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Elementary operator theory

1.1 Banach spaces

In this chapter we collect together material which should be covered in
an introductory course of functional analysis and operator theory. We do
not always include proofs, since there are many excellent textbooks on the
subject.1 The theorems provide a list of results which we use throughout
the book.

We start at the obvious point. A normed space is a vector space � (assumed
to be over the complex number field C) provided with a norm � ·� satisfying

�f� ≥ 0�

�f� = 0 implies f = 0,

��f� = ��� �f��
�f +g� ≤ �f�+�g��

for all � ∈ C and all f� g ∈ �. Many of our definitions and theorems also
apply to real normed spaces, but we will not keep pointing this out. We say
that � · � is a seminorm if it satisfies all of the axioms except the second.

A Banach space is defined to be a normed space � which is complete in
the sense that every Cauchy sequence in � converges to a limit in �. Every
normed space � has a completion �, which is a Banach space in which � is
embedded isometrically and densely. (An isometric embedding is a linear, norm-
preserving (and hence one-one) map of one normed space into another in which
every element of the first space is identified with its image in the second.)

1 One of the most systematic is [Dunford and Schwartz 1966].

1

Cambridge Books Online © Cambridge University Press, 2010available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511618864.002
Downloaded from https://www.cambridge.org/core. SISSA, on 09 Feb 2021 at 22:05:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511618864.002
https://www.cambridge.org/core


2 Elementary operator theory

Problem 1.1.1 Prove that the following conditions on a normed space � are
equivalent:

(i) � is complete.
(ii) Every series

∑�
n=1 fn in � such that

∑�
n=1 �fn�<� is norm convergent.

(iii) Every series
∑�

n=1 fn in � such that �fn� ≤ 2−n for all n is norm con-
vergent.

Prove also that any two completions of a normed space � are isometrically
isomorphic. �

The following results from point set topology are rarely used below, but they
provide worthwhile background knowledge. We say that a topological space
X is normal if given any pair of disjoint closed subsets A� B of X there exists
a pair of disjoint open sets U� V such that A ⊆ U and B ⊆ V . All metric
spaces and all compact Hausdorff spaces are normal. The size of the space
of continuous functions on a normal space is revealed by Urysohn’s lemma.

Lemma 1.1.2 (Urysohn)2 If A�B are disjoint closed sets in the normal topo-
logical space X, then there exists a continuous function f � X→ �0�1� such
that f�x�= 0 for all x ∈ A and f�x�= 1 for all x ∈ B.

Problem 1.1.3 Use the continuity of the distance function x→ dist�x�A� to
provide a direct proof of Urysohn’s lemma when X is a metric space. �

Theorem 1.1.4 (Tietze) Let S be a closed subset of the normal topological
space X and let f � S → �0�1� be a continuous function. Then there exists
a continuous extension of f to X, i.e. a continuous function g � X → �0�1�
which coincides with f on S.3

Problem 1.1.5 Prove the Tietze extension theorem by using Urysohn’s lemma
to construct a sequence of functions gn � X→ �0�1� which converge uniformly
on X and also uniformly on S to f . �

If K is a compact Hausdorff space then C�K� stands for the space of all
continuous complex-valued functions on K with the supremum norm

�f�� �= sup	�f�x�� � x ∈ K
�

C�K� is a Banach space with this norm, and the supremum is actually a
maximum. We also use the notation CR�K� to stand for the real Banach space
of all continuous, real-valued functions on K.

2 See [Bollobas 1999], [Simmons 1963, p. 135] or [Kelley 1955, p. 115].
3 See [Bollobas 1999].
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1.1 Banach spaces 3

The following theorem is of interest in spite of the fact that it is rarely useful:
in most applications it is equally evident that all four statements are true (or
false).

Theorem 1.1.6 (Urysohn) If K is a compact Hausdorff space then the fol-
lowing statements are equivalent.

(i) K is metrizable;
(ii) the topology of K has a countable base;

(iii) K can be homeomorphically embedded in the unit cube � �=∏�
n=1�0�1�

of countable dimension;
(iv) the space CR�K� is separable in the sense that it contains a countable

norm dense subset.

The equivalence of the first three statements uses methods of point-set topol-
ogy, for which we refer to [Kelley 1955, p. 125]. The equivalence of the
fourth statement uses the Stone-Weierstrass theorem 2.3.17.

Problem 1.1.7 Without using Theorem 1.1.6, prove that the topological
product of a countable number of compact metrizable spaces is also compact
metrizable. �

We say that � is a Hilbert space if it is a Banach space with respect to a
norm associated with an inner product f� g→
f� g� according to the formula

�f� �=√
f� f��

We always assume that an inner product is linear in the first variable and
conjugate linear in the second variable. We assume familiarity with the basic
theory of Hilbert spaces. Although we do not restrict the statements of many
theorems in the book to separable Hilbert spaces, we frequently only give
the proof in that case. The proof in the non-separable context can usually
be obtained by either of two devices: one may replace the word sequence
by generalized sequence, or one may show that if the result is true on every
separable subspace then it is true in general.

Example 1.1.8 If X is a finite or countable set then l2�X� is defined to be
the space of all functions f � X→ C such that

�f�2 �=
√∑

x∈X
�f�x��2 <��
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4 Elementary operator theory

This is the norm associated with the inner product


f� g� �= ∑

x∈X
f�x�g�x��

the sum being absolutely convergent for all f� g ∈ l2�X�. �

A sequence 	n

�
n=1 in a Hilbert space � is said to be an orthonormal

sequence if


m�n� =
{

1 if m= n,
0 otherwise.

It is said to be a complete orthonormal sequence or an orthonormal basis, if
it satisfies the conditions of the following theorem.

Theorem 1.1.9 The following conditions on an orthonormal sequence 	n

�
n=1

in a Hilbert space � are equivalent.

(i) The linear span of 	n

�
n=1 is a dense linear subspace of � .

(ii) The identity

f =
�∑

n=1


f�n�n (1.1)

holds for all f ∈� .
(iii) The identity

�f�2 =
�∑

n=1

�
f�n��2

holds for all f ∈� .
(iv) The identity


f� g� =
�∑

n=1


f�n� 
n� g�

holds for all f� g ∈� , the series being absolutely convergent.

The formula (1.1) is sometimes called a generalized Fourier expansion and

f�n� are then called the Fourier coefficients of f . The rate of convergence
in (1.1) depends on f , and is discussed further in Theorem 5.4.12.

