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Abstract These notes are an overview of the Nash-Moser iteration technique for
solving PDEs (or other non-linear problems) via linearisation, where the linearised
equations admit estimates with a loss of regularity with respect to the source term,
coefficients and/or boundary/initial data. We first introduce the abstract setting
along with a version of the iteration scheme due to Hörmander (Arch Ration Mech
Anal 62(1):1–52, 1976). We then introduce some modifications which allow the
scheme to be applied to some characteristic free-boundary problems for hyperbolic
conservation laws. We focus on the case of supersonic vortex sheets in 2D as
considered by Coulombel and Secchi in Ann Sci Éc Norm Supér (4) 41(1):85–139,
2008.
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1 Introduction

1.1 Summary

These notes are an overview of the Nash-Moser iteration technique for solving PDEs
(or other non-linear problems) via linearisation, where the linearised equations
admit estimates with a loss of regularity with respect to the source term, coefficients
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and/or boundary/initial data. In these situations, Picard iteration (or the contraction
mapping principle) fails, but a modified form of Newton-Raphson iteration, involv-
ing the application of smoothing operators to overcome the loss of regularity, may
succeed in finding a solution for given data close to some special data for which a
solution is known to exist. This technique is known as Nash-Moser iteration, or in
some contexts as the Nash-Moser inverse function theorem. It was originally used
by Nash in [21] for solving the isometric embedding problem. Moser in [20] and
Schwartz in [23] simplified the method at the expense of a loss of regularity and
showed how it could be applied in a more general setting. Hörmander, in his paper
[15] on the boundary problems of physical geodesy, improved on Moser’s scheme
by reducing the loss of regularity, using a scheme more similar to Nash’s original.
More recently, Alinhac in [2] used a modified version of Hörmander’s scheme to
prove the short-time existence of rarefaction waves for a class of conservation laws
and Coulombel and Secchi in [8] introduced an additional modification to prove
the short-time existence of vortex sheets for the two dimensional isentropic Euler
equations provided the Mach number is sufficiently large. A scheme similar to the
one used by Coulombel and Secchi is also developed by Chen and Wang in [5] and
[6] to prove the short-time existence of current-vortex sheets for three-dimensional
MHD under certain stability assumptions.

We aim to provide an abstract setting for the technique, whilst keeping in mind
that we want to apply it to PDE problems. Hopefully in an abstract setting it will
be easier to see the key hypotheses needed on the equations to be solved than
in specific situations, which may involve other complications. We first introduce
the scheme used by Hörmander in [15], and detailed by Alinhac and Gérard in
[3], which is closer than Moser’s scheme to Nash’s original technique except
that Hörmander uses a discrete approximation scheme rather than one based on a
continuous parameter t . Whilst Hörmander works in Hölder spaces, we work in
more general Banach spaces, at the price of losing a small degree of regularity. We
have in mind that the linearised equations are most likely to be estimated in Sobolev
spaces (or weighted Sobolev spaces), probably with exponent two. This technique
has the advantage over Moser’s technique of obtaining a solution which is closer in
regularity to the given data, but although Nash used his method to obtain optimal
regularity, we are unlikely to obtain an optimal regularity result using this method
in more complicated situations.

We then introduce a more complicated scheme which allows us to deal with
difficulties in solving the linearised equations, inspired by the paper on 2D
compressible vortex sheets by Coulombel and Secchi [8].

Following this, we give the construction of the smoothing operators used in
Nash-Moser iteration on some Sobolev spaces which are used in practice, and some
inequalities useful for obtaining the tame estimates used in the iteration scheme.

Finally, we show how the generalised scheme can be applied to the case
considered by Coulombel and Secchi in [8], in a slightly simplified manner but
at the expense of some loss of regularity.
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1.2 Newton-Raphson Iteration, Picard Iteration,
and Nash-Moser Iteration

Suppose we wish to solve the nonlinear equation T .u/ D f for the unknown u 2 X ,
given f 2 Y , where T W X ! Y . So as not to ask too much, let us look for a
solution u close to u0 of the equation T .u/ D T .u0/C f , where f is small. One of
the most classical methods for solving such a nonlinear equation via linearisation is
Newton-Raphson iteration. For n � 1, we set

unC1 D un � L.un/.T .un/� T .u0/ � f /

where L.u/ is a right inverse of DT.u/. One can check by applying T to both
sides and using Taylor’s theorem that T .unC1/ D T .u0/ C f plus terms involving
unC1 � un which one would hope to converge to zero. However, for this scheme
to even make sense, we need an operator L.u/ W Y ! X which is a right inverse
of DT.u/. The linearised equations DT.u/v D g themselves may be difficult or
impossible to solve for v 2 X , hence we may not be able to find such an operatorL.

As a possible remedy to this problem, we consider the contraction mapping
theorem, or Picard iteration, which uses a slightly different kind of linearisation
and may be able to solve equations where the operator L as above does not exist.
For example, suppose we can write our equation in the form

S.u/u D 0

where, for fixed u, S.u/ is a linear operator. We seek the unknown u 2 X , where
X is a complete metric space, and we assume the initial/boundary conditions have
been absorbed into the definition of X . We now define the map F W X ! X by
F.u/ D v, where v is the solution to the linear equation

S.u/v D 0:

If we can prove that F is well-defined, and that F is a contraction, i.e.
dX.F.u1/; F .u2// � �dX.u1; u2/, where � < 1, for all u1, u2 in X , then the
contraction mapping theorem implies that F has a fixed point, w. By construction,
w satisfies the original nonlinear equation we wished to solve.

Note that in order to apply this method, we require that the solution v of the linear
equation be in the same space as u, on which v depends through the coefficients of
the equation. This is a better situation than for Newton-Raphson iteration, which
requires that the operatorL.u/ regains the regularity lost by applying the operatorT .

We can also write this method as an explicit iteration scheme (effectively
re-proving the contraction mapping theorem). We pick u0 2 X and for n � 0 we
define unC1 as the solution of the linear equation

S.un/unC1 D 0:
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We then aim to show that, for n � 1, dX.unC1; un/ � �dX.un; un�1/. This will
ensure un is a Cauchy sequence which converges to a solution of the nonlinear
equation. Using the explicit iteration scheme (known as Picard iteration) allows
more scope for slight modification in specific cases. For example, Majda in [16],
uses this iteration scheme, modified to include a smoothing of the initial data, to
prove the short-time existence of classical solutions to multidimensional systems of
conservation laws with a convex entropy.

However, it is possible that we cannot solve the linearised problem above for v
in the same space as u, as required by Picard iteration. It may happen that we can
solve the linear equation, but only for v 2 Z, where X � Z. For example, perhaps,
given u 2 Ck , we can only prove that a solution v to the linearised equation exists
in Ck�1. We refer to this as a loss of regularity in solving the linearised problem.

To overcome this, the key idea of Nash was to return to Newton-Raphson
iteration, but to modify the scheme to include a smoothing operation at each step to
compensate for the loss of regularity. Returning to the equation T .u/ D T .u0/Cf ,
standard Newton-Raphson iteration may be written as follows. For n � 0, we set

unC1 D un C Pun:

The difference Pun is given by

Pun D L.un/gn

for

gn D f C T .u0/� T .un/

where L.u/ is a right-inverse of DT.u/.
Now let us suppose we have a family of smoothing operators Sn that regain the

regularity lost by T and L, and such that Sn ! id as n ! 1. Then there are two
obvious ways we can modify the scheme.

The simplest is to set unC1 D un C Sn Pun, i.e. we smooth Pun after applying the
operators T and L to un. Since Sn ! id as n ! 1, this scheme looks like Newton-
Raphson iteration for large n, so we might expect it to converge under certain
conditions. This method is used by Moser in [20] and Schwartz in [23]. Whilst
this is a very simple modification, it has the drawback that a solution u obtained by
this method has a much lower degree of regularity than the given data f .

The other obvious modification is to smooth un before we apply the operators T
and L. Thus we set

Pun D L.Snun/gn:

We also adjust our choice of gn (which should be smoothed) given this modification.
This method is used by Hörmander in [15] and a continuous-parameter version was
used by Nash in his original paper [21]. We motivate how to choose gn in Sect. 3.1,
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which is based on the motivation given by Alinhac and Gérard in [3]. Again, the fact
that Sn ! id as n ! 1 means the scheme looks like Newton-Raphson iteration
for large n. The advantage of this method is that the solution u obtained can be
quite close in regularity to the given data f , but generally the regularity obtained
will not be optimal. In modifying Hörmander’s method to deal with more general
Banach spaces instead of just Hölder spaces, we lose an arbitrarily small degree of
regularity if we can use fractional index spaces, or one degree of regularity if we
are using integer index spaces. Other modifications to the scheme used in practice
further reduce the degree of regularity obtained. Nevertheless, we may consider this
an improvement over Moser’s technique, which we can informally attribute to the
fact that we have carefully constructed gn to compensate for the introduction of the
smoothing operators, whereas Moser’s method involves no such modification.

1.3 Nash-Moser Iteration as an Inverse Function Theorem

It is instructive to consider a slightly different viewpoint, that is to consider Nash-
Moser iteration as an inverse function theorem for a certain class of Fréchet spaces,
which are a natural generalisation of Banach spaces.

Indeed, the standard version of the Inverse Function Theorem, which can be
proved (under slightly stronger hypotheses than usual to make things simpler) by
an application of the contraction mapping theorem with parameter, carries over
analogously to an operator T W X ! Y between Banach spaces. By this we mean
that if the Fréchet derivative DT.u/ of T is invertible at a point u 2 X , then T
itself is invertible in a neighbourhood of u. Hence, if we wish to solve the equation
T .u/ D T .u0/Cf for u near u0, where f is small, we can simply apply the inverse
function theorem.

However, it is possible in applications that we can only find an ‘unbounded’
inverse forDT.u/. For example, if we work with differential operators in the spaces
Ck of k-times differentiable functions, then we might have T W Ck ! Ck�1, but we
might only be able to find a right inverse L.u/ of DT.u/ on some subset of Ck�1,
for example onCk , so thatL.u/ W Ck ! Ck, or, even worse, on CkC1 so thatL.u/ W
CkC1 ! Ck . This is solved if we work in the spaceX D C1, since thenL.u/maps
X to itself. However, this is no longer a Banach space, but a Fréchet space. Thus we
are led to ask whether there is an inverse function theorem for Fréchet spaces. The
answer is that if we assume the existence of a certain family of smoothing operators
on our Fréchet space (which by no means exist in general, but do for most spaces
of differentiable functions commonly used), then there is a sort of inverse function
theorem. This requires that DT.u/ be invertible on a neighbourhood of u, not just
at u itself.

This point of view is elegantly considered by Hamilton in [14], who refers to
this special class of Fréchet spaces as ‘tame’ Fréchet spaces and the necessary
estimates involved on the operator T as ‘tame’ estimates. The proof of this result
uses Nash-Moser iteration, and Hamilton’s proof in particular is quite close to
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Nash’s original method. The similarity with the usual inverse function theorem
is why Nash-Moser iteration is sometimes referred to as the Nash-Moser inverse
function theorem or the Nash-Moser implicit function theorem. See also the chapter
‘Generalized Implicit Function Theorems’ written by E. Zehnder in Nirenberg [22]
for an introduction to Nash-Moser type theorems as generalisations of the standard
inverse/implicit function theorem. Another implicit function theorem in the setting
of Fréchet spaces is given by Ekeland in [10], whose approach does not rely on
Newton-Raphson iteration but on Lebesgue’s dominated convergence theorem and
Ekeland’s variational principle.

Whilst this viewpoint is conceptually simple, for actual applications to PDEs,
working in Fréchet spaces is not necessary and complicates matters, and it is easier
to consider a family of Banach spaces in which one has estimates for the linearised
equations, for example .C k/k2N or .Hs/s2R�0 .

1.4 Tame Estimates

The key estimates involved in Nash-Moser iteration are known as tame estimates.
These are estimates of the following form. (Here we use the spaces Ck for
definiteness.)

Let T W C1 ! C1.
Then T satisfies a tame estimate if

jjT .u/jjCk � Ck.1C jjujjCkCk1 /

for some fixed integer k1 and all u in some fixed bounded set U � Ck0 , for some
k0, where the constant Ck > 0 is independent of u.

The key point about this estimate is that it is affine in the norm of u on the right
hand side with the variable index k.

Similarly, the second derivative of T , D2T , is said to satisfy a tame estimate if

ˇ
ˇ
ˇ

ˇ
ˇ
ˇD

2T .u/.v1; v2/
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Ck

� Ck.jjv1jjCk1Ck jjv2jjCk2 C jjv1jjCk1 jjv2jjCk2Ck C jjv1jjCk1 jjv2jjCk2 .1C jjujjCkCk3 //

for some fixed integers k1; k2; k3 and all u in some fixed bounded set U � Ck0 , for
some k0, where the constant Ck > 0 is independent of u, v1 and v2.

Note that this estimate is also affine in the norms on the right hand side with the
variable index k, and in addition it is quadratic (with no affine terms) in .v1; v2/,
which will be a key point in the iteration. The smoothing operators will control the
large k norms in terms of lower ones at the price of poorer estimates and we require
DT to be a good approximation for T to compensate.

Note that the framework of tame estimates fits differential operators well because
of product estimates of the form
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jjfgjjHs � Cs.jjf jjHr jjgjjHs C jjf jjHs jjgjjHr /

for r > d
2

, where d is the dimension.
Similarly, we have estimates for compositions G.x/ D F.u.x// (sometimes

called Moser-type inequalities) of the form

jj@˛GjjL2 � Cs jjujjH j˛j

for u in an Hr -bounded set.
These estimates can be derived from the Sobolev embedding theorem for large

index s, and details of these estimates for certain classes of Sobolev Spaces are given
in Sect. 5.2.

2 The Abstract Setting

In order to describe Nash-Moser iteration in an abstract setting we will need to
introduce some notation, as well as the idea of a derivative in this setting. We
will simply use the notion of a directional derivative, since all we need is a linear
approximation to an operator which satisfies Taylor’s theorem.

2.1 Families of Banach Spaces and Differentiation

Definition 1. Let I be an interval in R or Z of the form Œ0; a/, Œ0; a�, or Œ0;1/,
where a > 0.

We will say fXsgs2I is a decreasing family of Banach spaces if, for each s 2 I ,
Xs is a Banach space with norm jj�jjXs , and, for s1; s2 2 I with s1 � s2, we have

Xs2 � Xs1 with jj�jjXs2 � jj�jjXs1 on Xs2 :

We will write

X1 D \s2IXs

and

X1�m D \s2I;s�mXs�m

form 2 I .

Remark 1. Note that it is convenient to use the notation X1 for the intersection of
all the Banach Spaces Xs with s 2 I , even if I is a finite interval. In the case that
I D Œ0;1/, X1�m as defined above is the same as X1, but if I is a finite interval
then they are not the same.
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Definition 2. Let fXsgs2I be a decreasing family of Banach spaces. Let ˛ W U !
X1 where U � R is open, and let t 2 U . We say ˛ is differentiable at t if there
exists a w 2 X1 such that

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

˛.t C h/� ˛.t/

h
� w

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
Xs

! 0 as h ! 0 (h ¤ 0)

for all s 2 I .
If such a w exists, we say w is the derivative of ˛ at t , and write ˛0.t/ D w or

d˛
dt .t/ D w.

We say ˛ is differentiable if it is differentiable at t for all t 2 U .

Definition 3. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces. Let T W U ! Y1�m for some m 2 I , where U � X1 is jj�jjXr -open
for some r 2 I , and let u 2 U . We say T is differentiable at u if, for each v 2 X1,
the map ˛v W .��; �/ ! Y1�m defined on a small neighbourhood of 0 in R by

˛v.t/ D T .u C tv/

is differentiable at 0 in the sense of Definition 2, and

˛0
v.0/ D DT.u/v

where DT.u/ W X1 ! Y1�m is a linear map. We call DT.u/ the derivative of T
at u.

We say T is differentiable if it is differentiable at u for all u 2 U and call DT
the derivative of T .

For an integer k � 2, we say T is k-times differentiable with k-th derivative
DkT if the following inductive definition holds.
T is k�1 times differentiable with .k�1/-th derivative at u given byDk�1T .u/ W

.X1/k�1 ! Y1�m for each u 2 U .
For each ordered set .v1; : : : ; vk�1/ 2 .X1/k�1, the map S W U ! Y1�m

defined by

S.u/ D Dk�1.u/.v1; : : : ; vk�1/

is differentiable in the above sense.
Define the k-th derivative of T at u 2 U as DkT .u/ W .X1/k ! Y1�m where

DkT .u/.v1; : : : ; vk/ D DS.u/vk:

Remark 2. We will not need all the properties of standard derivatives. We merely
require a linear approximation to within quadratic error of a nonlinear operator.
Hence we give the above fairly weak definition of differentiability and don’t worry
about questions such as whether the partial derivatives commute.

Proposition 1. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces. Let T W U ! Y1�m for some m 2 I , where U � X1 is jj�jjXr -open
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for some r 2 I . Then Taylor’s theorem holds for T . More precisely, suppose T is
k-times differentiable (in the sense of Definition 3) for some k � 1, let u 2 U ,
v 2 X1, and suppose the line segment Œu; u C v� is contained in U . Then

T .u C v/ D T .u/C DT.u/v C : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v/CRk;u.v/

where

jjRk;u.v/jjY s � 1

kŠ
sup
t2Œ0;1�

ˇ
ˇ
ˇ
ˇDkT .u C tv/.v; : : : ; v/

ˇ
ˇ
ˇ
ˇ
Y s

for all s 2 I such that s Cm 2 I .

Proof. Fix s 2 I such that s C m 2 I . Let � 2 .Y s/� be a continuous linear
functional on Y s .

