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1. Introduction and statement of the main results

1.1. Introduction

In this paper we study properties of time dependent Schrödinger-type linear partial 
differential equations defined on scales of Hilbert spaces. Our aim is twofold: (i) to put in 
a unified setting several results only known in particular cases concerning well-posedness 
and growth of norms for large time and (ii) to generalize and extend such results to new 
models.

More precisely, given a scale of Hilbert spaces {Hk}k∈R, we denote by 〈·, ·〉0 the scalar 
product of H0, and we consider Cauchy problems of the form

{
i∂tψ(t) = L(t)ψ(t)
ψ|t=s = ψs ∈ Hk , s ∈ R

(1.1)

where L(t) is a time-dependent, linear, symmetric (w.r.t. 〈·, ·〉0) and unbounded operator 
in H0. We want here to establish a list of simple criteria which ensure the global in time 
well-posedness, the unitarity in the base space H0, as well as giving bounds on the 
growth of the Hk-norms for the solution of (1.1). In all the paper we assume that the 
spaces Hk are defined as the domains of the powers of a positive self-adjoint operator H, 
i.e. Hk ≡ D(Hk/2).

Our first result concerns a very general class of operators L(t). Roughly speaking, 
under the condition that the commutator [L(t), H] is Hτ -bounded for some τ < 1, we 
will prove that the flow U(t, s) of (1.1) exists globally in time in Hk and its norm grows 
at most polynomially in time as t → ∞, and more precisely we prove the upper bound

‖U(t, s)ψ‖L(Hk) ≤ C 〈t− s〉
k

2(1−τ) (1.2)

for some constant C independent of t. Here 〈x〉 = (1 + x2)1/2.
It is remarkable that such a bound, in the case τ = 0, is optimal, since there exist 

operators L(t), H with [L(t), H] bounded s.t. the solution of (1.1) fulfills ‖U(t, 0)ψ‖Hk ≥
C 〈t〉

k
2 . Such an example was constructed by Delort in [10], choosing L(t) = H + V (t)

where H = −Δ + |x|2 on R is the harmonic oscillator and V (t) is an ad-hoc pseudodif-
ferential operator of order 0 (see Remark 1.6 for more details).

However, with stronger assumptions on L(t) and H, one might hope to improve the 
bound (1.2). Indeed it is well known that in many interesting situations the norm of flow 
of (1.1) grows much more slowly, in particular at most as tε when t → ∞, for any ε > 0. 
This is the case for example for equation (1.1) on T with L(t) = −Δ +V (t, x), as proved 
by Bourgain in [5]. Here Δ is the Laplacian and V (t, x) is a smooth potential. The same 
bound holds also when L(t) = −Δ + V (t, x) is defined on Zoll manifolds, as proved by 
Delort [9].
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The crucial feature of these examples is a spectral property of the principal opera-
tor −Δ on Zoll manifolds. Indeed its spectrum can be enclosed in clusters whose distance 
is increasing (we will refer to such property as increasing spectral gap condition). Note 
that, in the example of Remark 1.6, the harmonic oscillator −Δ + |x|2 on R does not 
fulfill the increasing spectral gap condition.

Such property motivates our second result. In order to improve the upper bound (1.2), 
we put ourselves in the situation where L(t) is of the form L(t) = H+V (t) and we assume 
that H has increasing spectral gaps. Then provided that V (t) is smooth in time, we prove 
that for every ε > 0 the bound

‖U(t, s)‖L(Hk) ≤ Ck,ε 〈t− s〉ε , ∀t, s ∈ R (1.3)

holds. This is essentially the content of Theorem 1.9 below. It is important to note that 
we allow V (t) to be an unbounded perturbation. More precisely we can take V (t) to be 
Hν-bounded, where ν < 1 depends only on the spectral properties of H.

In the case where t �→ V (t) is analytic, we are able to further improve the bound (1.3), 
obtaining the logarithmic estimate

‖U(t, s)‖L(Hk) ≤ γ(log 〈t− s〉)σk, ∀t, s ∈ R (1.4)

where the constant σ > 0 can be explicitly calculated. This is the content of Theorem 1.10
below. Once again when V (t) is a bounded perturbation the exponent σ that we find is 
optimal (see Remark 1.11 below).

Finally we apply our abstract theorems to several different models, including one 
degree of freedom Schrödinger operators, perturbations of the Laplacian on compact 
manifolds, Dirac equations, a discrete NLS model and some classes of pseudodifferen-
tial operators. We recover many known results proven with different techniques, often 
improving such results (allowing e.g. unbounded perturbations) but also obtaining new 
results. More details and references will be given in Section 5.

The problem of estimating the growth of higher norms for equation (1.1) is very old, 
and goes back to the pioneering works initiated by Howland [20] and developed by Joye 
[21,22], Nenciu [29] and Barbaroux–Joye [3].

Such authors, roughly speaking, under the increasing spectral gaps condition on H
and the assumption that the perturbation V (t) is smooth in time and bounded, use the 
method of adiabatic approximation to prove that for every ε > 0 we have

‖U(t, s)‖L(H1) ≤ C1,ε 〈t− s〉ε , ∀t, s ∈ R.

Our aim here is to extend the adiabatic approximation schema of Joye and Nenciu to a 
class of unbounded perturbations V (t) and to control the growth of the Hk-norm ∀k > 0.

As a final remark, we would like to mention some situations in which it is possi-
ble to prove better bounds, and in particular to prove that ‖U(t, s)‖L(Hk) is uniformly 
bounded in time ∀k ≥ 0. Such results can be obtained for instance provided that the 
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perturbation V fulfills some stronger assumptions, for example being quasi-periodic in 
time and small in size. Indeed in these cases one might try to apply KAM methods to 
conjugate L(t) to a diagonal operator with constant coefficients, which in turn implies 
that the Hk-norms are uniformly bounded in time ∀k ≥ 0. The problem of the existence 
of such a conjugation goes in the literature under the name of reducibility and had a 
tremendous development in the last 20 years. To list the achievements of such theory is 
out of the scope of this manuscript: we limit ourselves to state the latest results in the 
various models considered in Section 5.

1.2. Main result

We start to make more precise assumptions. We ask that the scale of Hilbert spaces 
is generated by a positive self-adjoint operator H in H, in the following sense: first 
H has a dense domain D(H) ≡ H2. Then, defining for every k ≥ 0 the operator Hk

by functional calculus (spectral decomposition), we demand that Hk ≡ D(Hk/2). For 
k < 0, Hk is defined by duality as the completion of H with respect to the norm 
‖u‖k = sup{| 〈v, u〉 |, ‖v‖−k ≤ 1}. Notice that for every m ∈ R and k ∈ R, Hm is an 
isometry from Hk+2m onto Hk. Denote by H∞ := ∩k∈RHk.

Let us denote by ‖ ·‖k the natural norm on Hk, which in turns is equivalent to ‖Hk/2·‖0. 
Finally given a Banach space B, we denote by Cb(R, B) the Banach space of continuous 
and bounded maps f : R �→ B with the usual sup norm ‖f‖∞ := supt∈R ‖f(t)‖B. 
We denote by C∞

b (R, B) the space of maps f : R → B smooth.
Given A, B, Banach spaces, we will denote by L(A, B) the set of linear bounded maps 

from A to B. In case A ≡ B we will simply write L(A).
Given an operator A, we say that A is Hν-bounded if AH−ν is a bounded operator 

on H0.

Remark 1.1. Recall that H∞ is dense in Hk ∀k ∈ [0, ∞[. This follows from the spectral 
decomposition of H: H =

∫∞
0 λdEH(λ) (see [30]). Let EH [a, b] =

∫ b

a
dEH(λ) be the 

spectral projector on [a, b]. If ψ ∈ D(Hk/2) then EH [0, N ] ∈ H∞ for all N > 0 and 
lim

N→∞
‖Hk/2(ψ − ψN )‖0 = 0.

Let us introduce now a time dependent family of operators L(t) and the following 
conditions:

(H0) There exist integers m ≥ 0 and k0 > 2m such that t �→ L(t) ∈ Cb(R, L(Hk+2m, Hk))
for 0 ≤ k ≤ k0.

(H1) For every t ∈ R, L(t) is symmetric on Hk0+2m w.r.t. the scalar product of H0 i.e.

〈L(t)ψ, φ〉0 = 〈ψ,L(t)φ〉0 , ∀ψ, φ ∈ Hk0+2m .

(H2) There exists k1 > 2m such that [L(·), H]H−1 ∈ Cb(R, L(Hk)) for 0 ≤ k ≤ 2k1.

The first theorem concerns existence of a global in time flow of equation (1.1):
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Theorem 1.2. Assume that L(t) fulfills the assumptions (H0), (H1), (H2). Then for all k
with 0 ≤ k ≤ min(k0, k1) − 4m, equation (1.1) admits a unique propagator U(t, s) ∈
C0 (R× R, L(Hk)

)
fulfilling

(i) Well-posedness: for every initial datum ψs ∈ Hk+2m, there exists a unique global 
solution ψ(t) := U(t, s)ψs ∈ Hk of (1.1) such that ψ(·) ∈ C0(R, Hk+2m) ∩C1(R, Hk).

(ii) Unitarity: for every initial datum ψs ∈ Hk, the H0 norm is preserved by the flow, 
‖ψ(t)‖H0 = ‖ψs‖H0 , ∀t ∈ R.

(iii) Group property: ∀t, r, s ∈ R

U(t, s) = U(t, r)U(r, s), U(s, s) = I . (1.5)

(iv) Upper bound on growth: for every k ≥ 0, there exists Ck > 0 such that

‖U(t, s)‖L(Hk) ≤ CkeCk|t−s|, ∀t, s ∈ R. (1.6)

In particular U(t, s) extends to a unitary operator in H0 fulfilling the group property (iii).
Furthermore for every t ∈ R and every k ≥ 2m, (L(t), Hk, H0) is essentially self-

adjoint.

It is remarkable that the assumptions of Theorem 1.2 are the time-dependent assump-
tions of Nelson commutator theorem to prove essentially self-adjointness, see Proposi-
tion A.2. We shall see later that Theorem 1.2 has many applications for proving existence 
and uniqueness for time dependent Schrödinger equations with time dependent Hamil-
tonians.

Remark 1.3. Some variants or special cases of Theorem 1.2 are more or less known in the 
literature. For example the results, at least in the special case m = 1 and k0 = 4 = k1, 
follow from a classical theorem by Kato [23, Theorem 6.1], as was pointed out to us by 
J. Schmid [33].

Furthermore for k = 1 similar results are proved also in [25, Appendix A], [34, Theo-
rem II.27] and [24].

Remark 1.4. At this level of generality, the estimate on the growth of Sobolev norms of 
Theorem 1.2 (iv) is optimal. Indeed one example is the following. Let H = − d2

dx2 +x2 be 

the harmonic oscillator and L = x d
idx + d

idxx on L2(R). We have [H, L] = −2 
(

d2

dx2 + x2
)

and the assumptions (H0)–(H2) are satisfied. But we have

U(t, 0)u(x) = et/2u(etx).

So we get
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∫
R

| d
dx

eitLu(x)|2dx = et‖ d

dx
f(x)‖L2(R).

A first improvement on the growth (1.6) can be obtained by asking that the commuta-
tor [L(t), H] is more regular than what is assumed in (H2). More precisely we introduce 
the following assumption:

(H3) There exist k1 > 2m and τ < 1 real such that [L(·), H]H−τ ∈ Cb

(
R,L(Hk)

)
for 

every 0 ≤ k ≤ 2k1.

Theorem 1.5. (i) Assume that L(t) satisfies the properties (H0), (H1) and (H3). Let 
0 ≤ k ≤ min{k0, 2k1} − 4m, and p ∈ N such that

k

1 − τ
≤ p .

Then there exists a positive constant Ck,ν,p, independent of t, such that

‖U(t, s)ψs‖2k ≤ Ck,τ,p 〈t− s〉p ‖ψs‖2k, ∀ψs ∈ H2k . (1.7)

(ii) Assume that (H3) is satisfied for every k ∈ N and that τ < 1 is rational. Then 
for every real r > 0 we have

‖U(t, s)ψs‖r ≤ Cr(‖ψs‖r + 〈t− s〉
r

2(1−τ) ‖ψs‖0) ≤ C ′
r 〈t− s〉

r
2(1−τ) ‖ψs‖r . (1.8)

This result shows that if [L, H] is Hτ -bounded with τ < 1, then the growth of the 
Sobolev norm is at most polynomial in time. Furthermore, if 1 −τ can be chosen arbitrary 
large then for every ε > 0 we have

‖U(t, s)ψs‖r ≤ Cr,ε 〈t− s〉ε ‖ψs‖r .

Remark 1.6. At this level of generality, the bound obtained in (1.7) is optimal, at least for 
τ = 0. Indeed Delort [10] proved that there exists a time-dependent pseudodifferential 
operator V (t) of order 0 and ∀r > 0 an initial datum ψr ∈ Hr s.t. the solution of 
iψ̇ = (−Δ + |x|2)ψ+V (t)ψ, x ∈ R, with ψ(0) = ψr fulfills ‖U(t, 0)ψr‖Hr ∼ 〈t〉r/2 (where 
Hr := D((−Δ + |x|2)r/2)). In such example, H = −Δ + |x|2, and condition (H3) is 
fulfilled with τ = 0. Then one sees that (1.7) is optimal.