Problem 1.1.10 (Haar) Let 	vn

�
n=0 be a dense sequence of distinct numbers

in �0�1� such that v0 = 0 and v1 = 1. Put e1�x� �= 1 for all x ∈ �0�1� and
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1.1 Banach spaces 5

define en ∈ L2�0�1� for n= 2�3� � � � by

en�x� �=

⎧
⎪⎪⎨

⎪⎪⎩

0 if x < un�

�n if un < x < vn�

−�n if vn < x < wn�

0 if x > wn�

where

un �=max	vr � r < n and vr < vn
�

wn �=min	vr � r < n and vr > vn
�

and �n > 0, �n > 0 are the solutions of

�n�vn−un�−�n�wn−vn�= 0�

�vn−un��
2
n+ �wn−vn��

2
n = 1�

Prove that 	en

�
n=1 is an orthonormal basis in L2�0�1�. If 	vn


�
n=0 is the

sequence 	0�1�1/2�1/4�3/4�1/8�3/8�5/8�7/8�1/16� � � �
 one obtains the
standard Haar basis of L2�0�1�, discussed in all texts on wavelets and of
importance in image processing. If 	mr


�
r=1 is a sequence of integers such that

m1 ≥ 2 and mr is a proper factor of mr+1 for all r, then one may define a gen-
eralized Haar basis of L2�0�1� by concatenating 0� 1� 	r/m1


m1
r=1� 	r/m2


m2
r=1,

	r/m3

m3
r=1� � � � and removing duplicated numbers as they arise. �

If X is a set with a �-algebra � of subsets, and dx is a countably additive
�-finite measure on �, then the formula

�f�2 �=
√∫

X
�f�x��2 dx

defines a norm on the space L2�X�dx� of all functions f for which the integral
is finite. The norm is associated with the inner product


f� g� �=
∫

X
f�x�g�x�dx�

Strictly speaking one only gets a norm by identifying two functions which
are equal almost everywhere. If the integral used is that of Lebesgue, then
L2�X�dx� is complete.4

Notation If � is a Banach space of functions on a locally compact, Hausdorff
space X, then we will always use the notation �c to stand for all those

4 See [Lieb and Loss 1997] for one among many more complete accounts of Lebesgue
integration. See also Section 2.1.
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6 Elementary operator theory

functions in � which have compact support, and �0 to stand for the closure
of �c in �. Also C0�X� stands for the closure of Cc�X� with respect to the
supremum norm; equivalently C0�X� is the space of continuous functions on
X that vanish at infinity. If X is a region in RN then Cn�X� will stand for the
space of n times continuously differentiable functions on X.

Problem 1.1.11 The space L1�a� b� may be defined as the abstract comple-
tion of the space � of piecewise continuous functions on �a� b�, with respect
to the norm

�f�1 �=
∫ b

a
�f�x��dx�

Without using any properties of Lebesgue integration prove that Ck�a� b� is
dense in L1�a� b� for every k≥ 0. �

Lemma 1.1.12 A finite-dimensional normed space V is necessarily complete.
Any two norms � · �1 and � · �2 on V are equivalent in the sense that there
exist positive constants a and b such that

a�f�1 ≤ �f�2 ≤ b�f�1 (1.2)

for all f ∈ V .

Problem 1.1.13 Find the optimal values of the constants a and b in (1.2) for
the norms on Cn given by

�f�1 �=
n∑

r=1

�fr �� �f�2 �=
{ n∑

r=1

�fr �2
}1/2

� �

A bounded linear functional  ��→ C is a linear map for which

�� �= sup	��f�� � �f� ≤ 1


is finite. The dual space �∗ of � is defined to be the space of all bounded
linear functionals on �, and is itself a Banach space for the norm given above.
The Hahn-Banach theorem states that if L is any linear subspace of �, then
any bounded linear functional  on L has a linear extension � to � which
has the same norm:

sup	��f��/�f� � 0 = f ∈ L
= sup	���f��/�f� � 0 = f ∈�
�

It is not always easy to find a useful representation of the dual space of a
Banach space, but the Hilbert space is particularly simple.
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1.1 Banach spaces 7

Theorem 1.1.14 (Fréchet-Riesz)5 If � is a Hilbert space then the formula

�f� �= 
f� g�
defines a one-one correspondence between all g ∈� and all  ∈� ∗. More-
over �� = �g�.

Note The correspondence ↔ g is conjugate linear rather than linear, and
this can cause some confusion if forgotten.

Problem 1.1.15 Prove that if  is a bounded linear functional on the closed
linear subspace � of a Hilbert space � , then there is only one linear extension
of  to � with the same norm. �

The following theorem is not elementary, and we will not use it until Chap-
ter 13.1. The notation CR�K� refers to the real Banach space of continuous
functions f � K→ R with the supremum norm.6

Theorem 1.1.16 (Riesz-Kakutani) Let K be a compact Hausdorff space and
let  ∈ CR�K�

∗. If  is non-negative in the sense that �f� ≥ 0 for all
non-negative f ∈ CR�K� then there exists a non-negative countably additive
measure � on K such that

�f�=
∫

X
f�x���dx�

for all f ∈ CR�K�. Moreover �� = �1�= ��K�.

One may reduce the representation of more general bounded linear functionals
to the above special case by means of the following theorem. Given � � ∈
CR�K�

∗, we write ≥ � if �f�≥ ��f� for all non-negative f ∈ CR�K�.

Theorem 1.1.17 If K is a compact Hausdorff space and  ∈ CR�K�
∗ then

one may write  �=+−− where ± are canonically defined, non-negative,
bounded linear functionals. If �� �= + +− then �� ≥ ±. If � ≥ ± ∈
CR�K�

∗ then � ≥ ��. Finally � �� � = ��.

5 See [Dunford and Schwartz 1966, Theorem IV.4.5] for the proof.
6 A combination of the next two theorems is usually called the Riesz representation theorem.

According to [Dunford and Schwartz 1966, p. 380] Riesz provided an explicit representation
of C�0�1�∗. The corresponding theorem for CR�K�

∗, where K is a general compact Hausdorff
space, was obtained some years later by Kakutani. The formula  �= + −− is called the
Jordan decomposition. For the proof of the theorem see [Dunford and Schwartz 1966,
Theorem IV.6.3]. A more abstract formulation, in terms of Banach lattices and AM-spaces, is
given in [Schaefer 1974, Proposition II.5.5 and Section II.7].

Cambridge Books Online © Cambridge University Press, 2010available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511618864.002
Downloaded from https://www.cambridge.org/core. SISSA, on 09 Feb 2021 at 22:05:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511618864.002
https://www.cambridge.org/core


8 Elementary operator theory

Proof. The proof is straightforward but lengthy. Let � �= CR�K�, let �+
denote the convex cone of all non-negative continuous functions on K, and
let �∗

+ denote the convex cone of all non-negative functionals � ∈�∗.
Given  ∈�∗, we define + ��+ → R+ by

+�f� �= sup	�f0� � 0 ≤ f0 ≤ f
�

If 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g then

�f0�+�g0�= �f0+g0�≤ +�f +g��

Letting f0 and g0 vary subject to the stated constraints, we deduce that

+�f�++�g�≤ +�f +g�

for all f� g ∈�+.
The reverse inequality is harder to prove. If f� g ∈ �+ and 0 ≤ h ≤ f + g

then one puts f0 �= min	h� f
 and g0 �= h− f0. By considering each point
x ∈ K separately one sees that 0 ≤ f0 ≤ f and 0 ≤ g0 ≤ g. hence

�h�= �f0�+�g0�≤ +�f�++�g��

Since h is arbitrary subject to the stated constraints one obtains

+�f +g�≤ +�f�++�g�

for all f� g ∈�+.
We are now in a position to extend + to the whole of �. If f ∈� we put

+�f� �= +�f +�1�−�+�1�

where � ∈R is chosen so that f +�1≥ 0. The linearity of + on �+ implies
that the particular choice of � does not matter subject to the stated constraint.