Define g W J ! R by

g.t/ D � ı T .u C tv/

where J is an open interval in R containing Œ0; 1�.
Since � is a continuous linear functional on Y s , from the definition of differen-

tiability we have that g is k-times differentiable with

g.k/.t/ D � ıDkT .u C tv/.v; : : : ; v/:

Applying the one-dimensional Taylor’s theorem to obtain an expansion for g.1/
about g.0/, we have

g.1/ D g.0/C g0.0/C : : :C 1

.k � 1/Šg
k�1.0/C 1

kŠ
gk.h/hk

for some h 2 Œ0; 1� (which may depend on �). Hence

� ı T .u C v/ D

�.T .u/C DT.u/v C : : :C 1

.k � 1/Š
Dk�1T .u/.v; : : : ; v/C 1

kŠ
hkDkT .u C hv/.v; : : : ; v//

Rearranging, we have

ˇ
ˇ
ˇ
ˇ
�.T .u C v/� .T .u/C DT.u/v C : : :C 1

.k � 1/Š
Dk�1T .u/.v; : : : ; v///

ˇ
ˇ
ˇ
ˇ

� jj�jj.Y s /�
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

1

kŠ
hkDkT .u C hv/.v; : : : ; v/

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
Y s

� jj�jj.Y s /�
1

kŠ
sup
t2Œ0;1�

ˇ
ˇ
ˇ
ˇDkT .u C tv/.v; : : : ; v/

ˇ
ˇ
ˇ
ˇ
Y s
:
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Now use the Hahn-Banach theorem to pick � 2 .Y s/� with jj�jj.Y s /� D 1 such that

�.T .u C v/ � .T .u/C DT.u/v C : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v///

D
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
T .u C v/ � .T .u/C DT.u/v C : : :C 1

.k � 1/ŠD
k�1T .u/.v; : : : ; v//

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
Y s
:

We then obtain
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
T .u C v/� .T .u/C DT.u/v C : : :C 1

.k � 1/Š
Dk�1T .u/.v; : : : ; v//

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
Y s

� 1

kŠ
sup
t2Œ0;1�

ˇ
ˇ
ˇ
ˇDkT .u C tv/.v; : : : ; v/

ˇ
ˇ
ˇ
ˇ
Y s
:

This completes the proof.

Remark 3. Note that we can apply the above proposition when fXsgs2I is just
fRgs2I to obtain Taylor’s theorem for paths in Y1.

2.2 Definition of the Smoothing Operators

Definition 4. We will say a decreasing family of Banach spaces fXsgs2I satisfies
the smoothing hypothesis if there exists a family of linear operators fS�g�2R�1 such
that

S� W X0 ! X1

and, for u 2 Xs , we have

jjS�ujjXr � Cr;s�
.r�s/C jjujjXs for all r; s 2 I (1)

jju � S�ujjXr � Cr;s�
�.s�r/ jjujjXs for all r; s 2 I with r � s (2)

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

d

d�
S�u

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
Xr

� Cr;s�
r�s�1 jjujjXs for all r; s 2 I (3)

where the constant Cr;s > 0 remains bounded if r and s remain bounded.
Here .a/C denotes maxfa; 0g for a 2 R or a 2 Z.
Note d

d� S�u is the derivative of the map � 7! S�u in the sense of Definition 2,
which we require to exist for each u 2 X0.
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3 Hörmander’s Version of Nash-Moser Iteration

3.1 Motivation for the Iteration Scheme

Here we provide some motivation for the iteration scheme used by Hörmander in
[15] by comparing it to Newton-Raphson iteration. This is unnecessary for the proof
of the theorem, but the iteration scheme seems a little unmotivated without it. This
motivation is partly based on the motivation given in Alinhac and Gérard [3].

3.1.1 Newton-Raphson Iteration

In order to solve the equation

T .u/ D T .u0/C f

the Newton-Raphson method uses the following iteration scheme.

unC1 D un �L.un/.T .un/ � .T .u0/C f //

for L a right inverse of DT.
One way of justifying this is as follows.
We set

unC1 D un C Pun
where the increment Pun is to be determined. We then have

T .unC1/ D T .un/C DT.un/Pun C en

which defines the error en incurred by using the derivative of T to obtain a linear
approximation to T . By Taylor’s theorem, we expect this to be small when Pun is
small.

Let us choose Pun such that

DT.un/Pun D gn

i.e.

Pun D L.un/gn

where gn is to be determined so that un converges to a solution u of T .u/ D
T .u0/C f .

From the equation

T .unC1/ D T .un/C gn C en
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we obtain

T .unC1/ D T .u0/C
nX

mD0
gm C

nX

mD0
em

D T .u0/C
nX

mD0
gm C En C en

where

En D
n�1X

mD0
em:

Thus if we define gn by

nX

mD0
gm C En D f

we obtain

T .unC1/ D T .u0/C f C en

which we hope converges to T .u0/C f as n ! 1 since en ! 0.
The formula for gn implies g0 D f and

gnC1 D �en
D T .un/C gn � T .unC1/:

Hence

gnC1 D T .u0/C f � T .unC1/:

Thus we obtain the iteration scheme

unC1 D un �L.un/.T .un/ � .T .u0/C f //

3.1.2 Nash-Moser Iteration

We still wish to use an iteration scheme of the form

unC1 D un C Pun
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but we are now concerned with the case when the application of the operatorL.un/
to gn causes a loss of regularity with respect to un and gn. By this we mean that if
un and gn lie in Xs , then L.un/gn will lie in a larger space Xs0 for s0 < s so that
for any fixed s the norm jjunjjXs will blow up as n ! 1. This loss of regularity is
stated precisely in (5).

To overcome this, we apply smoothing operators Sn which allow us to control
jjSnunjjXs for large s in terms of jjunjjXs for small s. By choosing Sn to vary with n
so that Sn ! id in some sense as n ! 1, we hope to be able to overcome the error
introduced by these smoothing operators. In this particular version of Nash-Moser
iteration, we follow Hörmander in [15] and Alinhac and Gérard in [2] by choosing
to apply smoothing operators before the application of the operator L. Hence we
define

vn D Snun

and set

T .unC1/ D T .un/C DT.vn/Pun C en

which defines the error en incurred by using the derivative of T , evaluated at vn, to
obtain a linear approximation to T . By Taylor’s theorem, and the fact that Sn ! id,
we expect this to be small when Pun is small and n is large.

Following the same process as before, we define

Pun D L.vn/gn

where gn is to be determined so that un converges to a solution u of T .u/ D T .u0/C
f , and gn should be smoothed.

From the equation

T .unC1/ D T .un/C gn C en

we obtain

T .unC1/ D T .u0/C
nX

mD0
gm C

nX

mD0
em

D T .u0/C
nX

mD0
gm C En C en

where

En D
n�1X

mD0
em:
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Before we defined gn by

nX

mD0
gm C En D f

but since we would like gn to be smoothed, we define gn by

nX

mD0
gm D Sn.f �En/:

From this, we obtain

T .unC1/ D T .u0/C Snf CEn � SnEn C en

which we hope converges to T .u0/C f as n ! 1 since en ! 0 and Sn ! id.
The formula for gn implies g0 D S0f and

gnC1 D SnC1.f � EnC1/� Sn.f �En/
D .SnC1 � Sn/.f � En/ � SnC1en:

Note that we may split the error en up into two parts,

en D e0
n C e00

n

where

e0
n D .DT.un/ � DT.vn//Pun

is the error caused by replacing un by vn and

e00
n D T .unC1/� T .un/� DT.un/Pun

is the standard quadratic error in the Newton-Raphson scheme.

3.2 Statement and Proof of the Theorem

Theorem 1. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let u0 2 X1 and let T W Um0 !
Y 0 be continuous, where Um0 � Xm0 is a bounded open neighbourhood of u0 in
Xm0 , for some m0 2 I . Suppose also T W U ! Y1�m1 for some fixed m1 2 I ,
where U WD Um0 \ X1, and T satisfies the following conditions.
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1. T is twice differentiable in the sense of Definition 3 and

ˇ
ˇ
ˇ
ˇD2T .u/.v1; v2/

ˇ
ˇ
ˇ
ˇ
Y s

� C1s .jjv1jjXsCm1 jjv2jjXm2 C jjv1jjXm2 jjv2jjXsCm1 C jjv1jjXm2 jjv2jjXm2 .1C jjujjXsCm3 //

(4)

for all u 2 U , v1; v2 2 X1 and s 2 I such that s C m1; s Cm3 2 I , for some
fixed numbers m1;m2;m3 2 I , where the constant C1

s > 0 is bounded for s
bounded.

2. For each u 2 U , there exists a linear map L.u/ W Y1 ! X1�maxfl1;m4g such
that

DT.u/L.u/ D id

and

jjL.u/gjjXs � C2
s .jjgjjY sCl1 C jjgjjY l1 jjujjXsCm4 / (5)

for all u 2 U , g 2 Y1 and s 2 I such that s C l1; s Cm4 2 I , for some fixed
numbers l1;m4 2 I , where the constant C2

s > 0 is bounded for s bounded.

Let r0 2 I with r0 > maxfm0;m4; l1Cm1Cm2; 2m2;
l1Cm3
2

Cm2g and let r0C1 <

s1 2 I such that s1 C maxfl1;m4g 2 I be sufficiently large depending on the
constantsmi .

Then there exists a constant 0 < � � 1 such that if f 2 Y r0Cl1 with

jjf jjY r0Cl1 � �

we can find u 2 Um0 which solves the equation

T .u/ D T .u0/C f:

Moreover, let J D fr 2 I W f 2 Y rCl1 ; r � r0g. Then for each r 2 J and s 2 I

with s < r , assuming that s1 C r � r0 C maxfl1;m4g 2 I , we have u 2 Xs , and
there exists a constantKr;s independent of f such that

jju � u0jjXs � Kr;s jjf jjY rCl1 :

Proof.
Step 1 – Setup of the iteration scheme
Let f 2 Y r0Cl1 be such that jjf jjY r0Cl1 � �, where 0 < � � 1 will be chosen later.

Denote the smoothing operators on .Xs/s2I by fSX� g��1 and the smoothing
operators on .Y s/s2I by fSY� g��1.

We use an iteration scheme to construct a sequence .un/n�0 inX1 which we aim
to show converges to a solution u 2 Um0 of T .u/ D T .u0/C f .
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For n � 0, define

�n D �0 C n

where �0 > 1 will be chosen later depending only on r0, the constants mi ; l1, and
the constants in the smoothing hypothesis and in the inequalities satisfied by D2T

and L.
Note that

�nC1 � �n C 1 � 2�n:

We have dropped the parameter � from the definition of �n in Hörmander’s version
since he introduced it to make e00

n as small as e0
n, but this will turn out to be

automatically true under our hypotheses.
For n � 0, define

vn D SX�nun

Pun D L.vn/gn

unC1 D un C Pun
where gn is defined below.

Note that the overdotPis simply notation indicating a sort of difference and does
not denote differentiation.

For n � 0, define

g0 D SY�0f

gnC1 D .SY�nC1
� SY�n/.f � En/ � SY�nC1

en

where

En D
n�1X

mD0
em

(so E0 D 0), and the error en is defined below, for n � 0.

e0
n D .DT.un/ � DT.vn//Pun
e00
n D T .un C Pun/ � T .un/� DT.un/Pun
en D e0

n C e00
n :

Note that since g0 is defined in terms of f only, and we are given u0, from which
v0 is obtained immediately, the iteration scheme can be determined for n � 0 in the
order Pun, unC1, vnC1, e0

n, e
00
n , en, En, gnC1.
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Note that en is defined so that it measures how well T .unC1/ � T .un/ is
approximated by DT.vn/Pun, by which we mean

T .unC1/� T .un/ D DT.vn/Pun C en

D gn C en:

Also note that the formula for gnC1 can be rearranged to give

gnC1 D .SY�nC1
f � SY�nf /� .SY�nC1

EnC1 � SY�nEn/:

We thus obtain

T .unC1/ � T .u0/ D
nX

mD0
.T .umC1/� T .um//

D
nX

mD0
gm C

nX

mD0
em

D SY�nf � SY�nEn C EnC1

D SY�nf C .En � SY�nEn/C en

which we hope converges to f as n ! 1, since, roughly speaking, SY�n ! id and
en ! 0.
Step 2 – Obtaining estimates for the iterates via induction
We will show the following inductive hypothesis holds.

jjPunjjXs � K jjf jjY r0Cl1 �
s�r0�1
n for all s 2 Œ0; s1� ŒHn�

where the constant K > 0 will be chosen later, with K independent of n, f and �,
but depending on �0. We will choose � sufficiently small such that K jjf jjY r0Cl1 �
K� � 1.

In what follows, Cs > 0 represents a constant, which is independent of n, f and
�, and is bounded for s bounded. It will also be independent of �0, which will allow
us to choose �0 so that �n is large compared to Cs for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that ŒHm� is true for all 0 � m � n and let us show that ŒHnC1�
follows. (We will leave the proof of ŒH0� until later.)

Pick a real number 0 < � < 1 such that r0 > maxfm0;m4; l1 C m1 C
m2; 2m2;

l1Cm3
2

Cm2g C 2�.
For s 2 I , define

P.s/ D
(

.s � r0/C for js � r0j � �;

� for js � r0j < �:
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We claim that the following estimates for 0 � m � nC 1 follow directly from ŒHm�

for 0 � m � n.

jjum � u0jjXs � CsK jjf jjY r0Cl1 �
P.s/
m for s 2 Œ0; s1�; (6)

ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK jjf jjY r0Cl1 �
P.s/
m for s 2 I; (7)

ˇ
ˇ
ˇ
ˇ.um � u0/� SX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK jjf jjY r0Cl1 �
.s�r0/
m for s 2 Œ0; s1�; (8)

jjum � vmjjXs � Cs�
s�r0
m for s 2 Œ0; s1�; (9)

jjvmjjXs � Cs�
P.s/
m for s 2 I;

(10)

jjumjjXs � Cs�
P.s/
m for s 2 Œ0; s1�:

(11)

Indeed, for 0 � m � n, we have

jjumC1 � u0jjXs D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

mX

lD0
Pul
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Xs

�
mX

lD0
jjPul jjXs

� K jjf jjY r0Cl1

mX

lD0
�
s�r0�1
l

D K jjf jjY r0Cl1

mX

lD0
.�0 C l/s�r0�1

� K jjf jjY r0Cl1

mX

lD0
.�0 C l/Q.s/�1

where

Q.s/ D
(

s � r0 for js � r0j � �;

� for js � r0j < �:

Set h.x/ D .�0 C x/Q.s/�1 for x 2 Œ0;1/. Then

mX

lD0
.�0 C l/Q.s/�1 �

Z mC1

0

h.x/dx

D
(

1
s�r0 ..�0 CmC 1/s�r0 � �

s�r0
0 / for js � r0j � �

1
�
..�0 CmC 1/� � ��0 / for js � r0j < �
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D
(

1
s�r0 .�

s�r0
mC1 � �s�r00 / for js � r0j � �

1
�
.�
�
mC1 � �

�
0 / for js � r0j < �

�

8

ˆ̂
<

ˆ̂
:

1
s�r0 �

s�r0
mC1 for s � r0 � �

1
r0�s �

�.r0�s/
0 for s � r0 � ��

1
�
�
�
mC1 for js � r0j < �

This implies (6), noting that the constant Cs remains bounded for s bounded. (We
introduced � to avoid a constant involving 1

s�r0 which blows up as s ! r0.)
For s � r0 C �, use (1) from the smoothing hypothesis and (6) to obtain

ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� Cs�
s�r0��
m jjum � u0jjXr0C�

� CsK jjf jjY r0Cl1 �
s�r0��
m ��m

� CsK jjf jjY r0Cl1 �
s�r0
m :

For s < r0 C �, using (1) from the smoothing hypothesis and (6), we have
ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK jjf jjY r0Cl1 �
P.s/
m :

This proves (7).
For s � r0 C �, use (2) from the smoothing hypothesis and (6) to obtain

ˇ
ˇ
ˇ
ˇ.um � u0/� SX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� Cs�
s�r0��
m jjum � u0jjXr0C�

� CsK jjf jjY r0Cl1 �
s�r0��
m ��m

� CsK jjf jjY r0Cl1 �
s�r0
m :

For r0 C � < s � s1, using (6) and (7), we have

ˇ
ˇ
ˇ
ˇ.um � u0/� SX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK jjf jjY r0Cl1 �
s�r0
m

as required. This proves (8).
Now

jjum � vmjjXs D ˇ
ˇ
ˇ
ˇum � SX�mum

ˇ
ˇ
ˇ
ˇ
Xs

D ˇ
ˇ
ˇ
ˇ.um � u0/ � SX�m.um � u0/C u0 � SX�mu0

ˇ
ˇ
ˇ
ˇ
Xs

� ˇ
ˇ
ˇ
ˇ.um � u0/� SX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

C ˇ
ˇ
ˇ
ˇu0 � SX�mu0

ˇ
ˇ
ˇ
ˇ
Xs

� CsK jjf jjY r0Cl1 �
s�r0
m C Cs�

s�r0
m jju0jjXmaxfr0;sg

by applying (8) to the first term and (1) or (2) from the smoothing hypothesis to the
second term. This proves (9). (Note K jjf jjY r0Cl1 � K� � 1.)
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Similarly,

jjvmjjXs D ˇ
ˇ
ˇ
ˇSX�mum

ˇ
ˇ
ˇ
ˇ
Xs

D ˇ
ˇ
ˇ
ˇSX�m.um � u0/C SX�mu0

ˇ
ˇ
ˇ
ˇ
Xs

� ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

C ˇ
ˇ
ˇ
ˇSX�mu0

ˇ
ˇ
ˇ
ˇ
Xs

� ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

C Cs jju0jjXs
by (1) from the smoothing hypothesis. Now use (7) to obtain (10).

We have

jjumjjXs � jjum � u0jjXs C jju0jjXs :
Now apply (6) to obtain (11).

This completes the proof of the claim.
Note that, using (6) and (9), we have

jjvm � u0jjXm0 � jjvm � umjjXm0 C jjum � u0jjXm0
� C�m0�r0m C CK��P.m0/m

� C�m0�r0m C CK�:

Thus by taking � sufficiently small depending onK and C , and �0 sufficiently large
depending on C , we have vn, vnC1 2 U . Also note that (6) in the case s D m0

implies un 2 U for � sufficiently small, and ŒHn� implies that un C Pun 2 U for �
sufficiently small. This guarantees that en and PunC1 are well-defined. Note that the
same argument also shows that the line segments Œun; un C Pun� and Œun; vn� are in U
for � sufficiently small.