In order to improve further the polynomial growth in (1.7), we make more restrictive 
assumptions on the structure of L(t). First we ask that L(t) is a perturbation of H, 
i.e. L(t) = H + V (t), where V (t) is a time-dependent self-adjoint operator. Clearly we 
assume that L(t) satisfies (H0), (H1) and (H2) (in particular we can take m = 1). Then we 
know from Theorem 1.2 that the Hamiltonian L(t) := H + V (t) generates a propagator 
in each space Hk, k ∈ N, k ≤ min{k0, k1} − 2, which is unitary in H0.
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We make two further assumptions. The first one concerns the structure of the spectrum 
of H, which is asked to fulfill the following condition on increasing spectral gaps:

(Hgap) The spectrum σ(H) of H can be enclosed in clusters {σj}j ≥1,

σ(H) ⊆
⋃

1≤j<∞
σj , (1.9)

where each σj is a bounded interval of R (we assume that they are listed in 
increasing order). Define1

Δj := dist(σj+1, σj) , δj := sup
λ1,λ2∈σj

|λ1 − λ2| .

Then there exist μ > 0 and positive constants α, β (independent of j) such that

1
α
jμ ≤ Δj ≤ α jμ, δj ≤ β jμ , ∀j ≥ 1 . (1.10)

Remark 1.7. If H fulfills (Hgap), then its spectrum is localized in the following sense: 
there exist positive constants C1, C2 (independent of j) such that

C1 j
μ+1 ≤ min σj ≤ max σj ≤ C2 j

μ+1 , ∀j ≥ 1 . (1.11)

In particular

max σj ≤ min σj+1, max σj ≤
C2

C1
min σj , ∀j ≥ 1 .

The second assumption concerns the regularity in time of the perturbation V (t):

(Vc)n Let n ≥ 1. There exists ν with2

0 ≤ ν <
μ

μ + 1

such that V (·)H−ν belongs to Cr
b (R, L(Hk)), r ≥ 2, for all 0 ≤ k ≤ 2n. In 

particular ∀0 ≤ � ≤ r, there exists a positive Rn,� s.t.

sup
t∈R

‖Hp ∂�
tV (t) H−p−ν‖L(H0) ≤ Rn,� , ∀0 ≤ p ≤ n , ∀ 0 ≤ � ≤ r . (1.12)

The following result is an extension of Theorem 2 of [29].

1 Clearly Δj are the distances between of the spectral clusters, while δj are their diameters.
2 Here μ is the rate of growth of the spectral gap as defined in (1.10).
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Theorem 1.8. Fix an arbitrary n ≥ 0. Assume that H + V (t) fulfills (H0), (H1), (H2), 
(Hgap) and (Vc)n. Then for any real 0 < k ≤ 2n there exists Ck,r, independent of t, 
such that

‖U(t, s)‖L(Hk) ≤ Ck,r 〈t− s〉
k
2r

(
μ

μ+1−ν
)−1

, ∀t, s ∈ R. (1.13)

A natural question is if increasing the regularity in time of V (t) leads to better esti-
mates. The answer is positive: assume

(Vs)n Let n ≥ 1. There exists ν with3 0 ≤ ν < μ
μ+1 such that V (·)H−ν belongs to 

C∞
b (R, L(Hk)) for all 0 ≤ k ≤ 2n. In particular ∀� ≥ 0, there exists a positive 

Rn,� s.t.

sup
t∈R

‖Hp ∂�
tV (t) H−p−ν‖L(H0) ≤ Rn,� , ∀0 ≤ p ≤ n , ∀� ≥ 0 . (1.14)

Theorem 1.9. Fix an arbitrary n ≥ 0. Assume that H + V (t) fulfills (H0), (H1), (H2), 
(Hgap) and (Vs)n. Then for any real 0 < k ≤ 2n and every ε > 0 there exists Ck,ε, 
independent of t, such that

‖U(t, s)‖L(Hk) ≤ Ck,ε 〈t− s〉ε , ∀t, s ∈ R. (1.15)

If one assumes that V (t) is analytic in time, better estimates were proved for 1-D 
Hamiltonians [36] or for perturbations of the Laplace operator on the torus [6,12]. We 
are able to extend such results to our more general situation, provided V fulfills the 
following analytic estimates:

(Va)n Let n ≥ 0. There exists ν with 0 ≤ ν < μ
μ+1 such that V (·)H−ν is an operator in 

L(Hk), ∀0 ≤ k ≤ 2n, analytic in time. In particular there exist c0,n, c1,n > 0 such 
that ∀� ≥ 0

sup
t∈R

‖Hp ∂�
tV (t) H−p−ν‖L(H0) ≤ c0,n c�1,n �! , ∀0 ≤ p ≤ n . (1.16)

Then we have

Theorem 1.10. Fix an arbitrary n ≥ 0. Assume that H + V (t) fulfills (H0), (H1), (H2), 
(Hgap) and (Va)n. Then for any real 0 < k ≤ 2n there exists a positive γ, independent 
of t, s.t.

‖U(t, s)‖L(Hk) ≤ γ (log 〈t− s〉)
k
2

(
μ

μ+1−ν
)−1

, ∀t, s ∈ R. (1.17)

3 Here μ is the rate of growth of the spectral gap as defined in (1.10).
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Notice that Theorem 1.9 and Theorem 1.10 hold true with only time regularity on 
V (t) and a limited amount of regularity in the scale spaces Hk. On the contrary, all 
the previous results deal with potentials which are smooth or analytic in the scale of 
spaces Hk. In particular in [36,12] the authors assume analyticity in t and x. Here we 
only need analyticity in t and some finite amount of regularity in x.

Remark 1.11. In the case of the Schrödinger equation on the circle, Bourgain [5] showed 
that the logarithmic growth factor for t → ∞ can not be avoided. More precisely he 
proved the following. Fix s > 0; there exist a sequence of real potentials Vj(x, t), a se-
quence of initial conditions ψj

0 and a sequence of times tj → ∞ as j → ∞, s.t. the 
solutions ψj(t) of iψ̇ = −∂xxψ+Vj(x, t)ψ, x ∈ T, fulfill ‖ψj(tj)‖Hs ≥ Cs(log 〈tj〉)s. Since 
H ≡ −∂xx fulfills (Hgap) with μ = 1 and V fulfills (Va)n with ν = 0, we see that the 
bound in (1.17) is optimal.

Remark 1.12. Theorem 1.10 could be extended, with a different exponent, replacing 
analytic estimates (Va)n by Gevrey estimates:

(Vg)n Fix n ≥ 0. There exist 0 ≤ ν < μ
μ+1 and s > 1 s.t.

sup
t∈R

‖Hp ∂�
tV (t) H−p−ν‖L(H0) ≤ c0,m C�

1,m (�!)s, ∀� ≥ 0, 0 ≤ p ≤ n . (1.18)

1.3. Scheme of the proof

The proof proceeds essentially in three steps. First we prove Theorem 1.2. The strategy 
is to regularize the operator L(t) obtaining a sequence of bounded operators LN(t) for 
which we are able to prove uniform estimates on the flow they generate, and then to 
pass to the limit. This in turn is possible thanks to the boundedness of [L(t), H]H−1. 
Theorem 1.5 then follows easily by a recursive argument.

The strategy to prove Theorem 1.9 and Theorem 1.10 is to extend the scheme of 
Nenciu [29] to deal with unbounded perturbations. The idea is to construct an adiabatic 
approximation Uad(t, s) of the flow U(t, s), for which the norms Hk are bounded uniformly 
in time. In case of time-analytic perturbations, special care is needed in order to perform 
estimates.

Organization of the paper: In Section 2 we prove Theorem 1.2 and Theorem 1.5. In 
Section 3 we prove the control of the growth of the Sobolev norms in case of perturbations 
depending smoothly in time, namely we prove Theorem 1.9. Theorem 1.8 will be deduced 
during the proof of Theorem 1.9. In Section 4 we consider perturbations depending 
analytically in time and we prove Theorem 1.10. In Section 5 we apply the abstract 
theorems to different kind of Schrödinger equations.



730 A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781
2. Existence of the propagator

The aim of this section is to prove Theorem 1.2 and Theorem 1.5. It is technically 
more convenient to consider the integral form of equation (1.1)

ψ(t) = ψs + i−1
t∫

s

L(r)ψ(r)dr (2.1)

We begin with an easy lemma:

Lemma 2.1. Assume that the condition (H3) is satisfied. Let θ := 1 − τ . Then

(i) For k ∈ N, 1 ≤ k ≤ k1, we have [L, Hk]H−k+θ ∈ Cb

(
R,L(H0)

)
.

(ii) For any θ′ < θ and any real p such that 0 < p < k1 we have [L, Hp]H−p+θ′ ∈
Cb

(
R,L(H0)

)
.

Proof. (i) The proof is by induction on k. First write [L, Hk+1] = [L, Hk] H−Hk [H, L], 
which shows that

[L,Hk+1]H−k−1+θ = [L,Hk]H−k+θ −Hk [H,L]H−1+θH−k .

The inductive assumption and the hypothesis [H, L]H−1+θ bounded as an operator from 
H� → H�, ∀0 ≤ � ≤ 2k1, imply the inductive assumption.

(ii) For simplicity let us give the proof for 0 < p < 1. We use the following Cauchy 
formula

Hpψ = 1
2iπ

∮
Γ

zp−1(H − z)−1Hψdz

for a suitable complex contour Γ. Using that [L, (H− z)−1] = (H− z)−1[L, H](H − z)−1

we get

[L,Hp] = 1
2iπ

∮
Γ

zp−1(H − z)−1[L,H]H(H − z)−1Hdz + 1
2iπ

∮
Γ

zp−1(H − z)−1[L,H]dz

= I + II (2.2)

We have

IIH−p+θ′
= 1

2iπ

∮
Γ

zp−1(H − z)−1H1−p−θ+θ′
H−s[L,H]H−1+θHsdz,

where s = θ′ − θ + 1 − p. It results that IIH−p+θ′ is bounded on H if θ′ < θ.
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Using the same trick we get that IH−p+θ′ is bounded on H if θ′ < θ.
The same proof can be done for k < p < k + 1. �

Remark 2.2. It is not clear that the above estimate can be proved under assumption 
(H3) with θ′ = θ if p is not an integer.

Let m as in Theorem 1.2 and suppose further that m > 0 (the case m = 0 corresponds 
to bounded L(t)). The main idea of the proof is to regularize L(t) is such a way that it 
becomes a bounded operator, for which it is possible to construct a unitary flow. To do 
so, for any N ≥ 1 introduce the smoothing operator

RN :=
(

1 + Hm

N

)−1

.

The following lemma describes the main properties of the smoothing operator RN .

Lemma 2.3. There exists a positive Cm such that ∀k, N > 0 one has:

(i) RN : Hk → Hk+2m and ‖RN‖L(Hk,Hk+2m) ≤ N .
(ii) ‖RN‖L(Hk,Hk) ≤ Cm.
(iii) ‖RN − I‖L(Hk+2m,Hk) ≤ Cm

N .
(iv) ‖RN − I‖L(Hk+2mη,Hk) ≤ Cm,η

Nη , ∀η ∈ ]0, 1].

Proof. The proof is an easy computation, and it is skipped. Notice that (iv) follows from 
(ii) and (iii) using interpolation. �

Now we regularize the operator L(t) by defining

LN (t) := RN L(t)RN .

Lemma 2.4. For every N ≥ 1, LN (t) is symmetric on H0 and bounded on Hk for 0 ≤ k ≤
k0−2m. Furthermore for every η ∈ ]0, 1] there exists Cη > 0 such that for 0 ≤ k ≤ k0−2m
we have:

‖LN (t) − L(t)‖L(Hk+2m(1+η),Hk) ≤
Cη

Nη
, N ≥ 1, t ∈ R . (2.3)

Proof. We prove only the estimate. By Lemma 2.3 one has

‖LN (t) − L(t)‖L(Hk+2m(1+η),Hk) ≤ ‖RNL(t)(RN − I)‖L(Hk+2m(1+η),Hk)

+ ‖(RN − I)L(t)‖L(Hk+2m(1+η),Hk)

≤ (‖L(t)‖L(Hk+2m,Hk) + ‖L(t)‖L(Hk+2m(1+η),Hk+2mη))
Cm,η

Nη

≤ Cη

Nη
,

where the last inequality follows from (H0) using that k + 2m ≤ k0. �
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We use LN (t) as a propagator for a regularized differential equation. More precisely 
consider the regularized Schrödinger equation{

i∂tψ = LN (t)ψ
ψ|t=s = ψs , s ∈ R

(2.4)

Since the operator LN (t) is bounded on Hk to itself for every k, 0 ≤ k ≤ k1, it generates 
a flow UN (t, s) ∈ C(R × R, L(Hk)) for 0 ≤ k ≤ k1, which is unitary in H0.

Lemma 2.5. For any 0 < k ≤ 2k1, there exists a positive constant Ck, independent of N , 
such that

‖UN (t, s)‖L(Hk) ≤ eCk|t−s| , ∀N > 0 .

Proof. First we control ‖UN (t, s)‖L(H2k) for 0 ≤ k ≤ k1. We must show that 
Hk UN (t, s) H−k is bounded uniformly in N as an operator from H0 to itself. Remark 
that, due to the unitarity of UN (t, s) in H0, one has

‖Hk UN (t, s)H−k‖L(H0) = ‖UN (t, s)∗ Hk UN (t, s)H−k‖L(H0) .

Now one has

UN (t, s)∗ Hk UN (t, s)H−k = I +
t∫

s

UN (r, s)∗ [LN (r), Hk]UN (r, s)H−kdr

= I +
t∫

s

UN (r, s)∗ RN [L(r), Hk]H−k RN Hk UN (r, s)H−kdr

where we used that [RN , Hk] = 0 and

[LN (t), Hk] = RN [L(t), Hk]RN .

By Lemma 2.1, for 0 ≤ k ≤ k1, one has the bound ‖[L(t), Hk] H−k‖L(H0) ≤ Ck for some 
positive constant Ck, thus it follows (using also Lemma 2.3 (ii)) that uniformly in N

‖RN [L(t), Hk]H−k RN‖L(H0) ≤ Ck , ∀N > 0 , 0 ≤ k ≤ k1 .