Our next task is to prove that the extended + is a linear functional on �+.
If f� g ∈�, f +�1 ≥ 0 and g+�1 ≥ 0, then

+�f +g�=+�f +g+�1+�1�− ��+��+�1�

=+�f +�1�++�g+�1�− ��+��+�1�

=+�f�++�g��

It follows immediately from the definition that +��h� = �+�h� for all
�≥ 0 and h ∈�+. Hence f ∈� implies

+��f�= ��f +��1�−��+�1�= ��f +�1�−��+�1�= �+�f��
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1.1 Banach spaces 9

If � < 0 then

0 = +��f +���f�= +��f�++����f�= +��f�+���+�f��

Therefore

+��f�=−���+�f�= �+�f��

Therefore + is a linear functional on �. It is non-negative in the sense
defined above.

We define − by − �= +−, and deduce immediately that it is linear.
Since f ∈�+ implies that +�f�≥�f�, we see that − is non-negative. The
boundedness of ± will be a consequence of the boundedness of �� and the
formulae

+ = 1
2 ���+�� − = 1

2 ���−��

We will need the following formula for ��. If f ∈ �+ then the identity
�� = 2+− implies

���f�= 2 sup	�f0� � 0 ≤ f0 ≤ f
−�f�

= sup	�2f0−f� � 0 ≤ f0 ≤ f


= sup	�f1� �−f ≤ f1 ≤ f
� (1.3)

The inequality �� ≥ ± of the theorem follows from

�� =+2− ≥ 

�� = 2+− ≥ −�
If � ≥±, f ≥ 0 and −f ≤ f1 ≤ f then adding the two inequalities ��+ �

�f − f1� ≥ 0 and ��−��f + f1� ≥ 0 yields ��f� ≥ �f1�. Letting f1 vary
subject to the stated constraint we obtain ��f�≥ ���f� by using (1.3). There-
fore � ≥ ��.

We finally have to evaluate � �� �. If f ∈� and  ∈�∗ then

��f�� = �+�f+�−+�f−�−−�f+�+−�f−��
≤ +�f+�++�f−�+−�f+�+−�f−�

= ����f ��
≤ � �� � � �f � �
= � �� � �f��

Since f is arbitrary we deduce that �� ≤ � �� �.
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10 Elementary operator theory

Conversely suppose that f ∈�. The inequality −�f � ≤ f ≤ �f � implies

−����f ��≤ ���f�≤ ����f ���
Therefore

� ���f�� ≤ ����f ��
= sup	�f1� �−�f � ≤ f1 ≤ �f �

≤ �� sup	�f1� �−�f � ≤ f1 ≤ �f �

= ���f��

Hence � �� � ≤ ��. �

If L is a closed linear subspace of the normed space �, then the quotient space
�/L is defined to be the algebraic quotient, provided with the quotient norm

�f +L� �= inf	�f +g� � g ∈ L
�

It is known that if � is a Banach space then so is �/L.

Problem 1.1.18 If � = C�a�b� and L is the subspace of all functions in �
which vanish on the closed subset K of �a� b�, find an explicit representation
of �/L and of its norm. �

The Hahn-Banach theorem implies immediately that there is a canonical and
isometric embedding j from � into the second dual space �∗∗ = ��∗�∗,
given by

�jx��� �= �x�

for all x ∈� and all  ∈�∗. The space � is said to be reflexive if j maps �
one-one onto �∗∗.

We will often use the more symmetrical notation 
x�� in place of �x�,
and regard � as a subset of �∗∗, suppressing mention of its natural embedding.

Problem 1.1.19 Prove that � is reflexive if and only if �∗ is reflexive. �

Example 1.1.20 The dual �∗ of a Banach space � is usually not isometrically
isomorphic to � even if � is reflexive. The following provides a large
number of spaces for which they are isometrically isomorphic. We simply
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1.1 Banach spaces 11

choose any reflexive Banach space � and consider � �= � ⊕ �∗ with the
norm

��x��� �= ��x�2+��2
�1/2� �

If X is an infinite set, c0�X� is defined to be the vector space of functions f
which converge to 0 at infinity; more precisely we assume that for all � > 0
there exists a finite set F ⊂X depending upon f and � such that x� F implies
�f�x��< �.

Problem 1.1.21 Prove that c0�X� is a Banach space with respect to the
supremum norm. �

Problem 1.1.22 Prove that c0�X� is separable if and only if X is
countable. �

Problem 1.1.23 Prove that the dual space of c0�X� may be identified naturally
with l1�X�, the pairing being given by


f� g� �= ∑

x∈X
f�x�g�x�

where f ∈ c0�X� and g ∈ l1�X�. �

Problem 1.1.24 Prove that the dual space of l1�X� may be identified with the
space l��X� of all bounded functions f � X → C with the supremum norm.
Prove also that if X is infinite, l1�X� is not reflexive. �

Problem 1.1.25 Use the Hahn-Banach theorem to prove that if � is a finite-
dimensional subspace of the Banach space � then there exists a closed linear
subspace � of � such that �∩� = 	0
 and �+� = �. Moreover there
exists a constant c > 0 such that

c−1��l�+�m��≤ �l+m� ≤ c��l�+�m��

for all l ∈ � and m ∈� . �
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12 Elementary operator theory

We will frequently use the concept of integration7 for functions which take
their values in a Banach space �. If f � �a� b�→� is a piecewise continuous
function, there is an element of �, denoted by

∫ b

a
f�x�dx

which is defined by approximating f by piecewise constant functions, for
which the definition of the integral is evident. It is easy to show that the
integral depends linearly on f and that

�
∫ b

a
f�x�dx� ≤

∫ b

a
�f�x��dx�

Moreover
〈∫ b

a
f�x�dx�

〉

=
∫ b

a

f�x���dx

for all  ∈�∗, where 
f�� denotes �f� as explained above. Both of these
relations are proved first for piecewise constant functions. The integral may
also be defined for functions f �R→� which decay rapidly enough at infinity.
Many other familiar results, such as the fundamental theorem of calculus, and
the possibility of taking a bounded linear operator under the integral sign,
may be proved by the same method as is used for complex-valued functions.

1.2 Bounded linear operators

A bounded linear operator A ��→ � between two Banach spaces is defined
to be a linear map for which the norm

�A� �= sup	�Af� � �f� ≤ 1


is finite. In this chapter we will use the term ‘operator’ to stand for ‘bounded
linear operator’ unless the context makes this inappropriate. The set ������
of all such operators itself forms a Banach space under the obvious operations
and the above norm.

The set ���� of all operators from � to itself is an algebra, the multipli-
cation being defined by

�AB��f� �= A�B�f��

7 We treat this at a very elementary level. A more sophisticated treatment is given in
[Dunford and Schwartz 1966, Chap. 3], but we will not need to use this.
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1.2 Bounded linear operators 13

for all f ∈ �. In fact ���� is called a Banach algebra by virtue of being a
Banach space and an algebra satisfying

�AB� ≤ �A��B�
for all A� B ∈����. The identity operator I satisfies �I�= 1 and AI = IA=A

for all A ∈ ����, so ���� is a Banach algebra with identity.

Problem 1.2.1 Prove that ���� is only commutative as a Banach algebra
if � = C, and that ���� is only finite-dimensional if � is finite
-dimensional. �

Every operator A on � has a dual operator A∗ acting on �∗, satisfying the
identity


Af�� = 
f�A∗�
for all f ∈� and all  ∈�∗. The map A→A∗ from ���� to ���∗� is linear
and isometric, but reverses the order of multiplication.

