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Abstract These notes are an overview of the Nash-Moser iteration technique for
solving PDEs (or other non-linear problems) via linearisation, where the linearised
equations admit estimates with a loss of regularity with respect to the source term,
coefficients and/or boundary/initial data. We first introduce the abstract setting
along with a version of the iteration scheme due to Hormander (Arch Ration Mech
Anal 62(1):1-52, 1976). We then introduce some modifications which allow the
scheme to be applied to some characteristic free-boundary problems for hyperbolic
conservation laws. We focus on the case of supersonic vortex sheets in 2D as
considered by Coulombel and Secchi in Ann Sci Ec Norm Supér (4) 41(1):85-139,
2008.
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1 Introduction

1.1 Summary

These notes are an overview of the Nash-Moser iteration technique for solving PDEs
(or other non-linear problems) via linearisation, where the linearised equations
admit estimates with a loss of regularity with respect to the source term, coefficients

B. Stevens (<)
Mathematical Institute, University of Oxford, Oxford, OX1 3LB, UK
e-mail: ben.stevens @maths.ox.ac.uk

G.-Q.G. Chen et al. (eds.), Hyperbolic Conservation Laws and Related Analysis 311
with Applications, Springer Proceedings in Mathematics & Statistics 49,
DOI 10.1007/978-3-642-39007-4_13, © Springer-Verlag Berlin Heidelberg 2014


mailto:ben.stevens@maths.ox.ac.uk

312 B. Stevens

and/or boundary/initial data. In these situations, Picard iteration (or the contraction
mapping principle) fails, but a modified form of Newton-Raphson iteration, involv-
ing the application of smoothing operators to overcome the loss of regularity, may
succeed in finding a solution for given data close to some special data for which a
solution is known to exist. This technique is known as Nash-Moser iteration, or in
some contexts as the Nash-Moser inverse function theorem. It was originally used
by Nash in [21] for solving the isometric embedding problem. Moser in [20] and
Schwartz in [23] simplified the method at the expense of a loss of regularity and
showed how it could be applied in a more general setting. Hormander, in his paper
[15] on the boundary problems of physical geodesy, improved on Moser’s scheme
by reducing the loss of regularity, using a scheme more similar to Nash’s original.
More recently, Alinhac in [2] used a modified version of Hormander’s scheme to
prove the short-time existence of rarefaction waves for a class of conservation laws
and Coulombel and Secchi in [8] introduced an additional modification to prove
the short-time existence of vortex sheets for the two dimensional isentropic Euler
equations provided the Mach number is sufficiently large. A scheme similar to the
one used by Coulombel and Secchi is also developed by Chen and Wang in [5] and
[6] to prove the short-time existence of current-vortex sheets for three-dimensional
MHD under certain stability assumptions.

We aim to provide an abstract setting for the technique, whilst keeping in mind
that we want to apply it to PDE problems. Hopefully in an abstract setting it will
be easier to see the key hypotheses needed on the equations to be solved than
in specific situations, which may involve other complications. We first introduce
the scheme used by Hormander in [15], and detailed by Alinhac and Gérard in
[3], which is closer than Moser’s scheme to Nash’s original technique except
that Hormander uses a discrete approximation scheme rather than one based on a
continuous parameter f. Whilst Hormander works in Holder spaces, we work in
more general Banach spaces, at the price of losing a small degree of regularity. We
have in mind that the linearised equations are most likely to be estimated in Sobolev
spaces (or weighted Sobolev spaces), probably with exponent two. This technique
has the advantage over Moser’s technique of obtaining a solution which is closer in
regularity to the given data, but although Nash used his method to obtain optimal
regularity, we are unlikely to obtain an optimal regularity result using this method
in more complicated situations.

We then introduce a more complicated scheme which allows us to deal with
difficulties in solving the linearised equations, inspired by the paper on 2D
compressible vortex sheets by Coulombel and Secchi [8].

Following this, we give the construction of the smoothing operators used in
Nash-Moser iteration on some Sobolev spaces which are used in practice, and some
inequalities useful for obtaining the tame estimates used in the iteration scheme.

Finally, we show how the generalised scheme can be applied to the case
considered by Coulombel and Secchi in [8], in a slightly simplified manner but
at the expense of some loss of regularity.
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1.2 Newton-Raphson Iteration, Picard Iteration,
and Nash-Moser Iteration

Suppose we wish to solve the nonlinear equation 7'(#) = f for the unknownu € X,
given f € Y, where T : X — Y. So as not to ask too much, let us look for a
solution u close to ug of the equation T'(«) = T (uo) + f, where f is small. One of
the most classical methods for solving such a nonlinear equation via linearisation is
Newton-Raphson iteration. For n > 1, we set

tnt1 =ty — L(un)(T () = T (u0) — f)

where L(u) is a right inverse of DT (u). One can check by applying 7 to both
sides and using Taylor’s theorem that 7 (u,4+1) = T (uo) + f plus terms involving
un+1 — u, which one would hope to converge to zero. However, for this scheme
to even make sense, we need an operator L(u) : ¥ — X which is a right inverse
of DT (u). The linearised equations DT (1)v = g themselves may be difficult or
impossible to solve for v € X, hence we may not be able to find such an operator L.

As a possible remedy to this problem, we consider the contraction mapping
theorem, or Picard iteration, which uses a slightly different kind of linearisation
and may be able to solve equations where the operator L as above does not exist.
For example, suppose we can write our equation in the form

S(uwu=20

where, for fixed u, S(u) is a linear operator. We seek the unknown u € X, where
X is a complete metric space, and we assume the initial/boundary conditions have
been absorbed into the definition of X. We now define the map F : X — X by
F(u) = v, where v is the solution to the linear equation

S(u)yv = 0.

If we can prove that F is well-defined, and that F is a contraction, i.e.
dx(F(w), F(u2)) < «dx(u1,uz), where « < 1, for all uy, up in X, then the
contraction mapping theorem implies that F' has a fixed point, w. By construction,
w satisfies the original nonlinear equation we wished to solve.

Note that in order to apply this method, we require that the solution v of the linear
equation be in the same space as u, on which v depends through the coefficients of
the equation. This is a better situation than for Newton-Raphson iteration, which
requires that the operator L (i) regains the regularity lost by applying the operator 7 .

We can also write this method as an explicit iteration scheme (effectively
re-proving the contraction mapping theorem). We pick 1y € X and forn > 0 we
define u, 4+ as the solution of the linear equation

S(n)utn1 = 0.
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We then aim to show that, for n > 1, dy(un+1,un) < xdx(uy, uy—1). This will
ensure u, is a Cauchy sequence which converges to a solution of the nonlinear
equation. Using the explicit iteration scheme (known as Picard iteration) allows
more scope for slight modification in specific cases. For example, Majda in [16],
uses this iteration scheme, modified to include a smoothing of the initial data, to
prove the short-time existence of classical solutions to multidimensional systems of
conservation laws with a convex entropy.

However, it is possible that we cannot solve the linearised problem above for v
in the same space as u, as required by Picard iteration. It may happen that we can
solve the linear equation, but only for v € Z, where X C Z. For example, perhaps,
given u € C¥, we can only prove that a solution v to the linearised equation exists
in C*¥~!. We refer to this as a loss of regularity in solving the linearised problem.

To overcome this, the key idea of Nash was to return to Newton-Raphson
iteration, but to modify the scheme to include a smoothing operation at each step to
compensate for the loss of regularity. Returning to the equation 7T'(u) = T (ug) + f,
standard Newton-Raphson iteration may be written as follows. For n > 0, we set

Upt1 = Uy + Uty.
The difference i, is given by
ttn = L(ttn)gn
for

&n = f +T(u) —T(uy)

where L(u) is a right-inverse of DT (u).

Now let us suppose we have a family of smoothing operators S, that regain the
regularity lost by 7" and L, and such that S,, — id as n — oco. Then there are two
obvious ways we can modify the scheme.

The simplest is to set u,+; = u, + Syity,, i.e. we smooth i, after applying the
operators 7" and L to u,. Since S,, — id as n — oo, this scheme looks like Newton-
Raphson iteration for large n, so we might expect it to converge under certain
conditions. This method is used by Moser in [20] and Schwartz in [23]. Whilst
this is a very simple modification, it has the drawback that a solution u obtained by
this method has a much lower degree of regularity than the given data f.

The other obvious modification is to smooth u, before we apply the operators T’
and L. Thus we set

w, = L(Syun)gn.
We also adjust our choice of g, (which should be smoothed) given this modification.

This method is used by Hormander in [15] and a continuous-parameter version was
used by Nash in his original paper [21]. We motivate how to choose g, in Sect. 3.1,
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which is based on the motivation given by Alinhac and Gérard in [3]. Again, the fact
that S, — id as n — oo means the scheme looks like Newton-Raphson iteration
for large n. The advantage of this method is that the solution u obtained can be
quite close in regularity to the given data f, but generally the regularity obtained
will not be optimal. In modifying Hérmander’s method to deal with more general
Banach spaces instead of just Holder spaces, we lose an arbitrarily small degree of
regularity if we can use fractional index spaces, or one degree of regularity if we
are using integer index spaces. Other modifications to the scheme used in practice
further reduce the degree of regularity obtained. Nevertheless, we may consider this
an improvement over Moser’s technique, which we can informally attribute to the
fact that we have carefully constructed g, to compensate for the introduction of the
smoothing operators, whereas Moser’s method involves no such modification.

1.3 Nash-Moser Iteration as an Inverse Function Theorem

It is instructive to consider a slightly different viewpoint, that is to consider Nash-
Moser iteration as an inverse function theorem for a certain class of Fréchet spaces,
which are a natural generalisation of Banach spaces.

Indeed, the standard version of the Inverse Function Theorem, which can be
proved (under slightly stronger hypotheses than usual to make things simpler) by
an application of the contraction mapping theorem with parameter, carries over
analogously to an operator 7 : X — Y between Banach spaces. By this we mean
that if the Fréchet derivative DT (1) of T is invertible at a point u € X, then T
itself is invertible in a neighbourhood of u. Hence, if we wish to solve the equation
T (u) = T (up) + f for u near uy, where f is small, we can simply apply the inverse
function theorem.

However, it is possible in applications that we can only find an ‘unbounded’
inverse for DT (u). For example, if we work with differential operators in the spaces
C* of k-times differentiable functions, then we mighthave 7 : C k— Cck1 but we
might only be able to find a right inverse L(u) of DT (u) on some subset of C¥~,
for example on C*, so that L(u): C* — C*, or, even worse, on C¥t! g0 that L(u) :
Ck+1 — C¥. This is solved if we work in the space X = C, since then L () maps
X to itself. However, this is no longer a Banach space, but a Fréchet space. Thus we
are led to ask whether there is an inverse function theorem for Fréchet spaces. The
answer is that if we assume the existence of a certain family of smoothing operators
on our Fréchet space (which by no means exist in general, but do for most spaces
of differentiable functions commonly used), then there is a sort of inverse function
theorem. This requires that DT () be invertible on a neighbourhood of u, not just
at u itself.

This point of view is elegantly considered by Hamilton in [14], who refers to
this special class of Fréchet spaces as ‘tame’ Fréchet spaces and the necessary
estimates involved on the operator T as ‘tame’ estimates. The proof of this result
uses Nash-Moser iteration, and Hamilton’s proof in particular is quite close to
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Nash’s original method. The similarity with the usual inverse function theorem
is why Nash-Moser iteration is sometimes referred to as the Nash-Moser inverse
function theorem or the Nash-Moser implicit function theorem. See also the chapter
‘Generalized Implicit Function Theorems’ written by E. Zehnder in Nirenberg [22]
for an introduction to Nash-Moser type theorems as generalisations of the standard
inverse/implicit function theorem. Another implicit function theorem in the setting
of Fréchet spaces is given by Ekeland in [10], whose approach does not rely on
Newton-Raphson iteration but on Lebesgue’s dominated convergence theorem and
Ekeland’s variational principle.

Whilst this viewpoint is conceptually simple, for actual applications to PDEs,
working in Fréchet spaces is not necessary and complicates matters, and it is easier
to consider a family of Banach spaces in which one has estimates for the linearised
equations, for example (C*);ey or (H*)sersq-

1.4 Tame Estimates

The key estimates involved in Nash-Moser iteration are known as tame estimates.
These are estimates of the following form. (Here we use the spaces C* for
definiteness.)

LetT : C® — C*.

Then T satisfies a tame estimate if

T @llcx = Ce(1 + [Jul|crn)

for some fixed integer k; and all u in some fixed bounded set U C C ko for some
ko, where the constant Cj, > 0 is independent of u.

The key point about this estimate is that it is affine in the norm of « on the right
hand side with the variable index k.

Similarly, the second derivative of T, D2T, is said to satisfy a tame estimate if

2
[>T @),
< Cellvalles s I2llcis + vl Iballesse + alles Iballens (1 -+ lullrsss )

for some fixed integers k1, k», k3 and all # in some fixed bounded set U C C ko for
some ko, where the constant C; > 0 is independent of u, v; and v,.

Note that this estimate is also affine in the norms on the right hand side with the
variable index k, and in addition it is quadratic (with no affine terms) in (vq, vy),
which will be a key point in the iteration. The smoothing operators will control the
large k norms in terms of lower ones at the price of poorer estimates and we require
DT to be a good approximation for 7' to compensate.

Note that the framework of tame estimates fits differential operators well because
of product estimates of the form
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I1fellms < CsUL Ngr l1gllms + 11/ g 111 ar)

forr > %, where d is the dimension.
Similarly, we have estimates for compositions G(x) = F(u(x)) (sometimes
called Moser-type inequalities) of the form

[10°G |2 = Cy|lul|g1e

for u in an H'-bounded set.

These estimates can be derived from the Sobolev embedding theorem for large
index s, and details of these estimates for certain classes of Sobolev Spaces are given
in Sect. 5.2.

2 The Abstract Setting

In order to describe Nash-Moser iteration in an abstract setting we will need to
introduce some notation, as well as the idea of a derivative in this setting. We
will simply use the notion of a directional derivative, since all we need is a linear
approximation to an operator which satisfies Taylor’s theorem.

2.1 Families of Banach Spaces and Differentiation

Definition 1. Let / be an interval in R or Z of the form [0, a), [0, a], or [0, co0),
where a > 0.

We will say {X*}ses is a decreasing family of Banach spaces if, for each s € I,
X* is a Banach space with norm ||-|| s, and, for s, s, € I with s; < 55, we have

X2 C X with ||||ys2 = |]l|ys1 on X2,
We will write
X = Nyer X°*
and
X" = Nyersom X
form e I.

