function f ◦ϕ. Clearly, for any polynomial f
this gives the operator f(Aϕ). Moreover, it is easy to see from Theorem 7.7.2 that
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in case of a real function ϕ the operator f(Aϕ) is the operator of multiplication
by the function f ◦ϕ. Below, when we establish a unitary equivalence of every
selfadjoint operator to some operator of multiplication Aϕ, this will enable us to
define easily Borel functions of selfadjoint operators.

The next useful result represents general operators by means of selfadjoint op-
erators and partial isometries and is called the polar decomposition of an operator.

7.7.7. Theorem. Let A be a bounded operator on a complex or real Hilbert
space H . Then there exists a partial isometry U on the closure of the range of |A|,
equal the orthogonal complement of the kernel of A, for which

A = U |A|.
If A 6= 0 has a zero kernel and dense range, then U is a unitary operator.

PROOF. Set
Uy := Ax, y = |A|x ∈ |A|(H).

Since
(Ax,Ax) = (A∗Ax, x) = (|A|2x, x) = (|A|x, |A|x),

whenever |A|x = 0 we have Ax = 0, which proves that U is well-defined.
From the equalities above we obtain (Uy,Uy) = (y, y), i.e., U is an isometry
on |A|(H). Hence U extends to a partial isometry on the closure of |A|(H). The
same equalities show that KerA = Ker |A|. Since |A| is a selfadjoint operator, the
closure of its range is the orthogonal complement of the kernel (see Lemma 6.8.4).
If the operator A is injective and has a dense range, then the operator U on the
closure of |A|(H) is everywhere defined and has a dense range. Hence it is
unitary. �

Usually it is convenient to extend U to an operator on the whole space H
by setting U |KerA = 0. Below, when it becomes necessary to consider U on
all of H , we shall have in mind this extension. The way of extending does not
influence U |A|, however, the chosen extension makes the adjoint operator U∗ also
a partial isometry. Indeed, the extended operator U is zero on KerA and linearly
and isometrically maps the closed subspace

H1 := (KerA)⊥ = A∗(H)

onto the closed subspace

H2 := A(H) = (KerA∗)⊥.

The orthogonal decomposition

H = KerA⊕A∗(H) = KerA∗ ⊕A(H)

shows that the operator U∗ is zero on KerA∗ and maps H2 isometrically onto H1

by means of the inverse to U |H1 (here we could also refer to Proposition 7.6.7).
Hence U∗U is the orthogonal projection onto H1, and UU∗ is the orthogonal
projection onto H2. This gives (under the indicated extension of U , of course) the
equality

|A| = U∗A.
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Concerning the uniqueness of the polar decomposition, see Exercise 7.10.86.
The polar decomposition resembles the representation of a complex number z

in the form z = eiθ|z|. This analogy is limited, though. Say, it is not always true
that |A+ B| 6 |A| + |B|. In addition, one does not always have |A| = |A∗|. For
example, if the operator A on l2 is the right shift (x1, x2, . . .) 7→ (0, x1, x2, . . .),
then A∗A = I and |A| = I , but AA∗x = (0, x2, x3, . . .) and |A∗|2 = AA∗ 6= I .

If the operator U is unitary (i.e., A is injective and has a dense range), then
W = U∗ is also unitary, so A∗ = |A|W , where W is unitary. Since A∗ is
also injective and has a dense range, we have similarly A = |A∗|V , where V is
unitary. However, in the general case it is not always possible to decompose A
into the product A = ST of a selfadjoint operator S and a unitary operator T . As
an example take the shift considered above: the operator S would have the zero
kernel and a range that is not dense, which is impossible for a selfadjoint operator.

By using the polar decomposition and the Hilbert–Schmidt theorem we obtain
the following representation of an arbitrary compact operator on a Hilbert space.

7.7.8. Proposition. Let K be a compact operator on a complex or real
separable Hilbert space H 6= 0. Then there exist two orthonormal sequences
{ϕn} and {ψn} and a sequence of real numbers λn tending to zero for which

Kx =
∞∑
n=1

λn(x, ϕn)ψn, x ∈ H.

In addition, every operator of the indicated form is compact.

PROOF. Let K = U |K| be the polar decomposition. Let {ϕn} be an eigenba-
sis of the selfadjoint compact operator |K| and |K|ϕn = λnϕn. Set ψn := Uϕn
for all n such that Uϕn 6= 0. Since |K|x =

∑∞
n=1 λn(x, ϕn)ϕn, applying U

to both parts of this equality we arrive at the desired representation (of course,
excluding numbers n with Uϕn = 0 we must renumber ϕn and ψn). �

7.8. The Functional Model

The main result of this section shows that up to an isomorphism any selfadjoint
operator is the operator of multiplication by a real function. This assertion is
a continual analog of the fact known from linear algebra about representing a
symmetric matrix in a diagonal form. The nontriviality of the generalization is,
in particular, that in the infinite-dimensional case a selfadjoint operator can fail to
have eigenvectors. The representation of an operator in the form of a multiplication
by a function is called the functional model of this operator. In the next section
we discuss a representation of a selfadjoint operator in the form of an integral with
respect to a projection-valued measure. First we consider operators analogous
to finite-dimensional operators without multiple eigenvalues. This analog is the
following concept.

7.8.1. Definition. We shall say that an operator A on a normed space X has
a cyclic vector h if the linear span of the vectors h,Ah,A2h, . . . is everywhere
dense in X .
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7.8.2. Example. The unit operator on any space of dimension greater than 1
has no cyclic vectors. The operator Aϕ of multiplication by the argument on L2(µ),
where µ is a bounded Borel measure on an interval, has cyclic vectors. For exam-
ple, for a cyclic vector we can take the function h(t) = 1, because the linear span
of the functions 1, t, t2, . . . consists of all polynomials and hence is dense in the
space L2(µ).

We shall say that a Hilbert space H is an orthogonal sum of its closed sub-
spaces Hn if Hn ⊥ Hk whenever n 6= k and every vector h ∈ H is the sum of
the series

∑∞
n=1 Pnh, where Pn is the operator of orthogonal projection onto Hn.

7.8.3. Lemma. Let A be a selfadjoint operator on a separable Hilbert
space H . Then H is the orthogonal sum of closed subspaces Hn such that
A(Hn) ⊂ Hn and A|Hn

possesses a cyclic vector.

PROOF. Let us consider the family S the elements of which are collections of
pairwise orthogonal closed subspaces E ⊂ H such that A(E) ⊂ E and A|E has a
cyclic vector. This family is partially ordered by inclusion. Every chain in S has
a majorant: the union of its elements. Hence S contains a maximal element S. By
the separability of H this element S consists of a finite or countable collection of
pairwise orthogonal subspaces Hn with the indicated property. The linear span of
all Hn is everywhere dense in H , because otherwise we can find a nonzero vector
h ⊥ Hn for all n. Then the closure E of the linear span of the sequence of vectors
Akh, k = 0, 1, . . ., is orthogonal to all Hn and is mapped by A into itself, while
the vector h is cyclic for A|E . However, this is impossible by the maximality of S.
It remains to observe that h =

∑∞
n=1 Pnh for every h ∈ H (Pn is the projection

onto Hn), since otherwise the vector a = h−
∑∞
n=1 Pnh is orthogonal to all Hn

and cannot be approximated by vectors from the linear span of Hn. �

7.8.4. Remark. Similarly one can define a decomposition H =
⊕

γ Hγ with
an uncountable number of pairwise orthogonal separable closed subspaces Hγ .
Then the previous lemma remains in force also in the case of nonseparable H ,
which is proved by the same reasoning.

7.8.5. Theorem. Let A be a selfadjoint operator with a cyclic vector on a
separable Hilbert space H 6= 0. Then there exists a nonnegative Borel measure
µ on the compact set σ(A) such that the operator A is unitarily equivalent to the
operator of multiplication by the argument in L2(µ), i.e., to the operator Aϕ with
the function ϕ(t) = t.

PROOF. Let h be a cyclic vector for A. We define a functional l on C
(
σ(A)

)
by the formula l(f) =

(
f(A)h, h

)
. Clearly, we have obtained a continuous linear

functional. If f > 0, then l(f) > 0 according to the results in the previous section.
By the Riesz theorem there exists a nonnegative Borel measure µ on the compact
set σ(A) for which

l(f) =
∫
σ(A)

f(t)µ(dt), f ∈ C
(
σ(A)

)
.
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For any nonnegative integer k we set

U(Akh) := pk, where pk(t) = tk.

We extend U by linearity to finite linear combinations of vectors Akh. Since(∑
αkA

kh,
∑

βmA
mh

)
=

((∑
βmA

m
)(∑

αkA
k
)
h, h

)
=

∫
σ(A)

(∑
βmt

m
)(∑

αkt
k
)
µ(dt)

=
(∑

αkpk,
∑

βmpm

)
L2(µ)

,

the mapping U is well-defined when extended by linearity (i.e., equal linear com-
binations are taken to the same element of L2(µ)) and preserves the inner product.
The range of U is everywhere dense in L2(µ), because the set of polynomials
(the linear span of {pk}) is everywhere dense in L2(µ). By Lemma 7.6.6 we can
extend U to a unitary operator from H to L2(µ). By construction we have

UA
(∑

αkA
kh

)
= U

(∑
αkA

k+1h
)

=
∑

αkpk+1 = Aϕ
∑

αkpk = AϕU
(∑

αkA
kh

)
,

where ϕ(t) = t. Thus, UA = AϕU , i.e., Aϕ = UAU−1. �

Let us now consider the general case of the spectral theorem.

7.8.6. Theorem. (THE FUNCTIONAL MODEL OF A SELFADJOINT OPERA-
TOR) Let A be a selfadjoint operator on a separable Hilbert space H 6= 0. Then
there exists a finite nonnegative Borel measure µ along with a bounded Borel
function ϕ on the real line such that the operator A is unitarily equivalent to the
operator of multiplication by ϕ in L2(µ). Moreover, the function ϕ can be taken
with values in σ(A).

PROOF. Let us decompose H in the orthogonal sum of closed subspaces Hn

invariant under A such that the operators A|Hn
have cyclic vectors. The orthogonal

projection of h onto Hn is denoted by hn. For every n, we find a probability Borel
measure µn on the compact set σ(A) ⊂ [−‖A‖, ‖A‖] for which the operator A|Hn

is unitarily equivalent to multiplication by the argument in L2(µn). We can assume
that ‖A‖ < 1, i.e., σ(A) ⊂ [a, b] ⊂ (−1, 1). Let us translate the measure µn to
the interval Ωn = (2n − 3, 2n − 1) and denote the obtained measure by νn (it is
concentrated on σ(A) + 2n−2). Clearly, the operator A|Hn

is unitarily equivalent
to the operator of multiplication by the function t 7→ t − 2n + 2 in L2(νn). Let
Jn : Hn → L2(νn) be the corresponding unitary equivalence. Let

µ =
∞∑
n=1

2−nνn

and ϕ(t) = t−2n+ 2 if t ∈ σ(A) + 2n−2. Outside these compact sets we define
ϕ in an arbitrary way to make it a Borel function; for example, we can make it
equal to a fixed number in σ(A), which gives a function with values in σ(A), but
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it can also be made a continuous periodic piece-wise linear function with ϕ(t) = t
if t ∈ [a, b] (however, it is not always possible to obtain a continuous function with
values in σ(A)). On the space L2(µ) we have the operator Aϕ of multiplication
by ϕ. We now define an operator J : H → L2(µ) by the equality

J : h =
∞∑
n=1

hn 7→
∞∑
n=1

2n/2Jnhn.

The series in the right-hand side converges in L2(µ), since the functions Jnhn
have supports in pairwise disjoint sets σ(A)+2n−2 and the integral of a function
with respect to the measure µ equals the sum of its integrals with respect to the
measures 2−nνn. Let us verify that we have obtained the desired objects. For
every h ∈ H we have

‖Jh‖2
L2(µ) =

∞∑
n=1

2−n2n‖Jnhn‖2
L2(νn) =

∞∑
n=1

‖hn‖2 = ‖h‖2.

In addition,

AϕJh =
∞∑
n=1

ϕ2n/2Jnhn =
∞∑
n=1

2n/2JnAhn = JAh.

Thus, J is a unitary equivalence of the operators A and Aϕ. �

7.8.7. Remark. (i) In the proof we have constructed a measure on the real
line and the function ϕ has been taken either with values in σ(A) or continuous
and piece-wise linear, but it is easy to modify our construction in order to obtain a
measure on an interval (it is also possible to transform the real line into an interval
by using arctg). A continuous version of ϕ with values in the spectrum of A can
fail to exist (say, if the spectrum is not an interval).

(ii) Remark 7.8.4 enables us to obtain an analog of this theorem in case of a
nonseparable Hilbert space. To this end, we represent H as the orthogonal sum of
pairwise orthogonal separable closed subspaces Hγ , γ ∈ Γ, invariant with respect
to A. The restriction of A to Hγ is unitarily equivalent to the multiplication
by a measurable function ϕγ : IR1 → σ(A) in L2(µγ), where µγ is some Borel
measure on the real line. Now we can take Γ disjoint copies of the real line and
take for µ the sum of the measures µγ on these copies (which gives a countably
additive measure with values in [0,+∞]; such a measure need not be σ-finite).

(iii) The choice of Hn is not unique. For example, for the operator of multi-
plication by the argument on L2[−1, 1] we can take the subspace H1 of functions
equal to zero on (0, 1] and the subspace H2 of functions equal to zero on [−1, 0).
The operators A|H1 and A|H2 have cyclic vectors. The same is possible when
there is no cyclic vector in H . In §10.4 we discuss some canonical decomposi-
tions invariant under unitary isomorphisms. Note also that the spectrum of the
restriction of A to Hn can be strictly smaller than σ(A).

Representations of an operator as the multiplication by a function enable us to
substitute it into Borel functions.
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7.8.8. Definition. Let A be a selfadjoint operator on a separable Hilbert
space H 6= 0 and let f be a bounded Borel function on the real line. We know
that A is unitarily equivalent by means of an isomorphism J to the operator of
multiplication by a bounded Borel function ϕ in L2(µ). Let us define the operator
f(A) by the formula

f(A) := J−1Af◦ϕJ.

This definition extends to the nonseparable case by using a decomposition
of the space on which the given selfadjoint operator acts into the direct sum of
invariant separable subspaces. It is readily seen that this definition agrees with
the earlier introduced construction of a continuous function of a selfadjoint op-
erator. In the next section we represent Borel functions of a selfadjoint operator
by integrals with respect to projection-valued measures, whence it will follow that
our definition of Borel functions of a selfadjoint operator does not depend on our
choice of the functional model.

7.8.9. Corollary. To every bounded complex Borel function f on the real line
this definition associates the operator f(A) ∈ L(H) with the following properties:
if f(t) = g(t) for t ∈ σ(A), then f(A) = g(A), and fn(A)x → f(A)x for all
vectors x ∈ H if fn(t) → f(t) for all points t ∈ σ(A) and |fn(t)| 6 C < ∞ for
all n ∈ IN and t ∈ σ(A).

PROOF. Let us write A as the operator of multiplication by a function ϕ with
values in σ(A). Then the first assertion is obvious and the second one follows
from the Lebesgue dominated convergence theorem. �

On account of Example 7.1.11 we obtain the following assertion.

7.8.10. Corollary. Let A be a selfadjoint operator and let f be a continuous
complex function on σ(A). Then

σ
(
f(A)

)
= f

(
σ(A)

)
.

PROOF. We can assume that A is the operator of multiplication by a bounded
Borel function ϕ on L2(µ), where µ is a bounded nonnegative Borel measure
on the real line. For µ-a.e. t, the number ϕ(t) belongs to the spectrum of A.
Then f(A) is the multiplication by the function f ◦ ϕ, which is defined µ-almost
everywhere. If λ is an essential value of ϕ, then f(λ) is an essential value of f ◦ϕ,
since the set f−1

({
z : |f(λ) − z| < r

})
contains a neighborhood of λ for every

r > 0. If the point η does not belong to the compact set f
(
σ(A)

)
, then it is at

some positive distance ε from this set, hence
∣∣f(

ϕ(t)
)
−η

∣∣ > ε for µ-a.e. t, which
gives the invertibility of the operator f(A) − ηI . �

An important example of a function of a selfadjoint operator A is its Caley
transform

U = (A− iI)(A+ iI)−1 = ϕ(A),
where ϕ(t) = (t − i)/(t + i). Since |ϕ(t)| = 1, the operator U is unitary. The
operator A is reconstructed by U by the formula

A = i(I + U)(I − U)−1,
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since the spectrum of U does not contain 1 by the previous corollary. Conversely,
for every unitary operator U the spectrum of which does not contain 1 the operator
i(I + U)(I − U)−1 is selfadjoint, which is readily verified. Indeed, the adjoint of
this operator is −i(I + U∗)(I − U∗)−1. In addition,

−(I + U∗)(I − U∗)−1 = (I + U)(I − U)−1,

since multiplying both sides by the invertible operator (I −U∗)(I −U) and using
the fact that the operators U and U∗ commute, we arrive at the obvious equality
−(I + U∗)(I − U) = (I + U)(I − U∗) (on both sides we have U − U∗).

If the operator A has no cyclic vectors, it cannot be unitarily equivalent to
the operator of multiplication by the argument on L2(µ) for a measure µ on an
interval, since this operator of multiplication possesses a cyclic vector and the
property to have cyclic vectors is obviously preserved by unitary isomorphisms.
However, even in the case of the absence of cyclic vectors any selfadjoint operator
is represented in the form of multiplication by the argument in the space of vector
functions (see § 7.10(viii)).

7.8.11. Remark. It is instructive to compare the Hilbert–Schmidt theorem
about diagonalization of a compact selfadjoint operator A on a separable Hilbert
space H with the theorem about representation of A in the form of multiplication
by a bounded real measurable function ϕ on L2(µ), where µ is a bounded Borel
measure on the real line. If the operator A has no multiple eigenvalues (including
the zero eigenvalue) and the space H is infinite-dimensional, then A is unitarily
equivalent to the operator of multiplication by the argument on L2(µ), where µ is
a probability measure concentrated on the set {αn} of all eigenvalues of A; we can
assume that the value of µ at αn is 2−n. In case of multiple eigenvalues one has to
decompose A in a direct sum of operators without multiple eigenvalues and apply
the same construction as in the general theorem. On the other hand, the Hilbert–
Schmidt theorem can be derived from the general spectral theorem. For this it
suffices to verify that if the operator of multiplication by ϕ on L2(µ) is compact,
then the restriction of the measure µ to the set {t : ϕ(t) 6= 0} is concentrated at
countably many points (then their indicator functions will be eigenfunctions). This
verification is Exercise 7.10.87.

7.8.12. Proposition. Let A be a bounded operator on a Hilbert space H .
(i) The operator A is not compact precisely when there exists an infinite-

dimensional closed subspace H0 ⊂ H such that the restriction of A to H0 has a
bounded inverse operator, i.e., the mapping A : H0 → A(H0) is one-to-one and
the inverse is continuous.

(ii) The operator A is compact precisely when
lim
n→∞

‖Aen‖ = 0

for every infinite orthonormal sequence {en} in H . This is equivalent to the
property that

lim
n→∞

(Aψn, ϕn) = 0

for all infinite orthonormal sequences {ψn} and {ϕn} in the space H (see, how-
ever, Exercise 7.10.114).
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PROOF. (i) We know that a compact operator cannot be invertible on an
infinite-dimensional space. Suppose that A is not compact. It suffices to consider
separable H . We first consider the case where A is selfadjoint and nonnegative.
We can assume that A is the multiplication by a bounded nonnegative Borel func-
tion ϕ on L2(µ), where µ is a Borel probability measure on the real line. Then
for some ε > 0 the Borel set Eε := {t : ϕ(t) > ε} possesses the property that the
subspace H0 in L2(µ) consisting of functions equal to zero outside Eε is infinite-
dimensional. In the opposite case the operator A would be compact, because it
is the limit (in the operator norm) of the operators of multiplication by ϕIEε as
ε→ 0. It is clear that on H0 our operator is invertible.

In the general case we take the polar decomposition A = U |A|. Then |A| is
not compact. As we have shown, there is an infinite-dimensional closed subspace
H0 on which |A| is invertible, i.e., there is c > 0 such that ‖x‖ 6 c‖|A|x‖
whenever x ∈ H0. Then we have ‖x‖ 6 c‖Ax‖ for all x ∈ H0.

(ii) Let A ∈ K(H) and let {en} be an orthonormal sequence. Then Aen → 0
in the weak topology, since for every y ∈ H we have (Aen, y) = (en, A∗y) → 0.
Hence ‖Aen‖ → 0. If A 6∈ K(H), then by (i) there exists an infinite orthonormal
sequence {en} with ‖Aen‖ > c > 0. One can also find two orthonormal sequences
{ψn} and {ϕn} with |(Aψn, ϕn)| > c > 0. For this we observe that the operator√
|A| is not compact as well. Hence we can take an infinite orthonormal sequence

{ψn} such that ‖
√
|A|ψn‖ > c > 0. Such a sequence can be picked in the

subspace

H1 := Ker
√
|A|

⊥
= Ker |A|⊥ = KerA⊥.