Such estimate combined with the unitarity of UN (t, s) in L(H0) gives

‖Hk UN (t, s)H−k‖L(H0)

≤ 1 +
t∫

s

‖UN (r, s)∗ RN [L(r), Hk]H−k RN Hk UN (r, s)H−k‖L(H0)dr

≤ 1 + Ck

t∫
s

‖Hk UN (r, s)H−k‖L(H0)dr
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which by Gronwall inequality allows us to conclude that

‖UN (t, s)‖L(H2k) ≤ eCk|t−s| , ∀0 ≤ k ≤ k1 .

Interpolating with the trivial bound ‖UN (t, s)‖L(H0) = 1 gives the result for gen-
eral k. �
Proof of Theorem 1.2. Fix arbitrary t, s ∈ R. Choose η > 0 small enough. The first 
step is to show that for every ψ ∈ Hk+2m(1+η), the sequence {UN (t, s)ψ}N is a Cauchy 
sequence in the space Hk. For k ≤ k2 ≡ min{k0, 2k1} − 4m one has

‖UN (t, s)ψ − UN ′(t, s)ψ‖k

= ‖
t∫

s

∂r(UN ′(t, r)UN (r, s)ψ) dr‖k

= ‖
t∫

s

UN ′(t, r) (LN (r) − LN ′(r))UN (r, s)ψ dr‖k

≤ |t− s| sup
r∈[s,t]

‖UN ′(t, r)‖L(Hk)‖LN (r) − LN ′(r)‖L(Hk+2m(1+η),Hk)

× ‖UN (r, s)‖L(Hk+2m(1+η))‖ψ‖k+2m(1+η)

≤ C

(
1
Nη

+ 1
(N ′)η

)
|t− s| e(Ck+Ck+2m(1+η))|t−s| ‖ψ‖k+2m(1+η),

where in the last inequality we used a easy variant of estimate (2.3) in Lemma 2.4. For 
any t, s in a bounded interval, and ψ ∈ Hk+2m(1+η), the sequence {UN (t, s)ψ}N ⊂ Hk

is a Cauchy sequence. Since Hk+2m(1+η) is dense in Hk and ‖UN (t, s)‖L(Hk) ≤ eCk|t−s|

uniformly in N , by an easy density argument one shows that for any ψ ∈ Hk the sequence 
{UN (t, s)ψ}N is also Cauchy in Hk, k ≤ k2. Thus for every ψ ∈ Hk the limit

U(t, s)ψ := lim
N→∞

UN (t, s)ψ

exists in Hk, k < k2. Moreover we have the following error estimate, for N > 0 large 
enough,

‖U(t, s)ψ − UN (t, s)ψ‖k ≤ C

Nη
|t− s| eC|t−s| ‖ψ‖k+2m(1+η) , 0 ≤ k ≤ k2 . (2.5)

By the principle of uniform boundedness (Banach–Steinhaus Theorem), U(t, s) ∈ L(Hk). 
Since UN (t, s) is an isometry in H0,

‖U(t, s)ψ‖0 = lim
N→∞

‖UN (t, s)ψ‖0 = ‖ψ‖0

which shows that U(t, s) is an isometry on H0.
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Let us prove now that ψ(t) = U(t, s)ψs satisfies the integral equation (2.1). Denote 
ψN (t) = UN (t, s)ψs. Then we have

ψN (t) = ψs + i−1
t∫

s

LN (r)ψN (r)dr . (2.6)

Using Lemma 2.4 and estimate (2.5) there exists C > 0, depending on a, b, k but not 
on N , such that for a ≤ s ≤ r ≤ t ≤ b, k ≤ k2 we have

‖LN (r)ψN (r) − L(r)ψ(r)‖k ≤ C

(
‖ψ(r) − ψN (r)‖k+2m + 1

Nη
‖ψ‖k+2m(1+η)

)
.

So we can pass to the limit in (2.6) and we get

ψ(t) = ψs + i−1
t∫

s

L(r)ψ(r)dr . (2.7)

In particular if ψs ∈ Hk+2m(1+η) then t �→ ψ(t) is strongly derivable from R into Hk and 
satisfies the Schrödinger equation (1.1). Furthermore

U(t, s)ψ = lim
N→∞

UN (t, s)ψ = lim
N→∞

UN (t, r)UN (r, s)ψ = U(t, r)U(r, s)ψ

where the limits are in the Hk topology. This shows the group property.
Finally we have shown that (t, s) �→ U(t, s) ∈ L(Hk+2m, Hk) is strongly continuously 

differentiable with strong derivatives

∂tU(t, s) = −iL(t)U(t, s) .

With the same proof we get also

∂sU(t, s) = iU(t, s)L(s) . �
We now prove the second theorem, concerning the growth of the norms.

Proof of Theorem 1.5. (i) It is enough to prove (1.7) for ψs ∈ H∞. We have proved in 
Theorem 1.2 that U(t, s) is an isometry in H0 so we have

‖U(t, s)ψs‖2k = ‖U∗(t, s)Hk U(t, s)ψs‖0.

But we have

U∗(t, s)Hk U(t, s)ψs = Hkψs + i−1
t∫
U∗(r, s) [L(r), Hk]U(r, s)ψs dr
s
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Hence using assumption (H3) and Lemma 2.1, we get the first estimate

‖U(t, s)ψs‖2k ≤ ‖ψs‖2k + Ck

t∫
s

‖U(r, s)ψs‖2(k−θ)dr, θ = 1 − τ. (2.8)

After m iterations of (2.8), with another constant Ck,m, we get

‖U(t, s)ψs‖2k ≤ Ck,m

(
‖ψs‖2k + |t− s|(‖ψs‖2(k−θ) + · · · + |t− s|m−1‖ψs‖2(k−(m−1)θ)

)
+ Ck,m

t∫
s

t1∫
s

· · ·
tm−1∫
s

‖U(tm, s)ψs‖2(k−mθ)dtmdtm−1 · · · dt1. (2.9)

Now choose m such that mθ ≥ k in such a way that ‖U(tm, s)ψs‖2(k−mθ) ≤
‖U(tm, s)ψs‖0. Then use the unitarity of U(t, s) in H0 to obtain the bound (1.7).

(ii) If θ = p
q we get the inequality for r = 2k with k = p�, m = �q from Theorem 1.5. 

We conclude by an usual interpolation argument. �
With very similar arguments one can prove the following result about convergence of 

flows.

Theorem 2.6. Let L(t) be an operator fulfilling (H0)–(H2) with k0 = k1 = ∞. Let 
{Ln(t)}n≥1 be a sequence of operators fulfilling (H0), (H1) and (H2) with k0 = k1 = ∞
uniformly in n, namely ∀k ≥ 0, there exists Ck > 0 s.t.

sup
t∈R

‖[Ln(t), H]H−1‖L(Hk) ≤ Ck , ∀n . (2.10)

Assume that there exists m ≥ 0 s.t. ∀k ≥ 0

sup
t∈R

‖Ln(t) − L(t)‖L(Hk+m,Hk) → 0, n → ∞ . (2.11)

Denote by Un(t, s) the propagator of Ln(t) and by U(t, s) the propagator of L(t). Then 
for every ψ ∈ Hk+m, for every t, s ∈ R fixed, one has

‖Un(t, s)ψ − U(t, s)ψ‖k → 0, n → ∞ . (2.12)

Proof. By Theorem 1.2 the flows Un(t, s) and U(t, s) are well defined and fulfill (i)–(iv) 
of Theorem 1.2. We claim that for every k ≥ 0, ∃C̃k > 0 s.t.

‖Un(t, s)‖L(Hk) ≤ eC̃k|t−s| , ∀n ≥ 0 . (2.13)

Such estimate follows by arguing similarly to the proof of Lemma 2.5 and using esti-
mate (2.10) to estimate [Ln(t), Hk]H−k. We skip the details. Now we have
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‖Un(t, s)ψ − U(t, s)ψ‖k

= ‖
t∫

s

U(t, r) (Ln(r) − L(r))UN (r, s)ψ dr‖k

≤ |t− s| sup
r∈[s,t]

‖U(t, r)‖L(Hk) ‖Ln(r) − L(r)‖L(Hk+m,Hk)‖Un(r, s)‖L(Hk+m)‖ψ‖k+m

≤ sup
r∈[s,t]

‖Ln(r) − L(r)‖L(Hk+m,Hk) |t− s| e(Ck+C̃k+m)|t−s| ‖ψ‖k+m,

which converges to 0 by (2.11). �
3. Growth of norms for perturbations smooth in time

In this section we prove Theorem 1.9, and at the end of the Section we show how 
to prove Theorem 1.8. First we show that under assumptions (Hgap) and (Vs)n, the 
operator H + V (t) satisfies a spectral gap property. Then we describe the algorithm 
which will allow us to construct an adiabatic approximation Uad(t, s) of the flow of the 
operator H + V (t). Here we follow the strategy of [29], adding analytic estimates to 
the construction. Finally we show how to use the adiabatic approximation Uad(t, s) to 
control the growth of the Sobolev norm.

3.1. Spectral properties of H + V (t)

It is more convenient to have dyadic gaps between the clusters, so we define a new 
sequence of clusters as follows. Fix a large integer J ≥ 1 (to be chosen later on). Define 
the new clusters

σ̃1 :=
⋃

1≤l≤2J
σl , σ̃j =

⋃
2J+j−2+1≤l≤2J+j−1

σl for j ≥ 2 . (3.1)

We define as well

Δ̃j := dist(σ̃j+1, σ̃j) , δ̃j := sup
λ1,λ2∈σ̃j

|λ1 − λ2| , (3.2)

λ+
j = max

λ∈σ̃j

λ , λ−
j = min

λ∈σ̃j

λ . (3.3)

So condition (Hgap) is written now as

˜(Hgap) The spectrum of H fulfills σ(H) ⊆
⋃

1≤j<+∞ σ̃j and there exist positive con-
stants α̃, β̃ (independent of J) s.t. ∀j ≥ 1

α̃−1 2(J+j−1)μ ≤ Δ̃j ≤ α̃ 2(J+j−1)μ, δ̃j ≤ β̃ 2(J+j−1)(μ+1) . (3.4)
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Remark 3.1. Let H(t) be an operator fulfilling ˜(Hgap) uniformly in time t ∈ R. Then 
there exist positive constants C̃1, C̃2 (independent of J, j) such that

λ+
1 ≤ C̃2 2J(μ+1) ,

C̃1 2(J+j−1)(μ+1) ≤ λ−
j ≤ λ+

j ≤ C̃2 2(J+j−1)(μ+1) , ∀j ≥ 2 .
(3.5)

In particular we have the very useful property

max σ̃j ≤
C̃2

C̃1
min σ̃j , ∀j ∈ N . (3.6)

We will denote by Γj , j ≥ 1, an anti clock-wise oriented rectangle in the complex 
plane which isolates the cluster σ̃j , that is Γj contains only σ̃j at its interior. We fix such 
contours so that

inf
λ∈Γ1

dist(λ, σ(H)) ≥ Δ̃1

2 , inf
λ∈Γj

dist(λ, σ(H)) ≥ Δ̃j−1

2 , j ≥ 2 . (3.7)

Finally define

δ := 1 − μ + 1
μ

ν . (3.8)

It is important to remark that by our assumptions 0 < δ ≤ 1.
We prove now a perturbative result. It is in this lemma which enters into play the 

restriction ν < μ
μ+1 . This is indeed the condition which guarantees that the operator 

H + V (t) has a spectrum with increasing spectral gaps.

Lemma 3.2. Let H satisfy (Hgap) and V (t) satisfy (Vs)n for some n ≥ 0. There exists a 
constant CH (depending only on H), such that if J is large enough to fulfill

2Jμδ ≥ 24 CH sup
t∈R

‖V (t)H−ν‖L(H0) (3.9)

then H + V (t) fulfills ˜(Hgap) uniformly in t ∈ R, with new clusters

σ̃′
j = [λ−

j − Δ̃j−1

4 ] ∪ σ̃j ∪ [λ+
j + Δ̃j−1

4 ] , j ∈ N . (3.10)

Here we defined Δ̃0 := Δ̃1.

Proof. We show that any z ∈
⋃

j [λ
+
j + Δ̃j

4 , λ−
j+1 − Δ̃j

4 ] belongs to the resolvent set of 
H + V (t). For z ∈ C\R we have

H+V (t)−z =
(
V (t)(H − z)−1 + I

)
(H−z) =

(
[V (t)H−ν ] [Hν (H − z)−1] + I

)
(H−z) .
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By spectral decomposition

Hν(H − z)−1 =
∑
j≥1

∫
Γj

ζν

ζ − z
dEH(ζ) (3.11)

where {EH(ζ)}ζ∈R is the spectral decomposition of H. One has

‖Hν(H − z)−1‖L(H0) = sup
ζ∈σ(H)

∣∣ ζν

ζ − z

∣∣ ≤ (
1 + z

dist(z, σ(H))

)ν 1
dist(z, σ(H))1−ν

.

Fix z ∈
⋃

j [λ
+
j + Δ̃j

4 , λ−
j+1 −

Δ̃j

4 ]. Then (using also (3.4), (3.5))

‖Hν(H − z)−1‖L(H0) ≤
4 (λ−

j+1)ν

Δ̃j

≤ 4 α̃ C̃ν
2 2μ 2(J+j)[(μ+1)ν−μ] ≤ CH 2−(J+j)μδ ,

where δ > 0 is defined in (3.8). Thus provided (3.9) holds one has

sup
t∈R

‖V (t)H−ν‖L(H0) ‖Hν(H − z)−1‖L(H0) ≤ 1/2 (3.12)

and we can invert [V (t) H−ν ] [Hν (H − z)−1] + I by Neumann series and define the 
resolvent

RV (t, λ) := (H − z)−1 (
[V (t)H−ν ] [Hν (H − z)−1] + I

)−1
.