Remark 1. Note that it is convenient to use the notation X * for the intersection of
all the Banach Spaces X* with s € I, even if [ is a finite interval. In the case that
I =[0,00), X°°7 as defined above is the same as X °°, but if / is a finite interval
then they are not the same.
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Definition 2. Let {X*},c; be a decreasing family of Banach spaces. Let o : U —
X where U C Ris open, and let ¢t € U. We say « is differentiable at t if there
exists a w € X such that

alt +h)—oa) o

h —0ash —>0(h #0)

X.\'
forall s € I.
If such a w exists, we say w is the derivative of « at ¢, and write &’(f) = w or
‘é—‘;‘(t) =w.

We say « is differentiable if it is differentiable at # forall € U.

Definition 3. Let {X*};c; and {Y*};e; be two decreasing families of Banach
spaces. Let T : U — Y7 for some m € I, where U C X is ||-||y--open
for some r € I, and let u € U. We say T is differentiable at u if, for each v € X°°,
the map «,, : (—€,€) — Y °7" defined on a small neighbourhood of 0 in R by

a,(t) = T(u+tv)
is differentiable at O in the sense of Definition 2, and
a,(0) = DT (u)v

where DT (1) : X*° — Y 7" is a linear map. We call DT (u) the derivative of T
at u.

We say T is differentiable if it is differentiable at u for all u € U and call DT
the derivative of 7.

For an integer k > 2, we say T is k-times differentiable with k-th derivative
DX T if the following inductive definition holds.

T is k —1 times differentiable with (k — 1)-th derivative at u given by D= T (u) :
(Xo°)k=1 5 Yy foreach u € U.

For each ordered set (vi,...,vi—1) € (X®)~!, themap S : U — Y®
defined by

S(u) = DM wy(vy, ... viy)

is differentiable in the above sense.
Define the k-th derivative of T at u € U as D¥T (u) : (X*°)¥ — Y~ where

DT w)(v1, ..., vi) = DS(u)v.

Remark 2. We will not need all the properties of standard derivatives. We merely
require a linear approximation to within quadratic error of a nonlinear operator.
Hence we give the above fairly weak definition of differentiability and don’t worry
about questions such as whether the partial derivatives commute.

Proposition 1. Let {X°},e; and {Y°}se; be two decreasing families of Banach
spaces. Let T : U — Y™ for some m € I, where U C X is ||-||y--open
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for some r € 1. Then Taylor’s theorem holds for T. More precisely, suppose T is
k-times differentiable (in the sense of Definition 3) for some k > 1, let u € U,
v € X%, and suppose the line segment [u, u + v| is contained in U. Then

1
k —1)!

Tu+v)=T(u)+DTwyv+...+ DT () (v, ..., v) + Riu(v)

where

1
[|Reu)|lys < 1 Sup HD"T(u +tv)(v, ...,
- 1€[0,1]

foralls € I suchthats +m € I.

Proof. Fix s € I suchthat s +m € I.Let ¢ € (Y*)* be a continuous linear
functional on Y.
Define g : J — R by

g(t) = ¢ o T(u+ tv)

where J is an open interval in R containing [0, 1].
Since ¢ is a continuous linear functional on Y ¥, from the definition of differen-
tiability we have that g is k-times differentiable with

g9 =¢o DXT(u+tv)(v,...,v)

Applying the one-dimensional Taylor’s theorem to obtain an expansion for g(1)
about g(0), we have

g1)=¢g(0)+ &) +...+ g1 0) + g k(h)h*

N
for some A € [0, 1] (which may depend on ¢). Hence
poT(u+v) =

&(T(u) + DT(u)v + . .. (kl )Dk "Tw,.. v)+%thkT(u—i—hv)(v,...,v))

Rearranging, we have

‘q&(T(u +v) = (T (u) + DT (u)v + . D' T W) (v, ..., v)))

k- 1)‘

1
< {191l ys)s FthkT(u +h)(v,...,v)

YSs

1
=< ||¢||(ys)* F tzl[,épl] HDkT(I/l + IV)(V, ey
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Now use the Hahn-Banach theorem to pick ¢ € (Y*)* with [|@||ys)« = 1 such that

w7m+w—amyunmw+“ﬁ+@ingﬁ*nmm“”w»
:HTW+W—U@%HH@W+”AXk_mD“W@MMNW)W
We then obtain
HT@+@-U@H4ﬁ@w+”.+%_D#ﬁ*n@m”qw)w

< l sup HDkT(u+tv)(v,...,v)\
k! repo.n

ys:®

This completes the proof.

Remark 3. Note that we can apply the above proposition when {X*}s¢; is just
{R}e; to obtain Taylor’s theorem for paths in ¥ *°.

2.2 Definition of the Smoothing Operators

Definition 4. We will say a decreasing family of Banach spaces {X*}sc; satisfies
the smoothing hypothesis if there exists a family of linear operators {Sp}ger., such
that

Sp: X0 — X
and, for u € X*, we have
[|Soul|yr < Crs07™% |Ju||ys forallr,s € I (1)
| — Seu]|yr < Crs0 ™ ||ul|ys forallr,s € I withr < )
H%Seu r < Crs0" 7 |ul|ys forallr,s eI 3)

where the constant C, ; > 0 remains bounded if » and s remain bounded.

Here (a)+ denotes max{a,0} fora € Rora € Z.

Note %S@M is the derivative of the map 6 + Syu in the sense of Definition 2,
which we require to exist for each u € X°.
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3 Hormander’s Version of Nash-Moser Iteration

3.1 Motivation for the Iteration Scheme

Here we provide some motivation for the iteration scheme used by Hérmander in
[15] by comparing it to Newton-Raphson iteration. This is unnecessary for the proof
of the theorem, but the iteration scheme seems a little unmotivated without it. This
motivation is partly based on the motivation given in Alinhac and Gérard [3].

3.1.1 Newton-Raphson Iteration

In order to solve the equation
T(u) = T(uo) + f
the Newton-Raphson method uses the following iteration scheme.
tn 1 = tty — L) (T () — (T (t0) + £))

for L aright inverse of DT.
One way of justifying this is as follows.
We set

Up+1 = Uy + Uty
where the increment i, is to be determined. We then have
T (un+1) = T (up) + DT (up)ir, + e,

which defines the error e, incurred by using the derivative of T to obtain a linear
approximation to 7". By Taylor’s theorem, we expect this to be small when i, is
small.

Let us choose i, such that

DT (uy)it, = gn
ie.
iy = L(up)gn

where g, is to be determined so that u, converges to a solution u of T(u) =

T(up) + f.
From the equation

T(”n+l) = T(Mn) + gn + ey
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we obtain
T(un) =T@o) + Y g+ Y m
m=0 m=0
n
= T(“0)+ ng +En + e,

m=0

where

n—1
E, = E em.
0

m=

Thus if we define g, by
n
dgntEn=1f
m=0

we obtain

T (up+1) = T(uo) + f + ey

which we hope converges to T (uy) + f as n — oo since e, — 0.

The formula for g, implies go = f and

En+1 = —€n
=T (up) + gn — T (n+1).

Hence

gnt+1 = T(uo) + f — T (up+1).

Thus we obtain the iteration scheme

tnt1 =ty = L(un) (T (un) — (T (u0) + f))

3.1.2 Nash-Moser Iteration
We still wish to use an iteration scheme of the form

Upy1 = Uy + Uy

B. Stevens
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but we are now concerned with the case when the application of the operator L (u;,)
to g, causes a loss of regularity with respect to u, and g,. By this we mean that if
u, and g, lie in X*, then L(u,)g, will lie in a larger space X s" for s/ < s so that
for any fixed s the norm ||u,|| s Will blow up as n — oco. This loss of regularity is
stated precisely in (5).

To overcome this, we apply smoothing operators S, which allow us to control
[|Syttn]|xs for large s in terms of ||u, ||y for small s. By choosing S, to vary with n
so that §,, — id in some sense as n — 00, we hope to be able to overcome the error
introduced by these smoothing operators. In this particular version of Nash-Moser
iteration, we follow Hormander in [15] and Alinhac and Gérard in [2] by choosing
to apply smoothing operators before the application of the operator L. Hence we
define

v, = S,u,
and set
T (unt1) = T (un) + DT (vy)ity + ey
which defines the error e, incurred by using the derivative of 7', evaluated at v,, to
obtain a linear approximation to 7. By Taylor’s theorem, and the fact that S, — id,

we expect this to be small when i, is small and » is large.
Following the same process as before, we define

iy = L(vn)gn
where g, is to be determined so that u, converges to a solution u of 7'(u) = T (ug) +

f, and g, should be smoothed.
From the equation

T(unt+1) = T(up) + gn + en

we obtain
T (upt1) = T (uo) + Zn: gm+ Zn: €m
m=0 m=0
= T(uo) + Zn:gm +E, +en
m=0
where

n—1
E, = E enm.
m=0
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Before we defined g, by
n
Z gntEn=f
m=0
but since we would like g, to be smoothed, we define g, by

ng = Su(f — En).
m=0

From this, we obtain
T(”n+l) = T(”O) + Snf +E,—S,E, +e,

which we hope converges to T'(ug) + f asn — oo since ¢, — 0 and S,, — id.
The formula for g, implies go = So f and

g1 = Su+1(f — Ent1) = Su(f — En)
= (Sp+1— Sn)(f —E,) — Su+1€n.

Note that we may split the error e, up into two parts,
en=e, +e
where
e, = (DT (u,) — DT (vy))i,
is the error caused by replacing u, by v, and
el = Tus1) — T(un) — DT (wy)ity

is the standard quadratic error in the Newton-Raphson scheme.

3.2 Statement and Proof of the Theorem

Theorem 1. Let {X*}e; and {Y*}ser be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let uy € X*° andlet T : U™ —
Y? be continuous, where U™ C X™ is a bounded open neighbourhood of uq in
XM, for some mgy € 1. Suppose also T : U — Y™™ for some fixed m, € I,
where U := U™ N X*°, and T satisfies the following conditions.
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1. T is twice differentiable in the sense of Definition 3 and

[|D2T ) (v, v2) ] ys

< CS Vil st vallym =+ vallyms 2l st + villxm [vallxm (U ] gsrms))

forallu € U,vi,v, € X*® and s € I such that s + m,s + mz € I, for some
fixed numbers my,my,m3 € I, where the constant CSl > 0 is bounded for s
bounded.

2. For each u € U, there exists a linear map L(u) : Y — Xo—maxtiima} gycp
that
DT (u)L(u) = id
and
IL@)gllxs < Clllgllys+n + lIgllyn Nlullxstms) ®)

forallue U, g € Y®ands € I suchthats + li,s + my € I, for some fixed
numbers l1,m4 € I, where the constant CS2 > 0 is bounded for s bounded.

Let rg € I with rg > max{mg, my, [y +my +my,2m,, l‘z”” +my}andletrog+1 <

s1 € I such that s, + max{l,,m4} € I be sufficiently large depending on the
constants m;.
Then there exists a constant 0 < € < 1 such that if f € Y™ with

||f||Yro+11 <€

we can find u € U™ which solves the equation
T(u) = T(uo) + f-

Moreover, let J = {r € I : f € Y r > ry}. Then for eachr € J and s € I
with s < r, assuming that s; + r — ro + max{l;,my} € I, we have u € X*, and
there exists a constant K, s independent of f such that

||M—M0||X.\' f Kr,S ”f‘”Y"Hl °

Proof.
Step 1 — Setup of the iteration scheme
Let f € Y"1 be such that || f||yr+n <€, where 0 < € < 1 will be chosen later.
Denote the smoothing operators on (X*)se; by {S¢}¢>1 and the smoothing
operators on (Y *)ses by {S} }o>1.
We use an iteration scheme to construct a sequence (i, ),>0 in X °° which we aim
to show converges to a solution u € U™ of T'(u) = T (up) + f-
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For n > 0, define
0, =06y+n

where 6 > 1 will be chosen later depending only on ry, the constants m;, [, and
the constants in the smoothing hypothesis and in the inequalities satisfied by D>T
and L.

Note that

9n+1 = en +1 = 29}1

We have dropped the parameter « from the definition of 6, in Hormander’s version
since he introduced it to make e, as small as e, but this will turn out to be
automatically true under our hypotheses.

For n > 0, define

X
Vv, = So,,”n
iy = L(vy)gn
Upt1 = Uy + ity

where g, is defined below.

Note that the overdot “is simply notation indicating a sort of difference and does
not denote differentiation.

For n > 0, define

g =351
Gt = (SY . — SIS — En) = S) e
where
n—1
E, = Z em
m=0
(so Ey = 0), and the error e, is defined below, for n > 0.
¢} = (DT(uy) — DT(v,))ity
e = Tty + itn) — T (uy) — DT ()it
en=c¢, +e.

Note that since gy is defined in terms of f only, and we are given ug, from which
vo is obtained immediately, the iteration scheme can be determined for n > 0 in the
order ity, Uy 41, Vat1, €y, €yys €ns Eny &nt1-
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Note that e, is defined so that it measures how well T (u,+1) — T (u,) is
approximated by DT (v, )it,, by which we mean

T (up+1) — T (uy) = DT (vp)ity, + ey
= gn t+ en.

Also note that the formula for g, +; can be rearranged to give

&n+1 = (So,,ﬂf Sef) (Se+1 n+l ™= SHYnE")'

We thus obtain

T(tp1) = Two) = Y (T (tt41) = T (1))
m=0

n n
=D g+ e

m=0 m=0
ZSOIZf_SQI:‘En+En+1
=Sy f+ (E,— S Ey) + ey

which we hope converges to f as n — oo, since, roughly speaking, S 01,/1 — id and
e, — 0.

Step 2 — Obtaining estimates for the iterates via induction

We will show the following inductive hypothesis holds.

itallxes < K NLf llyrotn 6,707 for all s € [0, s1] [H,]

where the constant K > 0 will be chosen later, with K independent of n, f and e,
but depending on 6y. We will choose € sufficiently small such that K || f||yr+y <
Ke < 1.

In what follows, Cs > 0 represents a constant, which is independent of n, f and
€, and is bounded for s bounded. It will also be independent of 6y, which will allow
us to choose 6 so that 6, is large compared to Cs for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that [H,,] is true for all 0 < m < n and let us show that [H, 4]
follows. (We will leave the proof of [Hj] until later.)

Pick a real number 0 < n < 1 such that ro > max{mg, mq,ly + m; +
my,2my, b% + ma} + 21
For s € I, define

P(s) = (s —ro)+ for|s—ro| >,

n for |s — ro| < 1.
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We claim that the following estimates for 0 < m < n + 1 follow directly from [H,,]
forO <m <n.

it — uoll s < CK || f|lyr+n 65 fors € [0,s1],  (6)
Hseﬁ,(“m —uo)i

||t — o) — S (um — o)

< CK || fllyro+n OF® forsel, (7)

X.\'
< CK || fllyrotn 687 fors € [0,s1], (8)

X.\'
tm = villxs < Cs6 " fors € [0,51], (9)
[Vinllxs < C65© fors e,
(10)
Un|lys = Cs ors € [0,s].
ys < C0F fi [0, 51]
(11)

Indeed, for 0 < m < n, we have

[|tm+1 — tol|xs =

m

> i

=0 X5
m

<Y liullxs
1=0

m
s—ro—1
<K fllyntn Y 67"
1=0

=K ||f||Yr()+11 Z(@O + [)5—1‘0—1
=0

m

=K IIf”on+l1 Z(QO + ])Q(S)—l

=0

where

s—ryg forl|s—ro| >n,
0(s) =
for |s — ro| < 1.