Set ϕn = Uψn. This gives an orthonormal sequence, because ψn ∈ H1 and the
operator U is an isometry on H1. In addition, |A|ψn ∈ |A|(H) ⊂ H1. We obtain

(Aψn, ϕn) = (U |A|ψn, Uψn) = (|A|ψn, ψn) =
∥∥√

|A|ψn
∥∥2

> c2,

which completes the proof. �

Closing this section we observe that the obtained representations of selfadjoint
operators in the form of operators of multiplication by functions leave open the
following question: given two operators of multiplication, how can one decide
whether they are equivalent? This question will be addressed in Chapter 10.

7.9. Projections and Projection-Valued Measures

An orthogonal projection in a Hilbert space H is the operator of the orthogo-
nal projecting onto a closed subspace (see Corollary 5.4.6).

7.9.1. Lemma. A bounded operator P is an orthogonal projection precisely
when P ∗ = P = P 2.

PROOF. If P is the projection onto a closed subspace H0, then P 2 = P and
(Px, y) = (x, Py), i.e., P ∗ = P , which has already been noted in Example 6.8.3.
Conversely, if the indicated equalities are fulfilled, then we set

H0 := Ker(I − P ), H1 := KerP.
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It is clear that H0 and H1 are closed and H0 ⊥ H1, since for all x ∈ H0 and
y ∈ H1 we have (x, y) = (Px, y) = (x, Py) = 0. Since

x− Px ∈ KerP, Px ∈ Ker(I − P ),

for any vector x we obtain x = (x−Px)+Px, where Px ∈ H0 and x− Px∈H1,
i.e., H is the sum of H0 and H1. On the subspace H0 the operator P coincides
with the identity, on H1 it vanishes. Hence P is the projection onto H0. �

We now discuss a representation of a selfadjoint operator in the form of an
integral with respect to a projection-valued measure.

7.9.2. Definition. Let (Ω,B) be a measurable space and let H be a separable
Hilbert space. A mapping Π from B to the space P(H) of orthogonal projections
in H is called a projection-valued measure if, for every a, b ∈ H , the complex
function

Πa,b : B 7→
(
Π(B)a, b

)
is a bounded countably additive measure on B.

Here are the simplest properties of the projection-valued measure Π:

1) the mapping Π is additive, i.e., Π(B1 ∪B2) = Π(B1) + Π(B2) for any disjoint
sets B1, B2 ∈ B;
2) Π(B1) 6 Π(B2) if B1, B2 ∈ B and B1 ⊂ B2;
3) Π(B1)Π(B2) = Π(B2)Π(B1) = 0 for any disjoint sets B1, B2 ∈ B;
4) Π(B1)Π(B2) = Π(B2)Π(B1) = Π(B1 ∩B2) for all B1, B2 ∈ B.

Property 1) follows from the additivity of the measures Πa,b. Property 2)
follows from the equality Π(B2) = Π(B1) + Π(B2\B1) taking into account that
Π takes values in the set of nonnegative operators. For the proof of 3) we observe
that 1) and the equality Π(B1 ∪B2) = Π(B1 ∪B2)2 yield the equality

Π(B1)Π(B2) + Π(B2)Π(B1) = 0.

Multiplying it from the left by Π(B1) we obtain

Π(B1)Π(B2) + Π(B1)Π(B2)Π(B1) = 0,

i.e., Π(B1)Π(B2)
(
I+Π(B1)

)
= 0. Since the operator I+Π(B1) > I is invertible,

we have Π(B1)Π(B2) = 0. The second equality in 3) follows from the first one.
For any B1, B2 ∈ B we can write B1 = C1 ∪D, B2 = C2 ∪D, where

C1 = B1\(B1 ∩B2), C2 = B2\(B1 ∩B2), D = B1 ∩B2.

Since C1, C2, D are disjoint, the projections Π(C1), Π(C2) and Π(D) commute
as shown above and

Π(C1)Π(C2) = Π(C1)Π(D) = Π(C2)Π(D) = 0.

This gives the equality Π(B1)Π(B2) = Π(D)2 = Π(D).
Since each Π(B) is a projection, we have

Πa,a > 0, Πa,a(Ω) 6 ‖a‖2.
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The equality Re Πa,b = 1
2 (Πa+b,a+b − Πa,a − Πb,b) gives the following estimate

for the variation of the measure Πa,b:

‖Πa,b‖ 6 2(‖a+ b‖2 + ‖a‖2 + ‖b‖2) 6 6‖a‖2 + 6‖b‖2.

For an arbitrary bounded complex B-measurable function f , we define the
integral ∫

Ω

f(ω) dΠ(ω)

to be a bounded operator T such that

(Ta, b) =
∫

Ω

f(ω) dΠa,b(ω)

for all a, b ∈ H . Indeed, the right-hand side of this equality is linear in a,
conjugate-linear in b and separately continuous in a and b, which follows from
the above estimate for the variation (it is also sufficient to use the continuity of the
functions Πa,b(B)). One can go further and introduce the Lebesgue integral with
respect to an H-valued measure in order to define Ta. Finally, one can define
operator-valued integrals with the aid of partial sums converging in the operator
norm. We do not develop here these approaches and give only the following
assertion.

7.9.3. Proposition. For every n, one can partition Ω into disjoint parts
Ωn,1, . . . ,Ωn,n ∈ B such that for any choice of points ωn,k ∈ Ωn,k the sums∑n
k=1 f(ωn,k)Π(Ωn,k) will converge to T in the operator norm.

PROOF. It suffices to prove our assertion for real functions. Then the operator
T and the aforementioned sums are selfadjoint operators. We can assume that
0 6 f(ω) < 1. Let us divide the interval [0, 1) into equal subintervals of the form
Jn,k = [(k − 1)/n, k/n) and set Ωn,k = f−1(Jn,k). For any choice of points
ωn,k ∈ Ωn,k for every a ∈ H with ‖a‖ 6 1 we have∣∣∣∣(Ta, a) −

n∑
k=1

f(ωn,k)Πa,a(Ωn,k)
∣∣∣∣

=
∣∣∣∣ n∑
k=1

∫
Ωn,k

f(ω) dΠa,a(ω) −
n∑
k=1

f(ωn,k)Πa,a(Ωn,k)
∣∣∣∣

6
n∑
k=1

sup
ω∈Ωn,k

|f(ω) − f(ωn,k)|Πa,a(Ωn,k) 6
1
n
.

Since we deal with selfadjoint operators, by Theorem 7.2.6 we obtain the estimate∥∥T −
∑n
k=1 f(ωn,k)Π(Ωn,k)

∥∥ 6 1/n. �

Note, however, that the integral with respect to a projection-valued measure
is not a Bochner integral with respect to the operator norm.

7.9.4. Proposition. Let Π be a projection-valued measure on a σ-algebra B
in a space Ω, ϕ and ψ bounded B-measurable complex functions, and let A and
B be the integrals of ϕ and ψ with respect to the measure Π in the sense defined
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above. Then for all u, v ∈ H we have

(ABu, v) =
∫

Ω

ϕ(ω)ψ(ω) dΠu,v(ω). (7.9.1)

PROOF. It is clear from the previous proposition that Π(S)B = BΠ(S) for
all S ∈ B. It suffices to verify (7.9.1) for functions with finitely many values,
which reduces to indicator functions of sets. In the case where ϕ = IS1 , ψ = IS2 ,
we first assume that S1 ∩ S2 = ∅. Then the right-hand side of (7.9.1) equals zero
and the left-hand side is

ΠBu,v(S1)=
(
Π(S1)Bu, v

)
=

(
BΠ(S1)u, v

)
=

(
Π(S2)Π(S1)u, v

)
=0.

The equality to be proved remains also valid in the case where S1 = S2. The
general case follows from this, since

S1 = M1 ∪ (S1 ∩ S2), S2 = M2 ∪ (S1 ∩ S2),

where M1, M2 and S1 ∩ S2 are pairwise disjoint. �

Let us single out the case where Ω = K is a compact set on the real line
(for example, [a, b]) and B is the Borel σ-algebra of K. In this case we obtain a
selfadjoint operator

A :=
∫
K

λ dΠ(λ). (7.9.2)

The previous proposition yields that for every k ∈ IN the operator Ak is written as
the integral of λk with respect to dΠ(λ). Hence for every polynomial f we obtain

f(A) =
∫
K

f(λ) dΠ(λ).

Since two Borel measures on a compact set with equal integrals of polynomials
coincide (see Lemma 3.8.9), we arrive at the following conclusion.

7.9.5. Corollary. If A is represented in the form (7.9.2) with respect to a
projection-valued measure Π on K, then such a measure is unique.

We now show that every selfadjoint operator can be represented in the form
of an integral with respect to a projection-valued measure.

7.9.6. Theorem. (THE SPECTRAL DECOMPOSITION OF A SELFADJOINT

OPERATOR) Let A be a selfadjoint operator on a separable Hilbert space H 6= 0.
Then there exists a unique projection-valued measure Π on B(IR1) with Π(IR1)=I
vanishing outside some interval such that for every bounded Borel function f we
have

f(A) =
∫
σ(A)

f(λ) dΠ(λ) =
∫

IR1
f(λ) dΠ(λ). (7.9.3)

In particular,

A =
∫
σ(A)

λ dΠ(λ) =
∫

IR1
λ dΠ(λ). (7.9.4)

The measure Π is concentrated on σ(A), i.e., Π
(
IR1\σ(A)

)
= 0.
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PROOF. Set Π(B) := IB(A). Then Π(B) is an orthogonal projection, since
Π(B) > 0 and Π(B)2 = Π(B). If A is realized as the operator of multiplication by
a Borel function ϕ, then Π(B) is the operator of multiplication by IB◦ϕ=Iϕ−1(B).
The measure Π is concentrated on σ(A), i.e., Π(B) = 0 if B ∩ σ(A) = ∅, since
by Theorem 7.8.6 we can choose ϕ with values in σ(A). If f = IM , where
M ∈ B(IR1), then for every a, b ∈ H we have∫

σ(A)

IM (t) dΠa,b(t) =
∫

IR1
IM (t) dΠa,b(t) = Πa,b(M) =

(
IM (A)a, b

)
,

i.e., equality (7.9.3) is true for simple functions f . By means of uniform ap-
proximations it is easily extended to bounded functions f . The uniqueness of the
measure Π follows by the corollary above. �

Obviously, in (7.9.3) or (7.9.4) in place of σ(A) we can take any interval
[a, b] ⊃ σ(A), for example, the interval [−‖A‖, ‖A‖].

For the operator of multiplication by the argument the spectral measure is
explicitly calculated in the proof: Π(B) is the multiplication by IB . It is also easy
to obtain from the proof explicit expressions for the measures Πa,b for the operator
of multiplication by ϕ in L2(µ): Πa,b = (ab · µ)◦ϕ−1 for all a, b ∈ L2(µ). For
example, for the operator of multiplication by the argument the measure Πa,b is
given by the density ab with respect to µ.

If A is an orthogonal projection, then in case A 6= 0 and A 6= I we have
Π = (I − A)δ0 + Aδ1, where δ0 and δ1 are the Dirac measures at the points 0
and 1. Finally, if A is a selfadjoint operator with an eigenbasis {en} and eigenval-
ues {αn}, i.e., Aen = αnen, then Π =

∑∞
n=1 Pnδαn

, where Pn is the projection
onto the linear span of en.

It follows from this theorem and Proposition 7.9.3 that any selfadjoint operator
A is the limit in the operator norm of a sequence of finite linear combinations of
orthogonal projections. Of course, this can be also seen from the theorem about
representation of A as the multiplication by a bounded real function ϕ: it suffices
to uniformly approximate ϕ by simple functions.

The projection-valued function Π0(λ) := Π
(
(−∞, λ)

)
is called a resolution of

the identity. This is a very important characteristic of the operator A. Similarly to
the distribution function of a scalar measure, it possesses the following properties:

(i) Π0(λ) 6 Π0(µ) if λ 6 µ,
(ii) Π0(λn)x→ Π0(λ)x for all x ∈ H if λn ↑ λ.
In addition, Π0(a) = 0 if a < −‖A‖ and Π0(b) = I if b > ‖A‖.
Projection-valued measures with equal resolutions of the identity coincide,

since scalar measures are uniquely determined by their distribution functions.
Moreover, the function Π0 can be determined by the operator A without recur-
ring to its functional model (but using the functional calculus). To this end, set

Π0(λ)h = lim
n→∞

ψn(A)h,

where ψn is a continuous function on the real line defined as follows: ψn(t) = 1
if t 6 λ−1/n, ψn(t) = 0 if t > λ, and on (λ−1/n, λ) the function ψn is linearly
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interpolated. This shows that bounded Borel functions of A constructed above are
uniquely determined by the operator A itself (through the functional calculus) and
do not depend on our choice of the functional model (used in our definition of
these objects). Independence of the model is also seen from Corollary 7.9.5.

Any function Π0 with the properties indicated above generates a projection-
valued measure similarly to the case where a scalar measure is constructed by
its distribution function. Before proving this we observe that for any orthogonal
projections P1 and P2 in H the condition P1 6 P2 is equivalent to the inclusion
P1(H) ⊂ P2(H). Indeed, if (P1h, h) 6 (P2h, h), then for any h with P1h = h we
have ‖h‖2 = (P1h, h) 6 (P2h, h), whence P2h = h, because P2 is an orthogonal
projection. The converse is obvious.

7.9.7. Proposition. Let Π0 : IR1 → P(H) have properties (i) and (ii) above
and Π0(a) = 0 and Π0(b) = I for some a < b. Then there is a selfadjoint
operator A with σ(A) ⊂ [a, b] for which Π0 is the resolution of the identity.

PROOF. The function Πx,x : λ 7→
(
Π0(λ)x, x

)
for every x ∈ H is the distrib-

ution function of some nonnegative Borel measure µx on the real line concentrated
on [a, b], moreover, ‖µx‖ 6 ‖x‖2. The function Πx,y : λ 7→

(
Π0(λ)x, y

)
for every

x, y ∈ H is the distribution function of the complex Borel measure µx,y on the
real line generated by the measure µx as follows:

4µx,y := µx+y − µx−y + iµx+iy − iµx−iy.

Then µx,x = µx. For all λ we have

µx,y
(
(−∞, λ)

)
=

(
Π0(λ)x, y

)
.

Since measures on the real line with equal distribution functions coincide, we
have µx+z,y = µx,y + µz,y , µαx,y = αµx,y and µx,y = µy,x. It is clear that
‖µx,y‖ 6 4 if ‖x‖ 6 1, ‖y‖ 6 1. Hence for every Borel set B on the real line
the function (x, y) 7→ µx,y(B) is linear in x, conjugate-linear in y and continuous
in every argument separately. Hence there exists an operator P (B) ∈ L(H) such
that µx,y(B) =

(
P (B)x, y

)
. Since µx,x > 0, the operator P (B) is nonnegative

selfadjoint. Let us show that P (B) is an orthogonal projection. The operator
P (B) = Π0(β) − Π0(α) for B = [α, β) is an orthogonal projection, which is
easily verified with the aid of the equality Π0(α)Π0(β) = Π0(β)Π0(α) = Π0(α),
following from the condition Π0(α) 6 Π0(β). This yields the equality

P (B ∩ E) = P (B)P (E) = P (E)P (B)

for semi-intervals. Let x, y ∈ H . Let us consider two complex Borel measures
E 7→

(
P (B ∩ E)x, P (E)y

)
and E 7→

(
P (B)x, P (E)y

)
. If B is a semi-interval

[α, β), then these two measures have equal values on semi-intervals, hence co-
incide, i.e., P (B ∩ E) = P (B)P (E) = P (E)P (B) for all Borel sets E. Re-
peating this reasoning for a fixed Borel set E, we conclude that the equality
remains valid for all Borel sets B. In particular, P (B) = P (B)2. It is clear that
Π0(λ) = P

(
(−∞, λ)

)
. Now set

A :=
∫

[a,b]

λ dP (λ).
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By Corollary 7.9.5 the operator A generates the projection-valued measure P and
has the resolution of the identity Π0. �

7.10. Complements and Exercises

(i) The structure of the spectrum (314). (ii) Commuting selfadjoint operators (316). (iii) Operator
ranges in a Hilbert space (320). (iv) Hilbert–Schmidt operators and nuclear operators (323).
(v) Integral operators and Mercer’s theorem (337). (vi) Tensor products (339). (vii) Fred-
holm operators (341). (viii) The vector form of the spectral theorem (345). (ix) Invariant sub-
spaces (346). Exercises (347).

7.10(i). The structure of the spectrum

Let us discuss the structure of the spectrum of a bounded operator A on an
infinite-dimensional separable Hilbert space H . The set σ(A) is nonempty and
compact in C. On the other hand, every nonempty compact set K ⊂ C is the
spectrum of some operator A ∈ L(H), since we can find a finite or countable
everywhere dense set of points λn in K, take an orthonormal basis {en} in H
and define a bounded diagonal operator on H by the formula Aen = λnen. Its
spectrum is the closure of {λn} (Exercise 7.10.57), which is exactlyK. It has been
proved by Gowers and Maurey, there exist infinite-dimensional separable Banach
spaces in which the spectrum of every bounded operator is finite or countable.

If the set (A − λI)(H) is dense and the operator (A − λI)−1 is continuous
on this set, then it extends to a bounded operator, which will serve as the inverse
to A − λI . An important part of the spectrum of A is the point spectrum, i.e.,
the set σp(A) of eigenvalues (which, as we know, can be absent in the infinite-
dimensional case). The remaining points λ ∈ σ(A) belong to the spectrum because
the mapping (A−λI)−1 : (A−λI)(H) → H is either discontinuous or defined on
a set that is not dense (although is continuous). The continuous spectrum σc(A)
is usually defined as the set of all numbers λ ∈ σ(A)\σp(A) for which A−λI has
a dense range, but the inverse operator is discontinuous on it. Then the residual
spectrum σr(A) is σ(A)\

(
σp(A) ∪ σc(A)

)
, i.e., the collection of numbers λ for

which the range of the operator A− λI is not dense (in this case (A− λI)−1 can
be continuous on this range or discontinuous). However, one encounters different
partitions of the spectrum in the literature. For example, sometimes the residual
spectrum is defined to consist of those λ for which the range of A − λI is not
dense, but the inverse operator is bounded.

Let us describe the structure of the set of eigenvalues.

7.10.1. Theorem. Let A be a bounded operator on an infinite-dimensional
separable Hilbert space H . Then the set σp(A) of all eigenvalues of A is a
countable union of compact sets.

Conversely, every bounded set that is a countable union of compact sets serves
as the set of all eigenvalues of some bounded operator on H .

PROOF. The set of eigenvalues is bounded as a subset of the spectrum. The
closed unit ball U in H with the weak topology is a metrizable compact space.
Hence its open subset U\{0} can be represented as a countable union of closed (in
the weak topology) parts Kn ⊂ U . The sets Kn are compact in the weak topology.
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A point λ ∈ C is an eigenvalue of A precisely when ‖Ax − λx‖ = 0 for some
x ∈ U\{0}. Hence σp(A) is the union of the projections to C of the sets

Mn :=
{

(x, λ) ∈ Kn×D : ‖Ax− λx‖ = 0
}
,

where D is the closed disc in C with the center at the origin and radius ‖A‖.
We observe that Mn is compact if Kn is equipped with the weak topology. This
is seen from the fact that Kn×D is compact when we equip Kn with the weak
topology and Mn is closed in this product, since it is specified by the conditions
λ(x, ei) = (x,A∗ei), where {ei} is an orthonormal basis in H . Therefore, the
projection of Mn to C is also compact.

We now show that every bounded set P equal to the union of compact sets
Sn ⊂ C coincides with the point spectrum of some bounded operator on a sep-
arable Hilbert space. It suffices to show this for every Sn separately, since the
direct sum of uniformly bounded operators An in Hilbert spaces Hn has for the
family of eigenvalues the union of the point spectra of An. Thus, we shall deal
with a single compact set S. We can assume that it is not empty and is contained
in D := {z : |z| < 1}. Let us consider the Bergman space A2(D) of all func-
tions f ∈ L2(D) holomorphic in D, where D is equipped with Lebesgue measure
(Example 5.2.2). We know that A2(D) is a separable Hilbert space with the norm
from L2(D), i.e.,

‖f‖2
A2(D) :=

∫
D

|f(x+ iy)|2 dx dy.

Let us consider the operator T on the dual to the space A2(D) (so that T acts
on distributions, not on functions) given by the formula Tψ(f) := ψ(zf), where
(zf)(z) = zf(z). Now we do not identify A2(D) with its dual. Actually, T is
the operator adjoint to the multiplication by the argument on A2(D). However,
the operator T has too many eigenvalues: every point λ in D turns out to be an
eigenvalue, since the functional ψλ : f 7→ f(λ) satisfies the equality Tψλ = λψλ.
The continuity of this functional is clear from estimate (5.2.1) in Example 5.2.2.
Hence it is natural to take for H the closed linear subspace in A2(D)∗ generated
by the functionals ψλ with λ ∈ S. It is clear that T (H) ⊂ H and all elements
of S remain eigenvalues of T |H . Let us verify that there are no other eigenvalues.
It suffices to make sure that the operator T on H has no eigenvalues on the unit
circumference and for every λ ∈ D the kernel of T − λI in the whole A2(D)∗ is
one-dimensional. Since T is the adjoint to the operator T1 of multiplication by the
argument on A2(D), we have to verify that the range of T1−λI is dense if |λ| = 1
and has a one-dimensional orthogonal complement if |λ| < 1. Suppose that there
exists λ with |λ| = 1 and a unit vector g ∈ A2(D) such that (T1f − λf, g) = 0
for all f ∈ A2(D), i.e.,∫

D

(x+ iy)f(x+ iy)g(x+ iy) dx dy = λ

∫
D

f(x+ iy)g(x+ iy) dx dy

for all f ∈ A2(D). In particular, for f = g we obtain in the right-hand side a
number the absolute value of which equals 1. The left-hand side is strictly less,
since |x+ iy| < 1 if x+ iy ∈ D. Let now |λ| < 1. Since the functional f 7→ f(λ)
is continuous, its kernel Hλ is closed and has codimension 1. In addition, every
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function in Hλ belongs to the range of the operator T1 − λI . Indeed, for every
function f ∈ Hλ the function g(z) = (z − λ)−1f(z) belongs to A2(D) (it is
holomorphic and square integrable in D, since f(λ) = 0) and satisfies the equality
f = (T1 − λI)g. �

Close considerations give the following result (see [708]).