For every bounded operator A on a Hilbert space � there is a unique
bounded operator A∗, also acting on � , called its adjoint, such that


Af�g� = 
f�A∗g��
for all f� g ∈� . This is not totally compatible with the notion of dual operator
in the Banach space context, because the adjoint map is conjugate linear in
the sense that

��A+�B�∗ = �A∗ +�B∗

for all operators A� B and all complex numbers �� �. However, almost every
other result is the same for the two concepts. In particular A∗∗ = A. The
concept of self-adjointness, A = A∗, is peculiar to Hilbert spaces, and is of
great importance. We say that an operator U is unitary if it satisfies the
conditions of the problem below.

Problem 1.2.2 Let U be a bounded operator on a Hilbert space � . Use the
polarization identity

4
x� y� = �x+y�2−�x−y�2+ i�x+ iy�2− i�x− iy�2

to prove that the following three conditions are equivalent.

(i) U ∗U = UU ∗ = I;
(ii) U is one-one onto and isometric in the sense that �Ux� = �x� for all

x ∈� ;
(iii) U is one-one onto and 
Uf�Ug� = 
f� g� for all f� g ∈� . �
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14 Elementary operator theory

The inverse mapping theorem below establishes that algebraic invertibility of
a bounded linear operator between Banach spaces is equivalent to invertibility
in the category of bounded operators.8

Theorem 1.2.3 (Banach) If the bounded linear operator A from the Banach
space �1 to the Banach space �2 is one-one and onto, then the inverse
operator is also bounded.

Let � be an associative algebra over the complex field with identity element
e. The number � ∈ C is said to lie in the resolvent set of a ∈ � if �e−a

has an inverse in �. We call R���a� �= ��e−a�−1 the resolvent operators
of a. The Spec�a� of a is by definition the complement of the resolvent set.
If A is a bounded linear operator on a Banach space � we assume that the
spectrum and resolvent are calculated with respect to �=����, unless stated
otherwise.

The appearance of the spectrum and resolvent at such an early stage in
the book is no accident. They are the key concepts on which everything else
is based. An enormous amount of effort has been devoted to their study for
over a hundred years, and sophisticated software exists for computing both
in a wide variety of fields. No book could aspire to treating all of this in a
comprehensive manner, but we can describe the foundations on which this
vast subject has been built. One of these is the resolvent identity.

Problem 1.2.4 Prove the resolvent identity

R�z�a�−R�w�a�= �w− z�R�z�a�R�w�a�

for all z� w � Spec�a�. �

Problem 1.2.5 Let a�b lie in the associative algebra � with identity e and
let 0 = z ∈ C. Prove that ab− ze is invertible if and only if ba− ze is
invertible. �

Problem 1.2.6 Let A�B be linear maps on the vector space 	 and let 0 =
z ∈ C. Prove that the eigenspaces

� �= 	f ∈ 	 � ABf = zf
� 
 �= 	g ∈ 	 � BAg = zg


have the same dimension. �

8 See [Dunford and Schwartz 1966, Theorem II.2.2].
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1.2 Bounded linear operators 15

Problem 1.2.7 Let a be an element of the associative algebra � with identity
e. Prove that

Spec�a�= Spec�La�

where La ��→� is defined by La�x� �= ax. �

Problem 1.2.8 Let A be an operator on the Banach space � satisfying �A�<
1. Prove that �I−A� is invertible and that

�I−A�−1 =
�∑

n=0

An� (1.4)

the sum being norm convergent. �

Theorem 1.2.9 The set � of all bounded invertible operators on a Banach

space � is open. More precisely, if A∈� and �B−A�< �A−1�−1
then B ∈�.

Proof. If C �= I−BA−1 then under the stated conditions

�C� = ��A−B�A−1� ≤ �A−1�−1�A−1�< 1�

Therefore �I−C� is invertible by Problem 1.2.8. But B= �BA−1�A= �I− C�A,
so B is invertible with

B−1 = A−1
�∑

n=0

Cn� (1.5)

�

Theorem 1.2.10 The resolvent operator R�z�A� satisfies

�R�z�A�� ≥ dist�z�Spec�A��−1 (1.6)

for all z � Spec�A�, where dist�z� S� denotes the distance of z from the set S.

Proof. If z � Spec�A� and �w− z�< �R�z�A��−1
then

D �=R�z�A� 	I− �z−w�R�z�A�
−1

=
�∑

n=0

�z−w�nR�z�A�n+1

is a bounded invertible operator on �; the inverse involved exists by Prob-
lem 1.2.8. It satisfies

D	I− �z−w�R�z�A�
= R�z�A�
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16 Elementary operator theory

and hence

D	zI−A− �z−w�I
= I�

We deduce that D�wI −A� = I , and similarly that �wI −A�D = I . Hence
w � Spec�A�. The statement of the theorem follows immediately. �

Our next theorem uses the concept of an analytic operator-valued function.
This is developed in more detail in Section 1.4.

Theorem 1.2.11 Every bounded linear operator A on a Banach space has a
non-empty, closed, bounded spectrum, which satisfies

Spec�A�⊆ 	z ∈ C � �z� ≤ �A�
� (1.7)

If �z�> �A� then

��zI−A�−1� ≤ ��z�−�A��−1� (1.8)

The resolvent operator R�z�A� is a norm analytic function of z on C\Spec�A�.

Proof. If �z� > �A� then zI −A = z�I − z−1A� and this is invertible, with
inverse

�zI−A�−1 = z−1
�∑

n=1

�z−1A�n�

The bound (1.8) follows by estimating each of the terms in the geometric
series. This implies (1.7). Theorem 1.2.10 implies that Spec�A� is closed.
An examination of the proof of Theorem 1.2.10 leads to the conclusion that
R�z�A� is a norm analytic function of z in some neighbourhood of every
z � Spec�A�. It remains only to prove that Spec�A� is non-empty.

Since

�zI−A�−1 =
�∑

n=0

z−n−1An

if �z� > �A�, we see that ��zI −A�−1� → 0 as �z� → �. The Banach space
version of Liouville’s theorem given in Problem 1.4.9 now implies that if
R�z�A� is entire, it vanishes identically. The contradiction establishes that
Spec�A� must be non-empty. �

We note that this proof is highly non-constructive: it does not give any clues
about how to find even a single point in Spec�A�. We will show in Section 9.1
that computing the spectrum may pose fundamental difficulties.
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1.2 Bounded linear operators 17

Problem 1.2.12 Let a be an element of the Banach algebra �, whose mul-
tiplicative identity 1 satisfies �1� = 1. Prove that a has a non-empty, closed,
bounded spectrum, which satisfies

Spec�a�⊆ 	z ∈ C � �z� ≤ �a�
� �

Our definition of the spectrum of an operator A was algebraic in that it only
refers to properties of A as an element of the algebra ����. One can also
give a characterization that is geometric in the sense that it refers to vectors
in the Banach space.