Set h(x) = (6p + x)2@~! for x € [0, 00). Then

m m+1
D (60 + 12O < / h(x)dx
1=0 0

s—ro

L@ +m+ 1)y —67) for|s—rol =1
%((90+m+1)”—93) for |s —ro| <7
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(0,30 —6,")  for|s —rol =1

_ m—+1
) Lepn 1
;(9m+1_90) for |s —ro| < 1
1L_ps—ro
s—ro  m+1 fors —ro > n

1 p—(ro—s)
< - — < —
S\ s 6, fors —ro < —p
1an
59m+1 for |s —ro| < 1

This implies (6), noting that the constant C; remains bounded for s bounded. (We
introduced 7 to avoid a constant involving - _lro which blows up as s — r¢.)
For s > ro + 7, use (1) from the smoothing hypothesis and (6) to obtain

< G0, |t — uo|| xro+n
< GK [ fllyro+n 0, "0,
< GK [ fllyro+n 0, -

155, @ = uo)|

Xs

For s < ry + n, using (1) from the smoothing hypothesis and (6), we have

< CK || flyrotn 659,

HSGXm(”m - “0)| x5 =

This proves (7).
For s < ry + 1, use (2) from the smoothing hypothesis and (6) to obtain

H(um — up) — Se);(um — uo)i

xs = Cs O "7 |t — uto] | xro+
< GK || fllyro+n 6, "6,
< GK | f llyrotn 6,7
Forrop + n < s < sy, using (6) and (7), we have

X = GK ||f||Yf0+11 eysn_ro

|| Gt — o) — S& (i — uo)|

as required. This proves (8).
Now

it — V!l xs = ||thm — S§ tm|] .

= || (tm — uo) — Sg;(um —up) + up — SQXmuO| »

< H(um —up) — ngn(um —u0)| ys Tt Huo—ngnuoi

< CYK ||f||yr0+ll 9;,_"0 + CSGI‘;_FO ||M0||Xlnax{r0.s}

XS

by applying (8) to the first term and (1) or (2) from the smoothing hypothesis to the
second term. This proves (9). (Note K || f||yro+n < Ke < 1.)
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Similarly,

vinllxs = ||S5 tm]| s
= |84 (um — uo) + S§ uo|
< ||84;, (ttn — uo)|

= |13, (wn = uo)|

Xs

v+ 1[5,

XS

xs T Cs [luol[xs

by (1) from the smoothing hypothesis. Now use (7) to obtain (10).
We have

st s = Nlttm — uol|xs + [luollxs -

Now apply (6) to obtain (11).
This completes the proof of the claim.
Note that, using (6) and (9), we have

[V — uollxmo < |[Vin — ttm || xymo + ||t — 10 || xmo

< COM0 4 CKefl )
< COM 4 CKe.

Thus by taking € sufficiently small depending on K and C, and 6, sufficiently large
depending on C, we have v,, v, € U. Also note that (6) in the case s = my
implies u, € U for € sufficiently small, and [H,,] implies that u, + i, € U for €
sufficiently small. This guarantees that e, and 1,4 are well-defined. Note that the
same argument also shows that the line segments [u,,, u, + it,] and [u,, v,] are in U
for € sufficiently small.

Estimate of e/,. We claim that for all s € [0, s; — max{m,m3}],

[lex|

ye < GRS llyrtn 6,771
where
M (s) = max{s + my + my — 2ro, (s + m3 — ro)+ + 2m, — 2r¢}.
Indeed, we have
e; = (DT (u,) — DT (vy))ity
= (DT ((tn — V) + vi) — DT (vy))ity.
Note that, since T is twice differentiable in the sense of Definition 3, the map

u+ DT (u)i,
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is differentiable in the sense of Definition 3 with derivative acting on v given by
D*T (u) (it v).

Hence, applying Taylor’s theorem, (4), [ H,] and the estimates (9) and (10), we have,
for s € [0, s; — max{m, m3}],

llen| [y = (DT (s — va) + vi) = DT (va))itallys

sup HDZT(t(u,, — )+ v) (i, wy — Vn)|
1€[0.1]

IA

Ys

IA

Cs(itn || xos+my |n — V|l xxmo + ||t xma [n — va|lys+m

+ [l || xmo [|un = vullyms (14 sup [|[vn + 2 (un — vi) || xs4m3))
t€0,1]

< Co(K | f llyrotn 6,077 4 K || f [yt 6727707 G570
+ K || f|lyrotn 0207t gmaro(] 4 FGHm) 4 gatma=roy)

< GK || fllyn+n 61710,

Estimate of e//. We claim that for all s € [0, s; — max{m, m3}],

"
n

He vs <GK ||f||Yr0+l1 9,5”("_“”-
Indeed, we have

e,/1/ = T (un + ita) — T (un) — DT () ity .

Hence, applying Taylor’s theorem, (4), [H,] and the estimate (11), we have, for
s € [0, 51 — max{m, ms}],

lex]

o < sup || DT (un + tity) (it itn)] |
t€l0,1]

. . 2 .
< Cs (i xestm [|itnl|xms + [litn || 5my (1 + Sl[lp] [lun + titn]] xs+m3))
1€[0,1

= CS(K ||f||Yf0+11 92+m1_r0_1K ||f||Yr0+11 anz—r()—l
K2 e 627722 607 4 K| f [y 63+757707))
<O CK || S |lyntn 61O

< GK || fllyn+n 6171

where we have used K || f||yro+y < Ke < 1.
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Estimate of e,. Adding the estimates for ), and €]/, we obtain

llellys < CoK ||f llyron 6717

forall s € [0, s; — max{m,, m3}].

Estimate of g,,+1. We claim that forall s € I,
lgntillys = ColK 1S Myt 627+ (1 yroen 6,777,
Indeed, we have
g1 = (S5, —Sg)(f — En) = S;, en.
Note that for any w € Yy,
653 = s3], = Cots™ " Iwllys

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s = ro + [;, we have

Y Y —ro—11—1
st =shs ], = o™ 1A s
We also have

H(SG);JH - SG);)E”

_/_
Ys < Co 50y T |Enllyy -

Now, for s” € [0, s; — max{m, m3}], we have, from the estimate for e,,,

n—1
Eallys = ||D_ em
m=0 ys
n—1
N—
< CyK || fllyrn+n Z 9,]:1(” Itn
m=0

s
< CoK || f[lyrotn 617

if M(s’) > 0, by the integral comparison used before. Note that M (s”") has slope 1
for large enough s’ depending on r( and the constants m;, so to achieve M(s") > 0
it suffices to take s’ large in relation to r and the constants mz;. To do this we require
s1 sufficiently large in relation to ry and the constants m;.
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Hence

csi.., = siHE,

’ o
Lo = CoCosK ([ llynn oM Fss =
< CK || fllynotn 61O

by choosing s’ sufficiently large compared to ry and the constants m; so that M (s)
has slope 1 for s > s’. (Hence M(s") — s’ < M(s) — s for all s since M(s) — s
is decreasing for s < s’ and constant for s > s’.) Again, to do this we require s
sufficiently large in relation to ry and the constants m;. This fixes s;.

Similarly, for s’ sufficiently large, we have

= Cs’,se}:_s ||en||ys’
Y.\
/ o
< CysCy K || f ||y OMEIFsms =140
M(s)—1

= CSK ||f||Yro+11 9;1 ) +'7‘
Hence the estimate for g, 4 holds.
Estimate of i,,1. We have
Unt1 = L(Vp+1)8nt1-

Hence, for all s € [ such thats + [}, s + my € I, using (5), the estimate (10) and
the estimate for g, 4, we have

Nitws111xs < Co(llgnttllystn + gnrtllyn (14 [[Vasr|] getoms))
M(s+1)—1+ s—ro—1
< Co(K |1/ llymtn OXSFDOTHT 1 £ llyrsn 5570
M(l)—1+ —ro—1 P(s+
+ (K1 Nyt 0035 ™ 1 f o 60,5571+ 6701y

M(l s—1 —ro—
< C(K || f llyrmtn O8O 1 £yt 6557071 (12)

since Hffrsfm“) < 03, because ro > m4 + 2, and M(I; +s5) < M(l;) + s because
M has slope at most 1.
We want to obtain

. —ro—1
litnt1llxs < KALS Myro+n 0,57

for s € [0, s1].
To make the first term sufficiently small, we require

—y:=MU)+ro+n<DO.
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Then we can choose 6 large enough so that

M) +s—1+n __ s—ro—1 =y s—ro—1 =y 1 s—ro—1
Csb,41 =GO, 0,0 =Gl 6, < §9n+1

for all s € [0, s51].
We note that M (I})+ro+n < Oifand only if ro—n > Iy +m+my, ro—n > 2m;,

andro —n > my + b%, which indeed hold by the choice of 7.

To make the second term sufficiently small, we take K > 2C; for all s € [0, s1].
This gives [H,+1]-
Proof of [ Hy] We have
g =354f
and
vy = Sgguo.
Hence
llitol s = [|L(Sgsu0)Sa, || .
= CS(HSHYof| yst+h + HSgOfHYll (1+ |‘S9)§”0HXA+'"4))
=G |‘Sg0f‘|w+1l
< Cs ||.f llyro+n Gés_ro) + by (1) and (2) from the smoothing hypothesis

—ro—1
< K| flyro+n 98 "

for all s € [0, s1], assuming that K is sufficiently large compared to 8y and C; for
s € [0,s].

This is [Hp].
Step 3 — Better estimates if /' € Y’/ for r > r
Letr € J,sothat f € Y"1 where r > ry.

We will show that, for all # > 0 and for all s € [ such that s + max{m, ms} +
max{l;,m4} € I, we have

lita s < Crs || fllyran 6,77 13)

where the constant C, ; > 0 is independent of n and f.

Firstly, note that we have proved [H,] for n > 0, and hence all the estimates
from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of 7.
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We claim by induction on & > 0 that for all s € I such that s +max{l;,m4} € I,
we have

llitnllxs < Cres |1f [lyrn 6,777 (Gi]
where the constant Cy ., > 0 is independent of #n and f, and
Y = min{ky,r — ro}.
Indeed, the estimate (12) for it,4; in step 2 implies that
lita |l < Co1f llyrotn 6,777 (14)

for all s € I such that s + max{l;,m4} € I (notjusts € [0, s;] which would follow
directly from [H,]).

Using this, we can obtain the following new versions of the estimates (9)—(11)
forall s € I such that s +max{l/;,m4} € I (notjusts € [0, s;]) via exactly the same
calculations

ttm — vin||xs < Cs05,7", (15)
Vmllxs < GO, (16)
]| s < COF. (17)

Using the fact that || f||yro+y < || f]|lyr+u, (14) immediately implies [Go)].

Now we assume [G] holds and aim to show [Gk+1] holds.

Now we want to obtain new estimates for e/, and e//. Note that in the estimates for
both of these there was at least one factor 1nv01v1ng ity in each term. If we estimate
this one factor using the new estimate given by [G] and the other quantities using
(14) and the slightly modified estimates (15)—(17), we obtain

lenllys < Crrs [1f |yrn OO0

for all s € I such that s + max{m,m3} + max{l/;,m4} € I. The constant Cy ,; is
independent of f since we have only used the new estimate given by [G] in one
factor, and the other estimates we have used involve || f||yr+1, , Which is bounded
bye < 1.

This implies that for s’ € I such that s’ + max{m, ms} + max{l;,m4} € I, we
have

N Eallys = Zem
S/
n—1
4 — —
o | | P R
m=0

< Chon || f 1yrn 6T (18)
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aslongas M(s’) > yy.Itis possible to pick such an s’ if s1+r—ro+max{l;,ms} € I
given the fact that M (s; — max{m;,ms}) > 0 and M(s) has slope 1 for s > 51 —
max{mi, ms}.

Hence

csi,., = si)E

s = CS/’kCk,r,seyfw(S/)+S_S/—l+7]—yk
< Croys ||f gy, OMO=1F0=r
as long as M(s") > y, and s’ is sufficiently large compared to ry and the constants

m; so that M (s) has slope 1 for s > s'.
We also have the estimate

y M(s)—14+n—
HSOHIe" yo = Crrs ILf [lyren 6, =1+

In addition we can use the new estimate
688 =7 ||, = Gt 1y
This gives us the following new estimate for g, +, forall s € 7,
lgn+1llys < Crrs 1 [lyren (GO 7HHT7 4 ge=r=h=t),
From this we obtain, for all s € I such that s + max{/,,m4} € I,

itnlys < Crs |Lf llyran (10571077 4 gr=rty
< Crs |1 f llyren (670717777 4677

< Cr,s ||f||yr+11 ez_r()_yk+l_1
where we have used the fact that M(ly) + ro + n = —y.
ThlS iS [Gk+1]-
For large enough k, we have ky > r — rg, so yx = r — r¢ and this gives (13).
Step 4 — Convergence to a solution

Letr € J,sothat f € Y"1 where r > ry.
Using (13), we have

n n
Dttt = ttlles = D Hlitm] |
m=0 m=0

(s—r)
= Cr.s ||f||Y’+’1 9n+1 +

forr #s.
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Thus

n
D g1 = thm] s
m=0

converges as n — oo for s < r. Hence, by completeness, u, — uin X® asn — oo,
forall s < r, for some u € Np<g<r X°.
Note the above calculation also implies that

”un — MOHXA f Cl‘.S ||f||Y’<Hl

for s < r, so we have

e —uollys = Crs|[fllyrtn -
Next we claim that
T(un+1) —_ T(uo) —> f

in X%asn — oo, foralls < r.
Indeed,

T (1) — T(uo) = S§, [+ (En — Sg En) + €
SO
T (1) — T(uo) — f = (Sg, f — ) + (En — S§, En) + en.

By (2) from the smoothing hypothesis, we have

N

pot < Crs0, " I fllyr+n = 0asn — oo.
Also,

[|En = 4, E4|

_
ys+h = CS,S/Q);- ' ||En||Y.\'/+11 for S/ e
< Cow B Cra) 1T £y
using (18), for s’ large enough such that M(s" + 1) > r — rg
7 —o (1 —
< Cr.ser{l/[(s +1)+s—s"+n—(r—ro) ||f||Y*+11

< Crs07 " | fllyr+n — O0asn — oo

since M(s' + 1)) +n+ro<MU)+n+ro+s <s'.
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Finally,

||en||Y“'+ll < Cr.seyfw(‘?-l—ll)‘l'r]_(r—l'o)_l ||f||Yr+ll —~0asn — 0o

since M(s + 1) +n+ro<M)+n+ro+s<s.