7.10.2. Theorem. (i) For every operator A ∈ L(l2), the set σc(A) is a
countable intersection of open sets.

(ii) LetK ⊂ C be a nonempty compact set such thatK = P∪C∪R, where P ,
C and R are pairwise disjoint, P is a countable union of compact sets, and C is a
countable intersection of open sets. Then there exists an operator A ∈ L(l2) such
that σp(A) = P , σc(A) = C, and σr(A) = R.

7.10(ii). Commuting selfadjoint operators

The class of selfadjoint operators is contained in the class of normal operators:
bounded operators B on a Hilbert space such that BB∗ = B∗B. The latter class
contains also all unitary operators. It turns out that normal operators are also
unitarily isomorphic to operators of multiplication. This fact is derived below
from a more general assertion about simultaneous representation of commuting
selfadjoint operators in the form of multiplication by a function. We first prove
an auxiliary result on projection-valued measures. To projection-valued measures
one can extend some (but not all!) results of the usual measure theory.

7.10.3. Proposition. Suppose that on an algebra R in a space Ω we are
given an additive set function Π with values in the set of orthogonal projections in
a Hilbert space H . Suppose that for every a, b ∈ H the complex function

R 7→ Πa,b(R) :=
(
Π(R)a, b

)
is countably additive on R. Then the function Π has a unique extension to a
projection-valued measure on the σ-algebra σ(R) generated by R.

PROOF. For any fixed a, b ∈ H , the function Πa,b has a unique extension
to a countably additive complex measure on σ(R) denoted also by Πa,b. Indeed,
if a = b, then the function Πa,a on R is countably additive, nonnegative and
bounded, since

(
Π(R)a, a

)
6

(
Π(Ω)a, a

)
. By Theorem 2.4.6 it uniquely extends

to a bounded measure on σ(R). The formulas

2Re Πa,b = Πa+b,a+b − Πa,a − Πb,b, 2Im Πa,b = Πa+ib,a+ib − Πa,a + Πb,b

give extensions of Πa,b to σ(R). Note that Πa,b = Πb,a on σ(R), since this is
true on R. Therefore, for every S ∈ σ(R) there exists a bounded selfadjoint
operator Π(S) with

(
Π(S)a, b

)
= Πa,b(S) (see Lemma 7.2.2). It follows from

our construction that 0 6 Π(S) 6 I . Let us show that Π(S) is an orthogonal
projection. Denote by M the class of sets S ∈ σ(R) with this property. Then M
contains the algebra R. In addition, M is a monotone class: if sets Mn in M
either increase to M or decrease to M , then M ∈ M. Indeed, in the first case
Π(Mn+1) = Π(Mn)+Π(Mn+1\Mn) > Π(Mn), i.e., Π(Mn) are projections onto
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increasing closed subspaces Hn and henceM is the projection onto the closure of
the union of Hn. In the second case the reasoning is similar. �

7.10.4. Corollary. Let Π′ and Π′′ be projection-valued measures on σ-
algebras A′ and A′′ in spaces Ω′ and Ω′′. Suppose that Π′(S′) and Π′′(S′′)
commute for all S′ ∈ A′ and S′′ ∈ A′′. Then on the σ-algebra A = A′⊗A′′

in the space Ω = Ω′×Ω′′ there is a projection-valued measure Π such that
Π(S′×S′′) = Π′(S′)Π′′(S′′) for all S′ ∈ A′ and S′′ ∈ A′′.

PROOF. Products of the form S′×S′′, where S′ ∈A′, S′′ ∈A′′, constitute a
semi-algebra R0, on which Π can be defined by Π(S′×S′′) = Π′(S′)Π′′(S′′).
It is readily seen that we have obtained an additive projection-valued function.
The sets in the algebra R generated by R0 have the form R = R1 ∪ · · · ∪ Rn,
where Ri ∈ R0 are disjoint. Let us extend Π to R by the natural formula
Π(R) = Π(R1) + · · · + Π(Rn). We observe that Π(Ri)Π(Rj) = 0 if i 6= j.
Hence Π(R) is an orthogonal projection. Proposition 2.3.7 yields that the nonneg-
ative scalar measures R 7→

(
Π(R)a, a

)
are countably additive on R for all a ∈ H .

This gives countably additivity complex measures R 7→
(
Π(R)a, b

)
, a, b ∈ H . �

7.10.5. Lemma. Let A be a selfadjoint operator with a cyclic vector and let
B be a selfadjoint operator commuting with A. Then B is a Borel function of A.

PROOF. We can assume that A is the operator of multiplication by the argu-
ment on L2(µ) for some measure µ on an interval. Set ψ = B(1), where we
choose a Borel version of the function B(1) ∈ L2(µ). We show that B coincides
with the operator of multiplication by ψ. First we verify that for every function
pk : t 7→ tk one has the equality Bpk = ψpk. For k = 0 this is true. If the
equality is true for some k > 0, then it remains valid for k + 1, because we have
Bpk+1 = BApk = ABpk = A(ψpk) = ψpk+1. Thus, Bp = ψ · p for every poly-
nomial p. This yields that Bf = ψ · f for every function f ∈ L2(µ). Indeed, there
exists a sequence of polynomials fk converging to f in L2(µ), which gives conver-
gence of Bfk to Bf in L2(µ) and convergence of ψ ·fk to ψ ·f in L1(µ). From the
equality Bfk = ψ · fk we obtain the equality Bf = ψ · f a.e. Since this is true for
all f ∈ L2(µ), one has ψ ∈ L∞(µ). This can be easily verified without using the
property that the operator B is bounded, but this property gives at once the estimate
|ψ(t)| 6 ‖B‖ for µ-a.e. t, since if the set M = {t : |ψ(t)| > ‖B‖} has positive
measure, then ‖B‖ · ‖IM‖L2 < ‖ψIM‖L2 = ‖BIM‖L2 6 ‖B‖ · ‖IM‖L2 . �

7.10.6. Lemma. Suppose that selfadjoint operators A and B on a separa-
ble Hilbert space commute. Then for any bounded Borel functions ϕ and ψ the
operators ϕ(A) and ψ(B) commute.

PROOF. According to Exercise 7.10.78 there are polynomials pn such that the
operators pn(A) converge to ϕ(A) on every vector. Then

Bϕ(A)x = lim
n→∞

Bpn(A)x = lim
n→∞

pn(A)Bx = ϕ(A)Bx.

Thus, B commutes with ϕ(A). Applying the proved assertion once again, we
obtain the equality ψ(B)ϕ(A) = ϕ(A)ψ(B). �



318 Chapter 7. Spectral Theory

7.10.7. Theorem. Suppose that selfadjoint operators A1, . . . , An on a sep-
arable Hilbert space H 6= 0 commute. Then there exists a bounded nonnegative
Borel measure µ on IRn along with a unitary isomorphism J : H → L2(µ) and
bounded Borel functions ϕ1, . . . , ϕn on IRn such that the operators JAiJ−1 are
the operators of multiplication by ϕi for all i = 1, . . . , n.

PROOF. Suppose first that there is a unit vector h such that the set of finite
linear combinations of all vectors of the form Ak11 · · ·Akn

n h, ki = 0, 1, . . . , is dense
in H . Let us write Ai in the form of integrals with respect to projection-valued
measures Πi on the real line. On IRn we can define a projection-valued measure
Π with the aid of Corollary 7.10.4 and induction. We observe that

Ai =
∫

IR1
ti dΠi(t) =

∫
IRn

ti dΠ(t), i = 1, . . . , n.

Let µ = Πh,h. The measure µ is concentrated on the set
∏n
i=1[−‖Ai‖, ‖Ai‖]. Let

us define a mapping J : H → L2(µ) by the formula

J(Ak11 · · ·Akn
n h) := pk1,...,kn

, where pk1,...,kn
(t1, . . . , tn) = tk11 · · · tkn

n ,

then we extend it by linearity to the linear span of such vectors. We observe that
for any finite linear combination of the indicated vectors we have the equality∣∣∣∑ ck1,...,knA

k1
1 · · ·Akn

n h
∣∣∣2 =

∫ ∣∣∣∑ ck1,...,knpk1,...,kn

∣∣∣2 dµ,
since by relation (7.9.1) we have

(Ak11 · · ·Akn
n h,Al11 · · ·Alnn h) = (Ak1+l11 · · ·Akn+ln

n h, h)

=
∫

IRn

tk1+l11 · · · tkn+ln
n µ(dt).

The obtained equality means that the mapping J is well-defined and preserves the
inner product. The range of J is everywhere dense in L2(µ), since it contains
all polynomials. Hence J extends to a unitary isomorphism. In the general case
we can decompose H into the orthogonal sum of closed subspaces invariant with
respect to all operators Ai and possessing the aforementioned property. Similarly
to the case of a single operator, this is done with the aid of Zorn’s lemma. �

7.10.8. Corollary. Every normal operator S on a separable Hilbert space
H 6= 0 is unitarily equivalent to the operator of multiplication by a bounded
complex Borel function on the space L2(µ) for some bounded nonnegative Borel
measure µ on C.

PROOF. The operators A = S+S∗ and B = i−1(S−S∗) are selfadjoint and
commute. In addition, S = A/2 + iB/2. It remains to represent simultaneously A
and B in the form of multiplication. �

7.10.9. Corollary. Every unitary operator U on a separable Hilbert space
H 6= 0 is unitarily equivalent to the operator of multiplication by a Borel function
ζ on the space L2(µ) for some bounded Borel measure µ on C or on IR1 such that
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|ζ(t)| = 1 for µ-a.e. t. In addition, there is a representation U = exp(iB), where
B is a selfadjoint operator.

PROOF. By the previous corollary we can assume that U is the multiplication
by a bounded function ζ on L2(µ) for some Borel measure µ on C. Then |ζ(t)| = 1
µ-a.e. Hence ζ can be written in the form ζ = exp(ig), where g is a Borel function
with values in [0, 2π]. For B we take the operator of multiplication by g. Now we
write B in the form of multiplication by a function on an interval. �

By using the projection-valued measure Π of the selfadjoint operator B from
this corollary, we write the operator U in the form

U =
∫
σ(B)

exp(iλ) dΠ(λ).

We now extend the previous theorem to infinite families of commuting oper-
ators.

7.10.10. Theorem. Suppose we are given a countable set of commuting self-
adjoint operators An on a separable Hilbert space H 6= 0. Then there exists a
bounded nonnegative Borel measure µ on [0, 1]∞ along with a unitary isomor-
phism J : H → L2(µ) and bounded Borel functions ϕn on [0, 1]∞ such that the
operators JAnJ−1 are the operators of multiplication by ϕn for all n.

PROOF. Without loss of generality we can assume that σ(An) ⊂ [0, 1]. As
in the previous theorem, on [0, 1]∞ we construct a Borel projection-valued mea-
sure Π with respect to which the integrals of the coordinate functions give our
operators An. The only difference is that for the initial algebra on which the mea-
sure Π is defined is constituted by the unions of finite powers of B([0, 1]) (the
measure Π is defined on them by the previous theorem). As in the case of a finite
collection of operators, the general case reduces to the situation where there is a
unit vector h with the property that the linear span of all possible vectors of the
form Ak11 · · ·Akn

n h is dense in H . In this situation we employ the same isomor-
phism J as in the proof for a finite collection. Its range consists of polynomials in
finitely many variables, which is everywhere dense in L2(µ). Hence the proof is
completed as above. �

Let us consider arbitrary collections of operators.

7.10.11. Theorem. Suppose we are given a collection T of commuting self-
adjoint operators on a separable Hilbert space H . Then there exists a selfadjoint
operator A on H and, for every T ∈ T , there is a bounded Borel function ϕT on
the real line such that T = ϕT (A) for all T ∈ T .

PROOF. We first consider the case of a countable collection of commuting
selfadjoint operators An. As shown above, we can assume that the operators
An are the operators of multiplication by bounded Borel functions ϕn on L2(µ),
where µ is a Borel measure on [0, 1]∞. We now use the following fact (see [73,
Corollary 6.8.8]): there exists a Borel isomorphism G between [0, 1]∞ and the
interval [0, 1]. Let ν be the image of the measure µ under this isomorphism. Then
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the operators An become the operators of multiplication by the Borel functions
ψn = ϕn ◦G−1 in L2(ν) with the measure ν on the interval, hence they become
functions of the operator of multiplication by the argument on L2(ν).

In the general case we find in T a countable family of operators T0 with the
following property: for every T ∈ T , there exists a sequence of operators An ∈ T0

converging to T in the weak operator topology, i.e., (Anx, y) → (Tx, y) for all
x, y ∈ H . This is possible, since, as is readily seen, the weak operator topology
is metrizable on balls. As shown above, we can assume that all operators in T0

have the form of multiplication by some functions ψ ◦ ϕ, where ψ is a bounded
Borel function and ϕ is the Borel function on the interval determining the operator
on L2(ν) functions of which are the operators in T0. We can choose a Borel
version of ϕ such that the norm of every operator in T0 will equal supx |ψ◦ϕ(x)|
for the corresponding function ψ. Let T ∈ T . Let us find a sequence {Tn} ⊂ T0

converging to T in the weak operator topology. Then {ψn ◦ ϕ} converges weakly
in L2(ν) to some limit g. The sequence {Tn} is bounded in the operator norm,
which gives the boundedness of {ψn ◦ ϕ} in L∞(ν). Then g ∈ L∞(ν), since the
sequence Sn◦ϕ of the arithmetic means of some subsequence in {ψn◦ϕ} converges
in the norm of L2(ν) (see Example 6.10.33). It is clear that the operator T is given
by the multiplication by g, but we have to verify that g = ψ◦ϕ for some bounded
Borel function ψ. Passing to a subsequence, we can assume that Sn ◦ϕ → g
ν-a.e. By Luzin’s theorem, the set of convergence contains compact sets Kj with
ν(Kj) → ν([0, 1]) on which the function ϕ is continuous. The sets ϕ(Kj) are
compact, E =

⋃∞
j=1 ϕ(Kj) is a Borel set, and for every y ∈ E the sequence

{Sn(y)} converges. Let us denote the limit by ψ(y). Outside E we define ψ by
zero. We have obtained a bounded Borel function. For any x ∈

⋃∞
j=1Kj we have

ψ
(
ϕ(x)

)
= lim
n→∞

ψn
(
ϕ(x)

)
= g(x), i.e., ψ

(
ϕ(x)

)
= g(x) for ν-a.e. x. �

7.10.12. Corollary. Every normal operator T on a separable Hilbert space
H has the form T = f(A), where A is a selfadjoint operator on H and f is a
bounded complex Borel function.

PROOF. Since T = A1 + iA2, where A1 and A2 are commuting selfadjoint
operators, we can apply the theorem above (of course, here we need its simplest
case). �

Hence T can be written in the form of an integral (7.9.3) of f with respect to
a projection-valued measure Π. Consequently, T can be written as the integral

T =
∫
σ(T )

z dP (z)

with respect to the projection-valued measure P on σ(T ) defined as follows:
P (B) := Π

(
f−1(B)

)
.

7.10(iii). Operator ranges in a Hilbert space

Let us apply the polar decomposition to show that the range of every bounded
operator on a Hilbert space coincides with the range of some selfadjoint operator.
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7.10.13. Lemma. For every bounded operator A on a Hilbert space H we
have

A(H) = |A∗|(H).

PROOF. We have A∗ = V |A∗|, where the operator V isometrically maps
the subspace E1 := (KerA∗)⊥ onto E2 := A∗(H) and equals zero on KerA∗.
Then A = |A∗|V ∗, whence A(H) ⊂ |A∗|(H). On the other hand, we have
Ker |A∗| = KerA∗, hence |A∗|(H) = |A∗|(E1). Since V ∗ isometrically maps E2

onto E1, we have |A∗|(H) = |A∗|V ∗(E2) = A(E2) ⊂ A(H). �

In accordance with a general result for Banach spaces from §6.10(i), a linear
subspace L of a Hilbert space H is the range of a bounded operator on H precisely
when it is a Hilbert space continuously embedded into H . Indeed, the quotient
space of H with respect to the closed subspace H0 is also Hilbert (it can be
identified with H⊥

0 ). In addition, if a Hilbert space E is continuously embedded
into H , then there is an operator A ∈ L(H) with A(H) = E (Exercise 6.10.164).
Our next result gives a more constructive condition.

7.10.14. Proposition. A linear subspace L in a Hilbert space H is the range
of a bounded operator on H precisely when there exists a sequence of pairwise
orthogonal closed subspaces Hn ⊂ H such that

L =
{ ∞∑
n=1

xn : xn ∈ Hn,
∞∑
n=1

4n‖xn‖2 <∞
}
.

PROOF. If L has the indicated form, then L=A(H), where A=
∑∞
n=1 2−nPn

and Pn is the projection onto Hn.
Let L be the range of a bounded operator. As noted above, we can assume

that L = A(H), where A is a nonnegative selfadjoint operator. The general case
easily reduces to the case of separable H and an operator A with a cyclic vector.
Hence we can assume that A is the operator of multiplication by the argument on
the space L2(µ) for some bounded Borel measure on [0, 1]. Let us take for Hn

the subspace in L2(µ) consisting of the functions vanishing outside (2−n, 21−n].
Then Ax =

∑∞
n=1 PnAx, PnAx ∈ Hn, and ‖PnAx‖ 6 21−n‖Pnx‖. Hence

4n‖PnAx‖2 6 4‖Pnx‖2, which gives a convergent series. On the other hand, if
y =

∑∞
n=1 yn, where yn ∈ Hn and

∑∞
n=1 4n‖yn‖2 <∞, then yn = Axn, where

xn ∈ Hn and ‖xn‖ 6 2n‖yn‖, since xn(t) = t−1yn(t). Therefore, we have the
bound

∑∞
n=1 ‖xn‖2 6

∑∞
n=1 4n‖yn‖2 < ∞. Hence the series of the pairwise

orthogonal vectors xn converges to some vector x and Ax = y. �

In case of a Hilbert space the factorization Theorem 6.10.5 can be sharpened
in the following way (this result was obtained in [686]).

7.10.15. Theorem. Let A and B be two bounded operators on a Hilbert
space H . The following conditions are equivalent:

(i) A(H) ⊂ B(H),
(ii) A = BC for some C ∈ L(H),
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(iii) there exists a number λ > 0 such that

(A∗x,A∗x) 6 λ2(B∗x,B∗x) for all x ∈ H .

PROOF. The equivalence of (i) and (ii) is seen from Theorem 6.10.5, since
in case of a Hilbert space it gives a continuous linear operator C = B−1

0 A from
H onto (KerB)⊥, where B0 is the restriction of B to (KerB)⊥ and B−1

0 is the
algebraic inverse. Next, (ii) yields (iii) at once. Let (iii) be fulfilled. On the
linear space B∗(H) we have the linear mapping D : B∗x 7→ A∗x. This mapping
is well-defined, because A∗x = 0 if B∗x = 0. In addition, ‖Dy‖ 6 λ‖y‖ if
y ∈ B∗(H), hence D can be extended to a bounded operator on the closure
of B∗(H). Next we extend D to a bounded operator on all of H , defining D by
zero on B∗(H)⊥ = KerB. Then DB∗ = A∗, whence A = BD∗. In part of this
reasoning we could refer to results from §6.10(i). �

Note that in (iii) it is important to have an estimate for the adjoint operator,
but not for the original one (to see this, it suffices to take A = I and an isometry
B with B(H) 6= H). From the previous theorem and Corollary 7.5.4 we obtain
the following result efficient in estimating the rate of decreasing of eigenvalues of
compact selfadjoint operators.

7.10.16. Corollary. Suppose that A and B are compact operators on a
Hilbert space H such that A(H) ⊂ B(H). Let α+

1 > α+
2 > · · · > 0 and

β+
1 > β+

2 > · · · > 0 be positive eigenvalues of the operators |A| and |B|,
respectively, written in the decreasing order taking into account their multiplicities.
Then there exists C > 0 such that α+

n 6 Cβ+
n .