Lemma 1.2.13 The number � lies in the spectrum of the bounded operator
A on the Banach space � if and only if at least one of the following occurs:

(i) � is an eigenvalue of A. That is Af = �f for some non-zero f ∈�.
(ii) � is an eigenvalue of A∗. Equivalently the range of the operator �I−A

is not dense in �.
(iii) There exists a sequence fn ∈� such that �fn� = 1 for all n and

lim
n→��Afn−�fn� = 0�

Proof. The operator B �= �I −A may fail to be invertible because it is not
one-one or because it is not onto. In the second case it may have closed range
not equal to � or it may have range which is not closed. If it has closed range
L not equal to �, then there exists a non-zero  ∈ �∗ which vanishes on L

by the Hahn-Banach theorem. Therefore 0 is an eigenvalue of B∗ = �I−A∗,
with eigenvector . If B is one-one with range which is not closed, then B−1

is unbounded; equivalently there exists a sequence fn such that �fn� = 1 for
all n and limn→� �Bfn� = 0. �

In case (iii) we say that � lies in the approximate point spectrum of A.
Note In the Hilbert space context we must replace (ii) by the statement

that � is an eigenvalue of A∗.

Problem 1.2.14 Prove that

Spec�A�= Spec�A∗�

for every bounded operator A ��→�. �

Problem 1.2.15 Prove that if � lies on the topological boundary of the spec-
trum of A, then it is also in its approximate point spectrum. �
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18 Elementary operator theory

Problem 1.2.16 Find the spectrum and the approximate point spectrum of
the shift operator

Af�x� �= f�x+1�

acting on L2�0���, and of its adjoint operator. �

Problem 1.2.17 Let a1� � � � � an be elements of an associative algebra � with
identity. Prove that if the elements commute then the product a1 � � � an is
invertible if and only if every ai is invertible. Prove also that this statement
is not always true if the ai do not commute. Finally prove that if a1 � � � an and
an � � � a1 are both invertible then ar is invertible for all r ∈ 	1� � � � � n
. �

The following is the most elementary of a series of spectral mapping theorems
in this book.

Theorem 1.2.18 If p is a polynomial and a is an element of the associative
algebra � with identity e then

Spec�p �a��= p �Spec�a���

Proof. We assume that p is monic and of degree n. Given w ∈ C we have to
prove that w ∈ Spec�p �a�� if and only if there exists z ∈ Spec�a� such that
w = p �z�. Putting q�z� �= p �z�−w this is equivalent to the statement that
0 ∈ Spec�q�a�� if and only if there exists z ∈ Spec�a� such that q�z�= 0. We
now write

q�z�=
n∏

r=1

�z− zr�

where zr are the zeros of q, so that

q�a�=
n∏

r=1

�a− zre��

The theorem reduces to the statement that q�a� is invertible if and only if
�a− zre� is invertible for all r. This follows from Problem 1.2.17. �

Problem 1.2.19 Let A � � → � be a bounded operator. We say that the
closed linear subspace � of � is invariant under A if A���⊆ �. Prove that
this implies that � is also invariant under R�z�A� for all z in the unbounded
component of C\Spec�A�. Give an example in which � is not invariant under
R�z�A� for some other z � Spec�A�. �

Cambridge Books Online © Cambridge University Press, 2010available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9780511618864.002
Downloaded from https://www.cambridge.org/core. SISSA, on 09 Feb 2021 at 22:05:30, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9780511618864.002
https://www.cambridge.org/core


1.3 Topologies on vector spaces 19

1.3 Topologies on vector spaces

We define a topological vector space (TVS) to be a complex vector space
	 provided with a topology � such that the map 	����u� v
→ �u+�v is
jointly continuous from C×C×	 ×	 to 	 . All of the TVSs in this book
are generated by a family of seminorms 	pa
a∈A in the sense that every open
set U ∈ � is the union of basic open neighbourhoods

n⋂

r=1

	v � pa�r��v−u� < �r


of some central point u ∈ 	 . In addition we will assume that if pa�u�= 0 for
all a ∈ A then u= 0.9

Problem 1.3.1 Prove that the topology generated by a family of seminorms
turns 	 into a TVS as defined above. �

Problem 1.3.2 Prove that the topology on 	 generated by a countable family
of seminorms 	pn


�
n=1 coincides with the topology for the metric

d�u� v� �=
�∑

n=1

2−n
pn�u−v�

1+pn�u−v�
� �

One says that a TVS 	 is a Fréchet space if � is generated by a countable
family of seminorms and the metric d above is complete.

Every Banach space � has a weak topology in addition to its norm topol-
ogy. This is defined as the smallest topology on � for which the bounded
linear functionals  ∈�∗ are all continuous. It is generated by the family of
seminorms p�f� �= ��f��. We will write

w-lim
n→� fn = f or fn

w→ f

to indicate that the sequence fn ∈� converges weakly to f ∈�, that is

lim
n→�
fn�� = 
f��

for all  ∈�∗.

Problem 1.3.3 Use the Hahn-Banach theorem to prove that a linear subspace
L of a Banach space � is norm closed if and only if it is weakly closed. �

9 Systematic accounts of the theory of TVSs are given in [Narici and Beckenstein 1985,
Treves 1967, Wilansky 1978].
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20 Elementary operator theory

Our next result is called the uniform boundedness theorem and also the
Banach-Steinhaus theorem.10

Theorem 1.3.4 Let �� � be two Banach spaces and let 	A�
�∈� be a family
of bounded linear operators from � to � . Then the following are equivalent.

(i) sup
�∈�

�A��<��

(ii) sup
�∈�

�A�x�<� for every x ∈�;

(iii) sup
�∈�

��A�x��<� for every x ∈� and  ∈ �∗.

Proof. Clearly (i)⇒(ii)⇒(iii). Suppose that (ii) holds but (i) does not. We
construct sequences xn ∈ � and ��n� ∈ � as follows. Let x1 be any vector
satisfying �x1� = 1/4. Given x1� � � � � xn−1 ∈ � satisfying �xr� = 4−r for all
r ∈ 	1� � � � � n−1
, let

cn−1 �= sup
�∈�

�A��x1+· · ·+xn−1���

Since (i) is false there exists ��n� such that

�A��n�� ≥ 4n+1�n+ cn−1��

There also exists xn ∈� such that �xn� = 4−n and

�A��n�xn� ≥
2
3
�A��n���xn��

The series x �=∑�
n=1 xn is norm convergent and

�A��n�x� ≥ �A��n�xn�−�A��n��x1+· · ·+xn−1��−�A��n��
�∑

r=n+1

�xr�

≥ 2
3
�A��n��4−n− cn−1−

1
3
�A��n��4−n

≥ �A��n��4−n−1− cn−1

≥ n�

The contradiction implies (i).
The proof of (iii)⇒(ii) uses (ii)⇒(i) twice, with appropriate choices of �

and � . �

10 According to [Carothers 2005, p. 53], whom we follow, the proof below was first published
by Hausdorff in 1932, but the ‘sliding hump’ idea was already well-known. Most texts give a
longer proof based on the Baire category theorem. The sliding hump argument is also used in
Theorem 3.3.11.
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1.3 Topologies on vector spaces 21

Corollary 1.3.5 If the sequence fn ∈� converges weakly to f ∈� as n→�,
then there exists a constant c such that �fn� ≤ c for all n.

In applications, the hypothesis of the corollary is usually harder to prove than
the conclusion. Indeed the boundedness of a sequence of vectors or operators
is often one of the ingredients used when proving its convergence, as in the
following problem.