This proves the claim.

Now since T : U — Y9 is continuous as a map from X to Y%, and ry > mo,
so u, — uin X, we have that T'(u,) — T (u) in Y°, hence T (1) = T (up) + [ as
required.

This completes the proof.

Remark 4. We make a remark here on the rate of convergence of the above scheme
as compared to the Newton-Raphson scheme. Since we have in mind applying
the result in existence proofs in PDE problems, we have made no effort to optimise
the rate of convergence in the above scheme in any way. One of the key features
of the Newton-Raphson scheme is that the rate of convergence is quadratic, i.e. the
error at step n+1 is proportional to the square of the error at step n. However, we can
see in the above scheme that the error ||T (u,+1) — T (up) — f|| xs 18 proportional to
03~ where r > s is such that £ € Y"*/ and 6, increases like 1. Thus according
to the crude bounds we have in the above proof, the ratio of the errors at steps n and
n + 1 may tend to 1 as n — oo, although it may be possible to better by being more
careful.

4 Modified Version of Nash-Moser Iteration

4.1 Changes from Hormander’s Iteration Scheme

Here, we introduce two modifications to Hormander’s scheme which will allow it
to be applied as in Coulombel and Secchi [8]. The basic principle is that the error
T (u,)—T (up)— f in the above scheme tends to zero, so we may introduce additional
approximations into the scheme that can be controlled in terms of this error. One
disadvantage is that we lose regularity with respect to f since we need this error to
be controlled to high order.

Firstly, we note that it may be inconvenient to solve the linearised system

DT (u)v = g.
It may in fact be more convenient to solve the system
Ay = ¢

where the operator A(u) is approximately equal to DT (u), such that A(u) — DT (u)
can be controlled in terms of the error T'(«) — T'(up) — f. This modification was
made by Alinhac in [2] when he introduced the ‘good unknown’.
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Secondly, it may only be possible to solve the linearised system

Awyv =g

under certain constraints on u which are not preserved by the iteration scheme,
which was the problem encountered by Coulombel and Secchi in [8]. Abstractly, we
suppose that the linear system can only be solved for u € V', whereas the iteration
scheme only preserves u € U. In fact under the iteration scheme we are trying to
solve the problem

AWy)ity = gu
where
v, = Syu,.

Therefore we denote by R an operator that maps U to V and set w, = R(v,) and
solve the system

Awy)it, = g.

This will require that R(u) — u is controlled in terms of the error 7' (1) — T (up) — f
and also that R and the smoothing operators satisfy some commutation estimates.

4.2 Statement and Proof of the Theorem

Theorem 2. Let {X*}e; and {Y*}ser be two decreasing families of Banach
spaces, each satisfying the smoothing hypothesis. Let uy € X*° andlet T : U™ —
Y? be continuous, where U™ C X™ is a bounded open neighbourhood of uq in
XM, for some my € I. Suppose also T : U — Y™™ for some fixed m, € I,
where U := U™ N X®. Let f e Ysi—maxtmims} i [|.f lysi—maxtmnyy < C°,
where sy, m3 € I are defined below and C° is a constant. Assume the following
conditions are satisfied, where the constants are independent of [ (at least for

”f | |Ys17max{ml.m3} S CO)
1. T is twice differentiable in the sense of Definition 3 and

[|D>T (u)(v1.v2)]

YS
=< CSI(HVIHXJJF"'I [vallxm + [[villxm ||V2||X‘+’”l + [villxm [vallxm (1 + ||M||Xx+mz))

19)

forallu e U,vi,vo € X*® and s € I such that s + my,s + ms € I, for some
fixed numbers my,my, m3 € I, where we assume max{m,mz} > 0, and the
constant CS1 > 0 is bounded for s bounded. Also,

IDT@)vllys < CE(WILystm + [[VI]xgm (14 [[ul]ystons)) (20)
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forallu e U,v e X*®ands € I such that s + my,s + m3 € I, where the
constant C? > 0 is bounded for s bounded.
2. Foreachu € U, there exists an operator A(u) : X°° — Y ™" such that

[[(A(u) = DT (u))v||ys

< CO(|Vlystms (1T (@) = Two) = flyts + [V xme [T () = T o) = f [lys+1s

+ Wllxme 1T () = T (o) — flys (1 + [[ul|xs+ms) (21)
forallve X*® ands € I suchthats+ms,s +mg € I, s+ 14+ max{m,ms} <
81, for some fixed numbers ms, mg, my, l3,14 € I, where the constant CS?’ > 0is
bounded for s bounded.

Also, for each v € X° that map defined on U by A, : u — A(u)v is
differentiable with

|[IDA, )h]|[ys

< Gl ystmy [VHLygma + [l [xems [[VILgstm =+ [l xems [[VILgm (14 [Jul] gs4ms))
(22)

forallh € X*° and s € I such that s + my,s + m3 € I, where the constant
C} > 0 is bounded for s bounded.

3. For eachu € V, where ug € V.C X", there exists a linear map B(u) :
Yy — xoommaxtlimatmat gych that

A()B) = id
and

1B()gllxs = C7lIgllys+n + l1gllyn llullysrne) (23)

forallu e V,g €e Y®ands € I such thats + l1,s + mqy + m7 € I, for
some fixed numbers 1|, my, m7 € I, where the constant CS5 > 0 is bounded for s
bounded.

4. There exists an operator R : U — V such that
[|R(u) —ul|xo < C|T () — T (uo) — fllyn (24)

for some fixed number I, € I, where we assume [, < |y (else increase l|), and
some constant C > 0. In addition

IRG@)|xe < COL A+ [ful | xems ) (1 + [Jue] | ys+m7) (25)

forallu € U and s € I such that s + m7 € I, for some fixed number mg € I,

where {SéX}gzl are the smoothing operators on (X*)se;, and the constant C$ >
0 is bounded for s bounded.
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We also assume the commutator estimate

[|R(SFu) — S R(w)|

XS

< Cprors (0 (1A HatlLyms )1 [aal o) A 677 (1 A= Hatl gt )1 A= Va4 )
(26)

forallu € U and v',r,s € I such that r + m7,s + my,1’ + mg € I, where
{SGX}gzl are the smoothing operators on (X°)sey, and the constant C,s 5 > 0 is
bounded for v', r, s bounded.

Letrg € I withry > max{my+max{my, mg}, my, mo, [y +m+m,+max{my, mg},
2my 42 max{ms, ms}, H% +my +max{mz, ms}, l; + max{ms,me} + (I3 —11) +,
ly+me+max{my, ms}+14} andlets; € I withro+1 < 51, ro+max{my, ms}+I; <
s1 and s1 + max{l,,ms + m7} € I be sufficiently large depending on the constants
m;, Z,’.

Then there exists a constant 0 < € < 1 such that if

||f||Yro+11 <€

we can find u € U™ which solves the equation
T(u) = T(uo) + f.

Moreover, suppose that [ € ysemmaximims} yohere s> € I with s, > 51 and s, +
max{li,my + m7} € I, and suppose || f||ysm—mxtmmyy < Cs,. Assume also that
the estimate (21) holds for all s € [0, s, — l4 — max{m, m3}]. Then for each r €
[ro,s2 — max{m,ms3} — 1] and s € I with s < r, assuming that sy +r —ro +
max{l|,mq + m7} € I, we have u € X*, and there exists a constant K, s, possibly
increasing with Cs,, but otherwise independent of f, such that

”M—M()“X.\' f Kr,S ”f‘”Y"Hl

Proof.
Step 1 — Setup of the iteration scheme
Assume that || f||yn+, <€, where 0 < € < 1 will be chosen later.

Denote the smoothing operators on (X*)se; by {SGX }o>1 and the smoothing
operators on (Y %)ses by {Sg Yos1.

We use an iteration scheme to construct a sequence (#,),>0 in X ° which we aim
to show converges to a solution u € U™ of T'(u) = T (uo) + f.

For n > 0, define

0, =06y+n

where 6y > 1 will be chosen later depending only on rg, the constants m;,/; and the
constants in the smoothing hypothesis and in the inequalities satisfied by DT, DT,
A, B and R.
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Note that
9n+1 = en +1 = 29}1

For n > 0, define

v, = Sggun
w, = R(v,)
iy, = B(Wn)gn

Upt1 = Uy + Uty

where g, is defined below.

Note that the overdot “is simply notation indicating a sort of difference and does
not denote differentiation.

For n > 0, define

= SoYOf
&n+1 = (S9n+l Se ) — En) — n+l

where
n—1
E, = Z €m
m=0
(so Ey = 0), and the error e, is defined below, for n > 0,
= (A(un) - A(Wn))’:lny
el =T (uy + ity) — T (un) — A(uy)ity,
en=e, +e.

Note that since gy is defined in terms of f only, and we are given ug, from which
vo is obtained immediately, the iteration scheme can be determined for n > 0 in the
Order i, Un 41, Va1, Wnt1, €ps €prs €ny Eny 8ut1-

Note that e, is defined so that it measures how well T (u,+1) — T (u,) is
approximated by A(wj)i,, by which we mean

T (up+1) — T (up) = A(wy)it, + en
=gnt+en.

Also note that the formula for g, 4 can be rearranged to give

&n+1 = (Se,ﬁlf Sef) (Se+1 n+l = S(XE")'
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We thus obtain

Tn1) = Two) = Y _(T(ttp41) = T (1))
m=0

=D &+ en
m=0 m=0
=S0Ynf—S9);En+En+1

=Sy f+ (E,— S Ey) + ey

which we hope converges to f as n — oo, since, roughly speaking, S 01,/1 — id and
e, — 0.

Step 2 — Obtaining estimates for the iterates via induction

We will show the following inductive hypothesis, [H,], holds.

litnllyes < Ki |1 fllyn+n 6,777 for all s € [0, 1]

T () = T(uo) = fllys+n = Ko |/ llyno+n 6,77 for s € [0, o]

where the constants K, K, > 0 will be chosen later, with K;, K, independent of
n, f and €, but depending on 6y, and with K, depending on K;. We will choose
e sufficiently small such that K || f||yn+n < Kie < 1 and Ks||f||yn+n <
Kre <1.

In what follows, Cy > 0 represents a constant, which is independent of n, f and
€, and is bounded for s bounded. It will also be independent of 6,, which will allow
us to choose 6 so that 8, is large compared to C; for s in a certain range. We will
write C > 0 for a constant which is also independent of s.

Assume now that [H,,] is true for all 0 < m < n and let us show that [H, 1]
follows. (We will leave the proof of [Hy] until later.)

Pick a real number 0 < 1 < 1 such that ro > max{m + max{my, mg}, my, mo,
Iy +my + my +max{m7, mg}, 2m, + 2 max{m;, mg}, IH’% + my + max{my, mg},
Iy + max{ms,m¢} + (I3 — l1)+, 1 + m¢ + max{m,ms} + 4} + 2n and
n < max{my, ms}.

For s € I, define

Ps) = (s —ro)+ forls—ro| =n,
n for |s — ro| < 1.

We claim that the following estimates for 0 < m < n + 1 follow directly from [H,,]
for0 <m <n.
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llitm — ol s < C K[| fllyntn 6, fors € [0,s1],

(27)
1S5 um — uo)|| 4, < CsKy 11 f yrotn 05 fors e I,
(28)
| — o) = Sjr (m — 0) ||y, < CoKi || f [yt 05 fors € [0, 1],
(29)
[t — il xs < Cs05 ™ for s € [0, 51],
(30)
[Vl g5 < CsOF® fors €1,
(31
it || s < Cs6F) for s € [0, s1].
(32)
Indeed, the proofs of (27)—(32) are exactly the same as the proofs of (6)—(11).
We also claim that, for 0 < m < n, we have
(Vi — Winl | xs < CSG,;+ma"{m7”"3}_"° fors € I suchthats +m7 € I,
(33)
it — Wi || s < Cy @ Fmaxtmrmsi=ro for s € [0, 5],
(34)

(Wi ] s < CS9,‘;“{P(S)’”ma"{m“m*}_"’} for s € Isuchthats + m7 € I.
(35)

Indeed, first we assume s < rog + 1. We have

Vi — Wi || xs
= {184, um = R(SG, um)] | s
= Hse);(um - R(”m))HXA + HSQJ;R(“m) - R(Se);um)HXA .

Now, using the smoothing hypothesis, estimate (24) and [H, ], we obtain

HSQX,,, (tm — R(um))‘

xs < CSQ; ||Mm — R(Mm)IIXO
=< Cse;; T (um) — T (uo) — f||Y12
< Gl Ko || fllyrotn

< Cseyil_r()

(where we have used K> || f||yr+n < Kpe < 1).
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For the second term, using the estimates (26) and (32), we obtain, choosing
ror' >+,

|15, RGum) = R(Sg, um) || 1,
<GB (1 | yms )L+ 1t [ 47 )
0,7 (1 [t sty )+ it || yrr-mg )
< Co07 (14 0,7m7710) 4 6,7 6,0 (1 4 gm0y
< Gy Fmatmmsi=ro,

If s > ro + n, then we can directly estimate, using (32) and (25),

[[Vin = Wl xs

= 156,1m = R(S3, un)|

X.\'
wo + [[R(SG, un)]

<C; ||Mm||XA + Cs(1 + ||Mm||X’"8)(1 + ||”m||X~*+m7)
< G870 + G,

<[] 0n|

XS

< Cs 9;[+m7—r0 .
This proves (33). Now, using (33) and (30), for s € [0, s1], we have

Nttm — Wil xs < Wi — Vil xs + |[Vin — thm]| s
< Cy9s+max{m7,mg}—r0
= G0, .
This proves (34).
Using (33) and (31), for s € I, we have
Wi llxs < Wi = vinllys + [Vl xs
< CYGmax{P(s),S+max{m7,mg}—r0}
= G0, .
This proves (35).

This completes the proof of the claim.
Note that, using (27) and (30), we have

[1Vin = tol| xmo < [[vin — thm||xmo + |ttm — to]] xmo
< Ce:nno—ro + CKleG,f(’”")
< COMT 4 CKe.
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Thus by taking € sufficiently small depending on K; and C, and 6, sufficiently large
depending on C, we have v, v,+; € U. Similarly we can ensure w,, € U using (34).
Also note that (6) in the case s = m implies u,, € U for € sufficiently small, and
[H,] implies that u, + i1, € U for € sufficiently small. Note that the same argument
also shows that the line segments [uy,, u, +it,] and [u,, w,] are in U for € sufficiently
small.

We claim that the following estimate holds.