Estimate of e0
n. We claim that for all s 2 Œ0; s1 � maxfm1;m3g�,

ˇ
ˇ
ˇ
ˇe0
n

ˇ
ˇ
ˇ
ˇ
Y s

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n

where

M.s/ D maxfs Cm1 Cm2 � 2r0; .s Cm3 � r0/C C 2m2 � 2r0g:

Indeed, we have

e0
n D .DT.un/� DT.vn//Pun

D .DT..un � vn/C vn/ � DT.vn//Pun:
Note that, since T is twice differentiable in the sense of Definition 3, the map

u 7! DT.u/Pun
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is differentiable in the sense of Definition 3 with derivative acting on v given by

D2T .u/.Pun; v/:

Hence, applying Taylor’s theorem, (4), ŒHn� and the estimates (9) and (10), we have,
for s 2 Œ0; s1 � maxfm1;m3g�,
ˇ
ˇ
ˇ
ˇe0
n

ˇ
ˇ
ˇ
ˇ
Y s

D jj.DT..un � vn/C vn/� DT.vn//PunjjY s
� sup

t2Œ0;1�

ˇ
ˇ
ˇ
ˇD2T .t.un � vn/C vn/.Pun; un � vn/

ˇ
ˇ
ˇ
ˇ
Y s

� Cs.jjPunjjXsCm1 jjun � vnjjXm2 C jjPunjjXm2 jjun � vnjjXsCm1

C jjPunjjXm2 jjun � vnjjXm2 .1C sup
t2Œ0;1�

jjvn C t.un � vn/jjXsCm3 //

� Cs.K jjf jjY r0Cl1 �
sCm1�r0�1
n �m2�r0n CK jjf jjY r0Cl1 �

m2�r0�1
n �sCm1�r0n

CK jjf jjY r0Cl1 �
m2�r0�1
n �m2�r0n .1C �P.sCm3/n C �sCm3�r0n //

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n :

Estimate of e00
n . We claim that for all s 2 Œ0; s1 � maxfm1;m3g�,

ˇ
ˇ
ˇ
ˇe00
n

ˇ
ˇ
ˇ
ˇ
Y s

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n :

Indeed, we have

e00
n D T .un C Pun/� T .un/� DT.un/Pun:

Hence, applying Taylor’s theorem, (4), ŒHn� and the estimate (11), we have, for
s 2 Œ0; s1 � maxfm1;m3g�,
ˇ
ˇ
ˇ
ˇe00
n

ˇ
ˇ
ˇ
ˇ
Y s

� sup
t2Œ0;1�

ˇ
ˇ
ˇ
ˇD2T .un C t Pun/.Pun; Pun/

ˇ
ˇ
ˇ
ˇ
Y s

� Cs.jjPunjjXsCm1 jjPunjjXm2 C jjPunjj2Xm2 .1C sup
t2Œ0;1�

jjun C t PunjjXsCm3 //

� Cs.K jjf jjY r0Cl1 �
sCm1�r0�1
n K jjf jjY r0Cl1 �

m2�r0�1
n

CK2 jjf jj2
Y r0Cl1

�2m2�2r0�2n .1C �P.sCm3/n CK jjf jjY r0Cl1 �
sCm3�r0�1
n //

� ��1
n CsK jjf jjY r0Cl1 �

M.s/�1C�
n

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n

where we have usedK jjf jjY r0Cl1 � K� � 1.
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Estimate of en. Adding the estimates for e0
n and e00

n , we obtain

jjenjjY s � CsK jjf jjY r0Cl1 �
M.s/�1C�
n

for all s 2 Œ0; s1 � maxfm1;m3g�.
Estimate of gnC1. We claim that for all s 2 I ,

jjgnC1jjY s � Cs.K jjf jjY r0Cl1 �
M.s/�1C�
n C jjf jjY r0Cl1 �

s�r0�l1�1
n /:

Indeed, we have

gnC1 D .SY�nC1
� SY�n/.f � En/� SY�nC1

en:

Note that for any w 2 Y s0 ,
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/w
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0�1
n jjwjjY s0

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s0 D r0 C l1, we have

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/f
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs�
s�r0�l1�1
n jjf jjY r0Cl1 :

We also have
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.SY�nC1

� SY�n/En
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0�1
n jjEnjjY s0 :

Now, for s0 2 Œ0; s1 � maxfm1;m3g�, we have, from the estimate for en,

jjEnjjY s0 D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1X

mD0
em

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Y s

0

� Cs0K jjf jjY r0Cl1

n�1X

mD0
�M.s

0/�1C�
m

� Cs0K jjf jjY r0Cl1 �
M.s0/C�
n

if M.s0/ � 0, by the integral comparison used before. Note that M.s0/ has slope 1
for large enough s0 depending on r0 and the constants mi , so to achieve M.s0/ � 0

it suffices to take s0 large in relation to r0 and the constantsmi . To do this we require
s1 sufficiently large in relation to r0 and the constantsmi .
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Hence
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/En

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0Cs0;sK jjf jjY r0Cl1 �
M.s0/Cs�s0�1C�
n

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n

by choosing s0 sufficiently large compared to r0 and the constants mi so that M.s/
has slope 1 for s � s0. (Hence M.s0/ � s0 � M.s/ � s for all s since M.s/ � s

is decreasing for s � s0 and constant for s � s0.) Again, to do this we require s1
sufficiently large in relation to r0 and the constantsmi . This fixes s1.

Similarly, for s0 sufficiently large, we have

ˇ
ˇ
ˇ

ˇ
ˇ
ˇS

Y
�nC1

en

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0
n jjenjjY s0

� Cs0;sCs0K jjf jjY r0Cl1 �
M.s0/Cs�s0�1C�
n

� CsK jjf jjY r0Cl1 �
M.s/�1C�
n :

Hence the estimate for gnC1 holds.

Estimate of PunC1. We have

PunC1 D L.vnC1/gnC1:

Hence, for all s 2 I such that s C l1; s C m4 2 I , using (5), the estimate (10) and
the estimate for gnC1, we have

jjPunC1jjXs � Cs.jjgnC1jjY sCl1 C jjgnC1jjY l1 .1C jjvnC1jjXsCm4 //

� Cs.K jjf jjY r0Cl1 �
M.sCl1/�1C�
nC1 C jjf jjY r0Cl1 �

s�r0�1
nC1

C .K jjf jjY r0Cl1 �
M.l1/�1C�
nC1 C jjf jjY r0Cl1 �

�r0�1
nC1 /.1C �

P.sCm4/
nC1 //

� Cs.K jjf jjY r0Cl1 �
M.l1/Cs�1C�
nC1 C jjf jjY r0Cl1 �

s�r0�1
nC1 / (12)

since �P.sCm4/nC1 � �snC1 because r0 > m4 C 2�, andM.l1 C s/ � M.l1/C s because
M has slope at most 1.

We want to obtain

jjPunC1jjXs � K jjf jjY r0Cl1 �
s�r0�1
nC1

for s 2 Œ0; s1�.
To make the first term sufficiently small, we require

�� WD M.l1/C r0 C � < 0:
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Then we can choose �0 large enough so that

Cs�
M.l1/Cs�1C�
nC1 D Cs�

s�r0�1
nC1 �

��
nC1 � Cs�

s�r0�1
nC1 �

��
0 � 1

2
�
s�r0�1
nC1

for all s 2 Œ0; s1�.
We note thatM.l1/Cr0C� < 0 if and only if r0�� > l1Cm1Cm2, r0�� > 2m2

and r0 � � > m2 C l1Cm3
2

, which indeed hold by the choice of �.
To make the second term sufficiently small, we take K � 2Cs for all s 2 Œ0; s1�.
This gives ŒHnC1�.

Proof of ŒH0� We have

g0 D SY�0f

and

v0 D SX�0u0:

Hence

jjPu0jjXs D ˇ
ˇ
ˇ
ˇL.SX�0u0/S

Y
�0
f
ˇ
ˇ
ˇ
ˇ
Xs

� Cs.
ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y sCl1

C ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y l1
.1C ˇ

ˇ
ˇ
ˇSX�0u0

ˇ
ˇ
ˇ
ˇ
XsCm4

//

� Cs
ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cs jjf jjY r0Cl1 �
.s�r0/C
0 by (1) and (2) from the smoothing hypothesis

� K jjf jjY r0Cl1 �
s�r0�1
0

for all s 2 Œ0; s1�, assuming that K is sufficiently large compared to �0 and Cs for
s 2 Œ0; s1�.

This is ŒH0�.
Step 3 – Better estimates if f 2 Y rCl1 for r > r0
Let r 2 J , so that f 2 Y rCl1 , where r � r0.

We will show that, for all n � 0 and for all s 2 I such that s C maxfm1;m3g C
maxfl1;m4g 2 I , we have

jjPunjjXs � Cr;s jjf jjY rCl1 �
s�r�1
n (13)

where the constant Cr;s > 0 is independent of n and f .
Firstly, note that we have proved ŒHn� for n � 0, and hence all the estimates

from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of n.
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We claim by induction on k � 0 that for all s 2 I such that sCmaxfl1;m4g 2 I ,
we have

jjPunjjXs � Ck;r;s jjf jjY rCl1 �
s�r0��k�1
n ŒGk�

where the constant Ck;r;s > 0 is independent of n and f , and

�k D minfk�; r � r0g:
Indeed, the estimate (12) for PunC1 in step 2 implies that

jjPunjjXs � Cs jjf jjY r0Cl1 �
s�r0�1
n (14)

for all s 2 I such that s C maxfl1;m4g 2 I (not just s 2 Œ0; s1� which would follow
directly from ŒHn�).

Using this, we can obtain the following new versions of the estimates (9)–(11)
for all s 2 I such that sCmaxfl1;m4g 2 I (not just s 2 Œ0; s1�) via exactly the same
calculations

jjum � vmjjXs � Cs�
s�r0
m ; (15)

jjvmjjXs � Cs�
P.s/
m ; (16)

jjumjjXs � Cs�
P.s/
m : (17)

Using the fact that jjf jjY r0Cl1 � jjf jjY rCl1 , (14) immediately implies ŒG0�.
Now we assume ŒGk� holds and aim to show ŒGkC1� holds.
Now we want to obtain new estimates for e0

n and e00
n . Note that in the estimates for

both of these there was at least one factor involving Pun in each term. If we estimate
this one factor using the new estimate given by ŒGk� and the other quantities using
(14) and the slightly modified estimates (15)–(17), we obtain

jjenjjY s � Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n

for all s 2 I such that s C maxfm1;m3g C maxfl1;m4g 2 I . The constant Ck;r;s is
independent of f since we have only used the new estimate given by ŒGk� in one
factor, and the other estimates we have used involve jjf jjY r0Cl1 , which is bounded
by � � 1.

This implies that for s0 2 I such that s0 C maxfm1;m3g C maxfl1;m4g 2 I , we
have

jjEnjjY s0 D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1X

mD0
em

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Y s

0

� Ck;r;s0 jjf jjY rCl1

n�1X

mD0
�M.s

0/�1C���k
m

� Ck;r;s0 jjf jjY rCl1 �
M.s0/C���k
n (18)
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as long asM.s0/ � �k . It is possible to pick such an s0 if s1Cr�r0Cmaxfl1;m4g 2 I
given the fact that M.s1 � maxfm1;m3g/ � 0 and M.s/ has slope 1 for s � s1 �
maxfm1;m3g.

Hence
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/En

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;kCk;r;s�
M.s0/Cs�s0�1C���k
n

� Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n

as long as M.s0/ � �k and s0 is sufficiently large compared to r0 and the constants
mi so that M.s/ has slope 1 for s � s0.

We also have the estimate
ˇ
ˇ
ˇ

ˇ
ˇ
ˇS

Y
�nC1

en

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n :

In addition we can use the new estimate
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.SY�nC1

� SY�n/f
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cr;s�
s�r�l1�1
n jjf jjY rCl1 :

This gives us the following new estimate for gnC1, for all s 2 I ,

jjgnC1jjY s � Ck;r;s jjf jjY rCl1 .�
M.s/�1C���k
n C �s�r�l1�1n /:

From this we obtain, for all s 2 I such that s C maxfl1;m4g 2 I ,

jjPunjjXs � Cr;s jjf jjY rCl1 .�
M.l1/Cs�1C���k
n C �s�r�1n /

� Cr;s jjf jjY rCl1 .�
s�r0�1��k��
n C �s�r�1n /

� Cr;s jjf jjY rCl1 �
s�r0��kC1�1
n

where we have used the fact that M.l1/C r0 C � D �� .
This is ŒGkC1�.
For large enough k, we have k� � r � r0, so �k D r � r0 and this gives (13).

Step 4 – Convergence to a solution
Let r 2 J , so that f 2 Y rCl1 , where r � r0.

Using (13), we have

nX

mD0
jjumC1 � umjjXs D

nX

mD0
jjPumjjXs

� Cr;s jjf jjY rCl1 �
.s�r/C
nC1

for r ¤ s.
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Thus

nX

mD0
jjumC1 � umjjXs

converges as n ! 1 for s < r . Hence, by completeness, un ! u in Xs as n ! 1,
for all s < r , for some u 2 \0�s<rXs .

Note the above calculation also implies that

jjun � u0jjXs � Cr;s jjf jjY rCl1

for s < r , so we have

jju � u0jjXs � Cr;s jjf jjY rCl1 :

Next we claim that

T .unC1/ � T .u0/ ! f

in Xs as n ! 1, for all s < r .
Indeed,

T .unC1/ � T .u0/ D SY�nf C .En � SY�nEn/C en

so

T .unC1/� T .u0/ � f D .SY�nf � f /C .En � SY�nEn/C en:

By (2) from the smoothing hypothesis, we have

ˇ
ˇ
ˇ
ˇSY�nf � f

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cr;s�
s�r
n jjf jjY rCl1 ! 0 as n ! 1:

Also,

ˇ
ˇ
ˇ
ˇEn � SY�nEn

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cs;s0�
s�s0
n jjEnjjY s0Cl1 for s0 � s

� Cs;s0�
s�s0
n Cr;s�

M.s0Cl1/C��.r�r0/
n jjf jjY rCl1

using (18), for s0 large enough such that M.s0 C l1/ � r � r0

� Cr;s�
M.s0Cl1/Cs�s0C��.r�r0/
n jjf jjY rCl1

� Cr;s�
s�r
n jjf jjY rCl1 ! 0 as n ! 1

since M.s0 C l1/C �C r0 � M.l1/C �C r0 C s0 < s0.
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Finally,

jjenjjY sCl1 � Cr;s�
M.sCl1/C��.r�r0/�1
n jjf jjY rCl1 ! 0 as n ! 1

since M.s C l1/C �C r0 � M.l1/C �C r0 C s < s.
This proves the claim.
Now since T W U ! Y 0 is continuous as a map from Xm0 to Y 0, and r0 > m0,

so un ! u in Xm0 , we have that T .un/ ! T .u/ in Y 0, hence T .u/ D T .u0/C f as
required.

This completes the proof.

Remark 4. We make a remark here on the rate of convergence of the above scheme
as compared to the Newton-Raphson scheme. Since we have in mind applying
the result in existence proofs in PDE problems, we have made no effort to optimise
the rate of convergence in the above scheme in any way. One of the key features
of the Newton-Raphson scheme is that the rate of convergence is quadratic, i.e. the
error at step nC1 is proportional to the square of the error at step n. However, we can
see in the above scheme that the error jjT .unC1/� T .u0/ � f jjXs is proportional to
�s�rn where r > s is such that f 2 Y rCl1 , and �n increases like n. Thus according
to the crude bounds we have in the above proof, the ratio of the errors at steps n and
nC 1 may tend to 1 as n ! 1, although it may be possible to better by being more
careful.

4 Modified Version of Nash-Moser Iteration

4.1 Changes from Hörmander’s Iteration Scheme

Here, we introduce two modifications to Hörmander’s scheme which will allow it
to be applied as in Coulombel and Secchi [8]. The basic principle is that the error
T .un/�T .u0/�f in the above scheme tends to zero, so we may introduce additional
approximations into the scheme that can be controlled in terms of this error. One
disadvantage is that we lose regularity with respect to f since we need this error to
be controlled to high order.

Firstly, we note that it may be inconvenient to solve the linearised system

DT.u/v D g:

It may in fact be more convenient to solve the system

A.u/v D g

where the operator A.u/ is approximately equal to DT.u/, such that A.u/ � DT.u/
can be controlled in terms of the error T .u/ � T .u0/ � f . This modification was
made by Alinhac in [2] when he introduced the ‘good unknown’.
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Secondly, it may only be possible to solve the linearised system

A.u/v D g

under certain constraints on u which are not preserved by the iteration scheme,
which was the problem encountered by Coulombel and Secchi in [8]. Abstractly, we
suppose that the linear system can only be solved for u 2 V , whereas the iteration
scheme only preserves u 2 U . In fact under the iteration scheme we are trying to
solve the problem

A.vn/Pun D gn

where

vn D Snun:

Therefore we denote by R an operator that maps U to V and set wn D R.vn/ and
solve the system

A.wn/Pun D gn:

This will require that R.u/� u is controlled in terms of the error T .u/� T .u0/� f
and also that R and the smoothing operators satisfy some commutation estimates.

4.2 Statement and Proof of the Theorem

Theorem 2. Let fXsgs2I and fY sgs2I be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let u0 2 X1 and let T W Um0 !
Y 0 be continuous, where Um0 � Xm0 is a bounded open neighbourhood of u0 in
Xm0 , for some m0 2 I . Suppose also T W U ! Y1�m1 for some fixed m1 2 I ,
where U WD Um0 \ X1. Let f 2 Y s1�maxfm1;m3g with jjf jjY s1�maxfm1;m3g � C0,
where s1;m3 2 I are defined below and C0 is a constant. Assume the following
conditions are satisfied, where the constants are independent of f (at least for
jjf jjY s1�maxfm1;m3g � C0).

1. T is twice differentiable in the sense of Definition 3 and
ˇ
ˇ
ˇ
ˇD2T .u/.v1; v2/

ˇ
ˇ
ˇ
ˇ
Y s

� C1
s .jjv1jjXsCm1 jjv2jjXm2 C jjv1jjXm2 jjv2jjXsCm1 C jjv1jjXm2 jjv2jjXm2 .1C jjujjXsCm3 //

(19)

for all u 2 U , v1; v2 2 X1 and s 2 I such that s C m1; s Cm3 2 I , for some
fixed numbers m1;m2;m3 2 I , where we assume maxfm1;m3g > 0, and the
constant C1

s > 0 is bounded for s bounded. Also,

jjDT.u/vjjY s � C2
s .jjvjjXsCm1 C jjvjjXm2 .1C jjujjXsCm3 // (20)
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for all u 2 U , v 2 X1 and s 2 I such that s C m1; s C m3 2 I , where the
constant C2

s > 0 is bounded for s bounded.
2. For each u 2 U , there exists an operator A.u/ W X1 ! Y1�m1 such that

jj.A.u/� DT.u//vjjY s
� C3

s .jjvjjXsCm5 jjT .u/� T .u0/ � f jjY l3 C jjvjjXm6 jjT .u/� T .u0/ � f jjY sCl4

C jjvjjXm6 jjT .u/� T .u0/ � f jjY l3 .1C jjujjXsCm9 / (21)

for all v 2 X1 and s 2 I such that sCm5; sCm9 2 I , sC l4Cmaxfm1;m3g �
s1, for some fixed numbers m5;m6;m9; l3; l4 2 I , where the constant C3

s > 0 is
bounded for s bounded.