PROOF. The theorem gives the estimate AA∗ 6 λ2BB∗. Now it is impor-
tant that the operators AA∗ and A∗A have the same nonzero eigenvalues (Ex-
ercise 7.10.65), i.e., |A∗| and |A| have common nonzero eigenvalues; the same
is true for the pair of operators BB∗ and B∗B. According to Corollary 7.5.4,
the indicated estimate yields the inequalities λn(AA∗) 6 λ2λn(BB∗) for positive
eigenvalues of the operators AA∗ and BB∗ written in the order of decreasing. �

7.10.17. Example. Let W 2,1
2π [0, 2π] be the class of all absolutely continuous

complex functions f on [0, 2π] with f ′ ∈ L2[0, 1] and f(0) = f(2π). If the range
of a bounded operator A on L2[0, 2π] belongs toW 2,1

2π [0, 2π], then A is a compact
operator and for the positive eigenvalues α+

n of the operator |A| written in the
order of decreasing taking into account their multiplicities, for some C > 0 one
has the estimate α+

n 6 Cn−1.

For this we observe thatW 2,1
2π [0, 2π] is the range of the operator B with eigen-

functions exp(ikt) and eigenvalues βk = k−1, k 6= 0, β0 = 1 (Exercise 9.10.32).

Let us now prove the following theorem due to von Neumann [701].

7.10.18. Theorem. Suppose that a bounded operator A on a separable
Hilbert space has a non-closed range. Then there exists a unitary operator U
such that A(H) ∩ UA(H) = 0.
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PROOF. We start with a simple explicit example of such an operator with a
dense range in L2[−π, π]. Let en(t) = eint and let A be given by Aen = e−n

2
en.

It is readily seen that all functions in A(H) are real-analytic on [−π, π]. Let U
be the operator of multiplication by sign t. Then the range of A and UA intersect
only by zero. This example can be easily modified to make the range of A not
only dense, but also containing an infinite-dimensional closed subspace. For this
it suffices take the direct sum of countably many copies of A.

The main step of the proof consists in verification of the following interesting
fact: if the range of A is dense, non-closed and contains an infinite-dimensional
closed subspace, then for every bounded operator B with a non-closed range there
exists a unitary operatorW such thatWB(H) ⊂ A(H). For this we apply Propo-
sition 7.10.14 to L = B(H) and take the corresponding pairwise orthogonal closed
subspaces Hn. Since B(H) is not closed, there are infinitely many nonzero sub-
spaces Hn. Let IN =

⋃∞
i=1 Ωi be a partition into countably many countable parts

and let Sn be the set Ωi which contains n. Set H ′
n :=

⊕
i∈Sn

Hi. Applying the
cited proposition to the pairwise orthogonal subspaces H ′

n, we obtain an operator
B′ with B(H) ⊂ B′(H), but now all subspaces H ′

n are infinite-dimensional.
We now apply the same proposition to A(H) and take the corresponding

nonzero pairwise orthogonal closed subspaces En. We observe that among En
there is at least one infinite-dimensional. Indeed, if all En were finite-dimensional,
we would obtain a compact operator C :=

∑∞
n=1 2−nPEn

with C(H) = A(H), as
shown in the cited proposition. However, the range of a compact operator cannot
contain an infinite-dimensional closed subspace, because it is covered by countably
many compact sets. We can assume that E1 is infinite-dimensional. Then we can
take pairwise orthogonal infinite-dimensional closed subspaces Li ⊂ E1 such that
E1 =

⊕∞
i=1 Li. Set E′

i := Ei
⊕
Li if i > 2 and E′

1 := L1. We have obtained
pairwise orthogonal infinite-dimensional closed subspaces. It is easy to see that for
the corresponding operator A′ in the cited proposition we have A′(H) ⊂ A(H).
A unitary operator W can be defined by means of unitary isomorphisms between
H ′
i and E

′
i. Then B(H) ⊂ B′(H) ⊂ A′(H) ⊂ A(H). For completing the proof

it remains to transform A(H) by the unitary operator W to A0(H), where A0 is
an operator with a dense range such that A0(H)∩U0A0(H) = 0 for some unitary
operator U0. For U we take W−1U0W . �

This result of von Neumann was further developed by Dixmier [682], [683]
(see also Exercise 7.10.105). The proof above follows Fillmore, Williams [687].

Let us observe that in real spaces the same fact is true with orthogonal oper-
ators in place of unitary operators. To see this, we can write a real space as the
sum of two infinite-dimensional closed subspaces and introduce the corresponding
complex structure.

7.10(iv). Hilbert–Schmidt operators and nuclear operators

In this subsection we discuss two classes of compact operators on Hilbert
spaces, both important for applications and interesting. One of several equivalent
definitions of these classes is connected with the behavior of eigenvalues.
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7.10.19. Definition. Let A be a compact operator on a Hilbert space H (real
or complex) and let {sn(A)} be all eigenvalues of the operator |A|. We shall call
A a Hilbert–Schmidt operator if

∞∑
n=1

sn(A)2 <∞.

The operator A will be called a nuclear or trace class operator if
∞∑
n=1

sn(A) <∞.

The class of all Hilbert–Schmidt operators on H is denoted by H(H) or L(2)(H).
The class of all nuclear operators on H is denoted by N (H) or L(1)(H).

We recall that sn(A) > 0. It is clear that N (H) ⊂ H(H) ⊂ K(H).
These two classes are the most important special cases of the Schatten classes

Sp(H) defined by the condition {sj(A)} ⊂ lp.
There is an equivalent characterization of Hilbert–Schmidt operators that is

often taken for the definition.

7.10.20. Theorem. (i) An operator A ∈ L(H) on a separable Hilbert space
H is a Hilbert–Schmidt operator precisely when for some orthonormal basis {en}
we have

∞∑
n=1

‖Aen‖2 <∞. (7.10.1)

In this case such a series converges for every orthonormal basis and its sum does
not depend on the basis.

(ii) A bounded operator A on a separable Hilbert space H is a Hilbert–
Schmidt operator precisely when A∗ is a Hilbert–Schmidt operator. In addition,

∞∑
n=1

‖Aen‖2 =
∞∑
n=1

‖A∗en‖2. (7.10.2)

PROOF. Let us take the polar decomposition A = U |A|. If A ∈ H(H), then
we have (7.10.1) for the eigenbasis of |A|. If (7.10.1) holds, then the operator A is

compact. Indeed, the estimate
∥∥∑∞

n=1(x, en)Aen
∥∥2

6
∑∞
n=1 ‖Aen‖2‖x‖2 yields

that the finite-dimensional operators x 7→
∑N
n=1(x, en)Aen converge to A with

respect to the operator norm. We verify that the sum (7.10.1) does not depend on
the basis. To this end we take an arbitrary orthonormal basis {ϕn} and write the
following equality:

∞∑
n=1

‖Aen‖2 =
∞∑
n=1

∞∑
k=1

|(Aen, ϕk)|2 =
∞∑
n=1

∞∑
k=1

|(en, A∗ϕk)|2 =
∞∑
k=1

‖A∗ϕk‖2.

If {ψn} is yet another basis, then the right-hand side equals
∑∞
n=1 ‖Aψn‖2, since

A∗∗ = A. Hence the sum is independent of the basis. Applying this to the
eigenbasis {ψn} of the operator |A|, we obtain that A ∈ H(H). Assertion (i) is
proved. On the way we have also proved (ii). �
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7.10.21. Proposition. The class H(H) of all Hilbert–Schmidt operators on a
separable Hilbert space H equipped with the inner product

(A,B)H :=
∞∑
n=1

(Aen, Ben) =
∞∑
n=1

(B∗Aen, en)

is a separable Hilbert space. The corresponding Hilbert–Schmidt norm has the
form

‖A‖H =
( ∞∑
n=1

‖Aen‖2
)1/2

.

If A ∈ H(H) and B ∈ L(H), then AB ∈ H(H), BA ∈ H(H) and

‖AB‖H 6 ‖B‖L(H)‖A‖H , ‖BA‖H 6 ‖B‖L(H)‖A‖H .

PROOF. It is clear from (7.10.1) that H(H) is a linear space. In addi-
tion, the series defining the inner product in H(H) converges absolutely, since
|(Aen, Ben)| 6 ‖Aen‖2 + ‖Ben‖2. Let us verify the completeness of H(H).
If a sequence of operators Aj is Cauchy in H(H), then it converges in norm to
some operator A ∈ L(H), because ‖T‖L(H) 6 ‖T‖H . Let {en} be an orthonor-

mal basis. It is clear that
∑N
n=1 ‖Aen‖2 6 supj

∑N
n=1 ‖Ajen‖2 6 supj ‖Aj‖2

H

for all N , i.e., A ∈ H(H). Let us verify that ‖A − Aj‖H → 0. Let ε > 0.
Find a number j0 with ‖Aj − Ai‖2

H
6 ε for all i, j > j0. Let m > j0.

There is N with
∑∞
n=N+1 ‖(A − Am)en‖2 6 ε, since A,Am ∈ H(H). Finally,∑N

n=1 ‖(A − Am)en‖2 6 ε, which is obtained by letting i → ∞ in the estimate∑N
n=1 ‖(Ai − Am)en‖2 6 ε that holds for all i > j0. The separability of H(H)

follows from the fact that finite-dimensional operators are dense in H(H), since
the operator |A| with an eigenbasis {en} is the limit with respect to the norm in
H(H) of the finite-dimensional operators x 7→ (x, e1)Ae1 + · · ·+(x, en)Aen, and
finite-dimensional operators can be approximated by rational linear combinations
of operators x 7→ (x, vi)vj , where {vi} is a countable everywhere dense set. If
A ∈ H(H) and B ∈ L(H), then BA ∈ H(H) and ‖BA‖H 6 ‖B‖L(H)‖A‖H ,
since ‖BAen‖ 6 ‖B‖L(H)‖Aen‖. In addition, AB ∈ H(H), since we have the
equalities (AB)∗ = B∗A∗, ‖B∗‖L(H) = ‖B‖L(H) , ‖B∗‖H = ‖B‖H . �

It is useful to define Hilbert–Schmidt mappings between arbitrary Hilbert
spaces.

7.10.22. Definition. Let E1 and E2 be two Hilbert spaces. An operator
A ∈ L(E1, E2) is called a Hilbert–Schmidt operator if the series

∑
α ‖Aeα‖2

E2

converges for some orthonormal basis {eα} in E1.

The class of all Hilbert–Schmidt operators acting from E1 to E2 is denoted
by H(E1, E2) or by L(2)(E1, E2).

As above, it is easy to verify that the composition of two continuous opera-
tors between Hilbert spaces is a Hilbert–Schmidt operator if at least one of these
operators has this property.

If the space E1 is nonseparable, then the inclusion A ∈ H(E1, E2) means
that A is zero on the orthogonal complement to some separable closed subspace
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E0 ⊂ E1 and
∑∞
n=1 ‖Aen‖2

E2
< ∞ for some orthonormal basis {en} in E0. As

above, one verifies that if the series of ‖Aeα‖2
E2

converges for some orthonormal
basis in E1, then it converges for every orthonormal basis and the sum does not
depend on the basis. The square root of the sum is called the Hilbert–Schmidt
norm of the operator A and is denoted by ‖A‖H. The Hilbert–Schmidt norm is
generated by the inner product

(A,B) =
∑
α

(Aeα, Beα)
E2
.

This quantity does not depend on the orthonormal basis {eα} in E1.
The next result shows that abstract Hilbert–Schmidt operators are precisely

integral operators on spaces L2 with quadratically integrable kernels.

7.10.23. Proposition. (i) Let µ be a nonnegative measure with values in
[0,+∞] on a measurable space (Ω,A) and let K be a measurable function on
Ω×Ω belonging to L2(µ⊗µ). Then the operator defined on L2(µ) by the formula

Tx(t) =
∫

Ω

K(t, s)x(s)µ(ds),

is a Hilbert–Schmidt operator. In addition,

‖T‖2
H =

∫
Ω

∫
Ω

|K(t, s)|2 µ(dt)µ(ds) = ‖K‖2
L2(µ⊗µ).

(ii) Every Hilbert–Schmidt operator on L2(µ) has such a form. Hence every
Hilbert–Schmidt operator is unitarily equivalent to an integral operator of the
indicated form.

PROOF. (i) The boundedness of the operator T with values in L2(µ) is easily
verified similarly to Example 6.9.4(iii). Let {en} be an orthonormal sequence
in L2(µ). By Bessel’s inequality applied to the functions s 7→ K(t, s) we obtain

∞∑
n=1

‖Ten‖2 =
∞∑
n=1

∫
Ω

∣∣∣∣∫
Ω

K(t, s)en(s)µ(ds)
∣∣∣∣2 µ(dt)

6
∫

Ω

∫
Ω

|K(t, s)|2 µ(ds)µ(dt).

Hence T is a Hilbert–Schmidt operator (in the separable case this is obvious, for
the general case see Exercise 7.10.102). Let us take an orthonormal sequence
{en} such that the function K belongs to the closed linear span of the functions
ϕn,m(t, s) := en(t)em(s). Then for µ-a.e. t the function s 7→ K(t, s) has an
expansion in a series with respect to the elements en (Exercise 5.6.59). For such
s in the relation above, in place of the inequality we have the Parseval equality,
which gives

∑∞
n=1 ‖Ten‖2 = ‖K‖2

L2(µ⊗µ).

(ii) Let T be a Hilbert–Schmidt operator on L2(µ) and let {eα} be an or-
thonormal basis in L2(µ). Then there is an at most countable part {en} with
‖Ten‖ > 0. We define an integral kernel K by the formula

K(t, s) =
∑
n,m>1

(Ten, em)en(t)em(s).
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This double series converges in the space L2(µ⊗µ), since the sequence of functions
en(t)em(s) is orthonormal and

∑
n,m>1 |(Ten, em)|2 =

∑∞
n=1 ‖Ten‖2<∞. The

kernel K defines the operator TK that coincides with T , because for every vector
en in the chosen sequence we have Ten = TKen and for all other eα we have
TKeα = 0 = Teα. Finally, an abstract Hilbert–Schmidt operator is unitarily
equivalent to some Hilbert–Schmidt operator on a suitable space L2(µ) unitarily
isomorphic to the original space (see Exercise 5.6.42). �

From Theorem 7.10.15 we obtain at once the following result.

7.10.24. Proposition. Let H1 and H2 be Hilbert spaces, A,B ∈ L(H1,H2),
and A(H1) ⊂ B(H1). If B is a Hilbert–Schmidt operator, then so is the oper-
ator A. If H1 = H2 and B is a nuclear operator, then the operator A is also
nuclear.

Yet another important characterization of Hilbert–Schmidt operators describes
them as absolutely summing and 2-summing operators.

A series
∑∞
n=1 xn in a Banach space is called unconditionally convergent if

it converges for all permutations of indices. If
∑∞
n=1 ‖xn‖ < ∞, then this series

is called absolutely convergent.

7.10.25. Definition. Let X and Y be two Banach spaces. An operator
T ∈ L(X,Y ) is called absolutely p-summing if for every weakly p-summable se-
quence {xn} ⊂ X , i.e., satisfying the condition

∑∞
n=1 |l(xn)|p < ∞ for all

l ∈ X∗, we have
∑∞
n=1 ‖Txn‖pY <∞.

The operator T is called absolutely summing if it takes unconditionally con-
vergent series to absolutely convergent ones.

For any absolutely p-summing operator there is C > 0 such that
∞∑
n=1

‖Txn‖pY 6 C sup
‖l‖61

∞∑
n=1

|l(xn)|p (7.10.3)

for every sequence {xn} ⊂ X . Indeed, otherwise for each m there is a finite set
xm,1, . . . , xm,k with sup‖l‖61

∑k
i=1 |l(xm,i)|p 6 2−m and

∑k
i=1 ‖Txm,i‖pY >1,

which leads to a contradiction. The smallest possible C is denoted by πp(T ).
These classes are stable under compositions from the right and left with

bounded operators. According to the Dvoretzky–Rogers theorem, in every infinite-
dimensional Banach space X there is a conditionally convergent series that is not
absolutely convergent. If X has no subspaces isomorphic to c0 (and only in this
case), then the unconditional convergence series of xn is equivalent to the weak
1-summability of {xn} (see [303, Chapters 3, 4]).

7.10.26. Proposition. Let E1 and E2 be two Hilbert spaces. An operator
T ∈ L(E1, E2) is a Hilbert–Schmidt operator precisely when is it absolutely 2-
summing or absolutely summing.

PROOF. Let T be an absolutely 2-summing operator and {eα} an orthonor-
mal basis in E1. For every y ∈ E1 we have

∑
α |(y, eα)|2 = ‖y‖2 < ∞, whence
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α ‖Teα‖2 < ∞. Suppose now that T ∈ H(E1, E2) and {hn} is a sequence

in E1 with
∑∞
n=1 |(hn, y)|2 < ∞ for all y ∈ E1. We can assume that E1 is

the closure of the linear span of the vectors hn. If E1 is finite-dimensional, then
the assertion is trivial. Hence we assume that E1 is infinite-dimensional and
take a basis {en}. Let us define an operator S on the space E1 by Sen = hn,
i.e., Sx =

∑∞
n=1(x, en)hn. This series converges weakly in E1, since for every

y ∈ E1 the series
∑∞
n=1(x, en)(hn, y) converges absolutely, which follows from

convergence of the series of |(x, en)|2 and |(hn, y)|2. Hence the operator S is con-
tinuous. This shows that TS is a Hilbert–Schmidt operator. Therefore, the series of
‖Thn‖2 = ‖TSen‖2 converges. If T is absolutely summing and {en} is an ortho-
normal sequence, then for any (xn) ∈ l2 the series of xnen converges uncondition-
ally. This yields convergence of the series of |xn|‖Ten‖, whence {‖Ten‖} ∈ l2.
Hence T ∈ H(E1, E2). The converse follows from Exercise 7.10.130. We observe
that this proposition is true for all p > 0 in place of 2 or 1. �

7.10.27. Theorem. Suppose that µ is a Borel probability measure on a topo-
logical space Ω. Then the identity embedding j : Cb(Ω) → L2(µ) is absolutely
2-summing.

The same is true if for Ω we take an arbitrary probability space and replace
Cb(Ω) by L∞(µ).

PROOF. Let {xn}⊂Cb(Ω) and
∑∞
n=1 |l(xn)|2 <∞ for all l∈Cb(Ω)∗. Then

the sequence of operators Tn : Cb(Ω)∗ → l2, l 7→
(
l(x1), . . . , l(xn), 0, 0, . . .

)
, is

pointwise bounded. By the Banach–Steinhaus theorem

sup
‖l‖61

∞∑
n=1

|l(xn)|2 6 C <∞.

Taking for l the functionals x 7→ x(t), we obtain
∑∞
n=1 |xn(t)|2 6 C. Thus,∑∞

n=1 ‖j(xn)‖2
2 6 C. The case of L∞(µ) for a general measure space reduces

to the case of C(K) with a compact space K. For this we need the following
fact from §11.7(i): there exists a compact space K such that the algebra L∞(µ)
is linearly isometric to the algebra C(K) and on K there is a probability Borel
measure ν such that the indicated isomorphism between L∞(µ) and C(K) defines
an isomorphism between L2(µ) and L2(ν). �

On account of Proposition 7.10.26 we obtain the following interesting fact.

7.10.28. Corollary. Let H be a Hilbert space, (Ω,A, µ) a probability space,
and A : H → L2(µ) a continuous operator such that A(H) ⊂ L∞(µ). Then A is
a Hilbert–Schmidt operator.

This corollary admits an important reinforcement that is a particular case of a
more general result due to V. B. Korotkov.

7.10.29. Theorem. Let µ be a probability measure on a measurable space
(Ω,A). A bounded operator T on L2(µ) is a Hilbert–Schmidt operator precisely
when there exists a nonnegative function Φ ∈ L2(µ) such that, for every function
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x ∈ L2(µ), the element Tx has a modification which satisfies the estimate

|Tx(ω)| 6 CxΦ(ω) (7.10.4)

with some number Cx > 0.

PROOF. The necessity of this condition is clear from the facts established
above and the estimate

|Tx(t)| 6 ‖x‖
(∫

Ω

|K(t, s)|2 µ(ds)
)1/2

for the operator T defined by the kernel K∈L2(µ⊗µ), since on the right we have
a function from L2(µ). Suppose that (7.10.4) is fulfilled. Replacing Φ by Φ + 1,
we can assume that Φ > 1. We observe that for Cx we can take C‖x‖ with some
C > 0. Indeed, the bounded operator S = Φ−1T takes values in L∞(µ) and hence
is bounded as an operator from L2(µ) to L∞(µ) (see Corollary 6.2.8), which gives
the desired number C. Set

Tεx(ω) := |εΦ(ω) + 1|−1Tx(ω), ε > 0.