This shows that any z ∈
⋃

j [λ
+
j + Δ̃j

4 , λ−
j+1−

Δ̃j

4 ] belongs to the resolvent set of H+V (t), 
∀t ∈ R. Thus

σ(H + V (t)) ⊂
⋃
j≥1

σ̃′
j .

The lemma follows easily. Notice that we get in particular that for every t ∈ R, H +V (t)
is self-adjoint on the domain D(H) of H. �
Remark 3.3. One has that Δ̃′

j := dist(σ̃′
j+1, ̃σ

′
j), δ̃′j := supλ1,λ2∈σ̃′

j
|λ1 − λ2| fulfill (3.4)

with new constants α̃, β̃.

In the following we will always use the clusters σ̃′
j ’s. By abusing the notation we will 

suppress the up-script ′ and write only σ̃j ≡ σ̃′
j .

Lemma 3.4. There exists C̃H > 0, independent on j, J, such that for all j ≥ 1

sup
z∈Γj

‖Hν(H − z)−1‖L(H0) ≤
C̃H

Δ̃δ
j−1

, (3.13)

where δ is defined in (3.8).
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Proof. We show that there exists a constant C̃ > 0, independent on j, J, s.t. for every 
z ∈ Γj ,

‖Hν(H − z)−1‖L(H0) ≤ C̃
2(J+j−1)ν

dist(z, σ(H))1−ν
. (3.14)

Then (3.13) follows easily using (3.7) and (3.4).
To prove (3.14), recall that ‖Hν(H − z)−1‖L(H0) = supζ∈σ(H)

|ζ|ν
|ζ−z| and write

|ζ|ν
|ζ − z| =

(
|ζ|

|ζ − z|

)ν 1
|ζ − z|1−ν

.

Let z ∈ Γj . If ζ ∈ σ̃j we have by (3.5) and (3.4)

|ζ|
|ζ − z| ≤ C̃2

2(J+j−1)(μ+1)

Δ̃j−1
≤ C3 2(J+j−1) ,

where C3 > 0 is independent of j, J.
Now if ζ ∈ σ̃j′ , j′ �= j then ζ ≈ 2(J+j′−1)(μ+1) and there exists C4 > 0 s.t. |ζ − z| ≥

C̃42(J+j′−1)(μ+1) (notice that length(σ̃k) ≥ c2(J+k−1)(μ+1)) so

|ζ|
|ζ − z| ≤ C̃4.

Hence (3.14) follows with C̃ = max(C3, C4). �
3.2. Adiabatic approximation

Let us start now the adiabatic approximation as explained in [27,29,22,21].
We present first the formal construction. In a second step we perform analytic esti-

mates to prove that all the objects are well defined.
The idea is to construct a sequence of operators Bm(t) such that for every m ≥ 0 the 

flow Uad,m(t, s) of H +V (t) −Bm(t) is adiabatic, in particular it preserves the Hk-norm, 
and Bm(t) is a more and more regularizing operator in a suitable sense. The Bm(t)
are constructed step by step such that at each step we have an adiabatic transport for 
spectral projectors. Let us recall here the adiabatic approximation used at each step 
following [27,29].

Consider HW (t) = L(t) +W (t) a perturbation of L(t) := H+V (t) such that σ(HW ) ⊆⋃
j≥1 σ

W
j , a splitting of the spectrum of HW (t) into clusters σW

j , uniform in time t ∈ R. 
ΠW

j (t) denotes the spectral projector of HW (t) onto σW
j . We are looking for an adiabatic 

transport for all the {ΠW
j (t)}j≥1 which means that we want to find an Hamiltonian 

Had(t) = L(t) −B(t) (a “small” perturbation of L(t)) such that

Πm,j(s) = U∗
ad,m(t, s) Πm,j(t)Uad,m(t, s), ∀t, s ∈ R, j ≥ 1. (3.15)
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Taking the time derivative we see that (3.15) is satisfied if and only if

i[B,ΠW
j ] = ∂tΠW

j + i[L,ΠW
j ] := Fj . (3.16)

It is not difficult to solve the homological equation (3.16) using the decomposition 
B =

∑
k,k′≥1

ΠW
k BΠW

k′ . First note that, by the properties of orthogonal projectors, one 

has ΠW
k Fj ΠW

k′ = 0 ∀k �= j, k′ �= j and ΠW
j Fj ΠW

j = 0, hence there are no diagonal 
terms in the homological equation. We can thus assume that ΠW

k BΠW
k′ = 0 if k, k′ �= j

and we have ΠW
j BΠW

k′ = i ΠW
j FjΠW

k′ .
So, by a computation using that {ΠW

k }k≥1 is a complete family of orthogonal projec-
tors, we get

B = i

⎛⎝∑
k≥1

ΠW
k

(
∂tΠW

k + i[L,ΠW
k ]

)⎞⎠ . (3.17)

The Nenciu algorithm [27] is obtained by iterating this formal computation:

W −→ W + B, ΠW
k −→ ΠW+B

k

Bnew = i

⎛⎝∑
k≥1

ΠW+B
k

(
∂tΠW+B

k + i[L,ΠW+B
k ]

)⎞⎠ . (3.18)

We describe now how to construct the Bm(t)’s. A sequence Hm(t) of perturbations of 
L(t) is constructed by induction as follows:

H0(t) := L(t)

Hm+1(t) := Hm(t) + Bm(t) , ∀m ≥ 0 ,

where the Bm(t) are obtained from the spectral projectors of Hm(t). More precisely, we 
will prove that at each step σ(Hm(t)) ⊆

⋃
j≥1 σ̃j , where the σ̃j ’s are the ones of (3.10). 

Denote by Πm,j(t) the spectral projector of Hm(t) on the cluster σ̃j . Then following 
(3.17) we define

Bm(t) := i
∑

1≤j<+∞
Πm,j(t) ∂(t,L)Πm,j(t), (3.19)

where

∂(t,L)A(t) := ∂tA(t) + i[L(t), A(t)]

is the Heisenberg derivative of A.



A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781 741
So that according (3.15) and (3.16) the flow Uad,m(t, s) of H + V (t) − Bm(t) fulfills 
the adiabatic property

Uad,m(t, s)Πm,j(s) = Πm,j(t)Uad,m(t, s) , ∀j ≥ 1 , ∀t, s ∈ R

(see Lemma 3.9 below) and thus it is an adiabatic approximation of the flow U(t, s) of 
H + V (t). The reason to iterate the procedure is that at each step the Bm(t)’s are more 
regularizing operators (see Corollary 3.10).

Let us give some technical details to justify this construction under our assumptions. 
Let us denote

Bm,j(t) := Πm,j(t) ∂(t,L)Πm,j(t) .

Notice that B0,j(t) = Π0,j(t) ∂tΠ0,j(t), since [L(t), Π0,j(t)] = 0.
In the following we shall denote ‖ · ‖ ≡ ‖ · ‖L(H0) the operator norm in L(H0).

Lemma 3.5. Under the same assumptions of Theorem 1.9, fix an arbitrary M ∈ N. If J is 
sufficiently large, for every integers � ≥ 0, 0 ≤ m ≤ M, 0 ≤ p ≤ n, there exists Cm,n,� > 0, 
independent of J, such that

sup
t∈R

‖Hp∂�
tBm,j(t)H−p‖ ≤ Cm,n,�

Δ̃δ(1+m)
j−1

, ∀j ∈ N . (3.20)

Therefore Bm(t) in (3.19) is well defined, Bm(·) ∈ C∞
b (R, L(Hk)) for any 0 ≤ k ≤ 2n

and

sup
t∈R

‖Hp ∂�
tBm(t) H−p‖ ≤ C̃m,n,�

2Jμδ(1+m) , ∀� ≥ 0, 0 ≤ p ≤ n . (3.21)

Finally Bm(t) is a self-adjoint operator in H0.

Lemma 3.5 is quite technical and we postpone its proof at the end of the section.

Remark 3.6. In particular Bm(t) satisfies the condition (Vs)n (with ν = 0).

Define for m ≥ 1 the operators

Hm(t) := H + V (t) + B0(t) + · · · + Bm−1(t) ≡ L(t) + Wm(t)

Had,m(t) := H + V (t) −Bm(t) ≡ L(t) −Bm(t)

The following corollary follows immediately from Lemma 3.5:
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Corollary 3.7. Fix M ≥ 1. Then provided J is sufficiently large, the following holds true:

(i) For every 1 ≤ m ≤ M and t ∈ R, the operators Hm(t) and Had,m(t) are self-adjoint 
operators generating a unitary flow in H0.

(ii) For every 1 ≤ m ≤ M and t ∈ R, Hm(t) and Had,m(t) fulfill ˜(Hgap) uniformly in 
time t ∈ R with σ̃j’s as in Lemma 3.2.

Proof. (i) By Lemma 3.5 ∀0 ≤ m ≤ M the operator Bm(t) is a bounded self-adjoint 
operator. Hence Hm(t) = L(t) + Wm(t) and Had,m(t) = L(t) − Bm(t) are bounded 
perturbations of L(t), and thus they are self-adjoint operators generating a unitary flow 
in H0.

(ii) Write Hm(t) as Hm(t) ≡ H +W (t) with W (t) := V (t) +B0(t) + · · ·+Bm(t). By 
(Vs)n and (3.21) it fulfills

sup
t∈R

‖Hp ∂�
tW (t)H−p−ν‖ ≤ Rn,� + (m + 1) C̃m,n,�

2Jμδ ≤ 2Rn,� ,

provided J is sufficiently large (depending on M). Then Lemma 3.2 gives the claim.
The proof for Had,m(t) is analogous. �
We will denote by Uad,m(t, s) the propagator of Had,m(t). The two key points, proved 

in Corollary 3.10 below, are the following:

(i) Uad,m(t, s) is an adiabatic approximation of U(t, s) which preserves the Hk-norms.
(ii) The operators Bm’s are smoothing operators.

In order to prove those two properties it is convenient to measure the Hk-norm with 
the help of the projectors Πm,j ’s. More precisely perform the construction at order m. 
Introduce the block diagonal operator

Λm(t) :=
∑

1≤j<∞
2(j−1)(μ+1) Πm,j(t) .

As the Πm,j ’s are orthogonal projectors one has that

‖Λm(t)ψ‖2
0 =

∑
j≥1

22(j−1)(μ+1) ‖Πm,j(t)ψ‖2
0 , ∀ψ ∈ H0 .

The next lemma shows that the norm ‖Hp · ‖ is equivalent to the norm ‖Λm(t)p · ‖:

Lemma 3.8. Fix n ∈ N, n ≥ 0. Assume that (Vs)n is satisfied. Then for any 1 ≤ m ≤ M, 
there exist positive c1 and c2, depending on n, V, σ(H), ‖HnBi(t) H−n‖, such that ∀0 ≤
p ≤ n, ∀ψ ∈ H2p, ∀t ∈ R
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c1‖ψ‖2p ≤‖(Had,m(t) + c0)pψ‖0 ≤ c2‖ψ‖2p (3.22)

c1 2Jp(μ+1) ‖Λp
m(t)ψ‖0 ≤‖(Had,m(t) + c0)pψ‖0 ≤ c2 2Jp(μ+1) ‖Λp

m(t)ψ‖0 . (3.23)

The proof is postponed in Appendix D.
We prove now some properties of the adiabatic evolution.

Lemma 3.9. For every integer 0 ≤ m ≤ M and j ≥ 1 we have

Πm,j(t) = Uad,m(t, s) Πm,j(s)Uad,m(t, s)∗, ∀t, s ∈ R. (3.24)

Proof. For any propagator U(t, s) with generator t �→ L(t) of class C1 and any C1 and 
bounded operator A(t) we have

∂t (U(t, s)∗ A(t)U(t, s)) = U(t, s)∗ ∂(t,L)A(t)U(t, s).

Since the generator of Uad,m(t, s) is L(t) −Bm(t), it is enough to prove that

∂(t,L−Bm)Πm,j(t) = 0, ∀t ∈ R , ∀j ≥ 1 , m ≥ 0 . (3.25)

This follows easily using the definition of Bm(t) and properties of orthogonal projec-
tors. �
Corollary 3.10. (i) For every 0 ≤ m ≤ M, Uad,m(t, s) preserves the Hk-norms. More 
precisely for every 0 ≤ p ≤ n, there exists Cp > 0 s.t.

‖Uad,m(t, s)‖L(H2p) ≤ Cp ∀t, s ∈ R .

(ii) For every 0 ≤ m ≤ M, Bm(t) : H0 �→ H2p provided p < μ
μ+1δ(1 + m).

Proof. (i) First note that by Lemma 3.9 one has that Λm(t)Uad,m(t, s)=Uad,m(t, s)Λm(s). 
Then by Lemma 3.8 and the unitarity of Uad,m(t, s) in H0 one has

‖Uad,m(t, s)ψs‖2p ≤ C‖Λp
m(t)Uad,m(t, s)ψs‖0 ≤ C‖Uad,m(t, s)Λp

m(s)ψs‖0

≤ C‖Λp
m(s)ψs‖0 ≤ C‖ψs‖2p .

(ii) Recall that Πm,j(t)Bm(t) = Bm,j(t). Now we have

‖Bm(t)ψs‖2
2p ≤ C‖Λp

m(t)Bm(t)ψs‖2
0 ≤ C

∑
j≥1

2(j−1)(μ+1)2p‖Bm,j(t)ψs‖2
0

≤ C‖ψs‖0
∑
j≥1

22(j−1)[(μ+1)p−μδ(1+m)] ≤ C‖ψs‖0

provided p < μ δ(1 + m). �
μ+1
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We are finally ready to prove Theorem 1.9.