Also, for each v 2 X1 that map defined on U by Av W u 7! A.u/v is
differentiable with

jjDAv.u/hjjY s
� C4

s .jjhjjXsCm1 jjvjjXm2 C jjhjjXm2 jjvjjXsCm1 C jjhjjXm2 jjvjjXm2 .1C jjujjXsCm3 //

(22)

for all h 2 X1 and s 2 I such that s C m1; s C m3 2 I , where the constant
C4
s > 0 is bounded for s bounded.

3. For each u 2 V , where u0 2 V � X1�m7 , there exists a linear map B.u/ W
Y1 ! X1�maxfl1;m4Cm7g such that

A.u/B.u/ D id

and

jjB.u/gjjXs � C5
s .jjgjjY sCl1 C jjgjjY l1 jjujjXsCm4 / (23)

for all u 2 V , g 2 Y1 and s 2 I such that s C l1; s C m4 C m7 2 I , for
some fixed numbers l1;m4;m7 2 I , where the constant C5

s > 0 is bounded for s
bounded.

4. There exists an operator R W U ! V such that

jjR.u/� ujjX0 � C jjT .u/� T .u0/ � f jjY l2 (24)

for some fixed number l2 2 I , where we assume l2 � l1 (else increase l1), and
some constant C > 0. In addition

jjR.u/jjXs � C6
s .1C jjujjXm8 /.1C jjujjXsCm7 / (25)

for all u 2 U and s 2 I such that s Cm7 2 I , for some fixed number m8 2 I ,
where fSX� g��1 are the smoothing operators on .Xs/s2I , and the constant C6

s >

0 is bounded for s bounded.
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We also assume the commutator estimate

ˇ
ˇ
ˇ
ˇR.SX� u/� SX� R.u/

ˇ
ˇ
ˇ
ˇ
Xs

� Cr0 ;r;s.�
s�r .1C jjujjXm8 /.1C jjujjXrCm7 /C ��r0

.1C jjujjXsCm7 /.1C jjujjXr0Cm8 //

(26)

for all u 2 U and r 0; r; s 2 I such that r C m7; s C m7; r
0 C m8 2 I , where

fSX� g��1 are the smoothing operators on .Xs/s2I , and the constant Cr 0;r;s > 0 is
bounded for r 0; r; s bounded.

Let r0 2 I with r0 > maxfm0Cmaxfm7;m8g; m4;m9; l1Cm1Cm2Cmaxfm7;m8g;
2m2C2maxfm7;m8g; l1Cm32

Cm2Cmaxfm7;m8g; l1Cmaxfm5;m6gC .l3� l1/C;
l1Cm6Cmaxfm1;m3gCl4g and let s1 2 I with r0C1 < s1, r0Cmaxfm1;m3gCl1 �
s1 and s1 C maxfl1;m4 Cm7g 2 I be sufficiently large depending on the constants
mi; li .

Then there exists a constant 0 < � � 1 such that if

jjf jjY r0Cl1 � �

we can find u 2 Um0 which solves the equation

T .u/ D T .u0/C f:

Moreover, suppose that f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C
maxfl1;m4 C m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g � Cs2 . Assume also that
the estimate (21) holds for all s 2 Œ0; s2 � l4 � maxfm1;m3g�. Then for each r 2
Œr0; s2 � maxfm1;m3g � l1� and s 2 I with s < r , assuming that s1 C r � r0 C
maxfl1;m4 Cm7g 2 I , we have u 2 Xs , and there exists a constant Kr;s , possibly
increasing with Cs2 , but otherwise independent of f , such that

jju � u0jjXs � Kr;s jjf jjY rCl1

Proof.
Step 1 – Setup of the iteration scheme
Assume that jjf jjY r0Cl1 � �, where 0 < � � 1 will be chosen later.

Denote the smoothing operators on .Xs/s2I by fSX� g��1 and the smoothing
operators on .Y s/s2I by fSY� g��1.

We use an iteration scheme to construct a sequence .un/n�0 inX1 which we aim
to show converges to a solution u 2 Um0 of T .u/ D T .u0/C f .

For n � 0, define

�n D �0 C n

where �0 > 1 will be chosen later depending only on r0, the constantsmi ,li and the
constants in the smoothing hypothesis and in the inequalities satisfied by DT,D2T ,
A, B and R.
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Note that

�nC1 � �n C 1 � 2�n:

For n � 0, define

vn D SX�nun

wn D R.vn/

Pun D B.wn/gn

unC1 D un C Pun
where gn is defined below.

Note that the overdotPis simply notation indicating a sort of difference and does
not denote differentiation.

For n � 0, define

g0 D SY�0f

gnC1 D .SY�nC1
� SY�n/.f � En/ � SY�nC1

en

where

En D
n�1X

mD0
em

(so E0 D 0), and the error en is defined below, for n � 0,

e0
n D .A.un/� A.wn//Pun;
e00
n D T .un C Pun/� T .un/ �A.un/Pun;
en D e0

n C e00
n :

Note that since g0 is defined in terms of f only, and we are given u0, from which
v0 is obtained immediately, the iteration scheme can be determined for n � 0 in the
order Pun, unC1, vnC1, wnC1, e0

n, e00
n , en, En, gnC1.

Note that en is defined so that it measures how well T .unC1/ � T .un/ is
approximated by A.wn/Pun, by which we mean

T .unC1/� T .un/ D A.wn/Pun C en

D gn C en:

Also note that the formula for gnC1 can be rearranged to give

gnC1 D .SY�nC1
f � SY�nf /� .SY�nC1

EnC1 � SY�nEn/:
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We thus obtain

T .unC1/ � T .u0/ D
nX

mD0
.T .umC1/� T .um//

D
nX

mD0
gm C

nX

mD0
em

D SY�nf � SY�nEn C EnC1

D SY�nf C .En � SY�nEn/C en

which we hope converges to f as n ! 1, since, roughly speaking, SY�n ! id and
en ! 0.
Step 2 – Obtaining estimates for the iterates via induction
We will show the following inductive hypothesis, ŒHn�, holds.

jjPunjjXs � K1 jjf jjY r0Cl1 �
s�r0�1
n for all s 2 Œ0; s1�

jjT .un/� T .u0/� f jjY sCl1 � K2 jjf jjY r0Cl1 �
s�r0
n for s 2 Œ0; r0�

where the constants K1;K2 > 0 will be chosen later, with K1;K2 independent of
n, f and �, but depending on �0, and with K2 depending on K1. We will choose
� sufficiently small such that K1 jjf jjY r0Cl1 � K1� � 1 and K2 jjf jjY r0Cl1 �
K2�� 1.

In what follows, Cs > 0 represents a constant, which is independent of n, f and
�, and is bounded for s bounded. It will also be independent of �0, which will allow
us to choose �0 so that �n is large compared to Cs for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that ŒHm� is true for all 0 � m � n and let us show that ŒHnC1�
follows. (We will leave the proof of ŒH0� until later.)

Pick a real number 0 < � < 1 such that r0 > maxfm0 C maxfm7;m8g; m4;m9;

l1Cm1 Cm2C maxfm7;m8g; 2m2C2maxfm7;m8g; l1Cm32
Cm2C maxfm7;m8g;

l1 C maxfm5;m6g C .l3 � l1/C; l1 Cm6 C maxfm1;m3g C l4g C 2� and
� < maxfm1;m3g.

For s 2 I , define

P.s/ D
(

.s � r0/C for js � r0j � �;

� for js � r0j < �:

We claim that the following estimates for 0 � m � nC 1 follow directly from ŒHm�

for 0 � m � n.
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jjum � u0jjXs � CsK1 jjf jjY r0Cl1 �
P.s/
m for s 2 Œ0; s1�;

(27)
ˇ
ˇ
ˇ
ˇSX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK1 jjf jjY r0Cl1 �
P.s/
m for s 2 I;

(28)
ˇ
ˇ
ˇ
ˇ.um � u0/� SX�m.um � u0/

ˇ
ˇ
ˇ
ˇ
Xs

� CsK1 jjf jjY r0Cl1 �
.s�r0/
m for s 2 Œ0; s1�;

(29)

jjum � vmjjXs � Cs�
s�r0
m for s 2 Œ0; s1�;

(30)

jjvmjjXs � Cs�
P.s/
m for s 2 I;

(31)

jjumjjXs � Cs�
P.s/
m for s 2 Œ0; s1�:

(32)

Indeed, the proofs of (27)–(32) are exactly the same as the proofs of (6)–(11).
We also claim that, for 0 � m � n, we have

jjvm � wmjjXs � Cs�
sCmaxfm7;m8g�r0
m for s 2 I such that s Cm7 2 I;

(33)

jjum � wmjjXs � Cs�
sCmaxfm7;m8g�r0
m for s 2 Œ0; s1�;

(34)

jjwmjjXs � Cs�
maxfP.s/;sCmaxfm7;m8g�r0g
m for s 2 I such that s Cm7 2 I:

(35)

Indeed, first we assume s � r0 C �. We have

jjvm � wmjjXs
D ˇ
ˇ
ˇ
ˇSX�mum �R.SX�mum/

ˇ
ˇ
ˇ
ˇ
Xs

� ˇ
ˇ
ˇ
ˇSX�m.um � R.um//

ˇ
ˇ
ˇ
ˇ
Xs

C ˇ
ˇ
ˇ
ˇSX�mR.um/ �R.SX�mum/

ˇ
ˇ
ˇ
ˇ
Xs
:

Now, using the smoothing hypothesis, estimate (24) and ŒHn�, we obtain

ˇ
ˇ
ˇ
ˇSX�m.um � R.um//

ˇ
ˇ
ˇ
ˇ
Xs

� Cs�
s
m jjum �R.um/jjX0

� Cs�
s
m jjT .um/� T .u0/ � f jjY l2

� Cs�
s�r0
m K2 jjf jjY r0Cl1

� Cs�
s�r0
m

(where we have used K2 jjf jjY r0Cl1 � K2� � 1).
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For the second term, using the estimates (26) and (32), we obtain, choosing
r; r 0 � r0 C �,

ˇ
ˇ
ˇ
ˇSX�mR.um/ �R.SX�mum/

ˇ
ˇ
ˇ
ˇ
Xs

� Cs.�
s�r
m .1C jjumjjXm8 /.1C jjumjjXrCm7 /

C ��r 0

m .1C jjumjjXsCm7 /.1C jjumjjXr0Cm8 //

� Cs.�
s�r
m .1C �rCm7�r0m /C ��r 0

m �P.sCm7/m .1C �r
0Cm8�r0
m //

� Cs�
sCmaxfm7;m8g�r0
m :

If s � r0 C �, then we can directly estimate, using (32) and (25),

jjvm � wmjjXs
D ˇ
ˇ
ˇ
ˇSX�mum � R.SX�mum/

ˇ
ˇ
ˇ
ˇ
Xs

� ˇ
ˇ
ˇ
ˇSX�mum

ˇ
ˇ
ˇ
ˇ
Xs

C ˇ
ˇ
ˇ
ˇR.SX�mum/

ˇ
ˇ
ˇ
ˇ
Xs

� Cs jjumjjXs C Cs.1C jjumjjXm8 /.1C jjumjjXsCm7 /

� Cs�
s�r0
m C Cs�

sCm7�r0
m

� Cs�
sCm7�r0
m :

This proves (33). Now, using (33) and (30), for s 2 Œ0; s1�, we have

jjum � wmjjXs � jjwm � vmjjXs C jjvm � umjjXs
� Cs�

sCmaxfm7;m8g�r0
m :

This proves (34).
Using (33) and (31), for s 2 I , we have

jjwmjjXs � jjwm � vmjjXs C jjvmjjXs
� Cs�

maxfP.s/;sCmaxfm7;m8g�r0g
m :

This proves (35).
This completes the proof of the claim.
Note that, using (27) and (30), we have

jjvm � u0jjXm0 � jjvm � umjjXm0 C jjum � u0jjXm0
� C�m0�r0m C CK1��

P.m0/
m

� C�m0�r0m C CK1�:
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Thus by taking � sufficiently small depending onK1 and C , and �0 sufficiently large
depending onC , we have vn, vnC1 2 U . Similarly we can ensure wn 2 U using (34).
Also note that (6) in the case s D m0 implies un 2 U for � sufficiently small, and
ŒHn� implies that un C Pun 2 U for � sufficiently small. Note that the same argument
also shows that the line segments Œun; unC Pun� and Œun;wn� are in U for � sufficiently
small.

We claim that the following estimate holds.

jjT .un/� T .u0/ � f jjY s � Cs�
sCmaxfm1;m3g�r0
n for s 2 Œ0; s1 � maxfm1;m3g�:

(36)

Indeed, for s 2 Œr0; s1 � maxfm1;m3g�, using Taylor’s theorem, (20) and (27), we
have

jjT .un/� T .u0/ � f jjY s
� jjT .un/� T .u0/jjY s C jjf jjY s

�
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

sup
t2Œ0;1�

DT.u0 C t.un � u0//.un � u0/

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Y s

C C0

� Cs.jjun � u0jjXsCm1 C jjun � u0jjXm2 .1C jjun � u0jjXsCm3 //C C0

� Cs�
sCmaxfm1;m3g�r0
n

(assuming that maxfm1;m3g � �). We combine this with ŒHn� for s 2 Œ0; r0� to get

jjT .un/ � T .u0/� f jjY s � Cs�
sCmaxfm1;m3g�r0
n

for all s 2 Œ0; s1 � maxfm1;m3g�.
Estimate of e0

n. We claim that for all s 2 Œ0; s1 � maxfm1;m3g�,
ˇ
ˇ
ˇ
ˇe0
n

ˇ
ˇ
ˇ
ˇ
Y s

� CsK1 jjf jjY r0Cl1 �
M 0.s/�1C�
n

where

M 0.s/ D maxfs Cm1 Cm2 C maxfm7;m8g � 2r0;
.s Cm3 � r0/C C 2maxfm7;m8g C 2m2 � 2r0g:

Applying the estimate (22) together with Taylor’s theorem, ŒHn� and the estimates
(34) and (35), we have, for s 2 Œ0; s1 � maxfm1;m3g�,

ˇ
ˇ
ˇ
ˇe0
n

ˇ
ˇ
ˇ
ˇ
Y s

D jj.A..un � wn/C wn/� A.wn//PunjjY s
� Cs.jjPunjjXsCm1 jjun � wnjjXm2 C jjPunjjXm2 jjun � wnjjXsCm1
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C jjPunjjXm2 jjun � wnjjXm2 .1C jjwnjjXsCm3 C jjun � wnjjXsCm3 //

� CsK1 jjf jjY r0Cl1 .�
sCm1�r0�1
n �m2�r0Cmaxfm7;m8g

n C �m2�r0�1n �sCmaxfm7;m8gCm1�r0
n

C �m2�r0�1n �m2Cmaxfm7;m8g�r0
n .1C �P.sCm3/Cmaxfm7;m8g

n C �sCmaxfm7;m8gCm3�r0
n //

� CsK1 jjf jjY r0Cl1 �
M 0.s/�1C�
n :

Estimate of e00
n . We claim that for all s 2 Œ0; s1 � maxfm1 C l4;m3 C l4;m5;m9g�,

ˇ
ˇ
ˇ
ˇe00
n

ˇ
ˇ
ˇ
ˇ
Y s

� CsK1 jjf jjY r0Cl1 �
M.s/�1C�
n

where

M.s/ D maxfs Cm1 Cm2 C maxfm7;m8g � 2r0;
.s Cm3 � r0/C C 2maxfm7;m8g C 2m2 � 2r0;

s C maxfm5;m6g C .l3 � l1/C � 2r0; s Cm6 C maxfm1;m3g C l4 � 2r0g:

Indeed, we have

e00
n D T .un C Pun/� T .un/�A.un/Pun

D T .un C Pun/� T .un/� DT.un/Pun C .A.un/� DT.un//Pun:

Applying Taylor’s theorem, (19), ŒHn� and the estimate (32), we have,
for s 2 Œ0; s1 � maxfm1;m3g�,

jjT .un C Pun/� T .un/� DT.un/PunjjY s
� sup

t2Œ0;1�

ˇ
ˇ
ˇ
ˇD2T .un C t Pun/.Pun; Pun/

ˇ
ˇ
ˇ
ˇ
Y s

� Cs.jjPunjjXsCm1 jjPunjjXm2 C jjPunjj2Xm2 .1C sup
t2Œ0;1�

jjun C t PunjjXsCm3 //

� Cs.K1 jjf jjY r0Cl1 �
sCm1�r0�1
n K1 jjf jjY r0Cl1 �

m2�r0�1
n

CK2
1 jjf jj2

Y r0Cl1
�2m2�2r0�2n .1C �P.sCm3/n CK1 jjf jjY r0Cl1 �

sCm3�r0�1
n //

� ��1
n CsK1 jjf jjY r0Cl1 �

M 0.s/�1C�
n

� CsK1 jjf jjY r0Cl1 �
M 0.s/�1C�
n

where we have usedK1 jjf jjY r0Cl1 � K1� � 1.
For s 2 Œ0; s1 � maxfm5;m9;m1 C l4;m3 C l4g�, we have, using (21), ŒHn�, and

(36),
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jj.A.un/ � DT.un//PunjjY s
� Cs.jjPunjjXsCm5 jjT .un/ � T .u0/� f jjY l3 C jjPunjjXm6 jjT .un/� T .u0/� f jjY sCl4

C jjPunjjXm6 jjT .un/� T .u0/� f jjY l3 .1C jjujjXsCm9 //

� CsK1 jjf jjY r0Cl1 .�
sCm5�r0�1
n �

.l3�l1/C�r0
n C �m6�r0�1n �

sCmaxfm1;m3gCl4�r0
n

C �m6�r0�1n �
.l3�l1/C�r0
n �

.sCm9�r0/CC�
n /

� CsK1 jjf jjY r0Cl1 �
M 00.s/�1C�
n

where

M 00.s/ D maxfs Cm5 C .l3 � l1/C � 2r0; s Cm6 C maxfm1;m3g C l4 � 2r0;

s Cm6 C .l3 � l1/C � 2r0g

where we have used r0 � m9.
Adding the two above estimates yields the estimate for e00

n .