Then |Tεx(ω)|6Cε−1‖x‖, i.e., the range of the operator Tε is contained in L∞(µ).
According to the previous corollary the operator Tε is a Hilbert–Schmidt operator.
For every x ∈ L2(µ) we have lim

ε→0
Tεx = Tx. Hence it suffices to establish the

uniform boundedness of the Hilbert–Schmidt norms of the operators Tε. Since by
the Lebesgue dominated convergence theorem∥∥Φ(εΦ + 1)−1

∥∥
L2(µ)

→ ‖Φ‖L2(µ) as ε→ 0,

it suffices to show that for a bounded function Φ one has ‖T‖H 6C‖Φ‖L2(µ). We
already know that in case of a bounded function Φ the operator T is a Hilbert–
Schmidt operator, hence is defined by some kernel K∈L2(µ⊗µ). Hence for every
function x∈L2(µ) with ‖x‖L2(µ) 6 1 we have

|Tx(t)| =
∣∣∣∣∫

Ω

K(t, s)x(s)µ(ds)
∣∣∣∣ 6 CΦ(t) (7.10.5)

for µ-a.e. t. However, the corresponding measure zero set can depend on x.
By the compactness of T there is a separable closed subspace H ⊂ L2(µ) with
T (H) ⊂ H and T (H⊥) = 0. Let us take a countable set {xn} dense in the
unit ball of H . This enables us to pass to the case of a separable space L2(µ)
(for which it suffices to consider the measure µ on the σ-algebra generated by all
functions xn and Φ). Then (7.10.5) is fulfilled almost everywhere simultaneously

for all xn. By our choice of {xn} the quantity sup
n

∣∣∣∫
Ω

K(t, s)xn(s)µ(ds)
∣∣∣ is the

L2-norm of the function s 7→ K(t, s) for points t such that this function belongs
to L2(µ). Therefore, for µ-a.e. t we have∫

Ω

|K(t, s)|2 µ(ds) 6 C2Φ(t)2.

Hence ‖T‖H 6 ‖K‖L2(µ⊗µ) 6 C2‖Φ‖L2(µ), as required. �
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The following theorem due to Pietch shows that in case of a general Banach
space absolutely 2-summing operators are also connected with the space L2.

7.10.30. Theorem. Let X and Y be Banach spaces, B∗ the closed unit ball in
the space X∗ equipped with the ∗-weak topology, σ

(
C(B∗)

)
the σ-algebra gener-

ated by continuous functions on the compact space B∗. An operator T ∈ L(X,Y )
is absolutely 2-summing precisely when there exists a bounded nonnegative mea-
sure ν on σ

(
C(B∗)

)
such that

‖Tx‖2
Y

6
∫
B∗

|ξ(x)|2 ν(dξ).

PROOF. If such a measure exists, then for all x1, . . . , xn ∈ X we have
n∑
i=1

‖Txi‖2
Y

6
∫
B∗

n∑
i=1

|ξ(xi)|2 ν(dξ) 6 ν(B∗) sup
‖ξ‖61

n∑
i=1

|ξ(xi)|2,

whence π2(T ) 6 ν(B∗). Conversely, suppose that π2(T ) = 1. Let us consider the
following subsets in the Banach space C(B∗):

F1 := {f ∈ C(B∗) : sup‖ξ‖61f(ξ) < 1}
and F2 equal to the convex envelope of the set of functions f ∈ C(B∗) of the
form f(ξ) = |ξ(x)|2, where ‖Tx‖

Y
= 1. These sets are convex, F1 is open and

F1 ∩ F2 = ∅, since π2(T ) = 1. By the Hahn–Banach theorem and the Riesz
theorem on the representation of functionals on C(B∗) by measures, there exists
a measure ν on the aforementioned σ-algebra in B∗ such that

sup
f∈F1

∫
B∗
f(ξ) ν(dξ) 6 inf

f∈F2

∫
B∗
f(ξ) ν(dξ).

Since F1 contains all negative functions, the measure ν is nonnegative. We can
assume that ν(B∗) = 1. Then the left-hand side of the previous estimate equals 1.
Whenever ‖Tx‖

Y
= 1, for the function fx(ξ) := |ξ(x)|2 we obtain fx ∈ F2,

hence the integral of fx with respect to the measure ν is not less than 1, which
yields the desired inequality. �

For example, from this theorem one can derive Theorem 7.10.27, taking for
ν the image of the measure µ under the embedding Ω ⊂ Cb(Ω)∗, ω 7→ δω. Then
the integral of |x(ω)|2 with respect to the measure µ will equal the integral of
|δω(x)|2 with respect to the measure µ, i.e., the integral of |ξ(x)|2 with respect to
the measure ν.

Diagonal operators are defined in Example 6.1.5(vii). Let us mention an
interesting theorem due to von Neumann (see [252, Theorem 14.13]).

7.10.31. Theorem. For every selfadjoint operator A on a separable Hilbert
space H and every number ε > 0, there exists a diagonal selfadjoint operator D
and a selfadjoint Hilbert–Schmidt operator Sε on the spaceH such that ‖Sε‖H 6ε
and A = D + Sε.

We now return to nuclear operators and their useful connections with Hilbert–
Schmidt operators.
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7.10.32. Remark. Let A ∈ L(H) be such that for some C one has
∞∑
n=1

|(Aψn, ϕn)| 6 C

for all pairs of orthonormal bases {ψn} and {ϕn}. Then A ∈ N (H). Indeed,
Proposition 7.8.12 yields that the operator A is compact. Let us take its polar
decomposition A = U |A| and the eigenbasis {ψn} for the operator |A|. For {ϕn}
we take the orthonormal sequence of all nonzero vectors Uψn complemented to
an orthonormal basis. This gives convergence of the series of sn(A).

7.10.33. Theorem. Let H be a separable Hilbert space and A ∈ L(H). The
following conditions are equivalent:

(i) A ∈ N (H); (ii) A∗ ∈ N (H); (iii) A = A1A2, where A1, A2 ∈ H(H);
(iv) there exist two sequences of vectors {vk} and {uk} with ‖uk‖ = ‖vk‖ = 1

and a scalar sequence {λk} ∈ l1 such that

Ax =
∞∑
k=1

λk(x, uk)vk; (7.10.6)

(v) there is an orthonormal basis {en} with
∑∞
n=1 ‖Aen‖ <∞.

PROOF. The equivalence of (i) and (ii) follows from the fact that according to
Exercise 7.10.65 the operators A∗A and AA∗ have the same nonzero eigenvalues
(for zero this can be false). Hence for all nonzero eigenvalues sj(A) = sj(A∗).
If A is nuclear, then |A|1/2 is a Hilbert–Schmidt operator, hence the polar de-
composition A = U |A| gives the representation A = U |A|1/2|A|1/2, where
U |A|1/2 ∈ H(H), i.e., we obtain (iii).

Let us derive (iv) from (iii). Suppose we have a representation A = A1A2,
where A1, A2 ∈ H(H). Let us take the polar decomposition A2 = V |A2|. The
operator |A2| has an eigenbasis {en} and eigenvalues {αn}. Hence we have
Ax =

∑∞
n=1 αn(x, en)A1V en. If βn := ‖A1V en‖ > 0, we set vn := β−1

n A1V en.
Then for the numbers λn := αnβn we obtain {λn} ∈ l1, which gives (7.10.6) with
un = en. Suppose now that (iv) holds. Then A is obviously compact. If {ψn} and
{ϕn} are two orthonormal bases, then the series of |(Aψn, ϕn)| is estimated by the
double series of |λk(ψn, uk)(vk, ϕn)|, which is dominated by the series of |λk|,
since |(ψn, uk)(vk, ϕn)| 6 [|(ψn, uk)|2 + |(vk, ϕn)|2]/2 and the sum over n in the
right-hand side equals 1. According to Remark 7.10.32 the operator A is nuclear.
Moreover, (v) is fulfilled for the eigenbasis of |A|. Finally, (v) implies (iv), because
we take λk = ‖Aek‖, uk = ek and vk = ‖Aek‖−1Aek if Aek 6= 0. �

Note that the series in (v) converges for some, but in general not for every
orthonormal basis (Exercise 7.10.115). For a basis for which convergence holds
we can take the eigenbasis of |A|. Then for the expansion (7.10.6) we can take
Ax =

∑∞
n=1 sn(A)(x, en)Uen, where only en with Uen 6= 0 are taken into

account.
The next result enables us to introduce the trace of any nuclear operator.
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7.10.34. Lemma. Let A ∈ N (H) and let {ϕn} be an orthonormal basis
in H . If A has the form (7.10.6), then

∞∑
n=1

λn(vn, un) =
∞∑
n=1

(Aϕn, ϕn), (7.10.7)

the series in the right-hand side converges absolutely and its sum does not depend
on our choice of the basis. In particular,

∞∑
n=1

(Aϕn, ϕn) =
∞∑
n=1

sn(A)(Uen, en),

where {en} is the eigenbasis of the operator |A|.

PROOF. The series in the left-hand side of (7.10.7) converges absolutely and
∞∑
n=1

λn(vn, un) =
∞∑
n=1

λn

∞∑
k=1

(vn, ϕk)(ϕk, un)

=
∞∑
k=1

∞∑
n=1

λn(vn, ϕk)(ϕk, un) =
∞∑
k=1

(Aϕk, ϕk),

which shows convergence of the series in the right-hand side. Its absolute con-
vergence follows from the fact that the sum does not change under permutations
of terms in this series (note that any permutation of {ϕk} remains an orthonormal
basis). �

The trace of an operator A ∈ N (H) is defined by

trA :=
∞∑
k=1

(Aϕk, ϕk),

where {ϕk} is an orthonormal basis. The lemma shows that the trace is well-
defined. The following fact is true.

7.10.35. Proposition. Let H be a complex Hilbert space. An operator
A ∈ L(H) is nuclear precisely when for every orthonormal basis {en} in H the
series

∑∞
n=1(Aen, en) converges.

PROOF. Let us show that A ∈ N (H) if all such series converge. If A > 0,
then it suffices to have convergence for some basis, since in that case A1/2 is a
Hilbert–Schmidt operator. If A is selfadjoint, then there exist closed subspaces
H1 and H2 such that H1 ⊥ H2, H = H1 ⊕ H2, A(Hi) ⊂ Hi. This follows
from the theorem about representation of A as the multiplication by a real function
ϕ on L2(µ): for H1 and H2 we can take the subspaces of functions vanishing
outside {ϕ > 0} and {ϕ 6 0}. The operators A|H1 and −A|H2 are nonnegative.
Let us take orthonormal bases {ϕn} and {ψn} in H1 and H2. Let en = ϕn
for odd n and en = ψn for even n. Then both series

∑∞
n=1(Aϕn, ϕn) and∑∞

n=1(Aψn, ψn) must converge separately, since the series of (Aen, en) converges
for every permutation of its terms. Therefore, the restrictions of A to H1 and H2

are nuclear operators, whence A ∈ N (H). Finally, in the general case we observe
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that the operator A∗ satisfies the same condition as A. Then this condition is
fulfilled for the selfadjoint operators B1 = A + A∗ and B2 = i(A − A∗). As we
have shown, B1, B2 ∈ N (H). Hence A = (B1 − iB2)/2 ∈ N (H). �

Note that here it is not enough to have convergence of only one such series
(even absolute): see Exercise 7.10.116. For real spaces this proposition is false (it
suffices to take a noncompact operator A with (Ax, x) = 0).

7.10.36. Theorem. Let H be a complex or real Hilbert space.
(i) Let A ∈ N (H). Then

tr |A| = sup
∞∑
n=1

|(Aψn, ϕn)|, (7.10.8)

where sup is taken over all pairs of orthonormal bases {ψn} and {ϕn}.
(ii) Let A ∈ N (H). Then

tr |A| = inf
∞∑
n=1

|λn|, (7.10.9)

where inf is taken over all representations of the form (7.10.6).
(iii) The space of nuclear operators on a separable Hilbert space H is a

separable Banach space with respect to the norm ‖A‖(1) := tr |A|.
(iv) An operator A ∈ L(H) is nuclear precisely when so is A∗. In addition,

‖A‖(1) = ‖A∗‖(1) and trA = trA∗.
(v) If A ∈ N (H) and T ∈ L(H), then AT, TA ∈ N (H) and

trAT = trTA and ‖AT‖(1) 6 ‖T‖L(H)‖A‖(1).

PROOF. We shall assume that H is complex (the real case is similar). (i) Let
us take the polar decomposition A = U |A| and the eigenbasis {en} of the opera-
tor |A|. Then Aψn =

∑∞
j=1 sj(A)(ψn, ej)Uej , whence

∞∑
n=1

(Aψn, ϕn) =
∞∑
n=1

∞∑
j=1

sj(A)(ψn, ej)(Uej , ϕn),

which is estimated by tr |A| in absolute value, as in the proof of Theorem 7.10.33.
Since the same is true when we replace en by eiθnen with arbitrary real θn, the
right-hand side of (7.10.8) is not greater than the left-hand side. On the other
hand, all nonzero vectors Uen form an orthonormal system. Complementing it to
a basis {ϕn}, we obtain a pair of bases for which the equality is achieved.

(ii) We have seen in the proof of Theorem 7.10.33 that the sum of the series
of sn(A) does not exceed the sum of the series of |λn| for every representa-
tion (7.10.6). The equality is achieved for Ax =

∑∞
n=1 sn(A)(x, en)Uen, where

A = U |A| is the polar decomposition and {en} is the eigenbasis for |A|.
(iii) It is clear from assertion (iv) of Theorem 7.10.33 that N (H) is a linear

space. Estimate (7.10.8) along with the obvious inequality ‖A‖ 6 ‖A‖(1) shows
that ‖ · ‖(1) is a norm. If a sequence {An} is Cauchy with respect to this norm,
then it converges to some operator A ∈ K(H) in the operator norm. Let A = U |A|
be the polar decomposition of A and {en} the eigenbasis of |A|. Set ψn = en
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and ϕn = Uen if Uen 6= 0. Let us complement {ϕn} to an orthonormal basis.
We obtain convergence of the series of sn(A), since the series of |(Aψn, ϕn)|
converges by (7.10.8) and the uniform boundedness of the norms ‖An‖(1). We
show that ‖A−An‖(1) → 0. Let ε > 0. Find a number n0 with ‖Am−An‖(1) 6 ε
for all n,m > n0. Suppose that we have two orthonormal bases {ψk} and {ϕk} in
the space H . Let m > n0. Find N with

∑∞
k=N+1 |(Aψk − Amψk, ϕk)| 6 ε. The

bound
∑N
k=1 |(Ajψk − Amψk, ϕk)| 6 ε for j > n0 yields in the limit the same

bound for A in place of Aj . Thus, by (7.10.8) we obtain that ‖A−Am‖(1) 6 2ε.
It remains to observe that every operator A ∈ N (H) is approximated with respect
to the norm ‖ · ‖(1) by finite-dimensional operators, since this is true for |A| (it
suffices to use the eigenbasis of |A|).

The first assertion in (iv) follows from the fact that |A| and |A∗| have the same
nonzero eigenvalues, which has already been noted above. The same reasoning
gives the equality ‖A‖(1) = ‖A∗‖(1). The last equality in (iv) is obvious.

In assertion (v) the nuclearity of the operators AT and TA is obvious from
assertion (iv) of Theorem 7.10.33 (one can also use the connection with Hilbert–
Schmidt operators). The estimate ‖AT‖(1) 6 ‖T‖L(H)‖A‖(1) follows from asser-
tion (ii) and representation (7.10.6). Let us verify the equality of the traces of the
operators AT and TA. Writing the operator A in the form (7.10.6), we arrive at
the following two equalities:

TAx =
∞∑
n=1

λn(x, un)Tvn, ATx =
∞∑
n=1

λn(Tx, un)vn =
∞∑
n=1

λn(x, T ∗un)vn.

Equality (7.10.7) shows that the trace of TA equals
∑∞
n=1 λn(Tvn, un) and the

trace of AT equals
∑∞
n=1 λn(vn, T ∗un), i.e., the same number. �

Let us give a sufficient condition for an operator on L2[0, 1] to be nuclear.

7.10.37. Example. Let T be a bounded operator on L2[0, 1] such that its
range is contained in the set of Lipschitz functions (or, more generally, there exists
a function Φ ∈ L2[0, 1] such that the range of T is contained in the class of
absolutely continuous functions x for which |x′(t)| 6 Cx|Φ(t)| a.e.). Then T is a
nuclear operator.

PROOF. First, we suppose additionally that all functions from the range of T
equal zero at 0. The operator Sx = (Tx)′ takes values in L∞[0, 1]. According to
Corollary 7.10.28 the operator S is a Hilbert–Schmidt operator. In the case of the
second more general condition we apply Theorem 7.10.29. The Volterra operator
V of indefinite integration is also a Hilbert–Schmidt operator. Hence T = V S is
nuclear. In the general case we observe that the operator T is continuous as an
operator with values in C[0, 1]. Hence the functional l : x 7→ Tx(0) is continuous.
This enables us to write T in the form Tx = l(x)1 + T0x, where T0 has the form
considered above. Then T is nuclear, since so are T0 and the one-dimensional
operator x 7→ l(x)1. �

An important particular case is the following integral operator with an integral
kernel satisfying the Lipschitz condition in the first variable.
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7.10.38. Example. Suppose that a measurable function K belongs to L2 on
the square [0, 1]× [0, 1] and that for almost every s the function t 7→ K(t, s)
satisfies the Lipschitz condition with a constant Φ(s) such that the function Φ
belongs to L2[0, 1]. Then the operator

Tx(t) =
∫ 1

0

K(t, s)x(s) ds

is nuclear. The same is true under the following weaker condition: for almost every
point s the function t 7→ K(t, s) is absolutely continuous on the interval [0, 1] and
∂K(t, s)/∂t ∈ L2([0, 1]×[0, 1]).

Note that the continuity of the kernel K is not sufficient for the nuclearity of
the integral operator with the kernel K. T. Carleman gave the following example:
K(t, s) = F (t − s), where F is a continuous function with a period 1 and the
Fourier expansion F (t) =

∑
k∈Z cke

2πikt such that
∑
k |ck| = ∞. Then the func-

tions ek(t) = e2πikt constitute an orthonormal eigenbasis for the integral operator
with the kernel K and {ck} is the sequence of the corresponding eigenvalues.
However, if it is known in addition that the integral operator with the kernel K is
nonnegative (its quadratic form is nonnegative), then it must be nuclear.

7.10.39. Example. Let K be a continuous real function on [0, 1]×[0, 1] with
K(t, s) = K(s, t) such that the integral operator T given on L2[0, 1] by the ker-
nel K is nonnegative. Then T is a nuclear operator and

trT =
∫ 1

0

K(t, t) dt.

Indeed, let us take the eigenbasis {en} of the operator T with eigenvalues λn.
By Mercer’s theorem 7.10.43 proved below the series

∑∞
n=1 λnen(t)en(s) con-

verges to K(t, s) uniformly on the square. In particular, it converges uniformly
on the diagonal, which after integration gives the indicated equality. Note that
T is nuclear if in place of the continuity of K we assume only the measurability
and boundedness (of course, keeping the condition T > 0). This follows from
the result above, since one can take a sequence of continuous kernels Kn with
sup |Kn(t, s)| 6 sup |K(t, s)| converging in measure to K and generating nonneg-
ative operators (see Gokhberg, Krein [226, p. 149–151]).

The next theorem describes an interesting connection between nuclear opera-
tors and functionals on the space of operators.

7.10.40. Theorem. (i) For every S ∈ N (H) the functional

K 7→ trSK

on K(H) has the norm ‖S‖(1). Conversely, every continuous functional on K(H)
admits such a representation, i.e., the space K(H)∗ is naturally isomorphic to the
space N (H).

(ii) For every T ∈ L(H) the functional

S 7→ trTS
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on N (H) has the norm ‖T‖L(H). Conversely, every continuous functional on
N (H) admits such a representation, i.e., the spaceN (H)∗ is naturally isomorphic
to the space L(H).

PROOF. (i) We already know that the norm ‖Λ‖ of the indicated functional Λ
does not exceed ‖S‖(1). We show that ‖Λ‖ > ‖S‖(1). Let ε > 0. Let us take the
polar decomposition S = U |S| and the eigenbasis {en} of the operator |S| with
eigenvalues sn. Then

‖S‖(1) 6
N∑
n=1

sn + ε

for some N , where sn > 0. Let us take a finite-dimensional operator KN with
KNUen = en, i = 1, . . . , N and extend it by zero on the orthogonal complement
of the linear span of e1, . . . , eN . Then ‖KN‖L(H) = 1 and

trKNS =
N∑
n=1

sn(KNUen, en) =
N∑
n=1

sn > ‖S‖(1) − ε,

which gives the desired bound. Thus, we have an isometric embedding of the
space N (H) into K(H)∗. Let Λ ∈ K(H)∗. For every u, v ∈ H , we have a
one-dimensional operator Ku,v(x) := (x, u)v. Set

B(u, v) := Λ(Ku,v).

The function B is linear in u and conjugate-linear in v. The continuity of B is
clear from the equality ‖Ku,v‖(1) = ‖u‖ ‖v‖ (see Exercise 7.10.63). According
to Exercise 7.2.1 there exists an operator S ∈ L(H) with (Su, v) = B(u, v).
We show that this is the required operator. For any two infinite-dimensional or-
thonormal sequences {ψn} and {ϕn} and every element (ξn) ∈ c0, the series∑∞
n=1 ξnKψn,ϕn

converges with respect to the operator norm to some operator
K ∈ K(H). By the continuity of Λ the series of ξnΛ(Kψn,ϕn

) = ξn(Sψn, ϕn)
converges and the absolute value of the sum does not exceed ‖Λ‖ ‖K‖L(H). It
is readily seen that ‖K‖L(H) = supn |ξn|. Therefore, {(Sψn, ϕn)} ∈ l1 and∑∞
n=1 |(Sψn, ϕn)| 6 ‖Λ‖, which gives the estimate ‖S‖(1) 6 ‖Λ‖ by the previ-

ous remark. Assertion (ii) is proved similarly. �

This theorem yields the equality K(H)∗∗ = L(H).
One of the deepest results on operator traces is the following theorem due to

V. B. Lidskii. Its rather difficult proof can be read in several books, for example,
see Gokhberg, Krein [226, Chapter III, §8] (the shortest proof is presented in the
book Simon [554]).