Proof of Theorem 1.9. Fix ε > 0 and choose M such that

1
ε

(μ + 1)n
μδ

≤ M + 1 . (3.26)

Choose J sufficiently large to perform the construction at step M. As the evolution U(t, s)
is unitary in H0 and ΠM,j(t) is a projector we have

‖ΠM,j(t)U(t, s)ψs‖0 ≤ ‖ψs‖0 , ∀j ≥ 1, ∀t, s ∈ R . (3.27)

We compare the evolution U(t, s) with the adiabatic evolution Uad,M(t, s) defined above. 
In order to do this, write

iψ̇ = (H + V (t))ψ = Had,M(t)ψ + BM(t)ψ

and use the Duhamel formula

U(t, s) = Uad,M(t, s) − i

t∫
s

Uad,M(t, r)BM(r)U(r, s)dr. (3.28)

By equation (3.24), the property ΠM,j(t) BM(t) = BM,j(t) and Lemma 3.5 one has

‖ΠM,j(t)U(t, s)ψs‖0 ≤ ‖Uad,M(t, s) ΠM,j(s)ψs‖0 + ‖
t∫

s

Uad,M(t, r)BM,j(r)U(r, s)ψsdr‖0

≤ ‖ΠM,j(s)ψs‖0 + 〈t− s〉 2−(j−1)(M+1)μδ‖ψs‖0 , (3.29)

where in the last line we used that, provided J is sufficiently large,

sup
t∈R

‖BM,j(t)‖ ≤ CM,n,0

Δ̃(M+1)δ
j−1

≤ 1
2(j−1)(M+1)μδ , ∀j ≥ 1, t ∈ R.

We compute now the norm of U(t, s)ψs in H2n. Fix N ≡ N(t) to be chosen later. By 
Lemma 3.8

‖U(t, s)ψs‖2
2n ≤ c2

c1
2J(μ+1)2n ‖Λn

M (t)U(t, s)ψs‖2
0 ≤ c2

c1
2J(μ+1)2n(I + II) ,

where

I :=
∑

1≤j≤N

2(j−1)(μ+1)2n‖ΠM,j(t)U(t, s)ψs‖2
0 ,

II :=
∑

j≥N+1
2(j−1)(μ+1)2n‖ΠM,j(t)U(t, s)ψs‖2

0 .
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To estimate I, use (3.27) to obtain

I ≤ ‖ψs‖2
0

∑
0≤j≤N−1

2j(μ+1)2n ≤ ‖ψs‖2
0

2N(μ+1)2n − 1
2(μ+1)2n − 1

≤ C‖ψs‖2
0 2N(μ+1)2n , (3.30)

where C depends only on n, μ. To estimate the second summand, we use (3.29) and 
Lemma 3.8 to obtain

II ≤ 4
∑
j≥N

2j(μ+1)2n‖ΠM,j(s)ψs‖2
0 + 4 〈t− s〉2 ‖ψs‖2

0
∑
j≥N

22j[(μ+1)n−(M+1)μδ]

≤ 4‖ψs‖2
2n + 4 〈t− s〉2 ‖ψs‖2

0
2[(μ+1)n−(M+1)μδ]2N

1 − 22[(μ+1)n−(M+1)μδ] (3.31)

where we used that (μ + 1)n/μδ ≤ M + 1. Thus, (3.30) and (3.31) give

‖U(t, s)ψs‖2
2n ≤ C̃ 2J(μ+1)2n ‖ψs‖2

2n

[
2N(μ+1)2n + 〈t− s〉2 2[(μ+1)n−(M+1)μδ]2N

]
,

(3.32)

where C̃ does not depend on N. Now choose N(t) in such a way to optimize (3.32), i.e. 
pick

N(t) = 1
(M + 1)μδ log 〈t− s〉

to obtain

‖U(t, s)ψs‖2
2n ≤ C 2

2(μ+1)n
(M+1)μδ log〈t−s〉 ‖ψs‖2

2n . (3.33)

Using (3.26) one has

‖U(t, s)ψs‖2
2n ≤ C 〈t− s〉

2(μ+1)n
(M+1)μδ ‖ψs‖2

2n ≤ C 〈t− s〉2ε ‖ψs‖2
2n ,

which is the desired estimate. �
We also get the following application of the adiabatic approximation concerning the 

spectra of Floquet operators (see [20,29,22]).
Let assume that conditions (Hgap), (Vs)n are satisfied and suppose that V (t) is pe-

riodic with period T > 0. Denote F := U(T, 0) the Floquet operator (or monodromy 
operator). Let us recall that U(nT, 0) = FN so the spectrum of F gives informations on 
the large time behavior of the propagator.

Theorem 3.11. Let us assume that conditions (Hgap), (Vs)n are satisfied, V is T -periodic 
and that (H+i)−N is in the trace class for N large enough. Then the Floquet operator F
has no absolutely continuous spectrum.
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Proof. It results from Lemma 3.5 that Bm(t) is in the trace class for m large enough. So 
from (3.28) we infer that U(T, 0) −Uad,m(T, 0) is in the trace class. It is easy to see that 
the Hamiltonians Hm(t) are T -periodic (from the induction construction). So it results 
from (3.24) that Uad,m(T, 0) commutes with Πm,j(0), the spectral projectors of Hm(T ). 
But (Hm(T ) + i)−1 is a compact operator hence the spectrum of Uad,m(T, 0) is purely 
discrete. Applying the Birman–Krein–Kato [4] theorem on the stability of the absolutely 
spectrum under class trace perturbations we get Theorem 3.11. �
3.3. Proof of Lemma 3.5

The proof is by induction. Through all the proof, we will denote by Cm,n,� some 
positive constants which depend on m, n, � but not on j, J.

We will prove (3.20) together with the estimate ∀j ∈ N

sup
t∈R

‖Hp ∂�+1
t Πm,j(t)H−p‖ , sup

t∈R

‖Hp ∂�
t ∂(t,L)Πm,j(t)H−p‖ ≤ Cm,n,�

Δ̃δ
j−1

,

∀0 ≤ p ≤ n, � ≥ 0 (3.34)

Step m = 0. Recall that H0(t) = H + V (t) ≡ L(t). Provided J is sufficiently large, by 
Lemma B.2 the projectors

Π0,j(t) := − 1
2πi

∮
Γj

R0(t, λ) dλ , ∀j ≥ 1 (3.35)

are well defined and fulfill

sup
t∈R

‖Hp ∂�+1
t Π0,j(t)H−p‖ ≤ C0,n,�

Δ̃δ
j−1

, ∀0 ≤ p ≤ n, � ≥ 0 ,

for some constants C0,n,� independent of j. This proves (3.34) for m = 0. Recall 
that B0,j(t) := Π0,j(t) ∂tΠ0,j(t). Then by Leibnitz rule and (3.34) it follows immedi-
ately (3.20) for m = 0.

Step m � m + 1. Assume that we performed already m steps, with m < M. Then we 
constructed the operators Bi(t) =

∑
j Bi,j(t) ∀ 1 ≤ i ≤ m. In order to construct Bm+1(t), 

we need the spectral projectors of the operator Hm+1(t) ≡ H+V (t) +B0(t) + · · ·+Bm(t)
(see formula (3.19)). By Corollary 3.7 Hm+1(t) fulfills ˜(Hgap) provided J is sufficiently 

large. Therefore we can apply Lemma B.2 and obtain that Hm+1(t) fulfills ˜(Hgap) and 
that the projectors

Πm+1,j(t) = − 1
2πi

∮
Rm+1(t, λ) dλ , Rm+1(t, λ) := (Hm+1(t) − λ)−1
Γj
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are well defined ∀j ≥ 1 and fulfill

sup
t∈R

‖Hp ∂�+1
t Πm+1(t) H−p‖ ≤ Cm+1,n,�

Δ̃δ
j−1

, ∀0 ≤ p ≤ n, � ≥ 0 . (3.36)

This proves the first of (3.34) for m + 1.
We pass to estimate ∂�

t ∂(t,L)Πm+1(t). Using the definition of Hm+1 we get

∂(t,L)Πm+1,j(t) = ∂tΠm+1,j(t) − i
m∑
l=0

[Bl(t), Πm+1,j(t) − Πl,j(t)] − i
m∑
l=0

[Bl(t),Πl,j(t)] .

(3.37)

Consider the last term in the r.h.s. above. Note that ∂ := ∂(t,L) is a derivative in the 
algebra L(H0). So for any projector Π we have Π ∂Π = ∂Π −∂Π Π. Using the definition 
of Bl and the properties of the projectors, one gets the identity

[Bl(t),Πl,j(t)] = −i∂(t,L)Πl,j(t) .

Therefore using the inductive estimates (3.21) and (3.36) we get

sup
t∈R

‖Hp ∂�
t [Bl(t),Πl,j(t)]H−p‖ ≤

C ′
l,n,�

Δ̃δ
j−1

, ∀� ≥ 0, 0 ≤ p ≤ n . (3.38)

Consider now the term in the middle of (3.37). To estimate it, remark that

Πm+1,j(t) − Πl,j(t) = − 1
2πi

∮
Γj

Rm+1(t, λ) (Hm+1(t) −Hl(t))Rl(t, λ) dλ . (3.39)

As Hm+1(t) −Hl(t) =
∑m

k=l Bk(t), by (3.21)

sup
t∈R

‖Hp ∂�
t (Hm+1(t) −Hl(t)) H−p‖ ≤ C̃m,n,�, ∀� ≥ 0, 0 ≤ p ≤ n ,

thus we can apply Lemma B.3 and get that

sup
t∈R

‖Hp ∂�
t (Πm+1,j(t) − Πl,j(t)) H−p‖ ≤ C̃m,n,�

Δ̃j−1
, ∀� ≥ 0, 0 ≤ p ≤ n . (3.40)

Therefore by Leibnitz rule and estimates (3.21), (3.40) we find that

sup
t∈R

‖Hp

(
∂�
t

m∑
l=0

[Bl(t), Πm+1,j(t) − Πl,j(t)]
)

H−p‖ ≤
C ′

m,n,�

Δ̃j−1
, ∀� ≥ 0, 0 ≤ p ≤ n .

(3.41)
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We come back to the estimate of ∂(t,L)Πm+1,j(t). Using (3.36), (3.38) and (3.41) we get

sup
t∈R

‖Hp ∂�
t ∂(t,L)Πm+1,j(t) H−p‖ ≤ Cm+1,n,�

Δ̃δ
j−1

, ∀0 ≤ p ≤ n , � ≥ 0 ,

proving the inductive estimate (3.34).
We define now a series of objects and in the next lemma we give the estimates. Let

Lm,j(t) := Πm+1,j(t) − Πm,j(t) (3.42)

Km,j(t) := Πm,j(t)Lm,j(t) (3.43)

Dm,j(t) := Πm+1,j(t)Lm,j(t) (3.44)

Lemma 3.12. For every integers � ≥ 0, 0 ≤ p ≤ n, 0 ≤ m < M, provided J is sufficiently 
large, one has

sup
t∈R

‖Hp ∂�
tLm,j(t) H−p‖ ≤ cm,n,�

Δ̃j−1
, (3.45)

sup
t∈R

‖Hp ∂�
tKm,j(t) H−p‖ ≤ c̃m,n,�

Δ̃(m+1)δ+1
j−1

, (3.46)

sup
t∈R

‖Hp ∂�
tDm,j(t) H−p‖ ≤ ĉm,n,�

Δ̃(m+1)δ+1
j−1

. (3.47)

Proof. First we prove (3.45). One has

Lm,j(t) = − 1
2πi

∮
Γj

Rm+1(t, λ) Bm(t) Rm(t, λ) dλ . (3.48)

We apply Lemma B.3 with P = V +B0 + · · ·+Bm, Q = V +B0 + · · ·+Bm−1, B = Bm, 
and get

sup
t∈R

‖Hp ∂�
tLm,j(t) H−p‖ ≤ cm,n,�

Δ̃j−1
, ∀� ≥ 0, 0 ≤ p ≤ n .

For later use we study the operator (1 −Lm,j(t))−1. Provided m < M and J is sufficiently 
large, estimate (3.45) with � = 0 guarantees that (1 −Lm,j(t)) is invertible by Neumann 
series in Hp and

sup
t∈R

‖Hp (1 − Lm,j(t))−1 H−p‖ ≤ 2 , ∀0 ≤ p ≤ n .

To study its derivatives we can proceed as in (B.8), and get



A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781 749
sup
t∈R

‖Hp ∂�
t (1 − Lm,j(t))−1 H−p‖ ≤

c̃′m,n,�

Δ̃j−1
, ∀0 ≤ p ≤ n , � ≥ 1 , (3.49)

provided J is sufficiently large.
Estimate (3.46) follows immediately from the identity

Km,j(t) = −Πm,j(t)
1

2πi

∮
Γj

Rm(t, λ) Bm(t) Rm+1(t, λ) dλ

= − 1
2πi

∮
Γj

Rm(t, λ) Bm,j(t) Rm+1(t, λ) dλ (3.50)

and the application of Lemma B.3 with B = Bm,j , using the bound

sup
t∈R

‖Hp ∂�
tBm,j(t) H−p‖ ≤ cm,n,�

Δ̃(m+1)δ
j−1

, ∀� ≥ 0, 0 ≤ p ≤ n ,

which follows from the inductive assumption.
Finally we prove (3.47). Using Π2

m+1,j = Πm+1,j and simple algebraic manipulations 
one proves that [29, (2.41)]

Dm,j(t) = Πm+1,j(t)Km,j(t) (1 − Lm,j(t))−1 . (3.51)

Then Leibnitz rule, (3.36), (3.46), (3.49) give the claimed estimate. �
We can now conclude the proof by calculating the norm of Bm+1,j . One has the 

formula [29, (2.42)]

Bm+1,j(t) = iDm,j(t) ∂(t,L)Πm+1,j(t) + Πm+1,j(t) ∂(t,H−Hm+1)Km,j(t) . (3.52)

Consider first the term Dm,j(t)∂(t,L)Πm+1,j(t). Then (3.47) and the inductive assumption 
give

sup
t∈R

‖Hp ∂�
t (Dm,j(t) ∂(t,L)Πm+1,j(t)) H−p‖ ≤ cm,n,�

Δ̃(m+2)δ+1
j−1

, ∀0 ≤ p ≤ n, � ≥ 0 .