Estimate of en. Adding the estimates for e0
n and e00

n , we obtain

jjenjjY s � CsK1 jjf jjY r0Cl1 �
M.s/�1C�
n

for all s 2 Œ0; s1 � maxfm1 C l4;m3 C l4;m5;m9g�.
Estimate of gnC1. We claim that for all s 2 I ,

jjgnC1jjY s � Cs.K1 jjf jjY r0Cl1 �
M.s/�1C�
n C jjf jjY r0Cl1 �

s�r0�l1�1
n /:

Indeed, we have

gnC1 D .SY�nC1
� SY�n/.f � En/� SY�nC1

en:

Note that for any z 2 Y s0 ,
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.SY�nC1

� SY�n/z
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0�1
n jjzjjY s0

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s0 D r0 C l1, we have

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.SY�nC1

� SY�n/f
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs�
s�r0�l1�1
n jjf jjY r0Cl1 :
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We also have
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/En
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0�1
n jjEnjjY s0 :

Now, for s0 2 Œ0; s1 � maxfm1 C l4;m3 C l4;m5;m9g�, we have, from the estimate
for en,

jjEnjjY s0 D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1X

mD0
em

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Y s

0

� Cs0K1 jjf jjY r0Cl1

n�1X

mD0
�M.s

0/�1C�
m

� Cs0K1 jjf jjY r0Cl1 �
M.s0/C�
n (37)

if M.s0/ � 0, by the integral comparison used before. Note that M.s0/ has slope 1
for large enough s0 depending on r0 and the constantsmi; li , so to achieveM.s0/ � 0

it suffices to take s0 large in relation to r0 and the constants mi; li . To do this we
require s1 sufficiently large in relation to r0 and the constantsmi; li .

Hence
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.SY�nC1

� SY�n/En

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0Cs0;sK1 jjf jjY r0Cl1 �
M.s0/Cs�s0�1C�
n

� CsK1 jjf jjY r0Cl1 �
M.s/�1C�
n

by choosing s0 sufficiently large compared to r0 and the constants mi so that M.s/
has slope 1 for s � s0. (Hence M.s0/ � s0 � M.s/ � s for all s since M.s/ � s

is decreasing for s � s0 and constant for s � s0.) Again, to do this we require s1
sufficiently large in relation to r0 and the constantsmi; li . This fixes s1.

Similarly, for s0 sufficiently large, we have

ˇ
ˇ
ˇ

ˇ
ˇ
ˇSY�nC1

en

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;s�
s�s0
n jjenjjY s0

� Cs0;sCs0K1 jjf jjY r0Cl1 �
M.s0/Cs�s0�1C�
n

� CsK1 jjf jjY r0Cl1 �
M.s/�1C�
n :

Hence the estimate for gnC1 holds.

Estimate of T.unC1/ � T.u0/ � f We have

T .unC1/� T .u0/ � f D .SY�nf � f /C .En � SY�nEn/C en:

Let s 2 Œ0; r0�.
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By (2) from the smoothing hypothesis, we have

ˇ
ˇ
ˇ
ˇSY�nf � f ˇˇˇˇ

Y sCl1
� Cs�

s�r0
n jjf jjY r0Cl1 :

Also,

ˇ
ˇ
ˇ
ˇEn � SY�nEn

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cs;s0�
s�s0
n jjEnjjY s0Cl1 for s0 � s

� Cs;s0�
s�s0
n Cs�

M.s0Cl1/C�
n K1 jjf jjY r0Cl1

using (37), for s0 large enough such that M.s0 C l1/ � 0

� Cs�
M.s0Cl1/Cs�s0C�
n K1 jjf jjY r0Cl1

� Cs�
s�r0
n K1 jjf jjY r0Cl1

since M.s0 C l1/C � � M.l1/C �C s0 < s0 � r0.
Finally,

jjenjjY sCl1 � Cs�
M.sCl1/C��1
n K1 jjf jjY r0Cl1

� Cs�
s�r0�1
n K1 jjf jjY r0Cl1

since M.s C l1/C � � M.l1/C �C s < s � r0.
Hence we have

jjT .unC1/ � T .u0/ � f jjY sCl1 � Cs�
s�r0
n K1 jjf jjY r0Cl1

for s 2 Œ0; r0�. Thus, by choosingK2 sufficiently large depending on K1 and Cs for
s 2 Œ0; r0�, we have

jjT .unC1/� T .u0/� f jjY sCl1 � K2 jjf jjY r0Cl1 �
s�r0
nC1 (38)

for s 2 Œ0; r0�.
The estimates

jjvnC1 � wnC1jjXs � Cs�
s�r0Cmaxfm7;m8g
nC1 for s 2 I such that s Cm7 2 I

(39)

jjunC1 � wnC1jjXs � Cs�
s�r0Cmaxfm7;m8g
nC1 for s 2 Œ0; s1�

(40)

jjwnC1jjXs � Cs�
maxfP.s/;sCmaxfm7;m8g�r0g
nC1 for s 2 I such that s Cm7 2 I

(41)

now hold, and are proved exactly as for the estimates (33)–(35) using the estimate
(38) to go from n to nC 1.
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Estimate of PunC1. We have

PunC1 D B.wnC1/gnC1:

Hence, for all s 2 I such that sC l1; sCm4Cm7 2 I , using (23), the estimate (35)
and the estimate for gnC1, we have

jjPunC1jjXs
� Cs.jjgnC1jjY sCl1 C jjgnC1jjY l1 .1C jjwnC1jjXsCm4 //

� Cs.K1 jjf jjY r0Cl1 �
M.sCl1/�1C�
nC1 C jjf jjY r0Cl1 �

s�r0�1
nC1 C

.K1 jjf jjY r0Cl1 �
M.l1/�1C�
nC1 C jjf jjY r0Cl1 �

�r0�1
nC1 /.1C �

maxfP.sCm4/;sCmaxfm7;m8g�r0g
nC1 //

� Cs.K1 jjf jjY r0Cl1 �
M.l1/Cs�1C�
nC1 C jjf jjY r0Cl1 �

s�r0�1
nC1 / (42)

since P.sCm4/ � s because r0 > m4C2� and sC maxfm7;m8g � r0 � s because
r0 > maxfm7;m8g, and M.l1 C s/ � M.l1/C s because M has slope at most 1.

We want to obtain

jjPunC1jjXs � K1 jjf jjY r0Cl1 �
s�r0�1
nC1

for s 2 Œ0; s1�.
To make the first term sufficiently small, we require

�� WD M.l1/C r0 C � < 0:

Then we can choose �0 large enough so that

Cs�
M.l1/Cs�1C�
nC1 D Cs�

s�r0�1
nC1 �

��
nC1 � Cs�

s�r0�1
nC1 �

��
0 � 1

2
�
s�r0�1
nC1

for all s 2 Œ0; s1�.
We note that M.l1/ C r0 C � < 0 if and only if r0 � � > l1 C m1 C m2 C

maxfm7;m8g, r0�� > 2m2C2maxfm7;m8g, r0�� > m2Cmaxfm7;m8gC l1Cm3
2

,
r0 �� > l1 C maxfm5;m6g C .l3 � l1/C and r0 �� > l1 Cm6 C maxfm1;m3g C l4,
which indeed hold by the choice of r0 and �.

To make the second term sufficiently small, we take K1 � 2Cs for all s 2 Œ0; s1�.
This gives ŒHnC1�.

Proof of ŒH0� We have

g0 D SY�0f
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and

v0 D SX�0u0

and

w0 D R.v0/:

Hence

jjPu0jjXs D ˇ
ˇ
ˇ
ˇB.R.SX�0u0//S

Y
�0
f
ˇ
ˇ
ˇ
ˇ
Xs

� Cs.
ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y sCl1

C ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y l1
.1C ˇ

ˇ
ˇ
ˇR.SX�0u0/

ˇ
ˇ
ˇ
ˇ
XsCm4

//

� Cs
ˇ
ˇ
ˇ
ˇSY�0f

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cs jjf jjY r0Cl1 �
.s�r0/C
0 by (1) and (2) from the smoothing hypothesis

� K1 jjf jjY r0Cl1 �
s�r0�1
0

for all s 2 Œ0; s1�, assuming that K1 is sufficiently large compared to �0 and Cs for
s 2 Œ0; s1�.

Now for s 2 Œ0; r0�,

jjT .u0/� T .u0/ � f jjY sCl1 D jjf jjY sCl1

� K2 jjf jjY r0Cl1 �
s�r0
0

for all s 2 Œ0; r0�, assuming that K2 is sufficiently large compared to �0.
This proves ŒH0�.

Step 3 – Better estimates if f 2 Y s2�maxfm1;m3g for s2 � s1
Assume f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C maxfl1;m4 C
m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g � Cs2 . Let r 2 I with r � r0 be such that
s1 C r � r0 C maxfl1;m4 Cm7g 2 I . We will show that, for all n � 0 and for all
s 2 Œ0; s2�, we have

jjPunjjXs � Cr;s jjf jjY rCl1 �
s�r�1
n (43)

where the constant Cr;s > 0 is independent of n and f , except that it may increase
with jjf jjY s2�maxfm1;m3g .

Firstly, note that we have proved ŒHn� for n � 0, and hence all the estimates
from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of n.
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We claim by induction on k � 0 that for all s 2 Œ0; s2�, we have

jjPunjjXs � Ck;r;s jjf jjY rCl1 �
s�r0��k�1
n ŒGk�

where the constant Ck;r;s > 0 is independent of n and f , and

�k D minfk�; r � r0g:

Indeed, the estimate (42) for PunC1 in step 2 implies that

jjPunjjXs � Cs jjf jjY r0Cl1 �
s�r0�1
n (44)

for all s 2 I such that s C maxfl1;m4 Cm7g 2 I (not just s 2 Œ0; s1� which would
follow directly from ŒHn�).

Using this, we can obtain the following new versions of the estimates (27),
(30)–(32) for all s 2 Œ0; s2� (not just s 2 Œ0; s1�) via exactly the same calculations

jjum � u0jjXs � Cs�
s�r0
m ; (45)

jjum � vmjjXs � Cs�
s�r0
m ; (46)

jjvmjjXs � Cs�
P.s/
m ; (47)

jjumjjXs � Cs�
P.s/
m : (48)

We then obtain, for all s 2 Œ0; s2�, the estimates

jjwm � vmjjXs � Cs�
sCmaxfm7;m8g�r0
m ; (49)

jjwm � umjjXs � Cs�
sCmaxfm7;m8g�r0
m ; (50)

jjwmjjXs � Cs�
maxfP.s/;sCmaxfm7;m8g�r0g
m : (51)

Using the fact that jjf jjY r0Cl1 � jjf jjY rCl1 , (44) immediately implies ŒG0�.
Now we assume ŒGk� holds and aim to show ŒGkC1� holds.
Now we want to obtain new estimates for e0

n and e00
n .

First we estimate e0
n. Note that in the estimate for e0

n there was at least one factor
involving Pun in each term. If we estimate this one factor using the new estimate
given by ŒGk� and the other quantities using (44) and the slightly modified estimates
(45)–(48), we obtain

ˇ
ˇ
ˇ
ˇe0
n

ˇ
ˇ
ˇ
ˇ
Y s

� Ck;r;s jjf jjY rCl1 �
M 0.s/�1C���k
n

for all s 2 Œ0; s2 � maxfm1;m3g�. The constant Ck;r;s is independent of f since we
have only used the new estimate given by ŒGk� in one factor, and the other estimates
we have used involve jjf jjY r0Cl1 , which is bounded by � � 1.
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Now we estimate e00
n . The first part of the estimate can be modified in exactly the

same way as above, to obtain

jjT .un C Pun/� T .un/� DT.un/PunjjY s � Ck;r;s jjf jjY rCl1 �
M 0.s/�1C���k
n

for all s 2 Œ0; s2 � maxfm1;m3g�.
We proceed similarly for the second part of the estimate of e00

n to obtain

jj.A.un/ � DT.un//PunjjY s � Ck;r;s jjf jjY rCl1 �
M 00.s/�1C���k
n

for all s 2 Œ0; s2 � maxfm5;m9;m1 C l4;m3 C l4g�.
Here, the constant depends on jjf jjY s2�maxfm1;m3g , and we need to assume that the

estimate (21) holds for all s 2 Œ0; s2 � l4 � maxfm1;m3g�.
Thus we obtain the estimate

jjenjjY s � Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n

for all s 2 Œ0; s2 � maxfm5;m9;m1 C l4;m3 C l4g�.
This implies that for s0 2 Œ0; s2 � maxfm5;m1 C l4;m3 C l4g�, we have

jjEnjjY s0 D
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1X

mD0
em

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Y s

0

� Ck;r;s0 jjf jjY rCl1

n�1X

mD0
�M.s

0/�1C���k
m

� Ck;r;s0 jjf jjY rCl1 �
M.s0/C���k
n (52)

as long asM.s0/ � �k . It is possible to pick such an s0 if s1Cr�r0Cmaxfl1;m4g 2 I
given the fact thatM.s1 � maxfm5;m9;m1 C l4;m3 C l4g/ � 0 andM.s/ has slope
1 for s � s1 � maxfm5;m9;m1 C l4;m3 C l4g.

Hence
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/En

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cs0;kCk;r;s�
M.s0/Cs�s0�1C���k
n

� Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n

as long as M.s0/ � �k and s0 is sufficiently large compared to r0 and the constants
mi; li so that M.s/ has slope 1 for s � s0.

We also have the estimate
ˇ
ˇ
ˇ

ˇ
ˇ
ˇS

Y
�nC1

en

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Ck;r;s jjf jjY rCl1 �
M.s/�1C���k
n :
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In addition we can use the new estimate
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.S

Y
�nC1

� SY�n/f
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Y s

� Cr;s�
s�r�l1�1
n jjf jjY rCl1 :

This gives us the following new estimate for gnC1, for all s 2 I ,

jjgnC1jjY s � Ck;r;s jjf jjY rCl1 .�
M.s/�1C���k
n C �s�r�l1�1n /:

From this we obtain,for all s 2 Œ0; s2�,

jjPunjjXs � Cr;s jjf jjY rCl1 .�
M.l1/Cs�1C���k
n C �s�r�1n /

� Cr;s jjf jjY rCl1 .�
s�r0�1��k��
n C �s�r�1n /

� Cr;s jjf jjY rCl1 �
s�r0��kC1�1
n

where we have used the fact that M.l1/C r0 C � D �� .
This is ŒGkC1�.
For large enough k, we have k� � r � r0, so �k D r � r0 and this gives (43).

Step 4 – Convergence to a solution
Assume as above that f 2 Y s2�maxfm1;m3g where s2 2 I with s2 � s1 and s2 C
maxfl1;m4;m7g 2 I , and suppose jjf jjY s2�maxfm1;m3g � Cs2 . Let r � r0.

Using (13), we have

nX

mD0
jjumC1 � umjjXs D

nX

mD0
jjPumjjXs

� Cr;s jjf jjY rCl1 �
.s�r/C
nC1

for r ¤ s, with r; s 2 Œ0; s2�.
Thus

nX

mD0
jjumC1 � umjjXs

converges as n ! 1 for s < r . Hence, by completeness, un ! u in Xs as n ! 1,
for all s < r , for some u 2 \0�s<rXs .

Note the above calculation also implies that

jjun � u0jjXs � Cr;s jjf jjY rCl1

for s < r , so we have

jju � u0jjXs � Cr;s jjf jjY rCl1 :
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Next we claim that

T .unC1/ � T .u0/ ! f

in Xs as n ! 1, for all s < r .
Indeed,

T .unC1/ � T .u0/ D SY�nf C .En � SY�nEn/C en

so

T .unC1/� T .u0/ � f D .SY�nf � f /C .En � SY�nEn/C en:

By (2) from the smoothing hypothesis, we have

ˇ
ˇ
ˇ
ˇSY�nf � f

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cr;s�
s�r
n jjf jjY rCl1 ! 0 as n ! 1:

Also,

ˇ
ˇ
ˇ
ˇEn � SY�nEn

ˇ
ˇ
ˇ
ˇ
Y sCl1

� Cs;s0�
s�s0
n jjEnjjY s0Cl1 for s0 � s

� Cs;s0�
s�s0
n Cr;s�

M.s0Cl1/C��.r�r0/
n jjf jjY rCl1

using (18), for s0 large enough such that M.s0 C l1/ � r � r0

� Cr;s�
M.s0Cl1/Cs�s0C��.r�r0/
n jjf jjY rCl1

� Cr;s�
s�r
n jjf jjY rCl1 ! 0 as n ! 1

since M.s0 C l1/C �C r0 � M.l1/C �C r0 C s0 < s0.
Finally,

jjenjjY sCl1 � Cr;s�
M.sCl1/C��.r�r0/�1
n jjf jjY rCl1 ! 0 as n ! 1

since M.s C l1/C �C r0 � M.l1/C �C r0 C s < s.
This proves the claim.
Now since T W U ! Y 0 is continuous as a map from Xm0 to Y 0, and r0 > m0,

so un ! u in Xm0 , we have that T .un/ ! T .u/ in Y 0, hence T .u/ D T .u0/C f as
required.

This completes the proof.

5 Applying the Theorem in Sobolev Spaces

This section assumes familiarity with the standard Sobolev spaces W k;p.˝/ of
functions on the domain ˝ with weak derivatives up to order k in Lp.˝/, and
Sobolev embedding theorems – see for example the chapter of Evans [11] entitled
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‘Sobolev Spaces’, or see Adams and Fournier [1] for a more complete reference.
We do however give the definition of fractional Sobolev spaces below, since these
are slightly less standard. See, for example, Adams and Fournier [1] for much more
detail.

5.1 The Smoothing Operators in H s

Definition 5. For d 2 N and 0 � s 2 R we define the Sobolev space of order s,
Hs.Rd /, by

Hs.Rd / D fu 2 L2.Rd / W .1C j	j2/ s2 Ou.	/ 2 L2.Rd /g

where Ou denotes the Fourier transform of u, which we also denote by F Œu�. We
endowHs with norm jj�jjHs given by

jjujjHs D
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ.1C j	j2/ s2 Ou.	/

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
L2
:

ThenHs.Rd / is a Banach space for each s and .Hs.Rd /; jj�jjHs/s�0 is a decreasing
family of Banach spaces, in the sense of Definition 1.