7.10.41. Theorem. For every A ∈ N (H) we have

trA =
∞∑
n=1

λn,

where λn are all eigenvalues of A counted with multiplicities and in the case of
absence of eigenvalues the right-hand side is defined to be zero.
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The most difficult part of the proof concerns precisely the case of absence
of eigenvalues. It is far from being obvious that in this case the trace vanishes.
Nonzero eigenvalues are considered in Exercise 7.10.106. About eigenvalues of
compact operators, see also König [333] and Pietsch [484].

7.10(v). Integral operators and Mercer’s theorem

Let us mention several interesting facts connected with the Hilbert–Schmidt
theorem and useful in the study of integral equations. Let K ∈ L2([0, 1]×[0, 1]) be
a complex function with K(t, s) = K(s, t). Let us consider the compact selfadjoint
operator

TKx(t) =
∫ 1

0

K(t, s)x(s) ds

on L2[0, 1]. By the Hilbert–Schmidt theorem there exists an orthonormal basis
{en} with TKen = λnen, where λn ∈ IR1. Hence for every n we have

λnen(t) =
∫ 1

0

K(t, s)en(s) ds

for almost all t. Hence for almost all t this equality is true simultaneously for
all n. In addition, for almost all t the function s 7→ K(s, t) belongs to L2[0, 1].
Let t possess both properties (the set of such points also has full measure). Then
the previous equality means that

λnen(t) =
(
K( · , t), en

)
,

which gives the equality
∞∑
n=1

λ2
n|en(t)|2 =

∫ 1

0

|K(s, t)|2 ds. (7.10.10)

After integration in t we obtain
∞∑
n=1

λ2
n =

∫ 1

0

∫ 1

0

|K(s, t)|2 ds dt <∞.

Since for almost every t we have the orthogonal expansion

K( · , t) =
∞∑
n=1

(
K( · , t), en

)
en =

∞∑
n=1

λnen(t)en,

we have

K(s, t) =
∞∑
n=1

λnen(s)en(t), (7.10.11)

where the series converges in L2([0, 1]× [0, 1]). If we impose some additional
conditions on K, then a stronger conclusion can be obtained.

7.10.42. Example. Suppose that there is a number C such that∫ 1

0

|K(t, s)|2 ds 6 C almost everywhere on [0, 1].
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Then
∑∞
n=1 |λnen(t)|2 6 C a.e., moreover, for every x ∈ L2[0, 1] the series

TKx(t) =
∞∑
n=1

λn(x, en)en(t) (7.10.12)

converges absolutely and uniformly on some set E of full measure.

PROOF. Since we have |K(t, s)| = |K(s, t)|, the first assertion is obvious
from (7.10.10). For E we take the set of those points t for which (7.10.10) and
the inequality from the hypotheses are fulfilled. Now the estimate

∞∑
n=m

|λn(x, en)en(t)| 6
( ∞∑
n=m

|λnen(t)|2
)1/2( ∞∑

n=m

|(x, en)|2
)1/2

6 C1/2
( ∞∑
n=m

|(x, en)|2
)1/2

proves the second assertion. �

7.10.43. Theorem. (MERCER’S THEOREM) Suppose that K is a continu-
ous function such that the operator TK is nonnegative, i.e., (TKx, x) > 0. Then
the functions en corresponding to eigenvalues λn 6= 0 have continuous modifica-
tions and the series (7.10.11) and (7.10.12) converge absolutely and uniformly. In
addition,

trTK =
∫ 1

0

K(t, t) dt.

PROOF. For λn 6= 0 the continuous version of en is given by the formula

en(t) = λ−1
n

∫ 1

0

K(t, s)en(s) ds.

We observe that K(t, t) > 0. Indeed, for a fixed τ ∈ [0, 1) we take the functions
xn = nI[τ,τ+1/n]I[0,1]. By assumption

0 6 (TKxn, xn) = n2

∫ min(τ+1/n,1)

τ

∫ min(τ+1/n,1)

τ

K(t, s) dt ds.

As n→∞, the integral in the right-hand side tends to K(τ, τ), hence K(τ, τ)>0.
Let us apply this observation to the continuous kernels K −Kn, where

Kn(t, s) =
n∑
j=1

λjej(t)ej(s),

defining nonnegative operators, since λj > 0 and

(TKx, x) − (TKn
x, x) =

∞∑
j=n+1

λj |(x, ej)|2 > 0.

Thus, Kn(t, t) 6 K(t, t). Therefore,
n∑
j=1

λj |ej(t)|2 6 K(t, t) 6 M := sup
t,s

|K(t, s)|.
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Hence
∞∑
j=1

λj |ej(t)ej(s)| 6
∞∑
j=1

λj
|ej(t)|2 + |ej(s)|2

2
6 M.

In addition, for every fixed s the series
∑∞
j=1 λjej(t)ej(s) converges uniformly

in t. Indeed, for any given ε > 0 we can find m with
∑∞
j=m λj |ej(s)|2 6 ε and

by the Cauchy–Bunyakovskii inequality we obtain
∞∑
j=m

λj |ej(t)ej(s)| 6
( ∞∑
j=m

λj |ej(t)|2
)1/2( ∞∑

j=m

λj |ej(s)|2
)1/2

6 (Mε)1/2.

Now we can conclude that the series
∑∞
n=1 λnen(t)en(s) converges to K(t, s)

at every point, not only almost everywhere. Indeed, let us denote the sum of this
pointwise convergent series by Q(t, s). It follows from what we have proved that
the function Q is bounded and continuous in every variable separately. Let us fix
s and show that Q(t, s) = K(t, s) for all t. By the continuity of both functions
in t it suffices to verify that they have equal inner products with all functions ek.
Since the series defining Q converges uniformly in t (which is shown above), the
integral of Q(t, s)ek(t) in t equals λkek(s). The same value has the integral of
K(t, s)ek(t) in t according to our choice of versions of ek. The pointwise equality
K(t, s) = Q(t, s) yields that the series

∑∞
n=1 λn|en(t)|2 converges pointwise to

the continuous function K(t, t). By Dini’s theorem this convergence is uniform.
From this with the aid of the Cauchy–Bunyakovskii inequality one can easily
derive the uniform convergence of series (7.10.11). The equality for the trace is
obtained by integration of this series for t = s. �

For a generalization, see Exercise 7.10.128.
It is readily verified that for a continuous real symmetric kernel K on [0, 1]2

the corresponding operator TK is nonnegative (in the sense of quadratic forms)
precisely when the matrices

(
K(ti, tj)

)
i,j6n

are nonnegative definite. Hence the
condition TK > 0 does not follow from the condition K(t, s) > 0. As an example
let us consider the kernel K(t, s) = |t − s| that generates an operator which is
not nonnegative (of course, this can be easily seen from the formula for the trace
in §7.10(iv)).

Note also that the nonnegativity of an operator T on L2(µ) in the sense of
quadratic forms should not be confused with the nonnegativity in the sense of
ordered spaces, i.e., with the condition that Tx > 0 whenever x > 0 (none of
these two conditions follows from the other).

7.10(vi). Tensor products

Let X and Y be Banach spaces. For every pair (x, y) in X×Y , the formula
l 7→ l(x)y defines a one-dimensional operator from X∗ to Y ; this operator will
be denoted by the symbol x⊗y. Denote by X⊗Y the linear space in L(X∗, Y )
generated by all operators x⊗y. Note that a representation of an operator in the
form x1⊗y1+ · · ·+xn⊗yn is not unique. For example, x⊗(y+z)=x⊗y+x⊗z. The
linear space X⊗Y is called the algebraic tensor product of the spaces X and Y .
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It can be completed with respect to any norm on the space of finite-dimensional
operators. A norm p on X⊗Y is called a cross-norm if p(x⊗y) = ‖x‖ ‖y‖ for all
x ∈ X , y ∈ Y . It turns out that among cross-norms there are two extreme ones
that correspond to the usual operator norm on L(X∗, Y ) and the nuclear norm.
These two cross-norms are given by the equalities

‖u‖∞ := ε(u) := sup
{∑

i

f(xi)g(yi) : u =
∑
i

xi⊗yi, ‖f‖X∗ 61, ‖g‖
Y ∗ 61

}
,

‖u‖N := π(u) := inf
{∑

i

‖xi‖ ‖yi‖ : u =
∑
i

xi⊗yi
}
.

They are called the injective and projective norms, respectively.
For every cross-norm p we have ‖u‖∞ 6 p(u) 6 ‖u‖N (Exercise 7.10.119).

The term the “nuclear norm” is closely connected with the fact that an operator
T ∈ L(X,Y ) is called nuclear if it is representable in the form

Tx =
∞∑
i=1

ui(x)vi, where ui ∈ X∗, vi ∈ Y,
∞∑
i=1

‖ui‖ ‖vi‖ <∞.

The infimum of sums
∑∞
i=1 ‖ui‖ ‖vi‖ over all possible representations of T is

called the nuclear norm of T and is denoted by the symbol ‖T‖N .
The completions of X⊗Y with respect to the norms ‖ · ‖N and ‖ · ‖∞ are

denoted by the symbols X⊗̂Y and X⊗̃Y , respectively. Alternative symbols are
X⊗̂πY and X⊗̂εY .

The space X⊗̂Y = X⊗̂πY is called the Banach tensor product of X and Y .
Every element u ∈ X⊗̂Y can be represented as a series

u =
∞∑
i=1

xi⊗yi, where
∞∑
i=1

‖xi‖ ‖yi‖ <∞,

and ‖u‖N is the infimum of sums of the indicated form (this is clear from Exer-
cise 5.6.51).

If X and Y are Hilbert spaces, then X⊗Y can be equipped with the Hilbert–
Schmidt norm, which leads to the Hilbert tensor product X⊗2Y . Thus, in the
case where X = Y = H is a Hilbert space, the Banach tensor product H⊗̂H is
the space N (H) of nuclear operators, the Hilbert tensor product H⊗2H is the
space H(H) of Hilbert–Schmidt operators, and the tensor product H⊗̃H is the
space K(H) of compact operators, moreover, the tensor norms introduced above
are exactly the corresponding operator norms.

If A is a bounded operator on X and B is a bounded operator on Y , then
A⊗B is defined as a bounded operator on X⊗Y by setting

A⊗B(u⊗v) = Au⊗Bv.

If p is a cross-norm on X⊗Y , then for z =
∑
i xi⊗yi we have

p(A⊗Bz) 6 ‖A‖ ‖B‖
∑
i

‖xi‖ ‖yi‖,

hence the left-hand side is estimated by ‖A‖ ‖B‖ ‖z‖N . In particular, A⊗B is
bounded on the Banach tensor product and its norm is ‖A‖ ‖B‖. It is readily seen
that the same is true for the injective norm. Cross-norms with this property are
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called uniform in Ryan [523, p. 128]. If X = Y = H is a Hilbert space, then
A⊗B is also bounded on the Hilbert tensor product and its norm is ‖A‖ ‖B‖.
Indeed, it suffices to prove that the norm is bounded by ‖A‖ ‖B‖. Moreover, it
suffices to do that in the case where one of the operators is the identity, since

A⊗B = (A⊗I)(I⊗B).

Now let B = I . If v =
∑
i ui⊗vi, where vi are mutually orthogonal, then

‖v‖2
H =

∑
i

‖ui⊗vi‖2 =
∑
i

‖ui‖2.

Hence

‖(A⊗I)v‖2
H =

∥∥∥∑
i

Aui⊗vi
∥∥∥2

H
=

∑
i

‖Aui‖2 6 ‖A‖2
∑
i

‖ui‖2 = ‖A‖2‖v‖2
H.

A useful application of this construction can be found in Exercise 7.10.135.

7.10(vii). Fredholm operators

Let X and Y be Banach spaces.

7.10.44. Definition. A bounded operator A : X → Y is called Fredholm if
its kernel KerA has a finite dimension and its range RanA = A(X) has a finite
codimension.

The number dim KerA− codim RanA is called the index of the operator A
and denoted by the symbol IndA.

According to Proposition 6.2.12 the range of any Fredholm operator is closed.
Sometimes Fredholm operators are called Noether operators, while the term

Fredholm is reserved for Noether operators with zero index.
The index of a Fredholm operator turns out to be a more important charac-

teristic than the dimension of its kernel or the codimension of its range. This is
connected with the behavior of the index under compositions and perturbations of
operators, which will be demonstrated below.

7.10.45. Example. (i) Every linear operator A on a finite-dimensional space
E is Fredholm with zero index, since

dim KerA+ dimA(E) = dimE.

(ii) A compact operator K : X → Y can be Fredholm only in the case where
both spaces X and Y are finite-dimensional. Indeed, the closed space K(X) must
be finite-dimensional by the open mapping theorem (the image of an open ball is
open in K(X), but in this case it is totally bounded). Then the kernel of K has a
finite codimension, i.e., X is also finite-dimensional.

(iii) Let K : X → X be a compact operator. Then the operator I + K is
Fredholm. In addition, Ind (I+K) = 0. This was proved in §7.4. As we shall see
below, this example is very typical. The term a “Fredholm operator” gives credit
to Fredholm, who investigated integral equations. His results concerned with
integral operators paved the way to subsequent research of Riesz and Schauder
about abstract compact operators. The Nikolskii theorem proved below exhibits
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a close connection between Fredholm operators and compact perturbations of the
identity operator.

(iv) The operator Aϕ : L2[0, 1] → L2[0, 1] of multiplication by a bounded
measurable function ϕ is Fredholm precisely when it is invertible, i.e., |ϕ(t)| > c
almost everywhere on [0, 1] for some number c > 0. In this case the index of Aϕ
is zero. Indeed, the set Z := ϕ−1(0) has measure zero, since otherwise the space
of functions from L2[0, 1] vanishing outside Z is infinite-dimensional. This space
coincides with the kernel of A. Thus, the operator A is injective. In addition, its
range is everywhere dense in L2[0, 1], because for every function f in L2[0, 1] the
functions fIEn , where En := {t : |ϕ|(t) > n−1}, converge to f in L2[0, 1], but
such functions belong to the range of A. Hence the operator A is one-to-one.

(v) Let U be the open unit disc in C and let X = H(U) be the Banach
space of analytic functions on U continuous on the closure of U with the norm
‖f‖ = maxz∈U |f(z)|. Set Af(z) = znf(z). Then A is a Fredholm operator
with index n. Indeed, this operator has the zero kernel and a range of finite codi-
mension. The functions 1, z, . . . , zn−1 along with the range of A generate H(U),
which is clear from the expansion f(z) =

∑∞
k=0 akz

k.

Let us consider in greater detail the structure of a Fredholm operator T be-
tween two Banach spaces X and Y . Let us take a closed linear complement X1 to
the kernel of T in X (see Corollary 6.4.2). There is also a finite-dimensional com-
plement Y0 to the range Y1 of the operator T . The operator T maps X1 one-to-one
to Y1 and equals zero on X0 := KerT . Since X1 and Y1 are Banach spaces,
the operator T : X1 → Y1 is a linear homeomorphism. This yields the following
assertion.

7.10.46. Proposition. Let X,Y, Z be Banach spaces and let T ∈ L(X,Y )
be a Fredholm operator. Then the image T (Z) of every closed linear subspace
Z ⊂ X is closed in Y .

PROOF. The linear subspace Z1 := Z ∩ X1 is closed and has a finite-
dimensional linear complement Z2 to Z. Hence T (Z) = T (Z1) + T (Z2), where
the subspace T (Z1) is closed by the property that T is a homeomorphism on X1

and the subspace T (Z2) is finite-dimensional. According to Proposition 5.3.7 the
set T (Z) is closed. �

Now with the aid of the above considerations we prove the following the-
orem due to S.M. Nikolskii, which connects Fredholm operators with compact
perturbations of the identity.

7.10.47. Theorem. Let X and Y be Banach spaces and T ∈ L(X,Y ). The
operator T is Fredholm precisely when there exists an operator S ∈ L(Y,X) such
that the operators ST −IX and TS−IY are compact (on X and Y , respectively).
In this case the operator S can be chosen such that the indicated operators will
be even finite-dimensional.

PROOF. Let T be Fredholm. As above, we take a closed linear complement
X1 to X0 = KerT in X . We know that the projection operator P1 : X → X1 is
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continuous. The projection P = IX − P1 onto KerT is also continuous. There
is a finite-dimensional complement Y0 to the range Y1 of the operator T and
the continuous projection operator Q1 : Y → Y1. Then Q := IY − Q1 is the
continuous projection operator onto Y0. The operator T maps X1 one-to-one
onto Y1. The Banach inverse mapping theorem gives a mapping S0 ∈ L(Y1, X1)
with S0Tx = x for all x ∈ X1 and TS0y = y for all y ∈ Y1. Set S : Y → X ,
Sy = S0Q1y. Then S ∈ L(Y,X) and TSy = TS0Q1y = Q1y = y −Qy for all
vectors y ∈ Y . In addition, we have

STx = S0P0Tx = S0Tx = S0TP0x = P0x = x− Px for all x ∈ X .

Thus, the operators ST − IX and TS − IY are finite-dimensional.
Conversely, suppose that there exists an operator S ∈ L(Y,X) such that the

operators ST − IX and TS − IY are compact. This gives the Fredholm property
of the operators ST and TS. Since KerT ⊂ KerST , the kernel of T is finite-
dimensional. In addition, the range of TS is contained in the range of T , hence
the latter has a finite codimension. �

Note that the operator S (“almost inverse” to the Fredholm operator T ) is also
Fredholm, since it satisfies the Nikolskii condition.

7.10.48. Theorem. Let X,Y and Z be Banach spaces and let S ∈ L(X,Y )
and T ∈ L(Y,Z) be Fredholm operators. Then the operator TS ∈ L(X,Z) is
also Fredholm and Ind (TS) = IndT + IndS.

PROOF. Let us consider the finite-dimensional subspace Y0 := S(X)∩KerT
in Y . It is clear that Ker (TS) = S−1(KerT ). The operator S maps Ker (TS)
onto Y0 and the kernel of this mapping is the set KerS. Thus,

dim Ker (TS) = dim KerS + dimY0.

Since the range of S is finite-dimensional, the subspace S(X)+KerT possesses a
finite-dimensional algebraic complement Y1. It is clear that RanT is the algebraic
sum of Ran (TS) and T (Y1). Let us verify that this is a direct sum. Indeed, if
TSx = Ty, where x ∈ X and y ∈ Y1, then Sx − y ∈ KerT . Then we have
y ∈

(
S(X) + KerT

)
∩ Y1. Hence y = 0, since the intersection above consists

only of zero. Thus, the operator TS is Fredholm, and we arrive at the equality

codim Ran (TS) = codim RanT + dimY1.

On the ground of the already proved facts we obtain the following relation:

Ind (TS) = (dim KerS + dimY0) − (codim RanT + dimY1).

The subspace Y0 in the finite-dimensional subspace KerT has a linear comple-
ment Y2. Hence dim KerT = dimY0 + dimY2. For obtaining the desired relation
it remains to observe that

codim RanS = dimY1 + dimY2.

This equality follows from the fact that by construction Y is the direct sum of
RanS + KerT and Y1, moreover, RanS + KerT is a direct sum of RanS and
Y2 due to the fact that Y2 is a complement of RanS ∩ KerT in KerT . �
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7.10.49. Corollary. Let X and Y be Banach spaces, let T ∈ L(X,Y ) be
a Fredholm operator, and let K ∈ K(X,Y ) be a compact operator. Then the
operator T +K is also Fredholm, moreover,

Ind (T +K) = IndT.

PROOF. By the Nikolskii theorem there is an operator S ∈ L(Y,X) such that
the operators P1 := ST − IX and P2 := TS − IY are finite-dimensional. Hence
S(T +K) = IX +P1 +SK and (T +K)S = IY +P2 +KS, where the operators
P1 + SK and P2 +KS are compact. By the same theorem the operator T +K is
Fredholm. It has been noted in Example 7.10.45(iii) that compact perturbations of
the identity operator have zero index. By the theorem proved above this gives the
equality

IndT + IndS = 0 = Ind (T +K) + IndS,

which yields the equality Ind (T +K) = IndT . �

7.10.50. Theorem. Let X and Y be two Banach spaces. An operator
T ∈ L(X,Y ) is Fredholm precisely when its adjoint operator T ∗ is Fredholm.
Moreover, IndT = −IndT ∗.

PROOF. Let T be Fredholm. Then

dim KerT ∗ = codim RanT, codim RanT ∗ = dim KerT.