1T () — Tuo) — flys < Cs@SHmaxtmmi=ro  for g e [0, 5, — max{m,,ms}].
(36)

Indeed, for s € [ro,s; — max{m, m3}], using Taylor’s theorem, (20) and (27), we
have

T (un) — T (uo) — fllys
< 1T @) = T (o)llys + |1/ 1lys

< || sup DT (up + t(uy — uo))(uy — uo)|| + C°

t€0,1]

YS
< Cy(|lun — uo|| xstmy + [|tn — tto]|xymy (1 + ||ty — uo||xs+m3)) + c’

< Cses+max{m1,m3}—r0
(assuming that max{m, m3} > n). We combine this with [H,] for s € [0, ro] to get
T (un) — T(uo) — f||ys < CyfFmaxtmmsi=ro

forall s € [0, s; — max{m,, m3}].

Estimate of e;. We claim that for all s € [0, s; — max{m;, m3}],
llen]ys < CoKu LS Hyrotn 6770
where

M’(s) = max{s + m; + my + max{m;, mg} — 2ry,

(s + m3 —ro)+ + 2max{my,mg} + 2my — 2ro}.

Applying the estimate (22) together with Taylor’s theorem, [H,] and the estimates
(34) and (35), we have, for s € [0, s; — max{m, m3}],

el

= [[(A((un — wn) + wn) — AWn))itn||ys

< Gyl st [un = wallxma =+ itn||xms |[ttn — wallystm
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+ et xma [utn — wallxma (U4 [Iwallxstms + [[ttn — Wal|xs+m3))

< C,K, ||f||Yf0+’1 (ersl+m1—r0—leznz—ro-i-max{mmmx} + QI:ﬂz—ro—l9;+max{m7,m8}+m1—ro

+ er}lnz—ro—ler}l'nz+max{m7,mg}—r0(1 + QnP(S-I—mg)-I—max{mng} + 9;+max{m7,mg}+m3—r0))
< CoKi | fllyr+y 67710,

Estimate of e//. We claim that for all s € [0, sy — max{m; + l4, m3 + l4, ms, mo}],

"
n

lled]|ye < Coky 1S Iy G017

where
M (s) = max{s + m + m, + max{m7, mg} — 2ro,

(s + m3 — ro)+ + 2max{my, mg} + 2m, — 2ry,

s + max{ms,me} + (I3 — l1)+ — 2ro, s + m¢ + max{my,ms} + l4 — 2ro}.
Indeed, we have
e;/ = T(up + ity) — T (up) — A(up)ity
= T(un + iin) - T(”n) - DT(un)itn + (A(un) - DT(”n))itn-

Applying Taylor’s theorem, (19), [H,,] and the estimate (32), we have,
for s € [0, s; — max{m, m3}],

T (un + tty) — T (un) — DT("‘n)’;ln”YS

< sup HDZT(un +ll;ln)(l:tn,l;ln)|
t€l0,1]

YSs

. . 2 .
< Cs([|in] st [|itn [l ym> + [litn][xms (1 + sup [|uy + tity || ys+m3))
ref0.1]

= G(Ky ||f||Yf0+11 9;+m1_r0_1K1 ||f||Yro+11 9;:"2_]'0_1

2 2 2my—2ro—2 P T
+ KIS W 62727270214 6707 - K[| f ||yt 6777707
< 0, oK || fllyrotn 6071

4 -
< CoKy || fllyrn+n OM 710

where we have used K || f||yo+n < K1€ < 1.

For s € [0, 57 — max{ms, mg,m; + l4, m3 + [4}], we have, using (21), [H,], and
(36),
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[[(A(un) — DT (un))itn|lys

< Cs(llitnl ys+ms 1T un) = T(wo) = fllyss + [litnl|xms T n) = T (o) = fllys+is
+ [litn || xms 11T (un) — T (o) = fllyrs (14 |ull ys+mo))

= GKi [ fllyro+n (9,§+m5_r"_l9,(,13_11)+_r0 + 9;”6_"’_10;+ma"{m"m3}+’4_r°

+ e;;ﬂﬁ—r()—l9’513_11)+_r()0r(ls+m9_r())++n)

M (s)—1+
< CKi 1 lyntn 607 71

where

M"(s) = max{s + ms + (I3 — I)+ — 2ro, s + me¢ + max{my, ms} + I, — 2r,
s+ me+ (I3 — 1) — 2ro}

where we have used ry > mo.
Adding the two above estimates yields the estimate for e,/

Estimate of e,. Adding the estimates for ¢/, and €]/, we obtain
lleallys < CoKi || f llyntn 6,777

forall s € [0, 57 — max{m| + I3, m3 + l4, ms5, mg}].

Estimate of g,+;. We claim thatforalls € I,
gn+1llys < Co(Ki || f lyro+n eyfw(s)_Hn + [ flyro+n 9;_1‘0_11_1)-
Indeed, we have
g1 = (S5, —Sg)(f —En) = S;, en
Note that for any z € YS/,
sy, = s0)e|, = Coslr™ " liellye

by the smoothing hypothesis (3) and Taylor’s theorem.
Setting s" = ro + 1, we have

Y Y s—ro—I1—1
St = S0f],, = GO S e
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We also have

csi.., = siE

O — /_
ys < Cy 60 M| Enllys -

Now, for s’ € [0, s; — max{m; + I3, m3 + 4, ms, mo}], we have, from the estimate
fore,,

||En||ys’ =

’

n—1
D en
m=0

YA
n—1

M(s")—1
< CoKi || fllyntn Y O1CO71H1

m=0

< Cy Ky || f llyn+n 61+ (37)

if M(s") > 0, by the integral comparison used before. Note that M(s’) has slope 1
for large enough s’ depending on ry and the constants m;, [;, so to achieve M (s") > 0
it suffices to take s’ large in relation to ro and the constants m;, [;. To do this we
require §1 sufficiently large in relation to ry and the constants m;, [;.

Hence

H(St‘{ﬂrl - S(;:)En

’ o
ys = CS/CS’,SKI ||f||yr()+11 93/1(5 )F+s—s'—1+7
< CK (1 llytn OO0

by choosing s’ sufficiently large compared to ry and the constants m; so that M(s)
has slope 1 for s > s’. (Hence M(s") — s’ < M(s) — s for all s since M(s) — s
is decreasing for s < s’ and constant for s > s’.) Again, to do this we require s,
sufficiently large in relation to ry and the constants m;, [;. This fixes sy.

Similarly, for s’ sufficiently large, we have

Y
HSQnJrlen

_
v =< CS/,SQ;; s ”en”YS’

/ o
< CyCy Ky || f ||yt OMEIFs=s =140

< Gk, IIfIIYf0+11 9,{‘/1(3)_14_”-

Hence the estimate for g, 4 holds.

Estimate of T (u,4+1) — T (uo) — f We have
T(uni1) = T(uo) = f = (Sg,.f = f) + (En — S, En) + en.

Lets € [0, ro].
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By (2) from the smoothing hypothesis, we have
|85, f = fllyssn < COT NS Nyt -
Also,

_
||En — S§ Enllyosn, < Cow0y ™ |Enllywsy,  fors’ >s

< Cow 0™ GO HITIK || f ]y
using (37), for s’ large enough such that M(s" + ;) > 0
< GBI TIIK, || £ ||y

= GO, K[| f Iyt

since M(s" + 1) +n<MU)+n+s <5 —ro.
Finally,

llenllys+n < Csey{ms—’—ll)—’—”_lKl [/ lyro+n

< GO T K S Myt

since M(s +11) +n < M) +n+s <s—ro.
Hence we have

T (unt1) = T (o) = fllystn < CsO, 7 Ki[[ flyrot+n

for s € [0, ro]. Thus, by choosing K, sufficiently large depending on K and C; for
s € [0, ro], we have

T (ung1) = T(wo) = fllysn = Ka || f|lyro+n 0,57 (38)

fors € [0, ro].
The estimates

s—ro+max{my,mg}

[[Vat1 = Watillxs < Cs0, 1, fors € I suchthats + m; € [
(39
[tn+1 — Wagtl]xs < C‘ﬁ,:_rfﬁma)({m“mg} fors € [0, 51]
(40)

Orrlnf;{P(s)’S+maX{m7’m8}_r°} fors € I suchthats +my € [

(41)

Wnt1llxs < Cs

now hold, and are proved exactly as for the estimates (33)—(35) using the estimate
(38) to go fromn ton + 1.
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Estimate of i,,1. We have

Upt1 = BWpt1)gn+1.

Hence, for all s € I such thats + 1, s + m4+ m7 € I, using (23), the estimate (35)
and the estimate for g, +1, we have

w4111y

< Cs(llgn+tllys+n +11gnr1llyn (1 4 [Wagillxs+ms))

< CK 1 f o O 07 1 flyrotn 057707+

K 11 f Hlyrot O35 1 f llyrsy 6,057 (1 4 gy tretmeystmaxtmrmsd=roly,

M(l s—1 S—ro—
=< Cs(Kl ||f||Yf0+11 9,,4.(11)+ o + ”f”YfO'Hl 9,,4-10 1) (42)

since P (s +my) < s because ro > my4 + 21 and s + max{m7, mg} —ro < s because
ro > max{my,mg}, and M(l; + s) < M(l;) + s because M has slope at most 1.
We want to obtain

. —ro—1
itn1[1xs < Ki[|f lyro+n 0,57

fors € [0, s1].
To make the first term sufficiently small, we require

—y:=MU)+ro+n<DO.

Then we can choose 6 large enough so that

COMIH T = GO, < GO < Lo
forall s € [0, s1].

We note that M(ly) +ro +n < Oifand only if ro —n > [y + my + my +
max{my, mg}, ro—1n > 2m,+2max{ms, mg}, ro—1n > my+max{my, mg}+ M’%
ro—n > Iy + max{ms, mg¢} + (I3 — 1)+ and ro — n > Iy + me + max{my, ms} + Iy,
which indeed hold by the choice of ry and 7.

To make the second term sufficiently small, we take K; > 2C for all s € [0, s1].

This gives [H,+1]- -
Proof of [ Hy] We have

g=S4f
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and
vo = S¥ug
and
wo = R(vp).
Hence
liol - = || BCR(S o)) S £ |
= ClISa S My + 1S5S My 4+ [[RESG0)]]y,))
= G |1Sa Sy

< Co || f llynn 657F by (1) and (2) from the smoothing hypothesis
< Ki |l f llyrotn 657

for all s € [0, s1], assuming that K is sufficiently large compared to 6 and Cs for
s € [0,s].
Now for s € [0, o],

T (o) — T (o) — fllys+n = [|f|lys+n
< Ko || fllyro+n eg—ro

for all s € [0, 7], assuming that K> is sufficiently large compared to 6.

This proves [Hy].
Step 3 — Better estimates if /' € ys2—maxtmims} fop o0 > g
Assume f € ys2max{mims} where 5, € I with s, > s1 and s + max{ly,my +
m7} € I, and suppose || f||ys,—maxtm .33 < Cy,. Let r € I with r > rq be such that
sy + r —ro + max{ly,mq4 + m7} € I. We will show that, for all n > 0 and for all
s € [0, s2], we have

lita s < Crs || fllyran 6,77 (43)

where the constant C,; > 0 is independent of n and f, except that it may increase
With || /|y ss sty ns1 -

Firstly, note that we have proved [H,] for n > 0, and hence all the estimates
from step 2 which were conditional on the inductive hypothesis are now valid, and
we may use them as we wish.

We are going to prove the above statement by an induction argument, but not an
induction on n. We are going to use the estimates from step 2 for each n separately
to obtain the above inequality, and the constant will be independent of n because the
constants from step 2 are independent of 7.
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We claim by induction on k& > 0 that for all s € [0, s,], we have
litalxs < Chors [1f lyrbny 637077 [Gk]
where the constant Cy . > 0 is independent of # and f', and
yi = min{ky,r —ro}.

Indeed, the estimate (42) for i1, 4 in step 2 implies that

litallxes < Co1f llyrotn 6,77 (44)
for all s € I such that s + max{/;,m4 + m7} € I (notjusts € [0, s;] which would
follow directly from [H,]).

Using this, we can obtain the following new versions of the estimates (27),
(30)—(32) for all s € [0, s3] (not just s € [0, s1]) via exactly the same calculations

l[tm — uol|xs < Cs6,, ", (45)
it — V| s < Cs05770, (46)
Vil s < CsOF, (47)
[t ys < CsOFE. (48)

We then obtain, for all s € [0, 53], the estimates

[ = vinllxs < Pt msi=r, (49)
Wi — tt] | s < C, 03T maxtmzmsi=ro (50)
[[Wnl[s < GO tF e ssmammsi=rol, (51)

Using the fact that || f||y+1 < || f|lyr+1 , (44) immediately implies [Go)].

Now we assume [G¢] holds and aim to show [Gy] holds.

Now we want to obtain new estimates for e/, and e], .

First we estimate e, . Note that in the estimate for e, there was at least one factor
involving i1, in each term. If we estimate this one factor using the new estimate
given by [G] and the other quantities using (44) and the slightly modified estimates
(45)—(48), we obtain

[lex|

for all s € [0, s, — max{m, m3}]. The constant Cy ,, is independent of f since we
have only used the new estimate given by [G¢] in one factor, and the other estimates
we have used involve || f'||y+1 , which is bounded by € < 1.

4 - —
vs = Crrs |1 lyr+u oM ©) =1+
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Now we estimate e]/. The first part of the estimate can be modified in exactly the
same way as above, to obtain

T Gy + itn) — T(tt) — DT )ity || ys < Cros ||.f || yrn O} 711700

forall s € [0, s, — max{m,, ms3}].
We proceed similarly for the second part of the estimate of e’ to obtain

(A (un) = DT Wn))itullys < Ciors || f [yry 617 7110

forall s € [0, s — max{ms, mo,m; + Iy, m3 + 14}].

Here, the constant depends on || f'||ys,—maxtm;.m33 , and we need to assume that the
estimate (21) holds for all s € [0, s, — I4 — max{m, m3}].

Thus we obtain the estimate

||en||Y~v < Crrs ||f||Yr+11 9,{‘/1(”_1""7_7’16

forall s € [0, s, — max{ms,mg, my + 4, m3 + I4}].
This implies that for s” € [0, s, — max{ms, m| + l4, m3 + I4}], we have

n—1
D em
m=0

||En||Y.\'/ =

4

Y.\'
n—1

4 — —
< Chr |1 f [lyrbn Y G070

m=0

< Cropy |1 £ |lyran, O T100 (52)

aslongas M(s’) > yy.Itis possible to pick such an s’ if s1+r—ro+max{ly, ms} € I
given the fact that M (s; — max{ms, mg, my + l4,m3 + l4}) > 0 and M (s) has slope
1 for s > 51 — max{ms, mg,m; + Iy, m3 + l4}.