Notation. For � 2 C1.Rd / (with values in R), write �� D ��d�.x
�
/.

Notation. We write S .Rd / for the Schwartz space of smooth functions which
decay faster than the reciprocal of any polynomial, and use the well-known fact
that the Fourier transform is an automorphism of S .Rd /.

Proposition 2. The decreasing family of Banach spaces .Hs.Rd /; jj�jjHs /s�0 sat-
isfies the smoothing hypothesis 4. Moreover, the smoothing operators can be taken
as S�u D 
 1

�
� u for � � 1, where 
 2 S .Rd / is a specially constructed mollifier.

Proof. Let O
 2 C1
c .R

d / with 0 � O
 � 1 be an even function such that O
 D 1 on
B1

2
.0/ and O
 D 0 outside B1.0/, where Br.x/ denotes the closed ball of radius r

about x.
Define 
 to be the inverse Fourier transform of O
, which is real since O
 is even,

and 
 2 S .Rd /, since O
 2 S .Rd /.
For u 2 H0.Rd / D L2.Rd /, we define

S�u D 
 1
�

� u:

Let 0 � r; s 2 R and u 2 Hs.Rd /.
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Note that, by properties of the Fourier transform,

bS�u.	/ D c
 1
�
.	/Ou.	/

D O
. 	
�
/Ou.	/:

Hence
Z

Rd

.1C j	j2/r
ˇ
ˇ
ˇbS�u.	/

ˇ
ˇ
ˇ

2

d	 D
Z

Rd

.1C j	j2/r O
. 	
�
/2 Ou.	/2d	

D
Z

Rd

.1C j	j2/r�s O
. 	
�
/2.1C j	j2/s Ou.	/2d	

� jjujj2Hs sup
	2Rd

.1C j	j2/r�s O
. 	
�
/2

� jjujj2Hs .1C �2/.r�s/C

� Cr;s jjujj2Hs �
2.r�s/C

since 0 � O
 � 1 and O
. 	
�
/ D 0 for 	 � � .

This proves (1), and also that S� W H0.Rd / ! \s�0Hs.Rd /.
Now

Z

Rd

.1C j	j2/r
ˇ
ˇ
ˇ2u � S�u.	/

ˇ
ˇ
ˇ

2

d	 D
Z

Rd

.1C j	j2/r .1 � O
. 	
�
//2 Ou.	/2d	

D
Z

Rd

.1C j	j2/r�s.1 � O
. 	
�
//2.1C j	j2/s Ou.	/2d	

� jjujj2Hs sup
	2Rd

.1C j	j2/r�s.1 � O
. 	
�
//2

� jjujj2Hs .1C .
�

2
/2/.r�s/

� Cr;s jjujj2Hs �
2.r�s/

assuming r � s, since 0 � O
 � 1 and 1 � O
. 	
�
/ D 0 for 	 � �

2
.

This proves (2).
Finally, for small h 2 R, we have

F

�
S�Chu � S�u

h

�

.	/ D O
. 	

�Ch/ � O
. 	
�
/

h
Ou.	/

D
 

� 1

�2

dX

iD1
	i @i O
. 	

�
/CR.h; �; 	/

!

Ou.	/
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by Taylor’s theorem, where

jR.h; �; 	/j � h sup
�����Ch

d2

d�2
O
. 	
�
/:

This implies

Z

Rd

.1C j	j2/r jR.h; �; 	/j2 jOu.	/j2 ! 0 as h ! 0

so that S�u is differentiable with respect to � with derivative the inverse Fourier
transform of

� 1

�2

dX

iD1
	i @i O
. 	

�
/Ou.	/:

We also see that

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

d

d�
S�u

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ

2

Hr

D
Z

Rd

.1C j	j2/r . 1
�2

dX

iD1
	i @i O
. 	

�
//2 jOu.	/j2

� jjujj2Hs sup
	2Rd

.1C j	j2/r�s. 1
�2

dX

iD1
	i @i O
. 	

�
//2

� Cr;s jjujj2Hs �
2.r�s�1/

since @i O
. 	
�
/ is zero for 	 � �

2
and 	 � � .

This proves (3).

5.2 Tame Estimates in Sobolev Spaces

The results in this section are fairly standard, and are based on standard Sobolev
embeddings. Results of this type can be found in classical references on Sobolev
spaces, for example Adams and Fournier [1]. However, we try and formulate them
in a form which is most useful for obtaining tame estimates in the applications we
have in mind.

The following lemma is very useful for proving chain and product rules in
Sobolev spaces.

Lemma 1. Let p 2 Œ1;1�, ˝ � R
d , for d � 1, be a domain where the standard

Sobolev embedding holds and let m > d
p

be an integer. Let 0 � mi � m be integers

for 1 � i � n with
Pn

iD1 mi � .n � 1/m and let ui 2 W mi ;p.˝/. Then
Qn
iD1 ui 2

Lp.˝/ and
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ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

� C

nY

iD1
jjui jjW mi ;p.˝/ :

Proof. For p D 1 the result is obvious and in fact only requiresm � 0, so we will
assume p < 1.

We will use the following Sobolev embeddings. Let k � 1 be an integer and
u 2 W k;p.˝/. Then for q � p,

jjujjLq.˝/ � C jjujjW k;p.˝/

provided

1

q
>
1

p
� k

d

and kp � d . (Note it is the case kp D d that requires the inequality to be strict.) If
kp > d then

jjujjL1.˝/ � C jjujjW k;p.˝/ :

Suppose mip > d for some i . By renumbering if necessary, we may assume
mnp > d . Then

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

�
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1Y

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

jjunjjL1.˝/

� C

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

n�1Y

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

jjunjjW mn;p.˝/ :

Also note that sincemn � m, we have
Pn�1

iD1 mi � .n�2/m. Hence we are reduced
to proving the result with n replaced by n � 1. Thus we may assume mip � d for
all i .

Suppose mi D 0 for some i . By renumbering if necessary, we may assume
mn D 0. Then

Pn�1
iD1 mi � .n � 1/m and 0 � mi � m implies mi D m > d

p
for all

i < n, hence

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

�
n�1Y

iD1
jjui jjL1.˝/ jjunjjLp.˝/

� C

n�1Y

iD1
jjui jjW mi ;p.˝/ jjunjjW mn;p.˝/ :

Thus we may assume mi > 0 for all i .
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Now, using Hölder’s inequality,

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

�
nY

iD1
jjui jj

L
p
�i .˝/

where
Pn

iD1 �i D 1 and 0 � �i � 1 for all i . Hence, using Sobolev embedding, we
have

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

� C

nY

iD1
jjui jjW mi ;p.˝/

provided

�i

p
>
1

p
� mi

d

for all i . But, summing the above inequalities, it is possible, assuming 0 < mi � d
p

,

to choose such 0 � �i � 1 with
Pn

iD1 �i D 1 if and only if

n

p
�
Pn

iD1 mi

d
<
1

p
”

nX

iD1
mi > .n � 1/

d

p
:

But this does indeed hold since
Pn

iD1 mi � .n � 1/m andm > d
p

.

Corollary 1 (Leibniz’s Rule or The Product Rule). Let p 2 Œ1;1�, ˝ � R
d , for

d � 1, be a domain where the standard Sobolev embedding holds and letm > d
p

be
an integer. Let 0 � mi � m be integers for 1 � i � n and 0 � k � m be an integer,
with

Pn
iD1 mi � .n�1/mCk. Let ui 2 W mi ;p.˝/. Then

Qn
iD1 ui 2 W k;p.˝/ with

weak derivatives given by the classical Leibniz rule and

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
W k;p.˝/

� C

nY

iD1
jjui jjWmi ;p.˝/ :

Proof. Let �i be multi-indices with
Pn

iD1 �i D ˛, where j˛j � k. Note that
Pn

iD1.mi � j�i j/ � .n � 1/m, hence we may apply the above result to obtain

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nY

iD1
@�

i

ui

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

� C

nY

iD1
jjui jjW mi ;p.˝/ :
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Assuming ui are smooth, we immediately obtain the result, since @˛
Qn
iD1 ui is a

sum of terms of the form
Qn
iD1 @�

i
ui by the classical chain rule. For non-smooth ui

we use approximation by smooth functions together with this inequality.

Corollary 2 (The Chain Rule). Let p 2 Œ1;1�, ˝ � R
d , for d � 1, be a domain

where the standard Sobolev embedding holds and let m > d
p

be an integer. Let

F 2 Cm
b .R

d 0

/ and u W ˝ ! R
d 0

with u 2 W m;p.˝/. Let ˛ be a multi-index with
1 � j˛j � m. Let 0 < ˇ � ˛; 0 < �j � ˛ .1 � j � jˇj/, be multi-indices with
Pjˇj

jD1
ˇ
ˇ�j

ˇ
ˇ D j˛j. Then

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.@ˇF /.u/
jˇj
Y

jD1
@�

j

uij

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

� C jjujjjˇj
W m;p.˝/

where uij denotes a component of u depending on j . Moreover, the function F.u/ 2
L1.˝/ has a weak ˛-derivative in Lp.˝/ given as in the classical chain rule by
sums of terms of the above form which satisfies the inequality

jj@˛.F.u//jjLp.˝/ � C jjujjW m;p.˝/ .1C jjujjW m;p.˝//
m�1:

In addition, if F.0/ D 0, then F.u/ 2 W m;p.˝/ with

jjF.u/jjW m;p.˝/ � C jjujjW m;p.˝/ .1C jjujjW m;p.˝//
m�1:

Proof. Note that
Pˇ

jD1.m � ˇˇ�j ˇˇ/ D jˇjm� j˛j � .jˇj � 1/m, hence we may use

the above result and the fact that @ˇF is bounded to obtain
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

.@ˇF /.u/
jˇj
Y

jD1
@�

j

uij

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
Lp.˝/

� C

jˇj
Y

jD1

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ@�

j

uij

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
W
m�j�j j;p.˝/

� C jjujjjˇj
Wm;p.˝/ :

Assuming ui are smooth, we immediately obtain the required inequalities, since
@˛.F.u// is a sum of terms of the form .@ˇF /.u/

Qjˇj
jD1 @�

j
uij by the classical

product and chain rules. For non-smooth ui we use approximation by smooth
functions together with this inequality.

Finally, if F.0/ D 0, then we have

jF.u/j D
ˇ
ˇ
ˇ
ˇ

Z 1

0

DF.tu/u dt

ˇ
ˇ
ˇ
ˇ

� C juj
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since DF is bounded. Thus F.u/ 2 Lp.˝/ with jjF.u/jjLp.˝/ � C jjujjLp.˝/.
Together with the previous part, this implies the final statement of the result.

Corollary 3. Let D;D0 � R
d 0

be open with D0 �� D. Let F 2 Cm.D/ and
u W ˝ ! D0 with u 2 W m;p.˝/. Then the above chain rule holds with these new F
and u.

Proof. Since u takes values in D0, we may modify F outside D0 by multiplying by
a smooth cut-off function which is identically 1 on D0 and 0 outside D00 for some
D00 �� D, so we may assume F 2 Cm

b .R
d 0

/, and then we can apply the above
result.

Proposition 3 (The Derivative of a Differential Operator on Sobolev Spaces).
Let p 2 Œ1;1�, ˝ � R

d , for d � 1, be a domain where the standard Sobolev
embedding holds and let m � 0 be an integer. Let I be a subinterval of N0

containing 0 and l Cm, where l > d
p

is an integer, and set Xs D W s;p.˝;Rd
0

/ for

s 2 I and Y s D W s;p.˝;Rd
00

/. Let U � X1 be jj�jjXr -open for some r 2 I with
r � l Cm and assume 0 2 U . Define

T W U ! Y1�m

by

T .u/.x/ D F.f@˛u.x/ W 0 � j˛j � mg/
where F W Rd 0 � � � � �R

d 0 ! R
d 00

is smooth and bounded with bounded derivatives
on the range of f@˛u W 0 � j˛j � mg for u 2 U (so we may assume F is smooth and
bounded with bounded derivatives), and F.0/ D 0. The above rather complicated
notation is merely a convenient way of expressing that F.f@˛u W 0 � j˛j � mg/
is a smooth function of u and its partial derivatives up to order m, which can be
evaluated at x to give a function of x.

Write vi˛ for the argument of F which is evaluated at @˛ui .x/ in the above
formula.

Then T is twice differentiable with derivatives given by

.DT.u/h/.x/ D
X

0�i�d 0

X

0�ˇ�m
@ˇhi .x/

@F

@viˇ
.f@˛u.x/g/

D2T .u/.h; h0/.x/ D
X

0�i;j�d 0

X

0�ˇ;��m
@ˇhi .x/@�h0j .x/

@2F

@vj� @viˇ
.f@˛u.x/g/

and the following inequalities hold.

jjDT.u/hjjY s � Cs.jjhjjXsCm C jjhjjXl .1C jjujjXsCm//
ˇ
ˇ
ˇ
ˇD2T .u/.h; h0/

ˇ
ˇ
ˇ
ˇ
Y s

� Cs.jjhjjXsCm

ˇ
ˇ
ˇ
ˇh0ˇˇˇˇ

Xl
C jjhjjXl

ˇ
ˇ
ˇ
ˇh0ˇˇˇˇ

XsCm C jjhjjXl
ˇ
ˇ
ˇ
ˇh0ˇˇˇˇ

Xl
.1C jjujjXsCm//
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for all u 2 U , h; h0 2 X1 and s 2 I such that s C m 2 I , where the constant
Cs > 0 is bounded for s bounded.

Proof. First we assume all functions are smooth, or else we can use approximation
by smooth functions. Note that by the chain rule, jjF.f@˛u.x/ W 0 � j˛j � mg/jjY s �
Cs jjujjXsCm , since r > d

p
(and the constant depends onU ), hence T is well-defined.

Using Taylor’s Theorem, for u 2 U , t 2 .�1; 1/ and jjhjjXr small enough such that
the line segment Œu � h; u C h� lies in U , we have

1

t
.T .u C th/ � T .u//.x/

D 1

t
.F.f@˛u.x/C @˛h.x/g/ � F.f@˛u.x/g//

D
X

0�i�d 0

X

0�ˇ�m

@F

@viˇ
.f@˛u.x/g/@ˇhi .x/

C t
X

0�i;j�d 0

X

0�ˇ;��m

@ˇhi .x/@�hj .x/

Z 1

0

.1 � �/
@2F

@vj� @viˇ
.f@˛u.x/C �@˛h.x/g/d�:

Applying the chain rule to 1
t

times the last term, which may be thought of as a
function of .u; h/, we see that 1

t
times the last term is in Y s for s 2 I such that

s Cm 2 I hence the last term converges to zero in Y s as t ! 0. Similarly

1

t
.DT.u C th0/h � DT.u/h/.x/

D 1

t
.
X

0�i�d 0

X

0�ˇ�m
@ˇhi .x/

@F

@viˇ
.f@˛u.x/C t@˛h0.x/g/

�
X

0�i�d 0

X

0�ˇ�m
@ˇhi .x/

@F

@viˇ
.f@˛u.x/g//

D
X

0�i;j�d 0

X

0�ˇ;��m
@ˇhi .x/@�h0j .x/

@2F

@vj� @viˇ
.f@˛u.x/g/

C t
X

0�i;j;k�d 0

X

0�ˇ;�;ı�m
@ˇhi .x/@�h0j .x/@ıh0k.x/

�
Z 1

0

.1 � �/
@3F

@vkı @vj� @viˇ
.f@˛u.x/C �@˛h0.x/g/d�:

Applying the same argument we see the last term converges to zero as t ! 0.
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Now, using the chain rule we have

ˇ
ˇ
ˇ
ˇ
ˇ

@F

@viˇ
.f@˛u.x/g/

ˇ
ˇ
ˇ
ˇ
ˇ
W s;p.˝/

� Cs jjujjW sCm;p.˝/

for integer s � 1 and u 2 U , where j�jW s;p.˝/ denotes the Sobolev semi-norm of
order s (the sum of the Lp norms of the weak derivatives of order s).

Define

H.x/ D @F

@viˇ
.f@˛u.x/g/:

For integer s � 0, using the product rule and the above, we have

ˇ
ˇ
ˇ
ˇ
ˇ

@F

@viˇ
.f@˛u.x/g/@ˇhi .x/

ˇ
ˇ
ˇ
ˇ
ˇ
W s;p.˝/

� Cs.
X

1�ı�s

ˇ
ˇ
ˇ
ˇ@ıH@s�ı@ˇhi .x/

ˇ
ˇ
ˇ
ˇ
Lp.˝/

C ˇ
ˇ
ˇ
ˇH@s@ˇhi .x/

ˇ
ˇ
ˇ
ˇ
Lp.˝/

/

� Cs.jjDH jjW l�1;p.˝/ jjhjjW sCm;p.˝/ C jjDH jjW s�1;p.˝/ jjhjjW l;p.˝/

C jjH jjL1.˝/ jjhjjW sCm;p.˝//

� Cs.jjhjjW sCm;p.˝/ C jjhjjW l;p.˝/ .1C jjujjW sCm;p.˝///

for any h 2 X1 and u 2 U , where we have used r � l Cm.
In a similar manner, we obtain the inequality for the second derivative of T .

6 Application to Compressible Vortex Sheets in 2D

Here we show how the paper [8] of Coulombel and Secchi fits into the above
framework. In fact the above framework is specifically devised to fit this case and
the original ideas are contained in the paper by Coulombel and Secchi and earlier
papers. For the sake of brevity, to follow this section it is necessary to refer to
their paper. Note though that a significant portion of the work of the full result
of Coulombel and Secchi is in solving the linearised equations with an appropriate
energy estimate, which can be found in [7]. We believe that the abstract framework
below should also fit the scheme used by Trakhinin in [25], since his scheme is very
similar to the one used by Coulombel and Secchi.

We make some simplifications to the scheme of Coulombel and Secchi – firstly
we take the boundary condition for the continuity of density (which is a linear
condition) as part of the definition of the function spaces. Secondly, we treat the
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Eikonal equations in a slightly simpler way which is less optimal with respect to
regularity. It appears that although we need more regularity on the approximate
solution, we only require it to be small in a lower-order Sobolev space.