Indeed, let us represent X as X0 ⊕ X1, where X0 = KerT and X1 is a closed
linear complement to X0. In addition, let us represent Y as Y = Y0 ⊕ Y1, where
Y1 is the closed range of T and Y0 is a finite-dimensional complement to Y1.
In this representation the operator T is written as (x0, x1) 7→ (0, T1x1), where
T1 : X1→Y1 is an invertible operator. Then the operator T ∗ : Y ∗

0 ⊕Y ∗
1 → X∗

0⊕X∗
1

acts as follows: T ∗(y∗0 , y
∗
1) = (0, T ∗

1 y
∗
1), y∗0 ∈ Y ∗

0 , y
∗
1 ∈ Y ∗

1 . The operator T ∗
1 is

an isomorphism between the spaces Y ∗
1 and X∗

1 . For finite-dimensional spaces we
have the equalities dimX0 = dimX∗

0 and dimY0 = dimY ∗
0 . This shows that T

∗

is Fredholm and gives the desired equality. Note that the Fredholm property of T ∗

by itself is obvious from the Nikolskii theorem and the equalities (ST )∗ = T ∗S∗,
(TS)∗ = S∗T ∗. Conversely, let the operator T ∗ : Y ∗ → X∗ be Fredholm. Then
the operator T ∗∗ : X∗∗ → Y ∗∗ is also Fredholm. Hence dim KerT < ∞. The
range of T has a finite codimension. Indeed, this range is closed, since it coincides
with the image of the closed subspace X in X∗∗ under the action of the Fredholm
operator T ∗∗. Therefore, the range of T coincides with the annihilator of the
finite-dimensional kernel of T ∗ (see Lemma 6.8.1). �

It is suggested in Exercise 7.10.120 to prove that a Fredholm operator T has
zero index precisely when T = S +K, where the operator S is invertible and the
operator K is finite-dimensional.

In many infinite-dimensional Banach spaces one can easily construct operators
that are neither compact nor Fredholm. For a long time the following problem
remained open: does there exist an infinite-dimensional Banach space in which
every bounded operator has the form λI+K, where K is compact? Only recently
S. Argyros and R. Haydon [666] have constructed such a space.
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7.10(viii). The vector form of the spectral theorem

Here we obtain two more functional representations of selfadjoint operators,
but we employ spaces of vector functions. The next assertion follows directly from
the proof of Theorem 7.8.6.

7.10.51. Theorem. Let A be a selfadjoint operator on a separable Hilbert
space H 6= 0. Then there exists a finite or countable family of nonnegative Borel
measures µn on [−‖A‖, ‖A‖] such that the operator A is unitarily equivalent to
the operator B on the space

⊕∞
n=1 L

2(µn) acting by the formula

Bf(t) =
(
tf1(t), tf2(t), . . . , tfn(t), . . .

)
, f = (f1, f2, . . . , fn, . . .).

This theorem can be reformulated in a different form, where the operator acts
not in the sum of the spaces L2(µn), but in a subspace of some common space
L2(µ,H) of square integrable vector functions. Let us first introduce the space
L2(µ,H), where µ is a finite nonnegative measure on a σ-algebra A in a space Ω
and H is a separable Hilbert space. A mapping x with values in H will be called
µ-measurable if it is defined µ-a.e. and for some orthonormal basis {en} in H the
scalar functions ω 7→

(
x(ω), en

)
are µ-measurable. This property does not depend

on the choice of a basis: if {ϕk} is another orthonormal basis, then(
x(ω), ϕk

)
=

∑∞
n=1

(
x(ω), en

)
H

(en, ϕk)
H
.

Similarly to the scalar case one introduces the class L2(µ,H) of all µ-measurable
mappings x with values in H such that ‖ · ‖2

H ∈ L1(µ), i.e.,
∞∑
n=1

∫
Ω

∣∣(x(ω), en
)
H

∣∣2 µ(dω) <∞.

Finally, let L2(µ,H) denote the space of equivalence classes in L2(µ,H), where
equivalent mappings are µ-a.e. equal mappings (see §6.10(vi)). As in the scalar
case, the space L2(µ,H) is equipped with a structure of a linear space by means
of operations on representatives of classes and the inner product is defined by

(x, y) :=
∫

Ω

(
x(ω), y(ω)

)
H
µ(dω) =

∞∑
n=1

∫
Ω

(
x(ω), en

)
H

(
y(ω), en

)
H
µ(dω),

where in the right-hand side one takes representatives of equivalence classes. In
particular, the mapping x has the norm

‖x‖ :=
(∫

Ω

‖x(ω)‖2
H
µ(dω)

)1/2

.

Exercise 7.10.98 suggests to verify the completeness of L2(µ,H). Choosing or-
thonormal bases {en} in H and {fk} in L2(µ), we obtain an orthonormal basis in
L2(µ,H) consisting of all mappings ω 7→ fk(ω)en.

7.10.52. Theorem. Let A be a selfadjoint operator on a separable Hilbert
space H 6= 0. Then there exists a nonnegative Borel measure µ on [−‖A‖, ‖A‖]
such that the operator A is unitarily equivalent to the operator A0 defined by

A0f(t) = tf(t)
on some closed linear subspace of the Hilbert space L2(µ, l2).
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PROOF. Let ‖A‖ 6 1. We know that the operator A is unitarily equivalent to
the direct sum of operators of multiplication by the argument on the spaces L2(µn)
with some nonnegative Borel measures µn on Ω := σ(A), where µn(Ω) 6 1. For
µ we take the measure µ :=

∑∞
n=1 2−nµn on Ω. Hence it suffices to prove our

assertion for this direct sum. Since every measure µn is obviously absolutely
continuous with respect to the measure µ, by the Radon–Nikodym theorem it pos-
sesses a density %n with respect to µ, i.e., there exists a nonnegative µ-integrable
function %n such that

µn(B) =
∫
B

%n(t)µ(dt)

for every Borel set B ⊂ Ω. This equality yields (see §3.9) that for every µn-
integrable function ϕ we have∫

Ω

ϕdµn =
∫

Ω

ϕ%n dµ.

In particular, this is true for all ϕ ∈ L2(µn). Let us define an embedding J of the
space

⊕∞
n=1 L

2(µn) into L2(µ, l2) by the formula

J
(
{ϕn}∞n=1

)
(t) = {ϕn(t)

√
%n(t)}∞n=1.

It is clear that J is linear and preserves the inner product, since for every function
ϕ = {ϕn}∞n=1 in

⊕∞
n=1 L

2(µn) we have

‖Jϕ‖2 =
∞∑
n=1

∫
Ω

|ϕn(t)|2%n(t)µ(dt) =
∞∑
n=1

∫
Ω

|ϕn(t)|2 µn(dt) = ‖ϕ‖2.

Therefore, the range of the isometry J is a closed linear subspace E in L2(µ, l2).
In the general case this subspace does not coincide with L2(µ, l2). However,
the operator of multiplication by the argument acts on E by the natural for-
mula A0({xn})(t) = {txn(t)} and corresponds to our operator on the space⊕∞

n=1 L
2(µn) under the isomorphism J . �

7.10(ix). Invariant subspaces

In our study of selfadjoint operators we have occasionally made use of their
invariant subspaces, i.e., closed subspaces H0 such that A(H0) ⊂ H0. Every self-
adjoint operator has many such subspaces (Exercise 7.10.91). However, already for
several decades the following question remains open: does every bounded operator
on a separable complex Hilbert space H have invariant closed subspaces different
from 0 and H? The same question for general separable Banach spaces also re-
mained open for a long time, but in 1981 P. Enflo constructed a counter-example
(later C. Read constructed a counter-example in l1). Here we present a remarkable
result of V. I. Lomonosov obtained before the discovery of these counter-examples
and strengthening some results due to von Neumann, Aronszajn and Smith. The
proof gives an unexpected and beautiful application of the nonlinear Schauder
theorem to linear operators.
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7.10.53. Theorem. Let K 6= 0 be a compact linear operator on an infinite-
dimensional Banach space X . Then all bounded operators commuting with K
(including K itself) have a common nontrivial closed invariant subspace.

PROOF. Suppose the contrary and take an open ball U ⊂ X such that 0 does
not belong to the convex compact set S := K(U). Let us consider the subalgebra
M := {A∈L(X) : AK = KA} and the linear subspace M(x) := {Ax : A∈M}
for every x ∈ X . For x 6= 0 we haveM(x) = X , since the closed subspaceM(x)
is invariant with respect to all A∈M for all x∈M(x), because I ∈ M. Hence
for every s ∈ S there exists As ∈ M with As(s) ∈ U . This gives an open ball
Vs centered at s with As(Vs) ⊂ U . By the compactness of S we obtain a finite
collection s1, . . . , sn ∈ S such that S ⊂ Vs1 ∪ . . . ∪ Vsn . As shown in §1.9(iv),
there exist functions ϕi ∈ C(S), i = 1, . . . , n, such that ϕi > 0,

∑n
i=1 ϕi(x) = 1

and ϕi(x) = 0 whenever x 6∈ Vsi
. Let us consider the mapping

F : S → X, F (x) = K
( n∑
i=1

ϕi(x)Asi(x)
)
.

This mapping is continuous and F (S) ⊂ S, since for any x∈S we have ϕi(x) 6=0
only for x ∈ Vsi

, but then Asi
(x) ∈ U and the set U is convex. By Schauder’s

theorem there is a point x0 ∈ S with F (x0) = x0. Finally, let us take the compact
operator T =

∑n
i=1 ϕi(x0)KAsi . It is clear that T ∈ M and T (x0) = x0. The

closed subspace L = Ker (T − I) is finite-dimensional, L 6= 0. Since KT = TK,
we have K(L) ⊂ L. Hence in L the operator K has an eigenvector with some
eigenvalue λ. It remains to observe that the subspace E = Ker (K − λI) is
invariant with respect to all operators commuting with K. �

If X is a real space, the operator K itself has an invariant subspace. A similar
reasoning gives the following result due to V. I. Lomonosov.

7.10.54. Theorem. Let X be an infinite-dimensional Banach space. Suppose
that an operator T ∈L(X) commutes with some nonzero compact operator and is
not a multiple of the unit operator. Then all bounded operators commuting with T
have a common nontrivial closed invariant subspace.

The class of operators T covered by this theorem is so large that it took
several years to construct an operator that does not belong to it. About invariant
subspaces, see [52] and [662].

Exercises

7.10.55.◦ Find the spectra of the following operators on l2: (i) Ax = (0, x1, x2, . . .);
(ii) Ax = (x2, x3, . . .); (iii) Ax = (x2/2, x3/3, . . . , xn/n, . . .).

HINT: use that the operators in (i) and (ii) are adjoint to each other and that the
operator in (iii) is compact.

7.10.56.◦ Find the spectra of the following operators on the space l2(Z) of two-sided
sequences: (i) (Ax)n = xn+1; (ii) (Ax)n = 0 if n is odd, (Ax)n = xn+1 if n is even;
(iii) (Ax)n = xn+1/(|n| + 1).
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7.10.57.◦ Let {en} be an orthonormal basis in a separable Hilbert space H and let
a bounded operator A be given by the formula Aen = αnen, where {αn} is a bounded
sequence in C. Prove that the spectrum of A is the closure of {αn}.

7.10.58.◦ The operator A on l2 is defined by Ax = (r1x1, r2x2, . . . , rnxn, . . .), where
{rn} is some enumeration of the set of rational numbers in [0, 1]. Prove that A has a cyclic
vector and the spectrum [0, 1], but is not unitarily equivalent to the operator of multiplication
by the argument on L2[0, 1].

7.10.59.◦ Investigate whether there are unitarily equivalent operators among the fol-
lowing operators of multiplication by a function ϕ on L2[a, b], where [a, b] is equipped
with Lebesgue measure: (a) ϕ(t) = t, [a, b] = [0, 1], (b) ϕ(t) = |t|, [a, b] = [−1, 1],
(c) ϕ(t) = t2, [a, b] = [0, 1], (d) ϕ(t) = t3, [a, b] = [0, 1], (e) ϕ(t) = t1/2, [a, b] = [0, 1],
(f) ϕ(t) = sin t, [a, b] = [0, 1].

7.10.60. (i) Prove that a selfadjoint operator on Cn possesses a cyclic vector precisely
when it has no multiple eigenvalues. (ii) Prove that a compact selfadjoint operator on a
Hilbert space possesses a cyclic vector precisely when it has no multiple eigenvalues.

HINT: write the operator in the diagonal form and observe that in case of an eigenvalue
of multiplicity at least two for every vector h there is a nonzero vector u orthogonal to the
orbit of h.

7.10.61. Suppose that µ is a Borel probability measure on [0, 1] mutually singular
with Lebesgue measure λ, having no points of positive measure and satisfying the condition
µ
(
(a, b)

)
> 0 whenever 0 6 a < b 6 1. Prove that the operators of multiplication by the

argument on L2(µ) and L2(λ) have cyclic vectors, equal spectra and have no eigenvalues,
but are not unitarily equivalent.

7.10.62.◦ Let A be a bounded operator on a complex Banach space X such that one
has ‖A‖ ∈ σ(A). Prove that ‖I +A‖ = 1 + ‖A‖.

HINT: use that otherwise the norm of the operator (1 + ‖A‖)−1(I +A) is less than 1,
hence the difference with the unit operator must be invertible.

7.10.63.◦ Let H be a Hilbert space, u, v ∈ H , and let the operator Ku,v be given by
the formula Ku,vx := (x, u)v. Show that K∗

u,v = Kv,u and |Ku,v|x = ‖v‖(x, u)u.

7.10.64.◦ Let U be the shift in the space l2 of two-sided sequences (zn)n∈Z defined by
Uen = en+1. Set Kz := (z, e−1)e0. Prove that the spectrum of U −K coincides with the
unit disc.

7.10.65.◦ Let A and B be linear operators on a linear space X . Show that the operators
AB and BA have the same nonzero eigenvalues.

7.10.66.◦ Let X be a complex Banach space and A ∈ L(X). Prove that if A2 has an
eigenvalue, then A also does.

HINT: use that A2 − λ = (A+ λ1/2)(A− λ1/2).

7.10.67.◦ Construct a bounded linear operator on the complex space l2 such that its
spectrum consists of the two points 0 and 1 that are not its eigenvalues.

HINT: consider first a compact operator without eigenvalues.

7.10.68.◦ Find the eigenvalues of the operator V ∗V for the Volterra operator on L2[0, 1]

defined by V x(t) =

∫ t

0

x(s) ds.
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7.10.69. Let X be a Banach space and let t 7→ At be a mapping from [0, 1] to
L(X) continuous in the operator norm such that there exists a number C > 0 for which
‖x‖ 6 C‖Atx‖ for all x ∈ X and t ∈ [0, 1]. Prove that the invertibility of A0 is equivalent
to the invertibility of A1. In particular, the operators A0, A1 ∈ L(X) are simultaneously
invertible or non-invertible if the condition is fulfilled for At := tA1+(1−t)A0, t ∈ [0, 1].

HINT: observe that if At is invertible for some t, then ‖A−1
t ‖ 6 C, hence its pertur-

bations by operators with norm less that C−1 are invertible.

7.10.70. Let X be a complex Banach space and let A ∈ L(X). Suppose that
f(z) =

∑∞
n=0 cnz

n is a function analytic in the disc of radius r > ‖A‖ centered at zero.
Prove that σ

(
f(A)

)
= f

(
σ(A)

)
, where f(A) :=

∑∞
n=0 cnA

n.
HINT: observe that f(A)−f(λ)I = (A−λI)g(A) = g(A)(A−λI) is not invertible

if λ ∈ σ(A). Conversely, if f(A) − µI is not invertible, then on a compact disc of some
radius larger than ‖A‖ we have f(z) − µ = (z − µ1) · · · (z − µk)h(z), where h has no
zeros on this disc. Hence h(A) is invertible, which means that some µi belongs to σ(A),
so µ = f(µi) ∈ f

(
σ(A)

)
.

7.10.71.◦ Let A be a selfadjoint operator and A > 0. Prove that ‖Ax‖2 6 ‖A‖(Ax, x).
HINT: use that A = A1/2A1/2.

7.10.72.◦ Let A,B be selfadjoint operators such that A,B > 0 and AB = BA. Prove
that AB > 0. Give an example showing that this is not always true if A and B do not
commute.

HINT: observe that
√
A
√
B =

√
B
√
A, so (ABx, x) = ‖

√
A
√
Bx‖2.

7.10.73.◦ Let B be a selfadjoint operator, B > 0 and A = B2. Prove that B =
√
A.

HINT: write B as the multiplication by a function.

7.10.74.◦ Let A be a selfadjoint operator on a nonzero separable Hilbert space such that
σ(A) = K1 ∪K2, where K1 and K2 are compact and K1 ∩K2 = ∅. Prove that A can be
written as the direct sum of operators A1 and A2 with σ(A1) = K1 and σ(A2) = K2.

HINT: represent A as an operator of multiplication.

7.10.75.◦ Let P1 and P2 be the orthogonal projections on subspaces H1 and H2. Prove
that P1P2 is the orthogonal projection if and only if P1P2 = P2P1, and in this case P1P2

is the projection onto H1 ∩H2.

7.10.76.◦ Let Pj , j ∈ IN, be orthogonal projections in a complex Hilbert space.
(i) Let P be an orthogonal projection such that (Pjx, x) → (Px, x) for all x. Prove

that ‖Pjx−Px‖ → 0 for all x, using that (Pjx, y) → (Px, y) for all x, y. (ii) Suppose that
for every x the sequence (Pjx, x) is increasing (or, for every x, is decreasing). Prove that
there exists an orthogonal projection P for which ‖Pjx−Px‖ → 0 for all x. (iii) Show that
if P is an operator such that ‖Pjx−Px‖ → 0 for all x, then P is a projection. (iv) Give an
example of an operator P that is not a projection, but for which (Pjx, y) → (Px, y) for all
x, y. For this consider the indicator functions of the sets Bn ⊂ [0, 1] such that Bn consists
of the left halves of the intervals obtained by partitioning [0, 1] into 2n equal pieces.

7.10.77.◦ Let H be a separable Hilbert space and P a projection-valued measure on
the Borel σ-algebra of the real line with values in P(H). (i) Prove that there exists a
finite nonnegative Borel measure µ on IR such that all measures µx(B) =

(
P (B)x, x

)
are

absolutely continuous with respect to µ. (ii) Prove that for every Borel set B ⊂ IR1 one can
find a sequence of sets Bj written as finite unions of intervals such that P (Bj)x→ P (B)x
for every x ∈ H .
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7.10.78. Let H be a separable Hilbert space, A ∈ L(H) a selfadjoint operator, and
ψ a bounded Borel function. Prove that there exist polynomials pn such that the operators
pn(A) converge to ψ(A) on every vector.

HINT: let A = Af be the operator of multiplication on L2(µ) by a bounded function f ;
the measure ν := µ ◦ f−1 is concentrated on a compact interval, hence one can find
a uniformly bounded sequence of polynomials pn that converges to ψ ν-a.e.; then the
functions pn◦f are uniformly bounded and µ-a.e. converge to ψ◦f , which by the dominated
convergence theorem gives convergence of (pn◦f)x to (ψ◦f)x in L2(µ) for every element
x ∈ L2(µ). One can also use Theorem 7.9.6 and the measure µ from (i) in the previous
exercise.

7.10.79. Let An be selfadjoint operators on a Hilbert space H such that

(A1x, x) 6 (A2x, x) 6 · · · 6 (Anx, x) 6 · · ·
and supn ‖An‖ < ∞. Prove that there exists a selfadjoint operator A on H for which
Ax = lim

n→∞
Anx for all x ∈ H .

HINT: define A through its quadratic form and apply Exercise 7.10.71 to A−An.

7.10.80. Let H be a Hilbert space and A ∈ L(H) a selfadjoint operator. Prove that
there exist unique selfadjoint operators A+, A− > 0 such that A+A− = A−A+ = 0 and
A = A+ − A−, and if A1, A2 ∈ L(H) are selfadjoint operators for which 0 6 A1 6 A+,
0 6 A2 6 A− and A = A1 −A2, then A1 = A+ and A2 = A−.

HINT: take A+ = f1(A), A− = f2(A), f1(t) = max(t, 0), f2(t) = −min(t, 0).

7.10.81. Construct an example of a continuous quadratic form on a Banach space
which cannot be decomposed into the difference of two nonnegative continuous quadratic
forms.

HINT: construct a sequence of two-dimensional Banach spaces (Xn, ‖ · ‖n) with
quadratic forms Qn such that |Qn| 6 1 on the unit ball Un in Xn, but the positive part
of Qn assumes the value 2n on Un; consider the space of bounded sequences x = (xn),
where xn ∈ Xn, with the norm ‖x‖ = sup

n
‖xn‖n (or its separable subspace of a sequences

(xn) with ‖xn‖n → 0), and the form
∑∞
n=1 n

−2Qn.

7.10.82. Prove that for every two given Hilbert spaces at least one is linearly isometric
to a closed subspace of the other.

HINT: take orthonormal bases and compare their cardinalities.

7.10.83. Let H be a Hilbert space and let A ∈ L(H) have a dense range. Prove that
the operator A is invertible precisely when |A| is invertible. Give an example showing that
this can be false if the range of A is not dense.

HINT: use the polar decomposition; consider the operator x 7→ (0, x1, x2, . . .) on l2.

7.10.84. (i) Let A be the operator on C[0, 1] defined by the formula

Ax(t) =
1

t

∫ t

0

x(s) ds, Ax(0) = x(0).

Prove that for the spectral radius we have r(A) = 1.
(ii) Find eigenvalues of the operator defined by the formula above on the spaces C[0, 1]

and L2[0, 1] (see Exercise 6.10.138). Prove that in both cases it is not compact.

7.10.85. Let X be a Banach space, A ∈ L(X) and λ a boundary point of the spectrum
of A. Prove that there exists a sequence of vectors xn in the space X such that ‖xn‖ = 1
and ‖Axn − λxn‖ → 0.
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HINT: if ‖Ax−λx‖ > ε > 0 whenever ‖x‖ = 1, then ‖Ax−λnx‖ > ε/2 on the unit
sphere for a sequence of points λn → λ from the resolvent set, so ‖(A− λnI)−1‖ 6 2/ε,
hence A− λI must be invertible.