Problem 1.3.6 Let At be a bounded operator on the Banach space � for
every t ∈ �a� b�, and let  be a dense linear subspace of �. If �At� ≤ c <�
for all t ∈ �a� b� and t→ Atf is norm continuous for all f ∈ , prove that
�t� f�→ Atf is a jointly continuous function from �a� b�×� to �. �

We define the weak* topology of �∗ to be the smallest topology for which
all of the functionals →
f�� are continuous, where f ∈�. It is generated
by the family of seminorms pf �� �= ��f�� where f ∈ �. If � is reflexive
the weak and weak* topologies on �∗ coincide, but generally they do not.

Theorem 1.3.7 (Banach-Alaoglu) Every norm bounded set in �∗ is relatively
compact for the weak* topology, in the sense that its weak* closure is weak*
compact.

Proof. It is sufficient to prove that the ball

B∗
1 �= 	 ∈�∗ � �� ≤ 1


is compact. We first note that the topological product

S �= ∏

f∈�
	z ∈ C � �z� ≤ �f�


is a compact Hausdorff space. It is routine to prove that the map � � B∗
1 → S

defined by
	���
�f� �= 
f��

is a homeomorphism of B∗
1 onto a closed subset of S. �

Problem 1.3.8 Prove that the unit ball B∗
1 of B∗ provided with the weak*

topology is metrizable if and only if � is separable. �

Problem 1.3.9 Suppose that fn ∈ lp�Z� and that �fn�p≤ 1 for all n= 1�2� � � � .
Prove that if 1 < p <� then the sequence fn converges weakly to 0 if and
only if the functions converge pointwise to 0, but that if p = 1 this is not
always the case. Deduce that the unit ball in l1�Z� is not weakly compact, so
l1�Z� cannot be reflexive. �
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22 Elementary operator theory

Bounded operators between two Banach spaces � and � can converge in
three different senses. Given a sequence of operators An � �→ � , we will

write An

n→ A, An

s→ A and An

w→ A respectively in place of

lim
n→��An−A� = 0�

lim
n→��Anf −Af� = 0 for all f ∈�,

lim
n→�
Anf�� = 
Af�� for all f ∈�,  ∈ �∗.

Another notation is limn→�An = A, s-limn→�An = A, w-limn→�An = A.

Problem 1.3.10 Let A�An be bounded operators on the Banach space � and
let  be a dense linear subspace of �. Use the uniform boundedness theorem
to prove that An

s→A if and only if there exists a constant c such that �An�≤ c

for all n and limn→�Anf = Af for all f ∈. �

Problem 1.3.11 Given two sequences of operators An ��→ � and Bn � � →
, prove the following results:
(a) If An

s→ A and Bn

s→ B then BnAn

s→ BA.

(b) If An

s→ A and Bn

w→ B then BnAn

w→ BA.

(c) If An

w→ A and Bn

w→ B then BnAn

w→ BA may be false.
Prove or give counterexamples to all other combinations of these types of
convergence. �

From the point of view of applications, norm convergence is the best, but it
is too strong to be true in many situations; weak convergence is the easiest to
prove, but it does not have good enough properties to prove many theorems.
One is left with strong convergence as the most useful concept.

Problem 1.3.12 Let Pn be a sequence of projections on �, i.e. operators such

that P2
n = Pn for all n. Prove that if Pn

s→ P then P is a projection, and give a
counterexample to this statement if one replaces strong convergence by weak
convergence. �

Problem 1.3.13 Let A�An be operators on the Hilbert space � . Prove that if

An

s→ A then A∗
n

w→ A∗, and give an example in which A∗
n does not converge

strongly to A∗. �

One sometimes says that An converges in the strong* sense to A if An

s→ A

and A∗
n

s→ A∗.
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1.4 Differentiation of vector-valued functions 23

1.4 Differentiation of vector-valued functions

We discuss various notions of differentiability for two functions f � �a� b�→�
and  � �a� b�→�∗. We write Cn to denote the space of n times continuously
differentiable functions if n≥ 1, and the space of continuous functions if n= 0.

Lemma 1.4.1 If 
f�t���� is C1 for all � ∈ �∗ then f�t� is C0. Similarly, if

g��t�� is C1 for all g ∈� then �t� is C0.

Proof. By the uniform boundedness theorem there is a constant N such that
�f�t�� ≤ N for all t ∈ �a� b�. If a≤ c ≤ b then

lim
�→0


�−1	f�c+��−f�c�
��� = d
dc

f�c�����

so using the uniform boundedness theorem again there exists a constant M
such that

��−1	f�c+��−f�c�
� ≤M

for all small enough � = 0. This implies that

lim
�→0

�f�c+��−f�c�� = 0�

The other part of the lemma has a similar proof. �

Lemma 1.4.2 If 
f�t���� is C2 for all � ∈ �∗ then f�t� is C1. Similarly, if

g��t�� is C2 for all g ∈� then �t� is C1.

Proof. By the uniform boundedness theorem there exist g�t� ∈ �∗∗ for each
t ∈ �a� b� such that

d
dt

f�t���� = 
g�t�����

Moreover 
g�t���� is C1 for all � ∈ �∗, so by Lemma 1.4.1 g�t� depends
norm continuously on t. Therefore

∫ t

a
g�s�ds

is defined as an element of �∗∗, and

d
dt

〈

f�t�−f�a�−
∫ t

a
g�s�ds��

〉

= 0

for all t ∈ �a� b� and � ∈�∗. It follows that

f�t�−f�a�=
∫ t

a
g�s�ds
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24 Elementary operator theory

for all t ∈ �a� b�. We deduce that

g�t�= lim
h→0

h−1	f�t+h�−f�t�


the limit being taken in the norm sense. Therefore g�t� ∈ �, and f�t� is C1.
The proof for �t� is similar. �

Corollary 1.4.3 If 
f�t���� is C� for all � ∈�∗ then f�t� is C�. Similarly,
if 
g��t�� is C� for all g ∈� then �t� is C�.

Proof. One shows inductively that if 
f�t���� is Cn+1 for all � ∈ �∗ then
f�t� is Cn. �

We will need the following technical lemma later in the book.

Lemma 1.4.4 (i) If f � �0���→R is continuous and for all x≥ 0 there exists
a strictly monotonic decreasing sequence xn such that

lim
n→�xn = x� lim sup

n→�
f�xn�−f�x�

xn−x
≤ 0

then f is non-increasing on �0���.
(ii) If f � �0���→ � is norm continuous and for all x ≥ 0 there exists a

strictly monotonic decreasing sequence xn such that

lim
n→�xn = x� lim

n→�

〈
f�xn�−f�x�

xn−x
�

〉

= 0

for all  ∈�∗ then f is constant on �0���.

Proof. (i) If � > 0, a≥ 0 and

S��a �= 	x ≥ a � f�x�≤ f�a�+��x−a�


then S��a is closed, contains a, and for all x ∈ S��a and � > 0 there exists
t ∈ S��a such that x < t < x+�. If u > a then there exists a largest number
s ∈ S��a satisfying s ≤ u. The above property of S��a implies that s = u. We
deduce that S��a = �a��� for every � > 0, and then that f�x� ≤ f�a� for all
x ≥ a.