(3.53)

To estimate ∂(t,H−Hm+1)Km,j use that H −Hm+1 = − 
∑m

i=0 Bi, so that

∂(t,H−Hm+1)Km,j = ∂tKm,j − i
∑

0≤i≤m

[Bi,Km,j ] .

Using once again (3.46) and the inductive assumption we get
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sup
t∈R

‖Hp ∂�
t∂(t,H−Hm+1)Km,j(t) H−p‖ ≤ cm,n,�

Δ̃(m+1)δ+1
j−1

, ∀0 ≤ p ≤ n, � ≥ 0 . (3.54)

Then (3.53), (3.54) and 0 < δ ≤ 1 give

sup
t∈R

‖Hp ∂�
tBm+1,j(t) H−p‖ ≤ c̃m,n,�

Δ̃(m+1)δ+1
j−1

≤ Cm+1,n,�

Δ̃(m+2)δ
j−1

, ∀0 ≤ p ≤ n, � ≥ 0

thus proving the inductive step.
The estimate on Bm(t) is trivial. The self-adjointness can be proved using the argu-

ments of [29, Lemma 2].
The proof of Theorem 1.8 follows by exactly the same arguments, but it is easier. In 

fact it is a simple adaptation of the methods of Nenciu [29], so we just sketch the proof.

Proof of Theorem 1.8. In case V (t) fulfills (Vc)n, it is sufficient to note that in the 
adiabatic algorithm described above one can perform at most M = r− 1 steps. Indeed in 
this case one verifies, exactly as in [29], that Bm,j ∈ Cr−m−1

b (R, L(Hk)) and estimates 
(3.20), (3.21) hold for 0 ≤ � ≤ r −m − 1. Since at every step of the adiabatic iteration 
we lose regularity in time, we can perform at most M = r− 1 steps. Thus estimate (3.33)
with M = r − 1 gives

‖U(t, s)ψs‖2
2n ≤ C 〈t− s〉

2(μ+1)n
rμδ ‖ψs‖2

2n ≤ C 〈t− s〉
2n
r

(
μ

μ+1−ν
)−1

‖ψs‖2
2n ,

which implies the desidered estimate (1.13). �
4. Growth of norms for perturbations analytic in time

In this section we prove the upper bound on the growth of the norm in case of 
perturbations which are analytic in time. The proof is essentially the same as in case of 
perturbations smooth in time, but we need extra attention to compute the dependence 
of all the constants from the parameters J and M. Indeed in this case we want to optimize 
J and M by choosing them as a function of t − s, so we need to know exactly how all the 
constants depend on such parameters.

Notice that perturbations analytic in time were considered in [21,28].
First rewrite assumption (Va)n in the following way: there exist a, c, A > 0 such that 

for any integer � ≥ 0, 0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tV (t) H−p−ν‖ ≤ a

c� �!
A (1 + �)2 . (4.1)

Here A is a constant such that

(1 + �)2
∑

n1+···+nk=�

1
(1 + n1)2

· · · 1
(1 + nk)2

≤ Ak−1 , (4.2)

and can be chosen to be A ≥ 2π2/3.
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Note that (4.1) can always be achieved simply by choosing A c0,n ≤ a, 4 c1,n ≤ c.
The next step is to extend Lemma 3.5 in the analytic setting. Define

d := 2μδ

2μδ − 1

and

CH := max(CH , C̃H) ,

where CH and C̃H are the constants of Lemma 3.2 respectively Lemma 3.4.
Finally we fix a time T � 1. We obtain the following

Proposition 4.1. Fix a positive M ∈ N and choose J such that

212 [CH (a + 2d)c] M ≤ 2Jμδ . (4.3)

For every integers m, �, p such that

0 ≤ � + m ≤ M , 0 ≤ p ≤ n

the following holds true:

(i) The operators Πm,j fulfill for every j ≥ 1

sup
t∈[0,T ]

‖Hp ∂�
tΠm,j(t) H−p‖ ≤ �! c�

(1 + �)2

(
1

A 2(j−1)μδ

)min(�,1)

, (4.4)

sup
t∈[0,T ]

‖Hp ∂�
t

m∑
k=0

∂(t,L)Πk,j(t) H−p‖ ≤ �! c�

A(1 + �)2
1

2(j−1)μδ
1
4 , (4.5)

sup
t∈[0,T ]

‖Hp ∂�
t∂(t,L)Πm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
1

2(j−1)μδ . (4.6)

(ii) The operators Bm,j fulfill for every j ≥ 1

sup
t∈[0,T ]

‖Hp ∂�
tBm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
1

2(j−1)(m+1)μδ
1

(1 + m)2 . (4.7)

(iii) The operators Bm(t) fulfill

sup
t∈[0,T ]

‖Hp ∂�
tBm(t) H−p‖ ≤ �! c�

A(1 + �)2
d

(1 + m)2 . (4.8)

(iv) The Hamiltonians Hm(t), Had,m(t) fulfill ˜(Hgap) with σ̃j’s as in (3.10).
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Before proving Proposition 4.1, we show how Theorem 1.10 follows.

Proof of Theorem 1.10. Having fixed T � 1, we consider the evolution U(t, 0) on a time 
interval 0 ≤ t ≤ T . Choose J in such a way that (4.3) is fulfilled, namely

J := 1
μδ

log(M + 1) + 1
μδ

log
(
212 [CH (a + 2d) c]

)
, (4.9)

and choose M as a function of T :

M + 1 = �1
4 log 〈T 〉� , (4.10)

where �·� denotes the integer part.
Now remark that the constants c1, c2 of Lemma 3.8 do not depend on M and J. Indeed 

they depend only on σ(H), n, and the norm of H−n(V (t) +
∑M

i=0 Bi(t))Hn. But by (4.8)
it follows easily that such norm depends only on a, d (see (4.16) below for the precise 
computation). Hence we can repeat the arguments of the proof of Theorem 1.9 and using 
estimate (4.7) to estimate Bm,j , one gets

sup
t∈[0,T ]

‖U(t, 0)ψ0‖2
2n ≤ C 2J(μ+1)2n2

2(μ+1)n
(M+1)μδ log〈T 〉 ‖ψ0‖2

2n , (4.11)

where the constant C does not depend on J and M. Now substitute J as in (4.9) and M
as (4.10) to get

sup
t∈[0,T ]

‖ U(t, 0)ψ0‖2
2n ≤ γ (log 〈T 〉)2n(μ+1)/μδ ‖ψ0‖2

2n , (4.12)

for some γ > 0 which does not depend on T . Since T was arbitrary, the estimate above 
holds ∀t. It is easy to adapt the proof to consider also the case U(t, s).

Finally interpolating with k = 0 gives the general case. The exponent in (1.17) is 
obtained by simply replacing δ with its definition (3.8). �
4.1. Proof of Proposition 4.1

Step m = 0. Define Π0,j(t) as in (3.35). We apply Lemma C.2 with P = V , a = a, 
b = 1 (it is easy to see that (C.4) is fulfilled) and get that for every � ≥ 0, 0 ≤ p ≤ n

sup
t∈[0,T ]

‖Hp ∂�
tΠ0,j(t) H−p‖ ≤ �! c�

(1 + �)2

(
24 CH a

A Δ̃δ
j−1

)min(�,1)

≤ �! c�

(1 + �)2

(
1

A 2(j−1)μδ

)min(�,1)

. (4.13)

Consider now ∂(t,L)Π0,j(t) ≡ ∂tΠ0,j(t). For � + 1 ≤ M one has by (4.3), (4.13)



A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781 753
sup
t∈[0,T ]

‖Hp ∂�
t∂(t,L)Π0,j(t) H−p‖ ≤ (� + 1)! c�+1

(1 + �)2
24 CH a

A Δ̃δ
j−1

≤ �! c�

A(1 + �)2
1

2(j−1)μδ
1
4 .

(4.14)

Thus we proved (4.4), (4.5) and (4.6) for m = 0. Consider now B0,j(t) = Π0,j(t) ∂tΠ0,j(t). 
We apply Lemma C.1 with P = Π0,j , a = 1, b = 24 CH a

A Δ̃δ
j−1

, k = 0 and Q = ∂tΠ0,j , 

d = 24 CH a
A Δ̃δ

j−1
, f = 1, i = 1 and obtain that for � + 1 ≤ M

sup
t∈[0,T ]

‖Hp ∂�
tB0,j(t) H−p‖ ≤ 24 CH a

A Δ̃δ
j−1

(
25 CH a

A Δ̃δ
j−1

+ 1
)min(�,1)

(� + 1)! c�+1

A(1 + �)2

≤ 25 CH a

Δ̃δ
j−1

(� + 1)! c�+1

A(1 + �)2

≤ �! c�

A(1 + �)2
1

2μ(j−1)δ

provided

max
(

25 CH a
A

, 25 CH a M c
)

≤ 2Jμδ , (4.15)

which is clearly fulfilled using (4.3). This proves (4.7) for m = 0.

Step m � m +1. Assume that we performed already 0 < m < M steps. By the inductive 
assumption ∀ 0 ≤ i ≤ m one has that Bi(t) =

∑
j Bi,j(t) fulfills (4.8) ∀� + i + 1 ≤ M.

Thus Hm+1(t) = H + W (t), where we defined W (t) := V (t) +
∑m

i=0 Bi(t). It fulfills 
∀� + m + 1 ≤ M, ∀0 ≤ p ≤ n

sup
t∈[0,T ]

‖Hp ∂�
tW (t) H−p−ν‖ ≤ �! c�

A(1 + �)2

(
a + d

m∑
i=0

1
(1 + i)2

)
≤ �! c�

A(1 + �)2 (a + 2d) .

(4.16)

Thus W (t) is a perturbation of H analytic in time which fulfills the conditions of 
Lemma C.2. Indeed with a = a + 2d we have that 24 CH a ≤ 2Jμδ, hence by Lemma C.2
the projectors

Πm+1,j(t) = − 1
2πi

∮
Γj

Rm+1(t, λ) dλ , Rm+1(t, λ) := (Hm+1(t) − λ)−1

are well defined ∀j ≥ 1. Furthermore they fulfill ∀� + 1 + m ≤ M, ∀0 ≤ p ≤ n
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sup
t∈R

‖Hp ∂�
tΠm+1,j(t)H−p‖ ≤ �! c�

(1 + �)2

(
24 CH
AΔ̃δ

j−1
(a + 2d)

)min(�,1)

, (4.17)

where we used (4.16) and Lemma C.2.
To estimate ∂�

t ∂(t,L)Πm+1,j(t) we use again formula (3.37). Consider its last term. 
Since [Bl(t), Πl,j(t)] = −i∂(t,L)Πl,j(t), one gets the identity

m+1∑
l=0

∂(t,L)Πl,j(t) = ∂tΠm+1,j(t) − i
m∑
l=0

[Bl(t), Πm+1,j(t) − Πl,j(t)] . (4.18)

This identity allows us to estimate (4.5) at step m + 1. We estimate the two terms in 
the r.h.s. above separately. To estimate the second one we use formula (3.39). Since

sup
t∈[0,T ]

‖Hp ∂�
t (Hm+1(t) −Hl(t)) H−p‖ ≤ �! c�

A(1 + �)2 (a + 2d) ,

by Lemma C.3 we get that ∀� + m + 1 ≤ M, ∀0 ≤ p ≤ n,

sup
t∈[0,T ]

‖Hp ∂�
t (Πm+1,j(t) − Πl,j(t)) H−p‖ ≤ �! c�

A(1 + �)2
(a + 2d) 25

Δ̃j−1
. (4.19)

Hence by Lemma C.1, (4.8), (4.19) we get

sup
t∈[0,T ]

‖Hp
m∑
l=0

[Bl(t), Πm+1,j(t) − Πl,j(t)] H−p‖ ≤ �! c�

A(1 + �)2
(a + 2d) d 28

Δ̃j−1
. (4.20)

The first term of (4.18) is estimated by (4.17) with � + 1 replacing �. Together with 
(4.20) we get for � + 1 + m ≤ M, ∀0 ≤ p ≤ n

sup
t∈[0,T ]

‖Hp ∂�
t

m+1∑
l=0

∂(t,L)Πl,j(t) H−p‖ ≤ �! c�

A(1 + �)2
1

2(j−1)μδ
1
4 (4.21)

using (4.3). This proves (4.5) at step m + 1.
Now consider ∂(t,L)Πm+1,j(t). Using (4.21) and the inductive assumption (4.5) we get

‖Hp ∂�
t ∂(t,L)Πm+1,j(t) H−p‖ ≤ ‖Hp ∂�

t

m+1∑
k=0

∂(t,L)Πk,j(t) H−p‖

+ ‖Hp ∂�
t

m∑
k=0

∂(t,L)Πk,j(t) H−p‖

≤ �! c�

A(1 + �)2
1

2(j−1)μδ (4.22)

proving (4.5) at step m + 1.
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Next we estimate Lm,j , Km,j , Dm,j defined in (3.42)–(3.44).