The aim of their paper is to show short-time structural stability of plane vortex
sheets for the 2D isentropic Euler equations of gas dynamics. This means the
following. We start with two constant states NUC D . N
; NvC; 0/, NU� D . N
; Nv�; 0/ with
pressure given by Np D p. N
/ and sound speed given by Nc D p

p0. N
/. When patched
together either side of fx2 D 0g these form a weak solution of the 2D isentropic
Euler equations equal to NUC in fx2 > 0g and equal to NU� in fx2 < 0g, since the
Rankine-Hugoniot jump conditions are satisfied across fx2 D 0g. Since the normal
velocity is continuous whereas the tangential velocity jumps this is called a vortex-
sheet solution and it is characteristic in the sense that the boundary matrix for the
system evaluated at this state is singular. We then impose smooth initial data close
to this state (satisfying the Rankine-Hugoniot conditions with continuous normal
velocity) which includes perturbing the discontinuity slightly so it is the graph of a
function. The aim is to show the short-time existence of a solution with the same
structure – that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot conditions are satisfied with continuous normal velocity. This
requires a stability assumption on the background state,

ˇ
ˇNuC � Nu�ˇˇ > 2

p
2 Nc, and

also a smallness assumption on the initial data. After some reductions the problem
is reduced to finding a local inverse of a nonlinear operator, so that Nash-Moser
iteration may be applied. The preliminary work includes changing coordinates to
fix the free surface, which involves adding the Eikonal equations to the system to be
solved, and introducing an approximate solution so that the initial data can be taken
as zero. The main work is then to obtain a tame estimate for the linearised equations,
after which a modified version of Nash-Moser iteration as above can be applied.

Notation. We will use the notation of [8], and to avoid conflict of notation with the
above we will write u; v;w; f; g used in the above in bold face as u; v;w; f; g. We
will also write U and V instead of U and V used above.

6.1 The Function Spaces

For T > 0, define

˝T D f.t; x1; x2/ 2 R
3 W t < T; x2 > 0g

!T D f.t; x1/ 2 R
2 W t < T g:

For integer s � 0 and real � � 1 define the weighted Sobolev space

Hs
� .˝T / D fexp.� t/v W v 2 Hm.˝T /g
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where Hs.˝T / is the usual Sobolev space of order s. We define Hs
� .!T / similarly.

The norm on u 2 Hs
� .˝T / is given by

jjujjHs
� .˝T /

D jjexp.�� t/ujjHs.˝T /
:

Next, we define, for integer s � 0,

F s
� .˝T / D fu 2 Hs

� .˝T / W u D 0 for t < 0g
and we define F s

� .!T / similarly. Now, adapting the notation of [8] to our frame-
work, we define

Xs D fu 2 .F sC3
� .˝T //

3 � .F sC3
� .˝T //

3 � F sC3
� .˝T / � F sC3

� .˝T /

W 
Cjx2D0 D 
�jx2D0; 
Cjx2D0 D 
�jx2D0g
where we write

u D .V C; V �; 
C; 
�/

and

V D .
; v; u/

and define

 WD 
Cjx2D0 D 
�jx2D0:
Note that we omit the superscripts C and � in formulae which apply to both. We
have chosen X0 to consist of products of Sobolev spaces of order 3 because of the
embeddingHs.Rd / � W 1;1.Rd / for s > d

2
C 1, and in this case the dimension d

is 3 (two space and one time).
We define the norm jj�jjXs onXs as the usual product norm (the sum of the norms

of the components). Then fXsgs2I is a decreasing family of Banach spaces, where
I D Œ0; s3� is an interval in N0, for integer s3 > 0 which we will fix later sufficiently
large.

Similarly, we define

Y s D fg 2 .F sC3
� .˝T //

3 � .F sC3
� .˝T //

3 � F sC3
� .˝T / � F sC3

� .˝T /g

where we write

g D .f C; f �; hC; h�/

and

f D .f1; f2; f3/:
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6.2 The Smoothing Operators

Note that in order to define the smoothing operators on fXsgs2I (which can then
be used on fY sgs2I as well), we must make some modifications from those on
Hs.Rd /. Firstly, we must replace R

d by a domain with a Lipschitz boundary with
finite covering, which is easily done via an extension operator. Next, we must ensure
that the property u D 0 for t < 0 is preserved under the action of the smoothing
operators, which was done by Alinhac in [2], and finally we must ensure that the
two properties 
Cjx2D0 D 
�jx2D0 D  and 
Cjx2D0 D 
�jx2D0 are preserved.
See [8] for the details of this construction using a lifting operator.

6.3 The Background Solution and the Approximate Solution

Although we will not introduce the original problem considered in [8] (since we
wish to show the use of Nash-Moser iteration only), we need to introduce the
background or stationary solution and approximate solution for reference.

The background solution is given in the form

.U
˙ D .
˙ D 
;˙v; u˙ D 0/; ˚

˙ D ˙x2/
where 
; v are constants with 
 > 0.

We assume the existence of an ‘approximate solution’ .U aC; U a�; ˚aC; ˚a�/
with U a � U ;˚a � ˚ 2 Hs4C3.˝T / having compact support, which has the
following properties. Here, s4 is a sufficiently large integer with s4 � s3 C 2. In
fact s4 D s3 C 2 will do.

@
j
t L.U

a; ˚a/jtD0 D 0 for 0 � j � s3 C 3

@t˚
a C va@x1˚

a � ua D 0

˚aCjx2D0 D ˚a�jx2D0 DW �a


aC � 
a� D 0

@x2˚
aC � 3

4

@x2˚
a� � �3

4


a˙ � ı0
ˇ
ˇ
ˇ
ˇU a � U

ˇ
ˇ
ˇ
ˇ
H7.˝T /

C ˇ
ˇ
ˇ
ˇ˚a � ˚

ˇ
ˇ
ˇ
ˇ
H7.˝T /

� ı1

for some ı0 > 0, where we are allowed to choose constant ı1 > 0 as small as we
like (which restricts the size of the initial data in the original problem). The first
order differential operator L is defined in the next section.
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6.4 The Nonlinear Operator and Equations

6.4.1 The Operator T and the Set U

We set m0 D 4 and define

U 4 D fu 2 X4 W jjujjX4 � ı2g

where ı2 > 0 is chosen sufficiently small. In particular, we need

ˇ
ˇ
ˇ
ˇ
˙ˇˇˇˇ

W 1;1.˝T /
� 1

2

ˇ
ˇ
ˇ
ˇ
˙ˇˇˇˇ

L1.˝T /
� ı0

2

which is possible via Sobolev embedding. This ensures that @x2.˚
a˙ C 
˙/ and


a˙ C 
˙ are bounded away from zero.
We define the operator T W U 4 ! Y 0 by

T .u/ D

0

B
B
@

L .V C; 
C/
L .V �; 
�/
E .V C; 
C/
E .V �; 
�/

1

C
C
A
:

Here,

L .V; 
/ D L.U a C V;˚a C 
/� L.U a; ˚a/

and

L.U;˚/ D @tU C A1.U /@x1U C 1

@x2˚
.A2.U /� @t˚ � @x1˚A1.U //@x2U:

The matrices A1.U / and A2.U / are smooth functions of U for U1 > 0, where U1 is
the first component of U (the ‘
’ component). See [8] for the exact expressions of
these matrices. Also,

E .V; 
/ D @t
 C .va C v/@x1
 � u C v@x1˚
a:

We note also that T W U ! Y1�1, where U D U 4 \X1.
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6.4.2 The Equations

Define

f a D
(

�L.U a; ˚a/ for t � 0;

0 for t < 0:

Then by the properties of the approximate solution, we have f a 2 F s3C3
� .˝T / and

together with the definition of L we obtain

jjf ajjY s3 � Cı1 DW �:
Set

f D

0

B
B
@

f aC
f a�
0

0

1

C
C
A
:

For � sufficiently small, we wish to solve the equation

T .u/ D f

which is equivalent to

T .u/ D T .u0/C f

if we set

u0 D 0

since T .0/ D 0.

6.5 The Linearised Operator, Modified Linearised Operator,
Modified State and Linearised Equations

6.5.1 The Operator DT

Notation. To make the notation easier, let us use Qu instead of v to represent a vector
to which we apply DT.u/, with the obvious notation

Qu D . QV C; QV �; Q
C; Q
�/

and Q
˙jx2D0 D Q .
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Then we have

DT.u/ Qu D

0

B
B
@

L 0.V C; 
C/. QV C; Q
C/
L 0.V �; 
�/. QV �; Q
�/
E 0.V C; 
C/. QV C; Q
C/
E 0.V �; 
�/. QV �; Q
�/

1

C
C
A

where L 0 is the derivative of L and E 0 is the derivative of E . Calculating these,
we obtain

L 0.V; 
/. QV ; Q
/ D L
0.U a C V;˚a C 
/. QV ; Q
/

where L0 is the derivative of L and is given by

L
0.U;˚/. QV ; Q
/ D @t QV C A1.U /@x1

QV C 1

@x2˚
.A2.U /� @t˚ � @x1˚A1.U //@x2 QV

C.DA1.U / QV /@x1U � @x2
Q


.@x2˚/
2
.A2.U /� @t˚ � @x1˚A1.U //@x2U

C 1

@x2˚
.DA2.U / QV � @t Q
 � @x1

Q
A1.U /� @x1˚DA1.U / QV /@x2U:

Also,

E 0.V; 
/. QV ; Q
/ D @t Q
 C .va C v/@x1 Q
 � Qu C Qv@x1˚a C Qv@x1
:

6.5.2 The Operator A

We define

A.u/ Qu D

0

B
B
@

L
0
e.U

aC C V C; ˚aC C 
C/ LV C
L

0
e.U

a� C V �; ˚a� C 
�/ LV �
E 0.V C; 
C/. QV C; Q
C/
E 0.V �; 
�/. QV �; Q
�/

1

C
C
A

where, as in [8], we have introduced the ‘good unknown’, which we denote by LV
instead of PV to avoid conflict of notation, as

LV D QV �
Q


@x2.˚
a C 
/

@x2 .U
a C V /:
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The operator L0
e is defined as

L
0
e.U;˚/

LV D @t LV C A1.U /@x1
LV C 1

@x2˚
.A2.U / � @t˚ � @x1˚A1.U //@x2

LV

C.DA1.U / LV /@x1U C 1

@x2˚
.DA2.U / LV � @x1˚DA1.U / LV /@x2U:

Note that, with .U;˚/ D .U a C V;˚a C 
/, we have

L
0.U;˚/. QV ; Q
/ � L

0
e.U;˚/

LV D
Q


@x2˚
@x2.L.U;˚//

D
Q


@x2˚
@x2.L .V; 
/� f a/:

6.5.3 The Set V and the Operator R

We set m7 D 1 and define

V D fu 2 X1�1 W E .V C; 
C/ D 0;E .V �; 
�/ D 0; jjujjX3 � ı5g

where 0 < ı5 is to be chosen sufficiently small.
We define the operatorR W U ! V by

R.u/ D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@


C
vC

@t

C C .vaC C vC/@x1
C C vC@x1˚aC


�
v�

@t

� C .va� C v�/@x1
� C v�@x1˚a�


C

�
 

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

One can check that indeed R.u/ 2 V . In particular, one can see that jjR.u/jjX3 can
be controlled in terms of jjujjX4 � ı2 for u 2 U .

We then calculate
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R.u/ � u D

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

0

0

E .V C; 
C/
0

0

E .V �; 
�/
0

0

0

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

6.5.4 The Linearised Equations

Given u 2 V and g 2 Y1, we wish to solve the equation

A.u/ Qu D g

for Qu 2 X1�maxfl1;m4Cm7g. Let us write

g D

0

B
B
@

f C
f �
hC
h�

1

C
C
A

where hCjx2D0 D h�
x2D0 D g. Then we want to solve the system

0

B
B
B
B
@

L
0
e.U

aC C V C; ˚aC C 
C/ LV C
L

0
e.U

a� C V �; ˚a� C 
�/ LV �

E 0.V C; 
C/. LV C C Q
C

@x2 .˚
aCC
C/

@x2.U
aC C V C/; Q
C/

E 0.V �; 
�/. LV � C Q
�

@x2 .˚
a�C
�/

@x2.U
a� C V �/; Q
�/

1

C
C
C
C
A

D

0

B
B
@

f C
f �
hC
h�

1

C
C
A

where in the last two equations we have written QV C in terms of the ‘good unknown’
LV and Q
 . The introduction of the ‘good unknown’ allows us to split the solution of

this system into two steps. First we solve the system

L
0
e.U

a˙ C V ˙; ˚a˙ C 
˙/ LV ˙ D f ˙ (53)

with boundary conditions

L
Cjx2D0 C Q 
@x2.˚

aC C 
C/jx2D0
@x2.


aC C 
C/jx2D0

� L
�jx2D0 �
Q 

@x2.˚
a� C 
�/jx2D0

@x2.

a� C 
�/jx2D0 D 0 (54)
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@t Q C .va˙ C v˙/jx2D0@x1 Q 

�.Lu˙jx2D0 C
Q 

@x2.˚
a˙ C 
˙/jx2D0

@x2 .u
a˙ C u˙/jx2D0/

C.Lv˙jx2D0 C
Q 

@x2.˚
a˙ C 
˙/jx2D0

@x2.v
a˙ C v˙/jx2D0/@x1. a C  /

D h˙jx2D0 (55)

for the unknowns . LV ˙; Q /. Note the first boundary condition is Q
Cjx2D0 �
Q
�jx2D0 D 0 written in terms of the ‘good unknown’, and the second boundary
condition is a rewriting of

E 0.V ˙; 
˙/. QV ˙; Q
˙/
ˇ
ˇ
x2D0 D h˙jx2D0 in terms of the ‘good unknown’, where

we replace Q
˙jx2D0 with Q .
Secondly, having solved the above system for . LV ˙; Q /, we solve the two separate

equations

E 0.V ˙; 
˙/. LV ˙ C
Q
˙

@x2.˚
a˙ C 
˙/

@x2.U
a˙ C V ˙/; Q
˙/ D h˙ (56)

for Q
˙. By restricting to fx2 D 0g, we see that Q
˙jx2D0 satisfy the same equations
as Q given in the boundary conditions above, hence by uniqueness of solutions we
have Q
˙jx2D0 D Q .

Finally, we can rearrange to obtain QV from LV and Q
 .

6.6 Solution of the Linearised Equations

Assume u 2 V and g 2 Y1. We wish to solve the equation

A.u/ Qu D g

for Qu, using the steps described above.
The key to the whole iteration scheme is the solution of the linearised problem

(53)–(55).
We have the following result, stated in [8]. Assume that the stationary solution

satisfies the supersonic condition

v >
p
2c.
/:
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Assume that U;˚ are such that U � U ;˚ � ˚ 2 HsC3
� .˝T / for integer s 2 Œ3; s3�

with

ˇ
ˇ
ˇ
ˇ.U � U ;r.˚ � ˚//

ˇ
ˇ
ˇ
ˇ
H5
� .˝T /

C ˇ
ˇ
ˇ
ˇ.U � U ; @x2U;r.˚ �˚//jx2D0

ˇ
ˇ
ˇ
ˇ
H4
� .!T /

� ı4

(57)

for some ı4 > 0, where ˚Cjx2D0 D ˚�jx2D0 D �.
Assume also that .U;˚/ satisfy the eikonal equation

@t˚ C v@x1˚ � u D 0:

Assume in addition that the coefficients .U � U ;˚ � ˚/ have fixed compact
support – a technical condition which can be achieved by truncating the coefficients
without affecting the solution due to the finite speed of propagation of the Euler
equations.

Then if ı4 is sufficiently small, given

.f ˙; g˙/ 2 F sC1
� .˝T / � F sC1

� .!T /

we have a unique solution

. LV ˙; Q / 2 F s
� .˝T / � F sC1

� .!T /

of (53)–(55), replacing h˙jx2D0 with g˙, provided � � 1 is sufficiently large
depending on s3. Moreover, the following estimate holds, for some constant
Cs > 0,

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Hs
� .˝T /

C ˇ
ˇ
ˇ
ˇ Q ˇˇˇˇ

H
sC1
� .!T /

� Cs.jjf jj
H
sC1
� .˝T /

C jjgjj
H
sC1
� .!T /

C .jjf jjH4
� .˝T /

C jjgjjH4
� .!T /

/
ˇ
ˇ
ˇ
ˇ.U � U ;˚ � ˚/

ˇ
ˇ
ˇ
ˇ
H
sC3
� .˝T /

/:

Here, we set U D U a C V , ˚ D ˚a C 
 , where .U; 
/ 2 V . Note that
the smallness condition (57) holds provided ı5 and ı1 are sufficiently small. Also
note that the Eikonal equation holds since the approximate solution satisfies the
Eikonal equation and by the definition of V . We are given f and h and set g˙ D
h˙jx2D0. Unfortunately this method, which is slightly simpler than the one described
in [8], results in a further loss of regularity due to taking the trace of h. So in fact
given

.f ˙; h˙/ 2 F sC1
� .˝T / � F sC2

� .!T /
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we have a unique solution

. LV ˙; Q / 2 F s
� .˝T / � F sC1

� .!T /

satisfying the estimate

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Hs
� .˝T /

C ˇ
ˇ
ˇ
ˇ Q ˇˇˇˇ

H
sC1
� .˝T /

� Cs.jjf jj
H
sC1
� .˝T /

C jjhjj
H
sC2
� .!T /

C.jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.
ˇ
ˇ
ˇ
ˇ.U a � U ;˚a � ˚/

ˇ
ˇ
ˇ
ˇ
H
sC3
� .˝T /

C jj.V; 
/jj
H
sC3
� .˝T /

//:

Having solved this system, it remains to solve the Eqs. (56) for Q
˙. Each of these
equations is a first order scalar linear equation, so has a unique solution (for smooth
enough coefficients and source term). More precisely, assuming that

jj.U a C V;˚a C 
/jjH3
� .˝T /

is small enough (which is guaranteed by taking ı4 small enough), we have a unique
solution

Q
 2 F s
� .˝T /

of (56). Moreover, the following estimate holds, for some constant Cs > 0 (which
may depend on the bound on jj.U a C V;˚a C 
/jjH3

� .˝T /
),

ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

Hs
� .˝T /

�

Cs.jjhjjHs
� .˝T /

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Hs
� .˝T /

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
H3
� .˝T /

.
ˇ
ˇ
ˇ
ˇ˚a � ˚

ˇ
ˇ
ˇ
ˇ
H
sC1
� .˝T /

C jj
 jj
H
sC1
� .˝T /

/

C ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

H3
� .˝T /

.
ˇ
ˇ
ˇ
ˇ.U a � U ;˚a �˚/ˇˇˇˇ

H
sC1
� .˝T /

C jj.V; 
/jj
H
sC1
� .˝T /

//:

Taking s D 3 and assuming ı4 is sufficiently small, we obtain

ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

H3
� .˝T /

� C.jjhjjH3
� .˝T /

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
H3
� .˝T /

/:

Thus

ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

Hs
� .˝T /

� Cs.jjhjjHs
� .˝T /

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
Hs
� .˝T /

C.jjhjjH3
� .˝T /

C
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
H3
� .˝T /

/.
ˇ
ˇ
ˇ
ˇ.U a � U ;˚a �˚/ˇˇˇˇ

H
sC1
� .˝T /

C jj.V; 
/jj
H
sC1
� .˝T /

//:
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From the previous estimate for LV with s D 3, we obtain

ˇ
ˇ
ˇ

ˇ
ˇ
ˇ LV
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
H3
� .˝T /

� Cs.jjf jjH4
� .˝T /

C jjhjjH5
� .!T /

/

(where the constant will depend on
ˇ
ˇ
ˇ
ˇ.U a � U ;˚a �˚/ˇˇˇˇ

H6
� .˝T /

Cjj.V; 
/jjH6
� .˝T /

� ı1). Thus we obtain

ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

Hs
� .˝T /

�
Cs.jjf jj

H
sC1
� .˝T /

C jjhjj
H
sC2
� .˝T /

C .jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.1C jj.V; 
/jj
H
sC3
� .˝T /

//

(where the constant will depend on
ˇ
ˇ
ˇ
ˇ.U a � U ;˚a � ˚/

ˇ
ˇ
ˇ
ˇ
H
sC3
� .˝T /

). Combining

and writing QV in terms of LV and Q
 , we obtain

ˇ
ˇ
ˇ
ˇ QV ˇˇˇˇ

Hs
� .˝T /

C ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

Hs
� .˝T /

C ˇ
ˇ
ˇ
ˇ Q ˇˇˇˇ

H
sC1
� .!T /

�
Cs.jjf jj

H
sC1
� .˝T /

C jjhjj
H
sC2
� .˝T /

C .jjf jjH4
� .˝T /

C jjhjjH5
� .˝T /

/.1C jj.V; 
/jj
H
sC3
� .˝T /

//:

Hence, for u 2 V , we have B.u/ W Y1 ! X1�4 and

jjB.u/gjjXs � Cs.jjgjjY sC2 C jjgjjY 2 .1C jjujjXsC3 //

for all s such that s C 4 2 I . Thus we have l1 D 2 and m4 D 3.