Hence

H(SG);JH - SG);)E"

/ o —
< CS/’ka’r,SQfVI(S )+s—s'—1+n—yk
YA
M(s)—14+n—
< Chors ||f lyrn G717

as long as M(s’) > y, and s’ is sufficiently large compared to ro and the constants
m;, I; so that M (s) has slope 1 for s > s’.
We also have the estimate

Y
H 0n+len

v = Ciors 1Sy 670707
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In addition we can use the new estimate
sk, = s07 )|, = Gty S Ny
This gives us the following new estimate for g, 41, forall s € I,
llgn+illys < Crors L/ lyrny (B1O7HHF177 4 gy=r=h=1),
From this we obtain,for all s € [0, s3],

litnlys < Crs |Lf llyran (7007070 4 gr=r )
< Crs |1 f llyren (670717777 677

< Cos 1 £ llyrn 657

where we have used the fact that M([y) + ro + n = —y.

This is [Gk+l]-

For large enough k, we have ky > r — ry, so yx = r — r¢ and this gives (43).
Step 4 — Convergence to a solution
Assume as above that f € y s2mmax{mims} ywhere sy € I with s, > sy and s, +
max{/y, my,m7} € I, and suppose || f||ys-matm .my3 < Cy,. Letr > ry.

Using (13), we have

n n
D s = tellys = D il
m=0 m=0

(s=r)
<G ||f||Yf+11 QnY—HI *

forr # s, with r, s € [0, 53].
Thus

n
Dt =t
m=0

converges as n — oo for s < r. Hence, by completeness, u, — uin X* asn — oo,
forall s < r, for some u € Np<s<r X°.
Note the above calculation also implies that

[ty — uollys < Crs || fllyr+n

for s < r, so we have

|lu—uollyxs < Crs | fllyrn -
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Next we claim that

T (up+1) — T (uo) = f

in X%asn — oo, forall s < r.
Indeed,

T(unt1) — T(uo) = g f + (En — Sg, En) + €y
SO
T(unt1) — Two) — f = (S, f — f) + (En — S, En) + €.

By (2) from the smoothing hypothesis, we have
1185,/ = fllyssn = CrsO™ 11 fllyr+n — 0asn — oo.
Also,

|Ew =S5 Enl|yoin < Cos03 Enllywsy,  fors' >s
< Cog 87 Crsf 1T | £y
using (18), for s’ large enough such that M(s" + ;) > r — rg
< G GO £
<C0 " | fllyr+n — O0asn — oo

since M(s" + 1) +n+ro<MU)+n+ro+s <5
Finally,

||en||YS+’1 = Cr.A_@’fVI(S'i‘h)-l-n—(r_ro)_l IIf”Y’Jr’l —0asn — o0

since M(s + 1) +n+ro<M)+n+ro+s<s.

This proves the claim.

Now since T : U — Y is continuous as a map from X" to Y°, and ry > my,
so u, — uin X™, we have that T'(u,) — T (1) in Y°, hence T' (1) = T (o) + f as
required.

This completes the proof.

S Applying the Theorem in Sobolev Spaces

This section assumes familiarity with the standard Sobolev spaces W57 (£2) of
functions on the domain §2 with weak derivatives up to order k in L?(£2), and
Sobolev embedding theorems — see for example the chapter of Evans [11] entitled
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‘Sobolev Spaces’, or see Adams and Fournier [1] for a more complete reference.
We do however give the definition of fractional Sobolev spaces below, since these
are slightly less standard. See, for example, Adams and Fournier [1] for much more
detail.

5.1 The Smoothing Operators in H®

Definition 5. For d € N and 0 < s € R we define the Sobolev space of order s,
H*(R?), by

H(RY) = {ue L*(RY) : (1 + [§]°)7a(€) € L*(RY)}

where & denotes the Fourier transform of u, which we also denote by % [u]. We
endow H* with norm ||| 4+ given by

il e = || 1 + I Face)|

2’

Then H*(R?) is a Banach space for each s and (H*(R?), |||| ys)s=0 is a decreasing
family of Banach spaces, in the sense of Definition 1.

Notation. For ¢ € C*®(R?) (with values in R), write ¢, = e_dqﬁ(f).

Notation. We write .7 (R?) for the Schwartz space of smooth functions which
decay faster than the reciprocal of any polynomial, and use the well-known fact
that the Fourier transform is an automorphism of . (R?).

Proposition 2. The decreasing family of Banach spaces (H*(R?), ||-|| < )s=0 sat-
isfies the smoothing hypothesis 4. Moreover, the smoothing operators can be taken
as Spu = p1 * ufor 0 > 1, where p € .7 (R?) is a specially constructed mollifier.

Proof. Let p € CX®(RY) with 0 < p < 1 be an even function such that 5 = 1 on
B 1 (0) and p = 0 outside B;(0), where B,(x) denotes the closed ball of radius r
about x.

Define p to be the inverse Fourier transform of p, which is real since p is even,
and p € 7 (RY), since p € .7 (R?).

Foru € H(RY) = L*(R?), we define

Sgu:pé * U.

Let0 <r,s e Randu € H*(R?).
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Note that, by properties of the Fourier transform,

Sou(®) = pj ()i(€)

_ 56
= C)ice).
Hence
[ +tery S| et = [ a+iepyacuera
R4 R4
= [ RGPy
< lullye sup (14 (£ 55
geR
< [Jul s (146%™
< Crs lJullf: 6207%
since0 < p <1 and[)(%) =0for& > 6.
This proves (1), and also that Sg : H*(R?) — Ny=o H*(R?).
Now
2 | S 2 (1 — 55 2aE)?
[ tely [ =S e = [ @+ lera-ac)raere
R4 R4
= [l s Gra + P
< Nl sup (14 (1= 52
£eR

9 —s
= lullys (1 4+ (5

2 —
S Cr,s ”M”H.v 92(}‘ s)

assuming r < s,since 0 < p <1l and 1 —ﬁ(%) =0forf < %
This proves (2).
Finally, for small # € R, we have

P55 — ﬁ(%)a

i)

i [S9+hu — S@M
h

}(a:

d
- (% > &dp () + RO, s>) (&)
i=l1
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by Taylor’s theorem, where

& &
R(h,0, <h su ).
IR ,5)] 0<¢<I(;+h dg? ,o(

This implies
/ (1 + [E) |R(h. 6.8)P 1)) — Oash — 0
]Rd

so that Spu is differentiable with respect to 6 with derivative the inverse Fourier
transform of

L&, b
— g5 2 Eidip(Z)i®).

i=1

We also see that

o,

/ (1+ [Py (9225, ,p(§>)2|u(s>|

i=1

< el sup (1 + £ (g LS s pC?

terd i=1

< Cpy [Jull3ys 0207

since Bi,é(%) is zero for & < % and £ > 6.
This proves (3).

5.2 Tame Estimates in Sobolev Spaces

The results in this section are fairly standard, and are based on standard Sobolev
embeddings. Results of this type can be found in classical references on Sobolev
spaces, for example Adams and Fournier [1]. However, we try and formulate them
in a form which is most useful for obtaining tame estimates in the applications we
have in mind.

The following lemma is very useful for proving chain and product rules in
Sobolev spaces.

Lemma 1. Let p € [1,00], 2 C RY, ford > 1, be a domain where the standard
Sobolev embedding holds and let m > % be an integer. Let 0 < m; < m be integers
forl1 <i <nwith) !_ym; > (n—1)m and let u; € WP (§2). Then [|;_, u; €
LP(82) and
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n

it

i=1

n
< CTTluillwmrig -

LP(£2) i=1

Proof. For p = oo the result is obvious and in fact only requires m > 0, so we will
assume p < 00.

We will use the following Sobolev embeddings. Let k > 1 be an integer and
u € Wkr(82). Then forq > p,

||M||L’I(.Q) =< C Ilu”Wkp(Q)
provided

1 1 &

g p d

and kp < d. (Note it is the case kp = d that requires the inequality to be strict.) If
kp > d then

ullLoo(2) = C [lullwrr(g) -

Suppose m; p > d for some i. By renumbering if necessary, we may assume
my,p > d. Then

n n—1
H”i = H”i un | Loo ()
i=1 LP(R) i=1 LP(£2)
n—1
<C||[]w et lyman(2) -
i=1 LP(R2)

Also note that since m, < m, we have Zf;i m; > (n—2)m. Hence we are reduced
to proving the result with n replaced by n — 1. Thus we may assume m; p < d for
alli.

Suppose m; = 0 for some i. By renumbering if necessary, we may assume
m, = 0. Then Z:’: m; > (n—1)mand 0 < m; < m implies m; = m > % for all
i < n, hence

n—1

< l—[ [t || oo () |ttn |l Lr (2
LP(2) i=1

n

[

i=1

n—1

< C [ Tlwllwmircoy Netnl s -

i=1

Thus we may assume m; > 0 for all 7.
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Now, using Holder’s inequality,

n

[T«

i=1

n
<l—[ U;
<[Tihll 2 .

LP(R) i=l1

where Z?=1 A; = 1land 0 < A; <1 forall i. Hence, using Sobolev embedding, we
have

n
< C T lwillwmir o

n
[Tw

i=1 LP(2) i=1
provided
A.,' 1 m;
p p d

for all ;. But, summing the above inequalities, it is possible, assuming 0 < m; < %,
to choose such 0 < A; < 1 with >/_; A; = 1 if and only if

noo Yr_om 1 . d
Do L=t s N> = D)2
p d p 2 m p

i=1

d

But this does indeed hold since ) /_, m; > (n — 1)m and m > 5

Corollary 1 (Leibniz’s Rule or The Product Rule). Let p € [1,00], 2 C RY, for
d > 1, be a domain where the standard Sobolev embedding holds and let m > % be

an integer. Let 0 < m; < m be integers for 1 <i <nand0 <k < m be an integer,
with Y !_ m; > (n—1D)m~+k. Letu; € W™"-P(82). Then [[/_, u; € WkP(2) with
weak derivatives given by the classical Leibniz rule and

n
[Tw

i=1

n
< C [T Hullymrce) -
Wk.p(_Q) i=1

Proof. Let y' be multi-indices with Y '_, % = «, where |¢| < k. Note that
Yoi_i(m; —|yi]) = (n — 1)m, hence we may apply the above result to obtain

ﬁ 3Vi u;

i=1

n
< CJluillwmrg -

LP(£2) i=1
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Assuming u; are smooth, we immediately obtain the result, since 9* ]_[:721 u; is a
sum of terms of the form []/_, 8 u; by the classical chain rule. For non-smooth u;
we use approximation by smooth functions together with this inequality.

Corollary 2 (The Chain Rule). Let p € [1,00], 2 C R?, ford > 1, be a domain
where the standard Sobolev embedding holds and let m > % be an integer. Let
F e Cg”(]Rd/) andu : 2 — RY withu € Wm? (£2). Let o be a multi-index with
Il <|o| <m.Let0O < B <0<y <a(l <j<]|B|), bemulti-indices with
SIL 7| = Il Then
Bl
@ F)) []9 w, < Cllullphr o

j=1 Lr(2)

where u;; denotes a component of u depending on j. Moreover, the function F(u) €
L*>°(82) has a weak a-derivative in L?(§2) given as in the classical chain rule by
sums of terms of the above form which satisfies the inequality

||aa(F(u))||LP(.Q) =C ||u||W’"-1’(Q) 1+ ||”||W"1»P(Q))m_l-
In addition, if F(0) = 0, then F(u) € W™ (§2) with
FE@lwmp2y = C llullymr) (1+ ||”||Wm~p(:2))m_l-

Proof. Note that Z’?Zl(m — |yj |) = |B|m — || = (|| — 1)m, hence we may use
the above result and the fact that 3 F is bounded to obtain

1B 18
B i i
Jj=1 Lr () j=1
< C |lullfph (o) -

Assuming u; are smooth, we immediately obtain the required inequalities, since
0%(F(u)) is a sum of terms of the form (3 F)(u) ]_[lj’sl1 3" u;; by the classical
product and chain rules. For non-smooth u#; we use approximation by smooth
functions together with this inequality.

Finally, if F(0) = 0, then we have

|F(u)| = ‘/OIDF(tu)udt

< C |ul
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since DF is bounded. Thus F(u) € LP(£2) with [|[FW)||pr0) = C [|ullir(q)-
Together with the previous part, this implies the final statement of the result.

Corollary 3. Let D, D’ C R be open with D' cC D. Let F € C™(D) and
u: 2 — D’ withu € W™P(82). Then the above chain rule holds with these new F
and u.

Proof. Since u takes values in D’, we may modify F outside D’ by multiplying by
a smooth cut-off function which is identically 1 on D’ and 0 outside D" for some
D" CC D, so we may assume F € C}" (R?"), and then we can apply the above
result.

Proposition 3 (The Derivative of a Differential Operator on Sobolev Spaces).
Let p € [1,00], 2 C RY, ford > 1, be a domain where the standard Sobolev
embedding holds and let m > 0 be an integer. Let I be a subinterval of Ny
containing 0 and | + m, where | > % is an integer, and set X* = W*P (82, Rd/)for

selandYs = WsP(2,RY). Let U C X be ||| x--open for some r € I with
r > 1 + m and assume 0 € U. Define

T:U— Y™™
by
T(u)(x) = F({0"u(x) : 0 < || < mj})

where F : RY x---xRY — R is smooth and bounded with bounded derivatives
on the range of {0%u : 0 < |a| < m} foru € U (so we may assume F is smooth and
bounded with bounded derivatives), and F(0) = 0. The above rather complicated
notation is merely a convenient way of expressing that F({0u : 0 < |a| < m})
is a smooth function of u and its partial derivatives up to order m, which can be
evaluated at x to give a function of x.

Write V!, for the argument of F which is evaluated at 3*u'(x) in the above
formula.

Then T is twice differentiable with derivatives given by

(DTWh)(x) = > > h'(x )—({a“u(x)})

0<i<d’ 0<f<m

D’Tw(h.hyx)= > > aﬂh’(x)ayh’f(x)

0<i,j<d’ 0<B,y<m

iawwm»
ﬂ

and the following inequalities hold.

IDT@hlys = Co([lAllxs+m + [1llxr (1 [|ul| xs4n))

= Go([Allxs+m

| i+ 1Rl [ |] o+ WL (1| (U Tatlystm))
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forallu € U, h,h' € X*® and s € I such that s + m € I, where the constant
C; > 0 is bounded for s bounded.

Proof. First we assume all functions are smooth, or else we can use approximation
by smooth functions. Note that by the chainrule, || F ({0%u(x) : 0 < || < m})]|ys <
C; ||ul| ys+m, since r > < (and the constant depends on U'), hence T is well-defined.

Using Taylor’s Theorem forue U,t € (—1,1) and ||h||y- small enough such that
the line segment [u — i, u + k] lies in U, we have

;(T(u + th) — T (w))(x)
= l(F({a“bt(x) + 0%h(x)}) — F({0%u(x)}))

=2 > —({3“M(X)})8‘3h )

0<i<d 0<f=<m 13

+ro Yy aﬁh’(x)ayhf(x)f(l—f)

0<i,j<d’ 0<B,y<m vﬂ

({0%u(x) + td%h(x)})dr.