Lemma 4.2. For every 0 ≤ p ≤ n, � + m + 1 ≤ M one has

sup
t∈[0,T ]

‖Hp ∂�
tLm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
25 d

Δ̃j−1
(4.23)

sup
t∈R

‖Hp ∂�
tKm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
25

Δ̃j−1

1
2μ(j−1)(m+1)δ

1
(1 + m)2 (4.24)

sup
t∈R

‖Hp ∂�
tDm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
28

2μ(j−1)(m+1)δ Δ̃j−1

1
(1 + m)2 (4.25)

Proof. First we prove (4.23). Using the definition of Lm,j given by (3.48), we apply 
Lemma C.3 with P = V + B0 + · · · + Bm, Q = V + B0 + · · · + Bm−1, B = Bm, 
h = d/(1 + m)2 and get that for � + 1 + m ≤ M, ∀0 ≤ p ≤ n

sup
t∈[0,T ]

‖Hp ∂�
tLm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
25 d

Δ̃j−1

1
(1 + m)2 ,

provided 24CH(a + 2d) ≤ 2Jμδ. For later use consider the operator (1 − Lm,j(t))−1. 
Provided 25

A Δ̃j−1
d ≤ 1

2 , the operator (1 − Lm,j(t)) is invertible by Neumann series and

sup
t∈[0,T ]

‖(1 − Lm,j(t))−1‖ ≤ 2 .

To study its derivatives we can proceed as in (B.8), (C.7) to get for � +m + 1 ≤ M, � ≥ 1

sup
t∈[0,T ]

‖Hp ∂�
t (1 − Lm,j(t))−1 H−p‖ ≤ �! c�

A(1 + �)2 2
�∑

k=1

(
26 d

Δ̃j−1

)k

≤ �! c�

A(1 + �)2
d 28

Δ̃j−1

(4.26)

provided 27 d ≤ Δ̃j−1. Thus for � + m + 1 ≤ M

sup
t∈[0,T ]

‖Hp ∂�
t (1 − Lm,j(t))−1 H−p‖ ≤ �! c�

(1 + �)2 2
(

27 d

A Δ̃j−1

)min(�,1)

. (4.27)

Estimate (4.24) follows immediately from the identity (3.50) and Lemma C.3 with 
B = Bm,j , h = 2−μ(j−1)(m+1)δ (1 + m)−2.

Finally we prove (4.25). Consider formula (3.51). Then Lemma C.1 applied twice and 
(4.17), (4.24), (4.27) give ∀� + 1 + m ≤ M
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sup
t∈[0,T ]

‖Hp ∂�
tDm,j(t) H−p‖ ≤ �! c�

A(1 + �)2
28

2μ(j−1)(m+1)δ Δ̃j−1

1
(1 + m)2 , ∀0 ≤ p ≤ n ,

(4.28)

where we used that (4.3) implies max
[

28 d
A Δ̃j−1

, 24 CH
AΔ̃δ

j−1
(a + d)

]
≤ 1. �

We can now conclude the proof by calculating the norm of Bm+1,j. We use again (3.52). 
Consider first the term Dm,j∂(t,L)Πm+1,j . We can compute its first � derivatives provided 
� + 1 + m ≤ M. We apply once again Lemma C.1 with P = Dm,j , k = 0 and Q =
∂(t,L)Πm+1,j , i = 0, and use estimates (4.22), (4.25) to get

sup
t∈[0,T ]

‖Hp ∂�
t (Dm,j(t) ∂(t,L)Πm+1,j(t)) H−p‖

≤ �! c�

A(1 + �)2
210

2(j−1)μ(m+2)δ Δ̃j−1 (1 + m)2
. (4.29)

The other term to estimate is Πm+1,j∂(t,H−Hm+1)Km,j . To estimate ∂(t,H−Hm+1)Km,j

write ∂(t,H−Hm+1)Km,j = ∂tKm,j −
∑

0≤i≤m[Bi, Km,j ]. By (4.24)

sup
t∈[0,T ]

‖Hp ∂�
t∂tKm,j(t)H−p‖ ≤ (1 + �)! c�+1

A(1 + �)2
1

2μ(j−1)(m+1)δ
25

Δ̃j−1

1
(1 + m)2 . (4.30)

Consider now 
∑m

i=0[Bi, Km,j ]. For � + 1 + m ≤ M we have that Lemma C.1, estimates 
(4.8) and (4.24) imply that

sup
t∈[0,T ]

‖Hp ∂�
t

m∑
i=0

[Bi(t),Km,j(t)] H−p‖ ≤ �! c�

A(1 + �)2
1

2μ(j−1)(m+1)δ
27 d

Δ̃j−1

1
(1 + m)2 .

(4.31)

Then (4.30) and (4.31) imply that, for � + 1 + m ≤ M,

sup
t∈[0,T ]

‖Hp ∂�
t

(
Πm+1,j(t)∂(t,H−Hm+1)Km,j(t)

)
H−p‖

≤ �! c�

A(1 + �)2
1

2μ(j−1)(m+1)δ
25

Δ̃j−1

1
(1 + m)2 (Mc + 4d) . (4.32)

Then (4.29) and (4.32) give

sup
t∈[0,T ]

‖Hp∂�
tBm+1,j(t) H−p‖

≤ �! c�

A(1 + �)2
1

2μ(j−1)(m+1)δ
25

Δ̃j−1

1
(1 + m)2

[
25

2(j−1)μδ + Mc + 4d
]

≤ �! c�

A(1 + �)2
1

2μ(j−1)(m+2)δ
1

(2 + m)2
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where we used that

25 (m + 2)2

(m + 1)2 [25 + Mc + 4d] ≤ 212 c d M ≤ 2Jμδ . (4.33)

The inductive step is proved.

5. Applications

In this section we apply our abstract theorems to different models. We are able to 
recover many already known results and to prove new estimates.

5.1. One degree of freedom Schrödinger operators

Let us consider here equation (1.1) where L(t) is a time dependent perturbation of 
the anharmonic oscillator, namely

L(t) = − d2

dx2 + x2k + p(x) + V (t, x) = Hk + V (t, x), x ∈ R (5.1)

where k ∈ N, p(x) is a polynomial of degree less than 2k− 1, and V (t, x) is a real valued 
time dependent perturbation with a polynomial growth in x of degree ≤ m fulfilling 
∀� ≥ 0

sup
t∈R

|∂�
t∂

j
xV (t, x)| ≤ C� 〈x〉(m−j)+ , ∀x ∈ R , (5.2)

where r+ := max(0, r) for any r ≥ 0. Without restriction we can always assume that Hk

is positive and invertible. The following lemma is an easy computation

Lemma 5.1. For every μ > 0 there exists Cμ > 0 such that for every (j, k) ∈ N ×N such 
that j

2k + �
2 ≤ μ we have

‖xj d�

dx�
u‖L2(Rd) ≤ Cμ‖Hμ

k u‖L2(Rd) . (5.3)

Under the condition that m ≤ k + 1 we get that the commutator [V (t, x), Hk] is 
Hk-bounded. By Theorem 1.2 L(t) generates a propagator U(t, s) in the Hilbert spaces 
scale Hr

k := D((Hk)r/2). Furthermore if m < k+1 then [V (t, x), Hk] is Hτ
k -bounded with 

τ = m−1+k
2k < 1. Thus Theorem 1.5 can be applied and we get the following polynomial 

bound for the growth of the Hr
k-norm ∀r > 0,

‖U(t, s)ψs‖r ≤ Cr 〈t− s〉
kr

k−m+1 ‖ψs‖r . (5.4)

For k = 1 and m = 0 we recover a known bound for time dependent perturbations of 
the harmonic oscillator:
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‖U(t, s)ψs‖r ≤ Cr 〈t− s〉
r
2 ‖ψs‖r . (5.5)

As mentioned in Remark 1.6, Delort [10] suggests that estimate (5.5) may be sharp 
for V (t, x) satisfying (5.2) with m = 0. Actually the example constructed by him is 
a zero order pseudo-differential operator. Construct a local potential to saturate the 
estimate (5.5) is still an open problem.

When k > 1 (namely the anharmonic case) we can improve the bound (5.4) by 
applying Theorem 1.9 and Theorem 1.10. Indeed it is well known (see e.g. [17]) that 
in this case Hk satisfies (Hgap). Indeed the resolvent of Hk is a compact operator in 
L2(R), hence its spectrum is discrete, σ(Hk) = {λj}j≥1 and furthermore it is known to 
be simple. To verify the gap condition we use the following lemma:

Lemma 5.2. There exists ck > 0 such that

λj+1 − λj ≥ ck j
μk , ∀j ≥ 1 ,

where μk = k−1
k+1 .

Proof. It is known that the eigenvalues {λj}j≥1 of Hk are given at all order in j by a 
Bohr–Sommerfeld rule [17]: one has that

λ
k+1
2k

j = bk

(
j + 1

2

)
+ O(1)

where bk is a smooth function such that bk(x) = c0x +o(x). Lemma 5.2 follows easily. �
Lemma 5.2 shows that Hk satisfies (Hgap) defining ∀j ≥ 1 the clusters σj := {λj}

and μk = k−1
k+1 .

Consider now the perturbation V (t, x). The critical index to apply Theorem 1.9 is here 
μk

μk+1 = k−1
2k . One verifies easily that V (t, x) is H

m
2k
k -bounded. Hence provided m < k−1, 

we have that ν := m
2k fulfills ν < μk

μk+1 (such condition appears already in a work by 

Howland [20] in order to study the Floquet spectrum when V (t, x) is a periodic in time 
perturbation).

Theorem 5.3 (Smooth case). Fix an integer k > 1 and let m < k − 1. Assume that 
V satisfies the estimate (5.2). Then for every r > 0, for every ε > 0, there exists a 
positive Cr,ε s.t.

‖U(t, s)‖L(Hr) ≤ Cr,ε 〈t− s〉ε .

Proof. Having fixed r > 0, choose an integer n s.t. r ≤ 2n. To apply Theorem 1.9 we 
have to check that V fulfills assumption (Vs)n. Remark that Hk is a pseudodifferential 
operator whose symbol is in the class S2k

1,k of Definition 5.13, while V (t) belongs to S̃m
1,k
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of Definition 5.12. But under assumption (5.2), Hp
k∂

�
tV (t)H−p−ν

k is a pseudo-differential 
operator of order 0 (see the symbolic calculus of Theorem E.1 and Theorem E.2). So 
applying the Calderon–Vaillancourt theorem (Theorem E.4) we get that (Vs)n is satis-
fied. �
Remark 5.4. Under the weaker assumption that V has just a derivatives uniformly 
bounded in time,

sup
t∈R

|∂�
t∂

j
xV (t, x)| ≤ C� 〈x〉(m−j)+ , ∀x ∈ R , ∀0 ≤ � ≤ a , (5.6)

we can apply Theorem 1.8 and obtain the estimate

‖U(t, s)‖L(Hr) ≤ Cr,a 〈t− s〉
rk

a(k−1−m) .

In case V (t, x) is analytic in time, we obtain better estimates:

Theorem 5.5 (Analytic case). Fix an integer k > 1 and let m < k− 1. Assume that there 
exist C0, C1 > 1 such that ∀�, j ≥ 0 we have

sup
t∈R

‖ 〈x〉−(m−j)+ ∂�
t∂

j
xV (t, x)‖L∞

x (R) ≤ C1 C
�
0 �! . (5.7)

Then we have that ∀r > 0

‖U(t, s)‖L(Hr) ≤ Cr (log 〈t− s〉)
rk

k−1−m .

Proof. We apply Theorem 1.10. Having fixed r > 0, we choose an arbitrary integer n with 
r ≤ 2n. We check assumption (Va)n using again the Calderon–Vaillancourt Theorem. �

Comparison with previous results: To the best of our knowledge Theorem 5.3 and 
Theorem 5.5 are new.

In same cases better estimates on the Hr
k-norm of the flow are known. For example 

if V (t, x) is a quasi-periodic function of time and small in size, one might try to prove 
reducibility, which in turn implies that the Sobolev norms are uniformly bounded in 
time. We mention just the latest results: Bambusi [2,1] proved reducibility for L(t) on R
in several cases, including k > 1 and V (t, x) fulfilling (5.2) with m < k+1 (in some cases 
even for m ≤ 2k). Grébert and Paturel [16] proved reducibility for L(t) on Rd, d ≥ 1, 
with k = 1 and V (t, x) a small bounded quasi-periodic perturbation.

5.2. Operators on compact manifolds

Let (M, g) be a Riemaniann compact manifold with metric g and let �g be the 
Laplace–Beltrami operator. Denote by Sm

cl (M) the space of classical symbols of order 
m ∈ R on the cotangent T ∗(M) of M (see Hörmander [19] for more details).
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Let H = 1 −�g and V (t) ≡ V (t, x, Dx) be an Hermitian classical pseudodifferential 
operator of order m ≤ 1. We want to consider the Schrödinger equation (1.1) with L(t)
defined by

L(t) = −�g + 1 + V (t) = H + V (t) ,

and study its flow in the usual scale of Sobolev spaces Hk(M) ≡ D(Hk/2).
By semiclassical calculus one verifies that [L(t), H]H−1 is a pseudodifferential operator 

of order 0, hence the assumptions of Theorem 1.2 are satisfied and L(t) has a well defined 
propagator U(t, s) in Hk(M) and it is unitary in L2(M).

Moreover one has that [L(t), H]H−τ , τ = m+1
2 is a pseudodifferential operator of 

order 0. Provided m < 1, one has τ < 1, hence by applying Theorem 1.5 we get for the 
flow U(t, s) the following uniform estimate in the space Hk(M):

‖U(t, s)‖L(Hk(M)) ≤ Ck 〈t− s〉
k

1−m . (5.8)

Better estimates can be obtained if the spectrum of �g satisfies a gap condition. 
A typical example is the Laplace–Beltrami operator on Zoll manifolds. We recall that 
Zoll manifolds are manifolds where all geodesics are closed and have the same period, 
for examples spheres in any dimension. It is a classical result due to Colin de Verdière [7]
that the spectrum of 

√
�g is concentrated in 

⋃
j≥1[j +σ− C

j , j +σ+ C
j ], where σ ∈ Z/4

and C > 0. Defining ∀j ≥ 1 the cluster σj := [(j + σ − C
j )2, (j + σ + C

j )2], one sees 
immediately that the gap condition is satisfied with μ = 1. Hence H fulfills (Hgap). The 
critical regularity for V is then μ

μ+1 = 1
2 .