(ii) We apply part (i) to Re
{
ei�
f�x���} for every  ∈ �∗ and every

� ∈ R to deduce that 
f�x��� = 0 for all x ≥ 0. Since  ∈ �∗ is arbitrary
we deduce that f�x� is constant. �

All of the above ideas can be extended to operator-valued functions. We omit
a systematic treatment of the various topologies for which one can define
differentiability, but mention three results.
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1.4 Differentiation of vector-valued functions 25

Problem 1.4.5 Prove that if A� B � �a� b�→���� are continuously differen-
tiable in the strong operator topology then they are norm continuous. Moreover
A�t�B�t� is continuously differentiable in the same sense and

d
dt

	A�t�B�t�
= A�t�′B�t�+A�t�B�t�′

for all t ∈ �a� b�. �

Problem 1.4.6 Prove that if A � �a� b�→���� is differentiable in the strong
operator topology then A�t�−1 is strongly differentiable and

d
dt
A�t�−1 =−A�t�−1A�t�′A�t�−1

for all t ∈ �a� b�. �

Problem 1.4.7 Prove that if A�t� is a differentiable family of m×m matrices
for t ∈ �a� b� then

d
dt
A�t�n = nA�t�′A�t�n−1

in general, but nevertheless

d
dt

tr�A�t�n�= n tr�A�t�′A�t�n−1�� �

We now turn to the study of analytic functions. Let f�z� be a function from
the region (connected open subset) U of the complex plane C taking values in
the complex Banach space �. We say that f is analytic on U if it is infinitely
differentiable in the norm topology at every point of U .

Lemma 1.4.8 If 
f�z��� is analytic on U for all ∈�∗ then f�z� is analytic
on U .

Proof. We first note that by a complex variables version of Lemma 1.4.1,
z→ f�z� is norm continuous. If � is the boundary of a disc inside U then


f�z��� = 1
2�i

∫

�


f�w���
w− z

dw

=
〈

1

2�i

∫

�

f�w�

w− z
dw�

〉
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26 Elementary operator theory

for all  ∈�∗. This implies the vector-valued Cauchy’s integral formula

f�z�= 1
2�i

∫

�

f�w�

w− z
dw� (1.9)

the right-hand side of which is clearly an analytic function of z. �

Problem 1.4.9 Prove a vector-valued Liouville’s theorem: namely if f � C→
� is uniformly bounded in norm and analytic then it is constant. �

Lemma 1.4.10 Let fn ∈� and suppose that

�∑

n=0


fn��zn

converges for all  ∈�∗ and all �z�< R. Then the power series

�∑

n=0

fnz
n (1.10)

is norm convergent for all �z� < R, and the limit is a �-valued analytic
function.

Proof. We define the linear functional f�z� on �∗ by


f�z��� �=
�∑

n=0


fn��zn�

The uniform boundedness theorem implies that f�z� ∈ �∗∗ for all �z� < R.
An argument similar to that of Lemma 1.4.1 establishes that z→ f�z� is
norm continuous, and an application of the Cauchy integral formula as in
Lemma 1.4.8 shows that f�z� is norm analytic. A routine modification of the
usual proof for the case �=C now establishes that the series (1.10) is norm
convergent, so we finally see that f�z� ∈� for all �z�< R. �

If an ∈ � for n = 0�1�2� � � � then the power series
∑�

n=0 anz
n defines a �-

valued analytic function for all z for which the series converges. The radius
of convergence R is defined as the radius of the largest circle with centre at 0
within which the series converges. As in the scalar case R= 0 and R=+�
are allowed.

Problem 1.4.11 Prove that

R= sup	� � 	�an��n
n is a bounded sequence
�
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1.5 The holomorphic functional calculus 27

Alternatively

R−1 = lim sup
n→�

�an�
1/n

� �

The following theorem establishes that the powers series of an analytic func-
tion converges on the maximal possible ball B�0� r� �= 	z � �z�< r
.

Theorem 1.4.12 Let f � B�0� r�→ � be an analytic function which cannot
be analytically continued to a larger ball. Then the power series of f has
radius of convergence r.

Proof. If we denote the radius of convergence by R, then it follows immedi-
ately from Problem 1.4.11 that R ≤ r. If �z� < r and t = �r+�z��/2 then by
adapting the classical proof (which depends on using (1.9)) we obtain

f�z�= f�0�+f ′�0�
z

1! + · · ·+f �n��0�
zn

n! +Rem�n�

where

Rem�n� �= 1
2�i

∫

�w�=t
f�w�

w− z

( z

w

)n+1
dw�

This implies that

�Rem�n�� ≤ cz�t�z/t�
n+1

which converges to 0 as n→�. Therefore the power series converges for
every z such that �z�< r. This implies that R≥ r. �

All of the results above can be extended to operator-valued analytic functions.
Since the space ���� is itself a Banach space with respect to the operator
norm, the only new issue is dealing with weaker topologies.

Problem 1.4.13 Prove that if A�z� is an operator-valued function on U ⊆C,
and z→ 
A�z�f�� is analytic for all f ∈ � and  ∈ �∗, then A�z� is an
analytic function of z. �

1.5 The holomorphic functional calculus

The material in this section was developed by Hilbert, E. H. Moore, F. Riesz
and others early in the twentieth century. A functional calculus is a procedure
for defining an operator f�A�, given an operator A and some class of complex-
valued functions f defined on the spectrum of A. One requires f�A� to satisfy
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28 Elementary operator theory

certain properties, including (1.11) below. The following theorem defines a
holomorphic functional calculus for bounded linear operators. Several of the
proofs in this section apply with minimal changes to unbounded operators,
and we will take advantage of that fact later in the book.

Theorem 1.5.1 Let S be a compact component of the spectrum Spec�A� of
the operator A acting on �, and let f�·� be a function which is analytic on a
neighbourhood U of S. Let � be a closed curve in U such that S is inside �

and Spec�A�\S is outside �. Then

B �= 1

2�i

∫

�
f�z�R�z�A�dz

is a bounded operator commuting with A. It is independent of the choice of
�, subject to the above conditions. Writing B in the form f�A� we have

f�A�g�A�= �fg��A� (1.11)

for any two functions f , g of the stated type. The map f → f�A� is norm
continuous from the stated class of functions with �f� �= max	�f�z�� � z ∈ �


to ����.

Proof. It is immediate from its definition that

BR�w�A�= R�w�A�B

for all w � Spec�A�. This implies that B commutes with A. In the following
argument we label B according to the contour used to define it. If � is a
second contour with the same properties as �, and we put � �= �−� , then

B�−B� = B� = 0

by the operator version of Cauchy’s Theorem.
To prove (1.11), let �� � be two curves satisfying the stated conditions,

with � inside �. Then

f�A�g�A�=− 1

4�2

∫

�

∫

�
f�z�g�w�R�z�A�R�w�A�dzdw

=− 1
4�2

∫

�

∫

�

f�z�g�w�

z−w
�R�w�A�−R�z�A��dzdw

= 1
2�i

∫

�
f�w�g�w�R�w�A�dw

= �fg��A�� �
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1.5 The holomorphic functional calculus 29

Problem 1.5.2 Let A be a bounded operator on � and let � be the closed
curve �→ rei� where r > �A�. Prove that if p�z� �=∑n

m=0 amz
m then

p�A�=
n∑

m=0

amA
m� �

Example 1.5.3 Let A be a bounded operator on � and suppose that Spec�A�
does not intersect �−��0�. Then there exists a closed contour � that winds
around Spec�A� and which does not intersect �−��0�. If t > 0 then the
function zt is holomorphic on and inside �, so one may use the holomorphic
functional calculus to define At. However, one should not suppose that �At�
must be of the same order of magnitude as �A� for 0 < t < 1. Figure 1.1
displays the norms of At for n �= 100, c �= 0�6 and 0 < t < 2, where A is the
n×n matrix

Ar�s �=
⎧
⎨

⎩

r/n if s = r+1,
c if r = s,
0 otherwise.