Applying the chain rule to % times the last term, which may be thought of as a

function of (u, i), we see that % times the last term is in Y* for s € I such that
s + m € I hence the last term converges to zero in Y* as t — 0. Similarly

;(DT(M + th")h — DT (u)h)(x)

:-(Z > aﬂh'(x) ({8”‘u(x)+t8°‘h (xX)})

0<i<d’ 0<Bp<m

- > aﬂh() ({a“u(x)}»

0<i<d’ 0<f<m

= Z Z aﬁh’(x)ayh/f(x)

0<i,j<d’ 0<B,y<m V

+r0 Y > PH ()R (x)9h* (x)

0<i,jk<d’ 0<B.y,6<m

= ({3“u(X)})
VB

/ (-0 ,fj; T (07 + N O

Applying the same argument we see the last term converges to zero as t — 0.
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Now, using the chain rule we have

=G ||"‘||WS+M-0(.Q)
WA.[)(Q)

‘g—f({aa»:(x)})
v

for integer s > 1 and u € U, where ||y, (o) denotes the Sobolev semi-norm of
order s (the sum of the L” norms of the weak derivatives of order s).
Define

oF
H(x) = a—i({B“u(x)}).
Ve
For integer s > 0, using the product rule and the above, we have

oF )
a—i({aau(x)})aﬂhl (x)
i Wer(@)

<G Y |PHI PR ()], + [[HP PR D)) o)

1<8<s
=< CS(”DHIIW’*LI’(Q) ||h||WS+'"-p(.Q) + IIDHIIWS*I-P(.Q) ”h”W’-P(Q)
+ [[H || oo (@) 1hllwstmr (@)
= Cs(||h||Ws+'"-p(9) + ||h||W’-P(9) 1+ ||”||Ws+'"-p(.«2)))

forany h € X*° and u € U, where we have used r > [ 4+ m.
In a similar manner, we obtain the inequality for the second derivative of 7.

6 Application to Compressible Vortex Sheets in 2D

Here we show how the paper [8] of Coulombel and Secchi fits into the above
framework. In fact the above framework is specifically devised to fit this case and
the original ideas are contained in the paper by Coulombel and Secchi and earlier
papers. For the sake of brevity, to follow this section it is necessary to refer to
their paper. Note though that a significant portion of the work of the full result
of Coulombel and Secchi is in solving the linearised equations with an appropriate
energy estimate, which can be found in [7]. We believe that the abstract framework
below should also fit the scheme used by Trakhinin in [25], since his scheme is very
similar to the one used by Coulombel and Secchi.

We make some simplifications to the scheme of Coulombel and Secchi — firstly
we take the boundary condition for the continuity of density (which is a linear
condition) as part of the definition of the function spaces. Secondly, we treat the
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Eikonal equations in a slightly simpler way which is less optimal with respect to
regularity. It appears that although we need more regularity on the approximate
solution, we only require it to be small in a lower-order Sobolev space.

The aim of their paper is to show short-time structural stability of plane vortex
sheets for the 2D isentropic Euler equations of gas dynamics. This means the
following. We start with two constant states U+ = (p,v*,0), U~ = (5, v, 0) with
pressure given by p = p(p) and sound speed given by ¢ = / p’(p). When patched
together either side of {x, = 0} these form a weak solution of the 2D isentropic
Euler equations equal to U™ in {x, > 0} and equal to U~ in {x, < 0}, since the
Rankine-Hugoniot jump conditions are satisfied across {x, = 0}. Since the normal
velocity is continuous whereas the tangential velocity jumps this is called a vortex-
sheet solution and it is characteristic in the sense that the boundary matrix for the
system evaluated at this state is singular. We then impose smooth initial data close
to this state (satisfying the Rankine-Hugoniot conditions with continuous normal
velocity) which includes perturbing the discontinuity slightly so it is the graph of a
function. The aim is to show the short-time existence of a solution with the same
structure — that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot conditions are satisfied with continuous normal velocity. This
requires a stability assumption on the background state, |u* — 1T| > 24/2¢, and
also a smallness assumption on the initial data. After some reductions the problem
is reduced to finding a local inverse of a nonlinear operator, so that Nash-Moser
iteration may be applied. The preliminary work includes changing coordinates to
fix the free surface, which involves adding the Eikonal equations to the system to be
solved, and introducing an approximate solution so that the initial data can be taken
as zero. The main work is then to obtain a tame estimate for the linearised equations,
after which a modified version of Nash-Moser iteration as above can be applied.

Notation. We will use the notation of [8], and to avoid conflict of notation with the
above we will write u, v, w, f, g used in the above in bold face as u,v,w,f, g. We
will also write % and ¥ instead of U and V used above.

6.1 The Function Spaces

For T > 0, define

Qr ={(t,x1,x) €eR*:t < T,x, >0}
wr ={(t,x)) eR*:t < T}.

For integer s > 0 and real y > 1 define the weighted Sobolev space

Hy($27) = {exp(yt)v:v € H"(£2r)}
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where H*(£27) is the usual Sobolev space of order s. We define H(wr) similarly.
The norm onu € Hy(§2r) is given by

||“||H;(:2T) = [lexp(=y)ull gs(qp) -
Next, we define, for integer s > 0,
3“;(97) ={ue H)f(.QT) cu=0fort <0}

and we define 35)5 (wr) similarly. Now, adapting the notation of [8] to our frame-
work, we define

X' ={ue (F7(2r) x (F57(20) x F377(20) x 37 (2r)
V=0 = ¥ =0, 0" [ry=0 = P lr,=0}
where we write
u=Vt v, ot g
and
V =(p,v,u)
and define
V=¥ 0 = ¥ =0

Note that we omit the superscripts © and ~ in formulae which apply to both. We
have chosen X° to consist of products of Sobolev spaces of order 3 because of the
embedding H*(R?) ¢ W1 (R?) for s > % + 1, and in this case the dimension d
is 3 (two space and one time).

We define the norm ||| ys on X* as the usual product norm (the sum of the norms
of the components). Then {X*},e; is a decreasing family of Banach spaces, where
I = [0, s3] is an interval in Ny, for integer s3 > 0 which we will fix later sufficiently
large.

Similarly, we define

Y ={ge (F(@n) x (F@n) x FH (@) x F (@)

where we write
g=(f". /.t )
and

S = (A, fa f3).
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6.2 The Smoothing Operators

Note that in order to define the smoothing operators on {X*}s¢; (which can then
be used on {Y*};e; as well), we must make some modifications from those on
H*(RY). Firstly, we must replace R? by a domain with a Lipschitz boundary with
finite covering, which is easily done via an extension operator. Next, we must ensure
that the property u = 0 for # < 0 is preserved under the action of the smoothing
operators, which was done by Alinhac in [2], and finally we must ensure that the
two properties ¥ |,—0 = ¥ |y,=0 = ¥ and pT|y,=0 = p~|x,=0 are preserved.
See [8] for the details of this construction using a lifting operator.

6.3 The Background Solution and the Approximate Solution

Although we will not introduce the original problem considered in [8] (since we
wish to show the use of Nash-Moser iteration only), we need to introduce the
background or stationary solution and approximate solution for reference.

The background solution is given in the form

U =@ =7, 45,05 =0),8 = +x)

where p, v are constants with p > 0.

We assume the existence of an ‘approximate solution’ (U at ya— got, P47)
with U4 — U,®* — & € H*T3(L2r) having compact support, which has the
following properties. Here, s4 is a sufficiently large integer with s4 > s3 4+ 2. In
fact s4 = 53 + 2 will do.

FLU*, @%)|y=o = 0for 0 < j < s3+3
9P + 190, D —u* =0

d)a+|xz=0 = d)(l—|X2:0 = ¢a

pu+ _ pa—

axz(pa-f- >

0y, P47 < —=

pa:I: > 8

HUa _UHH7(QT) + qua _5HH7(QT) =&

for some 8y > 0, where we are allowed to choose constant §; > 0 as small as we
like (which restricts the size of the initial data in the original problem). The first
order differential operator L is defined in the next section.
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6.4 The Nonlinear Operator and Equations

6.4.1 The Operator T and the Set %
We set my = 4 and define
Ut ={ue X*:||ul|ys <8}

where §, > 0 is chosen sufficiently small. In particular, we need

IA

19 w10y,

IA

Nloco N =

Hpi | ‘LOO(QT)

which is possible via Sobolev embedding. This ensures that d,, (®°F + ¥*) and
% 4 pT are bounded away from zero.
We define the operator T : Z* — Y° by

LWVt o)
W= | Lo g
EV—,¥7)
Here,
LV ¥)=LU+V, o +¥)-LU*, &%)
and

1
LU, ®) =0, U + A1 (U)o, U + 3_¢(A2(U) -0, —0,,®A,(U))0,,U.
X2

The matrices A;(U) and A,(U) are smooth functions of U for U; > 0, where U] is
the first component of U (the ‘p’ component). See [8] for the exact expressions of
these matrices. Also,

EWV, W) =0 ¥ + (V' +v)0y, ¥ —u + vd,, @°.

We note also that T : % — Y 7!, where % = %* N X*°.
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6.4.2 The Equations
Define

| -Lwe, o) fort > 0,

f=
0 fort < 0.

B. Stevens

Then by the properties of the approximate solution, we have f¢ € ﬁf“(QT) and

together with the definition of L we obtain
1/ llys < C8 =t €.
Set
fat
f= / 0
0
For € sufficiently small, we wish to solve the equation
T =f
which is equivalent to
T) =T(u) +f
if we set
u =0

since 7(0) = 0.

6.5 The Linearised Operator, Modified Linearised Operator,

Modified State and Linearised Equations

6.5.1 The Operator DT

Notation. To make the notation easier, let us use u instead of v to represent a vector

to which we apply DT'(u), with the obvious notation

i=WVH Vo, ot ¥

and li/:|:|)cz=0 = &
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Then we have
LVt ehwt ot
. LV WV,
DT = - -
W= o+ gty i+, o+
EWV o)V, ¥7)
where .Z’ is the derivative of . and &’ is the derivative of &. Calculating these,
we obtain

LWV &) =L U+ V, 0 + )V, V)

where I/ is the derivative of IL and is given by

-~ o~ - - 1 -
L'(U. )V &) =V + AUy V + 5 (4x(U) = 8, @ = 0, D4 (U))d, V
X2

9,0

+(DA(U)V)3,, U —

1 ~ -~ -~ ~
g DAYV = 80 = 0, W 41 (U) = 8, SDA(U) V), U.
X2

Also,

E'WV, W)V &) = ,¥ 4+ (* + )0, ¥ — it + 73, D¢ + 70, .

6.5.2 The Operator A

We define

LU + Voot 4 uh)y+
; LU + V™, % + ¥ )V~
A = € ~ ~
(@wu YU %0 VAN 720
EWV o)V, ¥7)

where, as in [8], we have introduced the ‘good unknown’, which we denote by 14
instead of V' to avoid conflict of notation, as

V=V i A, U+ V)
(e +w) Y ‘
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The operator L, is defined as

v v v 1 v
L;(U, @)V = an + A1(U)8le + m(AZ(U) - 8,@ - axl®A1(U))3x2V
X2

1
0., ®

+(DAL(U)V)d, U + (DAL (U)V — 8., ®DA,(U)V)dy,U.

Note that, with (U, @) = (U? + V, @* + W), we have

U
9,

R
0,

L'(U,®)(V,¥) - L,(U,®)V = 3y, (L(U, ®))

8, (L (VW) — f).

6.5.3 The Set 7" and the Operator R

We set m7 = 1 and define
Y ={ue X oWVt ut)y =0,V ,¥7) =0,]||ul|ys <85}

where 0 < §5 is to be chosen sufficiently small.
We define the operator R : % — ¥ by

+
+

0
v
WT + (v +vH)a, ot 4 vt @t

P
R(u) = Vo
QW™+ (K +17)0 W 4 v 0y, PO
11/"’
v
14

One can check that indeed R(u) € ¥ In particular, one can see that ||R(u)||y3 can
be controlled in terms of ||u||y4+ <, foru e %.
We then calculate
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R(u) —u = 0

6.5.4 The Linearised Equations

Givenu € ¥ and g € Y °°, we wish to solve the equation
Awu=g

for it € X oo maxt/imatmi} 1 et us write

f+
g= ;;_
h-

where At |,,—0 = h,—o = g Then we want to solve the system

L;(U”J’_ + V+, Pt 4 11/+)I7+ f+
L (U™ 4V, + ¥V~ -

~ 7+ a T, =
EOTIDOT + g g e UT V.00 | T gt
V)V + Waxz(l}a_ +V7)¥7) h~

where in the last two equations we have written V+ in terms of the ¢ good unknown’
V and ¥. The introduction of the ‘good unknown’ allows us to split the solution of
this system into two steps. First we solve the system

LU + VE @* L gyt = f* (53)

with boundary conditions

14
aX2 (qja_l— + l1H—)|xz=0

—p |xy=0 — L4
o= axz (d)a— + lp—)|xz=0

axz (pa+ + p+)|x2=0

15+|X2=0 +

axz (pu— + p_)|xz=0 =0 (54)
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atlﬁ + (Vai + Vi)|x2=08x1&

14

BV at + -
T (@ 4 ), )=o)

_(hilxz=0 +

14
aX2 (Qjazl: + lI/i)|xz=0

+( =0 + 02, (V' 4+ V) |1a=0) 0, (W + ¥)

=h*|,—0 (55)

for the unknowns (Vi, V). Note the first boundary condition is 1 =0 —
P |x,=0 = O written in terms of the ‘good unknown’, and the second boundary
condition is a rewriting of
E'(VE W) (VE o)
we replace lf/ilezo with .
Secondly, having solved the above system for (I7i, V), we solve the two separate
equations

= hilx —o in terms of the ‘good unknown’, where
x2=0 2

t

. ¥
SWEWEHE ¢ — o
( W 5 aeE 1 ud)

3y, (U + VE), IF) = p* (56)

for U+, By restricting to {x, = 0}, we see that ¥+ |x,=0 satisfy the same equations
as 1} given in the boundary conditions above, hence by uniqueness of solutions we
have l1~/i|x2=0 =Y.

Finally, we can rearrange to obtain V from V and .

6.6 Solution of the Linearised Equations

Assume u € ¥ and g € Y *°. We wish to solve the equation
Awu=g

for u, using the steps described above.

The key to the whole iteration scheme is the solution of the linearised problem
(53)-(55).

We have the following result, stated in [8]. Assume that the stationary solution
satisfies the supersonic condition

v > v2¢(p).
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Assume that U, @ are suchthat U —U,® — @ € H;+3(.QT) for integer s € [3, 53]
with
[V =T, 9@ =B | 50, + |V =T 00, 9@ =B ol g, = b
(57

for some 84 > 0, where @ |,,—0 = D_|1,—=0 = ¢.
Assume also that (U, @) satisfy the eikonal equation

0P + 10y, @ —u=0.