7.10.86. Let H be a Hilbert space, A ∈ L(H), and let A = U |A| be the polar
decomposition of A. Suppose that A = WB and B = W ∗A, where B ∈ L(H) is a
nonnegative selfadjoint operator and W ∈ L(H) is an isometry on the closure of B(H).
Prove that B = |A| and W = U on the closure of |A|(H).

7.10.87. Let µ be a bounded Borel measure on the real line and ϕ a bounded µ-
measurable function. Prove that the operatorAϕ of multiplication by ϕ on L2(µ) is compact
precisely when the restriction of µ to the set {t : ϕ(t) 6= 0} is concentrated on a finite or
countable set of points αn and ϕ(αn) → 0 if the set of these points is infinite.

HINT: use that the operator of multiplication by a function separated from zero is
invertible and that in case of an atomless measure the L2-space over a set of positive
measure is infinite-dimensional.

7.10.88. Let µ be a bounded Borel measure on the real line and ϕ a bounded µ-
measurable function. When does the operator Aϕ of multiplication by ϕ on L2(µ) have a
closed range?

7.10.89. Construct an infinite measure µ and a bounded µ-measurable function ϕ for
which the spectrum of the operator of multiplication by ϕ on L2(µ) does not coincide with
the set of essential values of ϕ.

7.10.90. Let A be a selfadjoint operator on a separable Hilbert space and Π0 the
corresponding resolution of the identity. Prove that σ(A) coincides with the complement
to the union of all intervals on which Π0 is constant and also with the set of points λ such
that Π0(λ) 6= limλn↓λ Π0(λn).

HINT: it suffices to consider the case where A is the multiplication by the argument
on the space L2(µ) for some measure µ with support σ(A) in some interval.

7.10.91.◦ Let A be a selfadjoint operator on an infinite-dimensional Hilbert space.
Prove that A has nontrivial closed invariant subspaces.

HINT: consider the closed linear span of the orbit of a nonzero vector.

7.10.92. Consider the shift operator Ux = (0, x1, x2, . . .) on l2. Prove that there is
no compact operator K 6= 0 such that UK = KU .

HINT: use that UnK = KUn and that the sequence Unx converges to zero weakly,
hence ‖KUnx‖ → 0.

7.10.93. Prove that a selfadjoint operator A > 0 on a Hilbert space is compact pre-
cisely when for some α > 0 (then for every α > 0) the operator Aα is compact.

7.10.94. Let A be a selfadjoint operator on a Hilbert space H such that A > 0 and the
range A(H) is closed. Prove that the range Aα(H) is closed for all α > 0. In case α ∈ IN
prove the same without the assumption that A is nonnegative.

HINT: here A is a linear isomorphism of A(H).

7.10.95. Let A be a selfadjoint operator with A > 0. Show that for any vector y the
function F (x) = (Ax, x) − 2Re (x, y) attains its minimum −(A−1y, y) at x0 = A−1y.

HINT: use that F (x) =
(
A(x− x0), x− x0

)
− (Ax0, x0).

7.10.96. Let A and B be selfadjoint operators on a Hilbert space H and A 6 B.
(i) Prove that TAT ∗ 6 TBT ∗ for every T ∈ L(H).
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(ii) Prove that if the operator A is invertible and A > 0, then the operator B is
invertible and B−1 6 A−1.

(iii) Let A > 0. Show that for all α ∈ (0, 1) one has

Aα = cα

∫ +∞

0

tα−1A(A+ tI)−1 dt.

(iv) Prove that if A > 0, then Aα 6 Bα for all α ∈ (0, 1]. Give an example where it
is not true that A2 6 B2.

HINT: to prove (ii) use the previous exercise. Check (iii) for operators of multiplica-
tion. Deduce (iv) from (iii) and (ii).

7.10.97. Prove that Theorem 7.2.3 and Corollary 7.2.4 are true for normal operators.

7.10.98. Prove the completeness of the space L2(µ,H) introduced before Theo-
rem 7.10.52. Prove the more general assertion from Theorem 6.10.68.

7.10.99. Let L be a linear subspace in a Hilbert space containing no infinite-dimensio-
nal closed subspaces. Prove that every operator A ∈ L(H) with A(H) ⊂ L is compact.

HINT: reduce the assertion to the case of a separable space and a selfadjoint operator,
then write A as a multiplication operator.

7.10.100. Let H be a Hilbert space and A ∈ L(H). Prove that a vector y belongs to
the range A(H) precisely when supx |(x, y)|/‖A∗x‖ <∞, where 0/0 := 1.

HINT: apply Theorem 7.10.15.

7.10.101. Let An and A be selfadjoint operators on a separable Hilbert space H and
f ∈ Cb(IR

1). (i) Suppose that An → A in the operator norm. Prove that f(An) → f(A)

in the operator norm. In particular, if An and A are nonnegative, then
√
An →

√
A in the

operator norm.
(ii) Suppose that Anx → Ax for all x ∈ H . Prove that f(An)x → f(A)x for all

vectors x ∈ H . In particular, if An and A are nonnegative, then
√
An →

√
A in the strong

operator topology.
HINT: observe that in both cases {An} is norm bounded and verify the assertions for

polynomials; in (ii) also observe that Anxn → Ax if xn → x.

7.10.102. Let A ∈ L(H), where H is a Hilbert space. Show that A is a Hilbert–
Schmidt operator precisely when there is a number C such that

∑n
i=1 ‖Aei‖

2 6 C for
every finite orthonormal collection e1, . . . , en. Moreover, ‖A‖2

H 6 C.

7.10.103. A Hilbert–Schmidt ellipsoid in a separable Hilbert space is the image of the
closed unit ball with respect to a Hilbert–Schmidt operator.

(i) Prove that a set V is a Hilbert–Schmidt ellipsoid precisely when one can find an
orthonormal sequence {ϕn} and numbers αn > 0 with

∑∞
n=1 α

2
n <∞ such that

V =
{
x : x =

∑∞
n=1 xnϕn,

∑∞
n=1 |xn/αn|

2 6 1
}
.

(ii) (V. N. Sudakov) Prove that if a bounded set W is contained in no Hilbert–Schmidt
ellipsoid, then there exists an orthonormal sequence {ϕn} such that∑∞

n=1 supw∈W |(w,ϕn)|2 = ∞.

7.10.104. Let H be a Hilbert space and A,B ∈ L(H).
(i) Prove that A(H) + B(H) =

√
AA∗ +BB∗(H). In particular, if the operators A

and B are selfadjoint and nonnegative, then
√
A+B(H) =

√
A(H) +

√
B(H).
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(ii) Let the operators A and B be selfadjoint and nonnegative and have closed ranges.
Prove that the range of A+B is closed precisely when the linear subspace A(H) +B(H)
is closed.

HINT: Apply Theorem 7.10.15.

7.10.105.∗ Let H be a Hilbert space and let A,B ∈ L(H) be two operators such
that H = A(H) + B(H). (i) Prove that there exist closed subspaces H1 ⊂ A(H) and
H2 ⊂ B(H) such that H1 +H2 = H , H1 ∩H2 = 0 and H⊥

1 ∩H⊥
2 = 0.

(ii) Let A(H) and B(H) be dense. Prove that the set A(H) ∩B(H) is also dense.
HINT: see [682], [683].

7.10.106. Let K be a compact operator on a separable complex Hilbert space H and
let {λn(K)} be all nonzero eigenvalues of K written in the order of decreasing of their
absolute values taking into account their multiplicities. (i) Prove that there is an orthonormal
system {en} such that (Ken, en) = λn(K) for all n.

(ii) Let {sn(K)} be all eigenvalues of |K|. Prove that for every p ∈ [1,∞) Weyl’s
inequality

∑∞
n=1 |λn(K)|p 6

∑∞
n=1 |sn(K)|p holds. Note that the inequality is also true

for summing from 1 to any finite N (see [554, §1.6]).

7.10.107. Let H be a complex Hilbert space and A ∈ L(H). Prove that the operator
A is normal (see §7.10(ii)) precisely when ‖Ax‖ = ‖A∗x‖ for all x ∈ H .

HINT: observe that (AA∗x−A∗Ax, x) = 0.

7.10.108. Let T be a bounded operator on a Hilbert space H . Prove that it can be
represented in the form T = UA, where U is a unitary operator and A > 0 is a selfadjoint
operator, precisely when the subspaces KerT and KerT ∗ are isometric.

HINT: observe that KerT = |T |(H)⊥ and KerT ∗ = T (H)⊥.

7.10.109. Prove that a bounded operator T on a Hilbert space H is normal precisely
when it is representable in the form T = UA, where U is a unitary operator, A is a non-
negative selfadjoint operator and UA = AU .

HINT: show that T admits a polar decomposition with a unitary operator.

7.10.110. Suppose that a bounded operator T on a Hilbert space H has the form
T = UA, where U is unitary, A is selfadjoint , A > 0, and UA 6= AU . Prove that T is
not normal.

7.10.111. Show that any bounded linear operator A : L2[0, 1] → L2[0, 1] has the form

Ax(t) =
d

dt

∫ 1

0

K(t, s)x(s) ds, where K ∈ L2([0, 1]×[0, 1]).

HINT: the composition of A and the Volterra operator is a Hilbert–Schmidt operator.

7.10.112. Let H be a separable Hilbert space. Prove that the set of operators having a
left or right inverse is everywhere dense in L(H).

HINT: use the polar decomposition, observe that a nonnegative selfadjoint operator
can be approximated by positive operators and consider partial isometries.

7.10.113. LetK be a compact operator on a complex Banach spaceX . Let us consider
the operator A = λI+K, where λ ∈ C. Prove that for every ε > 0 there exists an invertible
operator Aε with ‖A−Aε‖ 6 ε.

HINT: use that the spectrum of K is at most countable.

7.10.114. Give an example of a noncompact nonnegative selfadjoint operator A on
a separable Hilbert space such that there exists an orthonormal basis {en} for which
lim
n→∞

‖Aen‖ = 0.
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HINT: consider the operator on l2 defined by the infinite matrix of the following form:
its nonzero elements are diagonal blocks, the nth of which is of size n×with all entries 1/n;
see also [251, p. 273].

7.10.115. (i) Let e1, . . . , en be the standard basis in Cn or IRn. Then the function
‖A‖{ei} =

∑n
i=1 ‖Aei‖ is a norm on the space of operators. Show that for the nuclear

norm (the sum of eigenvalues of
√
A∗A) one has ‖A‖{ei} 6

√
n‖A‖1 and there is a

symmetric nonzero operator A for which there holds the equality.
(ii) Give an example of a nuclear operator A > 0 on a complex separable Hilbert space

such that there exists an orthonormal basis {en} for which
∑∞
n=1 ‖Aen‖ = +∞.

HINT: (i) take any orthonomal basis {ϕi} such that ϕ1 has equal coordinates n−1/2

and the operator A defined by Aϕ1 = ϕ1, Aϕj = 0 if j > 1; then ‖A‖1 = 1 and
‖Aei‖ = n−1/2 for all i, hence ‖A‖{ei} = n1/2. On the other hand, if αi are eigenvalues

of
√
A∗A, then ‖A‖{ei} 6 n1/2

(∑n
i=1 α

2
i

)1/2

, which is estimated by n1/2 ∑n
i=1 αi. An

example in (ii) is easily constructed by using (i).

7.10.116. Give an example of a bounded operator A on the real space l2 that is not
nuclear, although there exists an orthonormal basis {en} such that (Aen, en) = 0 and
hence

∑∞
n=1 |(Aen, en)| <∞.

HINT: write l2 as a countable sum of two-dimensional planes in which A acts as
rotations by π/2.

7.10.117. (i) Let E be a closed linear subspace in L2[0, 1] such that E ⊂ L∞[0, 1].
Prove that dimE <∞.

HINT: apply Corollary 7.10.28 to obtain the compactness of the projection onto E.

7.10.118. Let H be an infinite-dimensional complex separable Hilbert space and let
U(H) be the set of all unitary operators on H . (i) Investigate whether the space U(H)
with the operator norm is connected (a space is connected if it cannot be decomposed into
nonempty disjoint open parts). (ii) Find the closure of U(H) in the weak operator topology
and in the strong operator topology.

HINT: (i) represent a given unitary operator U as exp(iA) with a bounded selfadjoint
operator A and consider the family exp(itA). (ii) Observe that for every operator A with
‖A‖ 6 1 and any two finite orthonormal collections e1, . . . , en and ϕ1, . . . , ϕn, one can
find a unitary operator U such that (Uei, ϕj) = (Aei, ϕj), i, j = 1, . . . , n. Observe also
that if ‖Tx‖ = ‖x‖ for all x, then on every finite-dimensional subspace T coincides with
a unitary operator.

7.10.119. Let X and Y be Banach spaces and let p be a cross-norm on the tensor
product X⊗Y , i.e., p(x⊗y) = ‖x‖ ‖y‖. Prove the inequality ‖u‖∞ 6 p(u) 6 ‖u‖N .

7.10.120. Show that a Fredholm operator T ∈L(X,Y ) between Banach spaces X and
Y has zero index precisely when T = S + K, where S is invertible and K is compact,
moreover, in this case K can be chosen finite-dimensional.

7.10.121. Suppose that X and Y are Banach spaces, Tn ∈ L(X,Y ), Sn ∈ L(Y,X),
the operators Tn converge pointwise to T , and the operators Sn converge pointwise to S.
Suppose that SnTn = I + Kn, TnSn = I + Hn, where the operators Kn and Hn are
uniformly compact in the sense that if UX is the unit ball of X and UY is the unit ball
of Y , then the sets Kn(UX ) are contained in a common compact set and similarly for the
sets Hn(UY ). Prove that IndT = lim

n→∞
IndTn.

HINT: see [281, Theorem 19.1.10].
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7.10.122. Let T and S be nuclear operators on a separable Hilbert space H and let
A,B ∈ L(H) be such that AB = I − T , BA = I − S. Prove that IndA = trS − trT .

HINT: see [281, Proposition 19.1.14].

7.10.123. Suppose that A is a nuclear operator on a separable Hilbert space H and
operators Pn, Qn ∈ L(H) converge pointwise to I . Prove that tr (PnAQ

∗
n) → trA.

7.10.124.∗ Let V be the Volterra operator of indefinite integration on L2[0, 1]. Let Ha
be the subspace of functions vanishing on [0, a], a ∈ [0, 1]. Prove that V has no closed
invariant subspaces different from Ha.

HINT: see [378, p. 280].

7.10.125. (Gleason’s theorem) Let H be a separable complex Hilbert space, P the set
of all orthogonal projections in H and µ : P → [0, 1] a function such that µ(P ) 6 µ(Q)
whenever P 6 Q and µ

(∑∞
i=1 Pi

)
=

∑∞
i=1 µ(Pi) if orthogonal projections Pi are pairwise

orthogonal. Prove that µ(P ) = trSP , where S is a nonnegative trace class operator.

7.10.126. (Wigner’s theorem) Let H be a separable complex Hilbert space, P the
set of all orthogonal projections in H and ξ : P → P a mapping such that ξ(I) = I ,
ξ(P ) 6 ξ(Q) whenever P 6 Q and for every sequence of pairwise orthogonal projections
Pi the projections ξ(Pi) are pairwise orthogonal and ξ

(∑∞
i=1 Pi

)
=

∑∞
i=1 ξ(Pi). Prove

that ξ(P ) = UPU−1, where U is a real-linear isometry that is either complex-linear or
conjugate-linear.

7.10.127. Let X be a complex Banach space, A ∈ L(X) and let λ0 be a pole of order
m of the operator function λ 7→ Rλ(A) = (A−λI)−1. Prove that λ0 is an eigenvalue and
for all n > m one has the decomposition X = Ker (A− λ0I)n ⊕ (A− λ0I)n(X).

HINT: see [640, Chapter VIII, §8].

7.10.128. Let H be a separable Hilbert space that is a dense linear subspace in a
Banach space E such that the identity mapping H → E is continuous. Then the continuous
embedding E∗ → H∗ = H defines the so-called triple of spaces E∗ ⊂ H ⊂ E.

(i) Let A be a compact selfadjoint operator on H such that A(H) ⊂ E∗ and A is com-
pact as an operator with values in E∗. Prove that the expansion Ax =

∑∞
n=1 αn(x, en)en

in the eigenbasis {en} of A converges with respect to the operator norm on L(H,E∗).
(ii) Suppose in addition that A extends to a compact operator from the space E

to E∗. Prove that the indicated expansion also converges with respect to the operator
norm on L(E,E∗).

(iii) Let (Ω, µ) be a probability space and let K : Ω×Ω → IR1 be a bounded mea-
surable function such that K(t, s) = K(s, t). Let {λi} and {ei} be the eigenvalues and
eigenfunctions of the operator T on L2(µ) given by the integral kernel K. Suppose that T
is compact also as an operator from L1(µ) to L∞(µ). Prove that

lim
n→∞

esssupt∈Ωesssups∈Ω

∣∣K(t, s) −
∑n
i=1 λiei(t)ei(s)

∣∣ = 0.

HINT: see [349, Chapter III, §9].

7.10.129. Let A be a selfadjoint operator on a separable Hilbert space H with the
resolution of the identity Π0, T ∈ L(H).

(i) Prove that AT = TA precisely when TΠ0(λ) = Π0(λ)T for all λ ∈ IR1.
(ii) Prove that T commutes with all bounded operators commuting with A precisely

when T = f(A), where f is a bounded Borel function.
HINT: (i) use that in the strong operator topology A is a limit of linear combinations

of operators Π0(λ) and that Π0(λ) is a limit of polynomials of A. (ii) Use Lemma 7.10.5
and observe that A is a function of a selfadjoint operator possessing a cyclic vector.
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7.10.130.∗ Prove that the identity embedding l1 → l2 is absolutely summing.

7.10.131. Let S be a countable union of compact sets in l2. Prove that there is a
unitary operator U (orthogonal in the real case) such that U(S) ∩ S is either empty or the
zero element.

HINT: observe that for compact sets Kn there are numbers εn > 0 such that the union
of εnKn has compact closure, hence is contained in a compact ellipsoid and consequently
in the range of a compact operator, then apply Theorem 7.10.18.

7.10.132. (Kalisch [691]) Let us consider the operator

Kx(t) = tx(t) −
∫ t

0

x(s) ds

on the real space L2[0, 1]. Prove that for every nonempty compact set S in IR1 there
exists a closed subspace H ⊂ L2[0, 1] such that K(H) ⊂ H and the spectrum of K on H
coincides with S and consists of eigenvalues.

7.10.133. Let E be a Banach lattice, A ∈ L(E) and A > 0 (see §6.10(v)). (i) Show
that the spectral radius r(A) is contained in σ(A). (ii) Prove the Krein–Rutman theorem: if
the operator A is compact and its spectral radius r(A) is positive, then r(A) is an eigenvalue
and there exists an eigenvector v > 0.

HINT: see [141, Theorem 19.2], [533, p. 265], [534, Chapter V].

7.10.134.∗ Let H be a complex Hilbert space and let A ∈ L(H). Prove that the set
{(Ax, x) : ‖x‖ = 1} is convex in C.

HINT: see [251].

7.10.135. (F. A. Sukochev) Let A and B be two nonnegative nuclear operators on a
Hilbert space H . Then the operator

√
A2 +B2 is nuclear. More generally, if A1, . . . , An

are nonnegative nuclear operators, then the operator
√
A2

1 + · · · +A2
n is nuclear.

HINT: It suffices to prove the second assertion and apply induction on n. It is readily
seen that for any 2×2-matrix M the operators M⊗A and M⊗B are nuclear on C2⊗H .
Let eij denote the 2×2-matrix with zero entries except for 1 at the intersection of the
array number i and the column number j. Then the operator T = e11⊗A + e21⊗B
is nuclear. Since T ∗ = e11⊗A + e12⊗B, we have T ∗T = e11⊗ (A2 + B2). Hence
|T | = e11⊗

√
A2 +B2 is nuclear. It follows that

√
A2 +B2 is nuclear as well.

7.10.136. (Brown, Pearcy [678]) Let A and B be bounded operators on a Hilbert
space H . Then the spectrum of A⊗B on the Hilbert tensor product is σ(A)σ(B).

7.10.137. (Brown, Pearcy [677]) Let H be a complex infinite-dimensional separable
Hilbert space. An operator A ∈ L(H) is a commutator, i.e., has the form A = ST − TS
with S, T ∈ L(H), if and only if it is not of the form λI + K, where λ 6= 0 and K is a
compact operator.

7.10.138. (Brown, Pearcy, Salinas [680]) If T is a noncompact bounded linear operator
on a separable Hilbert space H , then there exists a bounded nilpotent operator N on H
(even with N3 = 0) such that N + T is invertible.

7.10.139. (Brown, Pearcy [679]) Every bounded operator T on a Hilbert space H with
dimH > 1 has the form T = PAQ−QAP , where P,A and Q are invertible operators.

7.10.140. Let A and B be positive operators on a Hilbert space H . Show that there is
a positive operator T such that B = TAT .

HINT: consider T = A−1/2
(
A1/2BA1/2

)1/2
A−1/2.
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