0 0.5 1 1.5 2
0

50

100

150

200

250

300
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500

Figure 1.1: Norms of fractional powers in Example 1.5.3
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30 Elementary operator theory

Note that �At� is of order 1 for t = 0� 1� 2. It can be much larger for
other t because the resolvent norm must be extremely large on a portion
of the contour �, for any contour satisfying the stated conditions. See also
Example 10.2.1. �

Theorem 1.5.4 (Riesz) Let � be a closed contour enclosing the compact
component S of the spectrum of the bounded operator A acting in �, and
suppose that T = Spec�A�\S is outside �. Then

P �= 1
2�i

∫

�
R�z�A�dz

is a bounded projection commuting with A. The restriction of A to P� has
spectrum S and the restriction of A to �I−P�� has spectrum T . P is said to
be the spectral projection of A associated with S.

Proof. It follows from Theorem 1.5.1 with f = g = 1 that P2 = P. If we
put �0 = Ran�P� and �1 = Ker�P� then � = �0 ⊕�1 and A��i� ⊆ �i for
i= 0� 1. If Ai denotes the restriction of A to �i then

Spec�A�= Spec�A0�∪Spec�A1��

The proof is completed by showing that

Spec�A0�∩T = ∅� Spec�A1�∩S = ∅�

If w is in T , then it is outside �, and we put

Cw �= 1
2�i

∫

�

1
w− z

R�z�A�dz�

Theorem 1.5.1 implies that

CwP = PCw = Cw�

�wI−A�Cw = Cw�wI−A�= P�

Therefore w � Spec�A0�. Hence Spec�A0�∩T = ∅.
Now let � be the circle with centre 0 and radius ��A�+1�. By expanding

the resolvent on powers of 1/z we see that

I = 1
2�i

∫

�
R�z�A�dz�
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1.5 The holomorphic functional calculus 31

If � denotes the curve ��−�� then we deduce that

I−P = 1
2�i

∫

�
R�z�A�dz�

By following the same argument as in the first paragraph we see that if w

is in S, then it is inside � and outside � , so w � Spec�A1�. Hence Spec�A1�

∩S = ∅. �

If S consists of a single point z then the restriction of A to �0 = Ran�P�
has spectrum equal to 	z
, but this does not imply that �0 consists entirely
of eigenvectors of A. Even if �0 is finite-dimensional, the restriction of A

to �0 may have a non-trivial Jordan form. The full theory of what happens
under small perturbations of A is beyond the scope of this book, but the
next theorem is often useful. Its proof depends upon the following lemma.
The properties of orthogonal projections on a Hilbert space are studied more
thoroughly in Section 5.3. We define the rank of an operator to be the possibly
infinite dimension of its range.

Lemma 1.5.5 If P and Q are two bounded projections and �P−Q�< 1 then

rank�P�= rank�Q��

Proof. If 0 = x ∈ Ran�P� then �Qx− x� = ��Q−P�x� < �x�, so Qx = 0.
Therefore Q maps Ran�P� one-one into Ran�Q� and rank�P�≤ rank�Q�. The
converse has a similar proof. �

A more general version of the following theorem is given in Theorem 11.1.6,
but even that is less general than the case treated by Rellich, in which
one simply assumes that the operator depends analytically on a complex
parameter z.11

Theorem 1.5.6 (Rellich) Suppose that � is an isolated eigenvalue of A and
that the associated spectral projection P has rank 1. Then for any operator
B and all small enough w ∈ C, �A+wB� has a single eigenvalue ��w� near
to �, and this eigenvalue depends analytically upon w.

Proof. Let � be a circle enclosing � and no other point of Spec�A�, and let
P be defined as in Theorem 1.5.4. If

�w�< �B�−1
min	�R�z�A��−1

� z ∈ �


11 A systematic treatment of the perturbation of eigenvalues of higher multiplicity is given in
[Kato 1966A].
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32 Elementary operator theory

then �zI−�A+wB�� is invertible for all z ∈ � by Theorem 1.2.9. By examin-
ing the expansion (1.5) one sees that �zI− �A+wB��−1 depends analytically
upon w for every z ∈ �. It follows that the projections

Pw �= 1
2�i

∫

�
�zI− �A+wB��−1dz

depend analytically upon w. By Lemma 1.5.5 Pw has rank 1 for all such w.
If f ∈ Ran�P� then fw �= Pwf depends analytically upon w and lies in

the range of Pw for all w. Assuming f = 0 it follows that fw = 0 for all
small enough w. Therefore fw is the eigenvector of �A+wB� associated with
the eigenvalue lying within � for all small enough w. The corresponding
eigenvalue satisfies


�A+wB�fw�� = �w
fw��
where  is any vector in �∗ which satisfies 
f�� = 1. The analytic
dependence of �w on w for all small enough w follows from this
equation. �

Example 1.5.7 The following example shows that the eigenvalues of non-
self-adjoint operators may behave in counter-intuitive ways (for those brought
up in self-adjoint environments). Let H be a self-adjoint n×n matrix and let
Bf �= 
f��, where  is a fixed vector of norm 1 in Cn. If As �= H+ isB

then Im
Asf� f� is a monotone increasing function of s ∈ R for all f ∈ Cn,
and this implies that every eigenvalue of As has a positive imaginary part for
all s > 0. If 	�r�s


n
r=1 are the eigenvalues of As then

n∑

r=1

�r�s = tr�As�= tr�H�+ is

for all s. All these facts (wrongly) suggest that the imaginary part of each
individual eigenvalue is a positive, monotonically increasing function of s for
s ≥ 0.

More careful theoretical arguments show that the eigenvalues of such an
operator move from the real axis into the upper half plane as s increases
from 0. All except one then turn around and converge back to the real axis
as s→+�. For n= 2 the calculations are elementary, but the case

As �=
⎛

⎝
−1+ is is is

is is is

is is 1+ is

⎞

⎠ (1.12)

is more typical.12 �

12 See Lemma 11.2.9 for further examples of a similar type.
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Figure 1.2: Eigenvalues of (1.12) for 0 ≤ s ≤ 1

If an operator A�z� has several eigenvalues �r�z�, all of which depend ana-
lytically on z, then generically they will only coincide in pairs, and this will
happen for certain discrete values of z. One can analyze the z-dependence of
two such eigenvalues by restricting attention to the two-dimensional linear
span of the corresponding eigenvectors. The following example illustrates
what can happen.

Example 1.5.8 If

A�z� �=
(

a�z� b�z�

c�z� d�z�

)

where a�b� c�d are all analytic functions, then the eigenvalues of A�z� are
given by

�±�z� �= �a�z�+d�z��/2±{
�a�z�−d�z��2/4+b�z�c�z�

}1/2
�
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34 Elementary operator theory

For most values of z the two branches are analytic functions of z, but for
certain special z they coincide and one has a square root singularity. In the
typical case

A�z� �=
(

0 z

1 0

)

one has ��z�=±√z. The two eigenvalues coincide for z= 0, but when this
happens the matrix has a non-trivial Jordan form and the eigenvalue 0 has
multiplicity 1. �
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