Assume in addition that the coefficients (U — U, ® — ®) have fixed compact
support — a technical condition which can be achieved by truncating the coefficients
without affecting the solution due to the finite speed of propagation of the Euler
equations.

Then if §4 is sufficiently small, given

(f*.g%) e Z1(2r) x F3 (0r)
we have a unique solution
(V*.9) € Z3(2r) x Z7 (or)

of (53)~(55), replacing h*|,,—o with g%, provided y > 1 is sufficiently large
depending on s3. Moreover, the following estimate holds, for some constant
C, >0,

HVHH;(QT) + HWHH‘V‘*‘(COT)
=< Cs(“f”H;‘H(QT) + IIgIIH‘y‘+1(wT)

+ (1 agian + 18l o) [[U =T, @ =®)| s, )-

Here, we set U = U* + V, ® = @ + ¥, where (U,¥) € 7. Note that
the smallness condition (57) holds provided &5 and §, are sufficiently small. Also
note that the Eikonal equation holds since the approximate solution satisfies the
Eikonal equation and by the definition of 7. We are given f and 4 and set g%+ =
h* |x,=0. Unfortunately this method, which is slightly simpler than the one described
in [8], results in a further loss of regularity due to taking the trace of /. So in fact
given

(f*.h%) e Z3H(Q2r) x 3 (wr)
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we have a unique solution
(V*.9) € Z3(Qr) x F3 (or)

satisfying the estimate

H HH;(QT) + HI//HH‘;*‘(Qn = Gl A Nl iy + 11l g2,

+(||f||H{}(.QT) + ||h||H;(QT))(H(Ua _U7 ol _5)||H;+3(QT) + ||(Va l‘I/)HH;"‘%(QT)))

Having solved this system, it remains to solve the Eqs. (56) for ¥*. Each of these
equations is a first order scalar linear equation, so has a unique solution (for smooth
enough coefficients and source term). More precisely, assuming that

(U +V, D + ‘I’)HH;(.QT)

is small enough (which is guaranteed by taking 64 small enough), we have a unique
solution

¥ e 73 (2r)

of (56). Moreover, the following estimate holds, for some constant C; > 0 (which
may depend on the bound on ||(U* + V, @ + lI/)||H;(QT)),

19]] ) <

Cs (IRl 327y + HV‘

([~ 2]

wtian TP g o)

+7
Hy(@r) H}(92r)

+||¥| |HV3(QT) (U -T, 0" - cp)HH;H(Qﬂ VD gst10,))-
Taking s = 3 and assuming &4 is sufficiently small, we obtain

Hli/HH;(QT) = C(||h||Hy3(S2r) + HI}‘

Hi@r)
Thus

1]

o =[]

)(||U* =T, 2" — D)

+(Ill3ien + |||

H}(2r) 't aen T v, ‘I’)HH?H(QT)))'
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From the previous estimate for V with s = 3, we obtain

171 sy, = O Mg + bl o)

(where the constant will depend on | ‘(U“ —-U,o* — 5)‘ |H6(QT) +1|(V, 11/)||HVG(QT)
14

< §1). Thus we obtain

1]

Hy@n =

Cs(llf”H;‘H(Qr) + ||h||H;+2(Qr) + (||f||H;}(.QT) + ||h||H}§(QT))(1 + ||(V7 lI/)”H;‘H(QT)))

(where the constant will depend on H(U “« U, — 5)|

T QT))‘ Combining

and writing V in terms of V and lf/, we obtain

V]

H3(2r) + ||‘i/| H3(Qr) + ||KZ|

. <
B ) =

Hence, foru € ¥, we have B(u) : Y® — X~ and

[I1Bglxs < Cs(llgllys+2 + [lglly2 (1 4 [[u][xs+3))

for all s such that s + 4 € I. Thus we have [{ = 2 and m4 = 3.

6.7 Estimates of the Operators

6.7.1 Estimate of R
Clearly from the definition of R and T', we have

[IR(w) vl yo < ||T(w) — T (up) — fl]yo -
Thus [, = 0.

Also, using Sobolev embedding and that R is a first order differential operator,
we have the tame estimate

IR xs = Cs(1 A [[ul[ o) (1 + [|uel [ s+1)

fors € [0, s3 — 1]. Thus mg = 0, and as we have already stated, m7 = 1.
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Now we estimate the commutator

||R(SFw) — S¥ R(w)|

Xs

forue % .
We have

E(SyV, SeW) — Sp&(V, W)

= 0,(Sg¥) + (v + Sgv)dx, (Se¥) + (Sgv)dy, @°

— Sp0 ¥ — Sp(1v* 0, W) — Sg (v, W) — Sp(vdy, P)

= 0,(Se¥ —¥) + (0¥ — Sp0,;¥)

+ (10, ¥ — Sp(v 0y, ¥)) + v 0y, (Sp¥ — W)

+ (W0, ¥ — So(vOy, ¥)) + vy, (SeW — W) + (Sgv — v)dy, Sg¥
+ (0, @ — Sp(vdy, D)) + (Sgv — v)dy, P

Hence, using the property (2) of the smoothing operators and product estimates for
Sobolev norms, we have, forr — 3,5 —3 € [0, 53 — 1] with r > s and 7’ € [3, 53],

16(SsV. So¥) = So&(V. V)| ()
= G (@ ¥l g1 @y
+ (M =Wz + D 1+ 0 + IV =Vl ar2n 1Y a3@r)
+ (U =llagen + DO 11y 2y

+ O AV 2o W1 gyt o + M@ ¥ i)

+ ||V||H~y*(.QT) 6> ||‘1’||H;’(-Or)

+ 60" IV 7 20 W 3 c2p) + 6" ||V||H;’(.QT) ||‘1’||H;+‘(QT)

+ 07 (3 |19 = B g+ o + MLz 197 = Pl io,)

+ 07 Wl g0 119 = B sy + 7 Iy o 119 = B s10,)
= Cos (0" + IVl + ¥ m200) A+ 1V iy 20 + 1 o)

+ 63" (1 + ”V”H;}(QT) + ”q/”H;JrI(QT))O|V||H;/(QT) + ||q/||Hyr’(QT)))-

Hence, for v/, r,s € I withr > s,
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[[R(S¥u) — S R(u)|

XS

< Crs (07 (1 + [[ul[xo) (1 + [[ull 1) + 077 (1 + [[ull et ) (1 + [ ).

6.7.2 Estimate of the Derivatives of T

Since T is a first order differential operator, that is, 7'(u) can be written as a smooth
bounded function of u and its first order derivatives foru € %!, we immediately see
that T : ' — Y9 is continuous and it satisfies (20) and (19) with m; > 1,m, >
0,m3 > 1. Note that we have used the Sobolev embedding H)f’ (27) € Whoe(27).
We will in fact need to estimate the derivative of A before we fix my, ms, ms.

6.7.3 Estimate of A — DT

We estimate

(2w - 1

- <
0, (P9 + W) 7

H;(27)

CX ||l1~/HH;(QT) ||$(V’ lI/) - f‘a“H;(QT) + CS Hli/HH%(QT) ||$(V’ lI/) - f‘a”H;*’l(QT)

+ C 9| g LV 8) = Fl iy (0 + || + @~ 3|

@)
Hence
[[(A(w) = DT (w))ul|y.
= G([[a]]xs [IT (w) = T (uo) —fllyo + [[0[x0 [[7'(w) — T (o) — f[ys+:
+ (][0 [|7(w) — T (wo) — fl[yo (1 + [[u]]xs+1))

where the constant C; depends on H@“ — 45|\H.V+1(QT). Thus ms = 0, mg = 0,
Y
mog = 1,13 = 0,14 =1.

6.7.4 Estimate of the Derivative of A

Note that

L, (U, @)V =L'(U, &) (V,¥) — %aXZ(L(U, P))

X2
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where (U, @) = (U + V, @ + ¥). The first term is a component of DT For fixed
(U, V), the second term is ¥ multiplied by a differential operator of order 2. Hence

[|DA(w)gh[ys

< C(|[f] s+ [[uflxo + [Ih][xo [0 xs+1 4 [ xo [[af]yo (1 4 [[ufx.+1)
+ [[uflxo (] xs+2 + [[h]]x1 (1 + [Jul[xs+2)) + [[]]xs [[h]]x1)

< G(I[f]gs+2 [[ufl o + [ [xr ([0 xs+2 4 [T][xr [[af]yr (T4 [[uf]ys+2)).

Thus we fixmy =2,mp, = 1,mz = 2.

6.8 Conclusion

We have seen that the hypotheses of the theorem are satisfied with my = 4,m; =
2,m2 = 1,]’)’13 = 2,m4 = 3,]’)’15 = O,m6 = O,m7 = l,l’)’Zg = O,mg = 1,11 =
2,1, = 0,13 = 0,l; = 1. Hence we may take rp = 6. Note that in the proof we
required s; > ro + 1,51 > ro + max{m, m3} + [ and M (s; — max{m| + l4,m3 +
ly,ms,mo}) > 0 (with slope 1 which is satisfied for s; > ry+ 1 automatically). One
can check that M(s) = s — 8 hence we require s; —3 > 8, s0 5; > 11. Now we
require s; + max{/y,m4 + m7} € I, hence s3 > 11 + 4 = 15, and thus 54 > 17
will do.

Thus we conclude that if we are given the approximate solution

(U, U, 9%, @%7) with U* — U, ®° — & € H*(27) which satisfies the
conditions described above, with

HUa _UHH7(QT) + Hq)a _5HH7(.QT)

sufficiently small, then we have a unique solution (V, V=, ¢ ¥™) € 3‘7 (827)
to the following equations (for both * and ~ components),

LU+ V, @ +W¥) =0
(P4 + W) + (V* +v)0y, (@ + W) — (" +u) =0.

In fact, since f¢ € Y272 where s, = 12 < 53 — 3, we may use the last part of the
theorem to conclude that (V*, V=, ¥+ w™) e 7)1 (27).

7 Further Applications and Open Problems

There are several other situations involving characteristic discontinuities for the
Euler equations or the equations of ideal magnetohydrodynamics where it may be
possible to obtain a tame estimate for the linearised equations, and thus apply the
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above Nash-Moser iteration scheme. In these contexts a characteristic discontinuity
is a surface of discontinuity in the fluid across which the Rankine-Hugoniot jump
conditions are satisfied with zero mass transfer. The first step is usually to perform a
normal modes analysis by linearising about a background state (constant either side
of a plane across which the Rankine-Hugoniot jump conditions are satisfied) and to
determine criteria which rule out exponentially growing solutions. The aim is then
to show short-time existence of solutions with the same structure as the background
state (that is, smooth either side of a surface of discontinuity across which the
Rankine-Hugoniot jump conditions are satisfied) where the initial data is a small
perturbation of the background state, under the assumption that the background state
satisfies the stability criteria. We call this structural stability.

One obvious open problem is to extend the above result by Coulombel and Secchi
in [8] on the 2D isentropic Euler equations to the 2D full Euler equations. Miles
showed in [17] that the stability criterion on the background solution U* (using
notation as above) in this case is

] > (@) +@)H?

+

(where [u] = u™ — u™) under the simplifying assumption

pHE =5 @)

The main difficulty is to solve, and to deduce a tame estimate for, the linearised
equations, assuming this stability criterion, after which we would expect the
application of Nash-Moser iteration to be similar. In fact Morando and Trebeschi
have obtained an L? estimate with derivative loss for the linearised equations under
this stability criterion — see [18]. We note that vortex sheets in 3D Euler are always
unstable according to normal modes analysis — see Miles and Fejer [13].

A modification of the Nash-Moser scheme similar to the one above has been
used successfully by Chen and Wang in [5] and [6] for current-vortex sheets in
ideal compressible magnetohydrodynamics under the assumption that the jump in
the non-parallel component of the magnetic field dominates the jump in tangential
velocity. This stability criterion was first found by Trakhinin by forming a new
symmetric form of the equations — see [24] — although it is almost certainly stricter
than necessary. One of the key observations made by Chen and Wang is that, using
this new symmetric form of the equations, the linearised problem for current-vortex
sheets is endowed with a well-structured decoupled formulation into a standard
initial-boundary value problem for a symmetric hyperbolic system and a separate
scalar PDE for the front. Chen and Wang then modify the iteration scheme to
reconstruct the extensions of the front, =, with ¥+ = ¥~ on the boundary,
which is why their scheme does not exactly fit into the above framework, but would
require a small modification. In fact Trakhinin in [25] obtained the same result on
current-vortex sheets, but instead of modifying significantly the iteration scheme of
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Coulombel and Secchi, he solved the original linearised equations having used his
new symmetric form only to help with the treatment of the linearised equations,
which results in his approach being longer, although it should fit into the above
framework. The normal modes analysis to determine the expected weakest possible
stability criteria for current-vortex sheets in compressible magnetohydrodynamics
leads to high order algebraic equations which seem impossible to solve analytically,
and is detailed by Fejer in [12], where some special cases are considered.

The stability criterion for current-vortex sheets in incompressible magnetohydro-
dynamics is easier to determine — see e.g. Axford [4]. In 2D, the condition is

2|He | + A=) > |l
In 3D, there are two conditions
2(| A+ + A=) > [P
2|y x B-|* > |Hy x [a@|* + |H- x [i]]”

although in fact the first follows from the second under the additional assumption
I:I + X H — ?é 0.

Given these stability criteria, one would hope to be able to obtain a tame
estimate for the linearised equations and then use Nash-Moser iteration as above
to prove nonlinear structural stability of incompressible current-vortex sheets. In
[19], Morando, Trakhinin and Trebeschi obtain an energy estimate for the linearised
3D equations under the above stability criteria. Also, using a different approach,
Coulombel et al. [9] have derived a priori high order energy estimates directly
for the nonlinear equations in 3D, using the incompressible version of Trakhinin’s
stability criterion — see Coulombel et al. [9]. However, the full problem of nonlinear
structural stability of incompressible current-vortex sheets is still open.

The case of current-vortex sheets in 2D isentropic magnetohydrodynamics,
where the magnetic fields are parallel on either side of the discontinuity, has been
considered by Wang and Yu in [26]. They obtain a low order energy estimate
for the linearised equations with loss of derivatives, under some quite restrictive
assumptions to simplify the algebra and make the treatment similar to that of 2D
isentropic Euler.

Another open problem is the case of current-entropy waves for the full magneto-
hydrodynamics equations, where the normal component of the magnetic field is no
longer zero on the surface of discontinuity, but the velocity and magnetic field are
continuous, with only the pressure, entropy and density experiencing a jump. There
are strong indications that such waves ought to be stable under certain conditions,
but the normal modes analysis again results in high-order algebraic equations which
are difficult to study analytically.
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