6.7 Estimates of the Operators

6.7.1 Estimate of R

Clearly from the definition of R and T , we have

jjR.u/� ujjX0 � jjT .u/� T .u0/� fjjY 0 :

Thus l2 D 0.
Also, using Sobolev embedding and that R is a first order differential operator,

we have the tame estimate

jjR.u/jjXs � Cs.1C jjujjX0/.1C jjujjXsC1 /

for s 2 Œ0; s3 � 1�. Thusm8 D 0, and as we have already stated,m7 D 1.



378 B. Stevens

Now we estimate the commutator

ˇ
ˇ
ˇ
ˇR.SX� u/� SX� R.u/

ˇ
ˇ
ˇ
ˇ
Xs

for u 2 U .
We have

E .S�V; S�
/ � S�E .V; 
/
D @t .S�
/C .va C S�v/@x1.S�
/C .S�v/@x1˚

a

� S�@t
 � S�.v
a@x1
/� S�.v@x1
/� S�.v@x1˚/

D @t .S�
 � 
/C .@t
 � S�@t
/
C .va@x1
 � S�.v

a@x1
//C va@x1 .S�
 � 
/

C .v@x1
 � S�.v@x1
//C v@x1.S�
 � 
/C .S�v � v/@x1S�


C .v@x1˚
a � S�.v@x1˚a//C .S�v � v/@x1˚

a:

Hence, using the property (2) of the smoothing operators and product estimates for
Sobolev norms, we have, for r � 3; s � 3 2 Œ0; s3 � 1� with r � s and r 0 2 Œ3; s3�,

jjE .S�V; S�
/� S�E .V; 
/jjHs
� .˝T /

� Cr;s.�
s�r jj
 jj

H
rC1
� .˝T /

C �s�r ..jjva � vjjH2
� .˝T /

C 1/ jj
 jj
H
rC1
� .˝T /

C jjva � vjjHr
� .˝T /

jj
 jjH3
� .˝T /

/

C .jjva � vjjHs
� .˝T /

C 1/�3�r 0 jj
 jjHr0
� .˝T /

C �s�r .jjvjjH2
� .˝T /

jj
 jj
H
rC1
� .˝T /

C jjvjjHr
� .˝T /

jj
 jjH3
� .˝T /

/

C jjvjjHs
� .˝T /

�3�r 0 jj
 jjHr0
� .˝T /

C �s�r jjvjjHr
� .˝T /

jj
 jjH3
� .˝T /

C �2�r 0 jjvjjHr0
� .˝T /

jj
 jj
H
sC1
� .˝T /

C �s�r .jjvjjH2
� .˝T /

ˇ
ˇ
ˇ
ˇ˚a � ˚

ˇ
ˇ
ˇ
ˇ
H
rC1
� .˝T /

C jjvjjHr
� .˝T /

ˇ
ˇ
ˇ
ˇ˚a � ˚

ˇ
ˇ
ˇ
ˇ
H3
� .˝T /

/

C �s�r jjvjjHr
� .˝T /

ˇ
ˇ
ˇ
ˇ˚a �˚ ˇˇˇˇ

H3
� .˝T /

C �2�r 0 jjvjjHr0
� .˝T /

ˇ
ˇ
ˇ
ˇ˚a �˚ ˇˇˇˇ

H
sC1
� .˝T /

/

� Cr;s.�
s�r .1C jjvjjH2

� .˝T /
C jj
 jjH3

� .˝T /
/.1C jjvjjHr

� .˝T /
C jj
 jj

H
rC1
� .˝T /

/

C �3�r 0

.1C jjvjjHs
� .˝T /

C jj
 jj
H
sC1
� .˝T /

/.jjvjjHr0
� .˝T /

C jj
 jjHr0
� .˝T /

//:

Hence, for r 0; r; s 2 I with r � s,
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ˇ
ˇ
ˇ
ˇR.SX� u/ � SX� R.u/

ˇ
ˇ
ˇ
ˇ
Xs

� Cr;s.�
s�r .1C jjujjX0/.1C jjujjXrC1 /C ��r 0

.1C jjujjXsC1 /.1C jjujjXr0 //:

6.7.2 Estimate of the Derivatives of T

Since T is a first order differential operator, that is, T .u/ can be written as a smooth
bounded function of u and its first order derivatives for u 2 U 1, we immediately see
that T W U 1 ! Y 0 is continuous and it satisfies (20) and (19) with m1 � 1;m2 �
0;m3 � 1. Note that we have used the Sobolev embeddingH3

� .˝T / � W 1;1.˝T /.
We will in fact need to estimate the derivative of A before we fix m1;m2;m3.

6.7.3 Estimate of A � DT

We estimate
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

Q

@x2.˚

a C 
/
@x2 .L .V; 
/ � f a/

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ
Hs
� .˝T /

�

Cs
ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

Hs
� .˝T /

jjL .V; 
/ � f ajjH3
� .˝T /

C Cs
ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

H2
� .˝T /

jjL .V; 
/ � f ajj
H
sC1
� .˝T /

C Cs
ˇ
ˇ
ˇ
ˇ Q
 ˇˇˇˇ

H2
� .˝T /

jjL .V; 
/ � f ajjH3
� .˝T /

.1C ˇ
ˇ
ˇ
ˇ˚a C 
 � ˚

ˇ
ˇ
ˇ
ˇ
H
sC1
� .˝T /

/:

Hence

jj.A.u/� DT.u// QujjY s
� Cs.jj QujjXs jjT .u/� T .u0/� fjjY 0 C jjQujjX0 jjT .u/ � T .u0/� fjjY sC1

C jjQujjX0 jjT .u/� T .u0/� fjjY 0 .1C jjujjXsC1 //

where the constant Cs depends on
ˇ
ˇ
ˇ
ˇ˚a � ˚

ˇ
ˇ
ˇ
ˇ
H
sC1
� .˝T /

. Thus m5 D 0, m6 D 0,

m9 D 1; l3 D 0; l4 D 1.

6.7.4 Estimate of the Derivative of A

Note that

L
0
e.U;˚/

LV D L
0.U;˚/. QV ; Q
/ �

Q

@x2˚

@x2.L.U;˚//
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where .U;˚/ D .U a CV;˚a C
/. The first term is a component of DT . For fixed
. QU ; Q
/, the second term is Q
 multiplied by a differential operator of order 2. Hence

jjDA.u/QuhjjY s
� Cs.jjhjjXsC1 jj QujjX0 C jjhjjX0 jj QujjXsC1 C jjhjjX0 jj QujjX0 .1C jjujjXsC1 /

C jjQujjX0 .jjhjjXsC2 C jjhjjX1 .1C jjujjXsC2 //C jjQujjXs jjhjjX1/
� Cs.jjhjjXsC2 jj QujjX1 C jjhjjX1 jj QujjXsC2 C jjhjjX1 jj QujjX1 .1C jjujjXsC2 //:

Thus we fix m1 D 2;m2 D 1;m3 D 2.

6.8 Conclusion

We have seen that the hypotheses of the theorem are satisfied with m0 D 4;m1 D
2;m2 D 1;m3 D 2;m4 D 3;m5 D 0;m6 D 0;m7 D 1;m8 D 0;m9 D 1; l1 D
2; l2 D 0; l3 D 0; l4 D 1. Hence we may take r0 D 6. Note that in the proof we
required s1 > r0 C 1; s1 � r0 C maxfm1;m3g C l1 andM.s1 � maxfm1 C l4;m3 C
l4;m5;m9g/ � 0 (with slope 1 which is satisfied for s1 > r0C1 automatically). One
can check that M.s/ D s � 8 hence we require s1 � 3 � 8, so s1 � 11. Now we
require s1 C maxfl1;m4 C m7g 2 I , hence s3 � 11 C 4 D 15, and thus s4 � 17

will do.
Thus we conclude that if we are given the approximate solution
.U aC; U a�; ˚aC; ˚a�/ with U a � U ;˚a � ˚ 2 H20.˝T / which satisfies the

conditions described above, with

ˇ
ˇ
ˇ
ˇU a � U

ˇ
ˇ
ˇ
ˇ
H7.˝T /

C ˇ
ˇ
ˇ
ˇ˚a �˚ ˇˇˇˇ

H7.˝T /

sufficiently small, then we have a unique solution .V C; V �; 
C; 
�/ 2 F 7
� .˝T /

to the following equations (for both C and � components),

L.U a C V;˚a C 
/ D 0

@t .˚
a C 
/C .va C v/@x1.˚

a C 
/ � .ua C u/ D 0:

In fact, since f a 2 Y s2�2, where s2 D 12 � s3 � 3, we may use the last part of the
theorem to conclude that .V C; V �; 
C; 
�/ 2 F 11

� .˝T /.

7 Further Applications and Open Problems

There are several other situations involving characteristic discontinuities for the
Euler equations or the equations of ideal magnetohydrodynamics where it may be
possible to obtain a tame estimate for the linearised equations, and thus apply the
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above Nash-Moser iteration scheme. In these contexts a characteristic discontinuity
is a surface of discontinuity in the fluid across which the Rankine-Hugoniot jump
conditions are satisfied with zero mass transfer. The first step is usually to perform a
normal modes analysis by linearising about a background state (constant either side
of a plane across which the Rankine-Hugoniot jump conditions are satisfied) and to
determine criteria which rule out exponentially growing solutions. The aim is then
to show short-time existence of solutions with the same structure as the background
state (that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot jump conditions are satisfied) where the initial data is a small
perturbation of the background state, under the assumption that the background state
satisfies the stability criteria. We call this structural stability.

One obvious open problem is to extend the above result by Coulombel and Secchi
in [8] on the 2D isentropic Euler equations to the 2D full Euler equations. Miles
showed in [17] that the stability criterion on the background solution NU˙ (using
notation as above) in this case is

jŒNu�j > .. NcC/
2
3 C . Nc�/

2
3 /

3
2

(where Œu� D uC � u�) under the simplifying assumption

N
C. NcC/2 D N
�. Nc�/2:

The main difficulty is to solve, and to deduce a tame estimate for, the linearised
equations, assuming this stability criterion, after which we would expect the
application of Nash-Moser iteration to be similar. In fact Morando and Trebeschi
have obtained an L2 estimate with derivative loss for the linearised equations under
this stability criterion – see [18]. We note that vortex sheets in 3D Euler are always
unstable according to normal modes analysis – see Miles and Fejer [13].

A modification of the Nash-Moser scheme similar to the one above has been
used successfully by Chen and Wang in [5] and [6] for current-vortex sheets in
ideal compressible magnetohydrodynamics under the assumption that the jump in
the non-parallel component of the magnetic field dominates the jump in tangential
velocity. This stability criterion was first found by Trakhinin by forming a new
symmetric form of the equations – see [24] – although it is almost certainly stricter
than necessary. One of the key observations made by Chen and Wang is that, using
this new symmetric form of the equations, the linearised problem for current-vortex
sheets is endowed with a well-structured decoupled formulation into a standard
initial-boundary value problem for a symmetric hyperbolic system and a separate
scalar PDE for the front. Chen and Wang then modify the iteration scheme to
reconstruct the extensions of the front, 
˙, with 
C D 
� on the boundary,
which is why their scheme does not exactly fit into the above framework, but would
require a small modification. In fact Trakhinin in [25] obtained the same result on
current-vortex sheets, but instead of modifying significantly the iteration scheme of
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Coulombel and Secchi, he solved the original linearised equations having used his
new symmetric form only to help with the treatment of the linearised equations,
which results in his approach being longer, although it should fit into the above
framework. The normal modes analysis to determine the expected weakest possible
stability criteria for current-vortex sheets in compressible magnetohydrodynamics
leads to high order algebraic equations which seem impossible to solve analytically,
and is detailed by Fejer in [12], where some special cases are considered.

The stability criterion for current-vortex sheets in incompressible magnetohydro-
dynamics is easier to determine – see e.g. Axford [4]. In 2D, the condition is

2.
ˇ
ˇ NHC

ˇ
ˇ
2 C ˇ

ˇ NH�
ˇ
ˇ
2
/ > jŒNu�j2 :

In 3D, there are two conditions

2.
ˇ
ˇ NHC

ˇ
ˇ
2 C ˇ

ˇ NH�
ˇ
ˇ
2
/ > jŒNu�j2

2
ˇ
ˇ NHC � NH�

ˇ
ˇ
2
>
ˇ
ˇ NHC � ŒNu�ˇˇ2 C ˇ

ˇ NH� � ŒNu�ˇˇ2

although in fact the first follows from the second under the additional assumption
NHC � NH� ¤ 0.

Given these stability criteria, one would hope to be able to obtain a tame
estimate for the linearised equations and then use Nash-Moser iteration as above
to prove nonlinear structural stability of incompressible current-vortex sheets. In
[19], Morando, Trakhinin and Trebeschi obtain an energy estimate for the linearised
3D equations under the above stability criteria. Also, using a different approach,
Coulombel et al. [9] have derived a priori high order energy estimates directly
for the nonlinear equations in 3D, using the incompressible version of Trakhinin’s
stability criterion – see Coulombel et al. [9]. However, the full problem of nonlinear
structural stability of incompressible current-vortex sheets is still open.

The case of current-vortex sheets in 2D isentropic magnetohydrodynamics,
where the magnetic fields are parallel on either side of the discontinuity, has been
considered by Wang and Yu in [26]. They obtain a low order energy estimate
for the linearised equations with loss of derivatives, under some quite restrictive
assumptions to simplify the algebra and make the treatment similar to that of 2D
isentropic Euler.

Another open problem is the case of current-entropy waves for the full magneto-
hydrodynamics equations, where the normal component of the magnetic field is no
longer zero on the surface of discontinuity, but the velocity and magnetic field are
continuous, with only the pressure, entropy and density experiencing a jump. There
are strong indications that such waves ought to be stable under certain conditions,
but the normal modes analysis again results in high-order algebraic equations which
are difficult to study analytically.
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multidimensionnels. Commun. Partial Differ. Equ. 14(2), 173–230 (1989)

3. S. Alinhac, P. Gérard, Pseudo-differential Operators and the Nash-Moser Theorem (American
Mathematical Society, Providence, 2007)

4. W.I. Axford, The stability of plane current-vortex sheets. Q. J. Mech. Appl. Math. 13(3),
314–324 (1960)

5. G.-Q. Chen, Y.-G. Wang, Existence and stability of compressible current-vortex sheets in three-
dimensional magnetohydrodynamics. Arch. Ration. Mech. Anal. 187(3), 369–408 (2008)

6. G.-Q. Chen, Y.-G. Wang, Characteristic discontinuities and free boundary problems for
hyperbolic conservation laws, in Nonlinear Partial Differential Equations – The Abel
Symposium 2010, Oslo, ed. by H. Holden, K. Karlsen. Volume 7 of Abel Symposia (Springer,
2012)

7. J.-F. Coulombel, P. Secchi, The stability of compressible vortex sheets in two space
dimensions. Indiana Univ. Math. J. 53(4), 941–1012 (2004)

8. J.-F. Coulombel, P. Secchi, Nonlinear compressible vortex sheets in two space dimensions.
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Linéaire 28(1), 91–105 (2011)

11. L.C. Evans, Partial Differential Equations. Volume 19 of Graduate Studies in Mathematics,
2nd edn. (American Mathematical Society, Providence, 2010)

12. J.A. Fejer, Hydromagnetic stability at a fluid velocity discontinuity between compressible
fluids. Phys. Fluids 7, 499–503 (1964)

13. J.A. Fejer, J.W. Miles, On the stability of a plane vortex sheet with respect to three-dimensional
disturbances. J. Fluid Mech. 15, 335–336 (1963)

14. R.S. Hamilton, The inverse function theorem of Nash and Moser. Bull. Am. Math. Soc. (N.S.)
7(1), 65–222 (1982)
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