Theorem 5.6. Assume that ∀t ∈ R, V (t) is an Hermitian pseudodifferential operator 
on M of order m < 1. Assume that in local charts its symbol v(t, x, ξ) fulfills the following 
condition: there exists C1 > 0 s.t. ∀� ≥ 0, for every multi-indices α, β there exists 
Cαβ > 0 such that

‖ 〈ξ〉−m+|β|
∂α
x ∂

β
ξ ∂

�
tv(t, x, ξ)‖L∞(Rt×M×Rd) ≤ Cαβ C

�
1 �!. (5.9)

Then for any r > 0 the propagator U(t, s) for H + V (t) satisfies

‖U(t, s)‖L(Hr) ≤ Cr (log 〈t− s〉)
r

1−m (5.10)

Proof. Having fixed r > 0, choose an integer n with r ≤ 2n. We verify that (Va)n holds. 
By semiclassical calculus, V (t)H−m

2 ∈ S0
cl(M). For m < 1, ν := m

2 is strictly smaller than 
1
2 , the critical regularity. To verify that V (t) satisfies (Va)n it suffices to work in local 
charts (since M is compact one can considered just a finite number of them). Then by 
Calderon–Vaillancourt theorem, the norm of ∂�

tV as an operator Hn+2ν(M) → Hn(M)
is controlled by
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C
∑

|α|+|β|≤N

‖ 〈ξ〉−m+|β|
∂α
x ∂

β
ξ ∂

�
tv(t, x, ξ)‖L∞(Rt×M×Rd)

for some universal constants C, N sufficiently large and depending only on n and the 
dimension of M . Then using (5.9) one verifies that (Va)n is fulfilled. �

Comparison with previous results: Theorem 5.6 for Zoll manifolds and with unbounded 
perturbations is a new result.

In case M = T, Theorem 5.6 was proved by Bourgain [5] when V (t, x) is an an-
alytic periodic function in both x and t and extended by Wang [36] for V (t, x) real 
analytic function with arbitrary dependence on t. Such authors obtained the bound 
‖U(t, s)‖L(Hr) ≤ Cr (log 〈t− s〉))ςr, for some constant ς > 3. Remark that our The-
orem 5.6 improves this estimate: indeed for bounded potentials one can take m = 0
in (5.10), leading to the better estimate ‖U(t, s)‖L(Hr) ≤ Cr (log 〈t− s〉)r.

Later Fang and Zhang [12] extended the results of [36] to the d-dimensional torus Td, 
d > 1 (such result is not covered by Theorem 5.6 since −� on Td does not fulfill (Hgap)).

In case V (t, x) is a smooth function of x and t, the estimate ‖U(t, s)‖L(Hr) ≤
Cr 〈t− s〉ε was proved by Bourgain [6] for M = Td, d ≥ 1, and by Delort when M
is a Zoll manifold.

If V (t) is quasi-periodic in time and small in size, some results of reducibility are 
known. We cite here only the latest results (see their bibliography for more references). 
In case M = T, Feola and Procesi [14] proved reducibility when V (t, x) is quasi-periodic 
in time, small in size, and in some class of unbounded operators. In case M = Td, d > 1, 
Eliasson and Kuksin [11] proved reducibility when V (t, x) is a small analytic potential. 
For M = S2 (2-dimensional sphere) reducibility was proved by Corsi, Haus and Procesi 
[8].

5.3. Time dependent electro-magnetic fields

Consider the Schrödinger equation (1.1) with L(t) = Ha,V (t) the time dependent 
electro-magnetic field

Ha,V (t) := 1
2(D + a(t, x))2 + V (t, x) , x ∈ Rd , d ≥ 2 ,

where we denoted D := i−1∇. Here we assume that the electromagnetic potential 
(a(t, x), V (t, x)) is continuous in t ∈ R and smooth in x ∈ Rd. Furthermore we assume 
that for every multi-index α we have the following uniform estimate in (t, x):∣∣∂α

x a(t, x)
∣∣ ≤ Cα 〈x〉(1−|α|)+ ,

∣∣∂α
xV (t, x)

∣∣ ≤ Cα 〈x〉(2−|α|)+ , ∀t ∈ R . (5.11)

We choose H = Hosc where Hosc = 1
2
(
−� + |x|2

)
is the harmonic oscillator and de-

fine ∀r ≥ 0 the spaces Hr = D(Hr/2
osc ). By direct computations we can prove that the 

assumptions of Theorem 1.2 are satisfied. Indeed write first
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Ha,V = −� + V (t, x) + 2a(t, x) ·D + i−1div(a(t, x)) + a2(t, x).

Denote ∂j = ∂
∂xj

. Then we get that

K := [Ha,V , Hosc] =
∑

1≤j,k≤d

γj,k∂
2
j,k +

∑
1≤j≤d

γj∂j + γ0

where for any multi-index α, there exists a Cα > 0 s.t. for any 1 ≤ j, k ≤ d

|Dαγj,k(t, x)| ≤ Cα, |Dαγj(t, x)| ≤ Cα 〈x〉(1−|α|)+ , |Dαγ0(t, x)| ≤ Cα 〈x〉(2−|α|)+ .

The following Lemma is well known and can be easily proved by induction:

Lemma 5.7. For every multi-index α, β we have

‖xαDβu‖L2(Rd) ≤ Cα,β‖H
|α+|β|

2
osc u‖L2(Rd), ∀u ∈ L2(Rd). (5.12)

From this Lemma it results that K is Hosc-bounded. Moreover if a(t, x) does not 
depend on x and V (t, x) grows at most linearly in x, i.e. 

∣∣∂α
xV (t, x)

∣∣ ≤ Cα 〈x〉(1−|α|)+ , 
∀t ∈ R, then K is H1/2

osc -bounded. Then we can apply our general results (Theorems 1.2
and 1.5) to get

Theorem 5.8. Under assumptions (5.11) we have:

(i) For each t, the Hamiltonian Ha,V (t) is essentially self-adjoint in L2(Rd) with core 
S(Rd).

(ii) For every k ∈ N, the Cauchy problem (1.1) with L(t) ≡ Ha,V (t) is globally well-posed 
in the weighted Sobolev space Hk(Rd) = D(Hk/2

osc ).
(iii) If furthermore a(t, x) = a(t) depends only on time t and 

∣∣∂α
xV (t, x)

∣∣≤Cα 〈x〉(1−|α|)+ , 
∀t ∈ R, then for any r ∈ N, we have the bound:

‖U(t, s)‖L(Hr) ≤ Cr 〈t− s〉r .

Comparison with previous results: Theorem 5.8 (i) and (ii) where proved by Yajima in 
[37,38] by a different method. We recover them as a consequence of our general results. 
Notice that V (t, x) has no fixed sign.

5.4. Differential systems of first order

Let us denote by MN (C) the space of Hermitian N ×N matrices. Let t ∈ R, x ∈ Rd, 
Aj(t), 1 ≤ j ≤ d, and B(t, x) belong to MN (C), the Aj ’s depend only on time, Aj ∈
Cb(R, MN (C)), while B(t, x) ∈ Cb(R, C∞(Rd, MN (C)) satisfies ∀ multi-indexes α
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|∂α
xB(t, x)| ≤ Cα 〈x〉(m−|α|)+ , ∀t ∈ R , x ∈ Rd .

Let us consider equation (1.1) with L(t) =
∑

1≤j≤d

Aj(t)Dj + B(t, x). Such equation is 

symmetric-hyperbolic. A basic example is the Maxwell system. An other example is the 
Dirac equation with a time dependent electro-magnetic field:

i�∂ψ(x, t)
∂t

=
(
βmc2 + c

( 3∑
n=1

αn(�Dn)
)

+ V (t, x)
)
ψ(x, t)

where Dn = i−1 ∂
∂xn

, (αn, β) are the Dirac matrices and V (t, x) is 4 ×4 Hermitian matrix 
(the electro-magnetic potential).

Let us introduce the reference operator H = (−� + |x|2k)ICN , k ∈ N, and the scale of 
Hilbert spaces Hr

k = D
(
(−� + |x|2k)r/2

)
, for any r ≥ 0. We compute the commutator 

[L(t), H]. If m ≤ k + 1 we can check that [L(t), H] is H-bounded and if m ≤ k then 
[L(t), H] is H1−θ-bounded with θ = 1

2k . So Theorem 1.2 and Theorem 1.5 can be applied 
to give

Theorem 5.9. Let m ≤ k + 1. Then problem (1.1) is well-posed in the weighted Sobolev 
spaces Hr

k for any r ≥ 0. Moreover if m ≤ k then we have for any r ≥ 0,

‖U(t, s)‖L(Hr
k) ≤ Cr 〈t− s〉kr . (5.13)

Remark 5.10. It is easy to see that the first part of Theorem 5.9 holds true if Aj(t) =
Aj(t, x) are smooth in x and satisfy

|∂α
xAj(t, x)| ≤ Cα 〈x〉(1−|α|)+ , ∀t ∈ R .

Moreover, in case |∂α
xAj(t, x)| ≤ Cα, ∀t ∈ R, then also the estimate (5.13) holds true.

5.5. A discrete model example

This model was considered in [3]. We keep our notations which are different from [3].
Let us consider the Hilbert space H0 = �2(Zd) and its canonical Hilbert base {en}n∈Zd

defined by en(k) = δ(n − k), k ∈ Zd. We consider equation (1.1) with Hamiltonian 
L(t) = H0 + V (t) where H0 is the discrete Laplacian and V (t) is a diagonal operator:

H0u(n) =
∑

|k−n|=1

u(k) , V (t)u(n) = ωn(t)u(n)

(here | · | denotes the sup norm). Assume that ωn(t) are real and that there exists M ≥ 0
such that
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|ωn(t)| ≤ C 〈n〉M , ∀t ∈ R . (5.14)

Introduce the reference operator Hu(n) := 〈n〉u(n) and the usual scale of Sobolev spaces 
Hr = D(Hr/2) ≡ {{u(n)}n∈Zd :

∑
n∈Zd 〈n〉r |u(n)|2 < +∞}.

Let us check that assumptions (H0), (H1), (H3) are satisfied with τ = 0. With (5.14)
assumption (H0) and (H1) are satisfied. Now we verify (H3).

Lemma 5.11. The commutator [H, H0] is bounded on Hr for every r ≥ 0.

Proof. A direct computation gives(
[H0, H]u

)
(n) =

∑
|ε|=1, ε∈Zd

(〈n + ε〉 − 〈n〉)u(n + ε) .

Thus for any u, v ∈ H0 we have∣∣ 〈v, [H0, H]u〉H0

∣∣ =
∣∣ ∑
|ε|=1

∑
n∈Zd

(〈n + ε〉 − 〈n〉)u(n + ε) v(n)
∣∣ ≤ 2d ‖u‖H0 ‖v‖H0 ,

which shows that [H0, H] is bounded on H0.
Now we prove that [H0, H] is bounded on Hr for any r > 0. An easy computation 

gives

Hr[H0, H]H−ru =
∑

m∈Zd,|ε|=1

(
u(m + ε)

[
〈m〉r (〈m + ε〉 − 〈m〉) 〈m + ε〉−r

] )
em

(5.15)

Since

sup
m,ε∈Zd, |ε|=1

∣∣ 〈m〉r (〈m + ε〉 − 〈m〉) 〈m + ε〉−r ∣∣ ≤ C ,

it results that [H0, H] is bounded on Hr for any r > 0. �
Thus it follows that [H0+V (t), H] is a bounded operator. Applying Theorem 1.5 with 

τ = 0 we get in particular that the propagator U(t, s) associated with L(t) is well defined 
as a bounded operator on Hr and satisfies

‖U(t, s)‖L(Hr) ≤ Cr 〈t− s〉
r
2 , ∀t, s ∈ R. (5.16)

Comparison with previous result: Estimate (5.16) appeared first in the work of Bar-
baroux and Joye [3]. Zhao [40] showed that when d = 1 there exists a family of functions 
ωn(t) s.t. the H2-norm of the solution of the Schrödinger equation grows linearly in time 
when t → ∞, saturating the bound (5.16). In [39], Zhang and Zhao extended this result 
to general r > 1 and a larger family of functions ωn(t).
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5.6. Pseudodifferential operators on Rn

We consider here equation (1.1) in case L(t) is a time dependent pseudodifferential
operator on Rn. A very general Weyl calculus is detailed in the book [19]. We recall 
some basic facts needed here on some particular cases and some more properties in 
Appendix E.

Recall that for smooth symbols A(x, ξ), x, ξ ∈ Rn, one defines the Weyl-quantization 
OpW

� (A) by the formula

(
OpW

� (A)u
)
(x) := 1

(2π�)n

∫∫
y,ξ

e
i
�
(x−y)·ξ A

(
x + y

2 , ξ

)
u(y) dydξ . (5.17)

This formula is valid for A in the space S(R2n) of Schwartz functions and one can extend 
it to functions in more general classes. To introduce the class we are interested in, let us 
introduce the weight

λk,�(x, ξ) = (a + |x|2� + |ξ|2k) 1
2k� .

Here the real number a > 0 will be chosen large enough.

Definition 5.12. Fix ν ∈ R, k, � ∈ R+. A function A(x, ξ) ∈ C∞(Rn
x×Rn

ξ , C) will be called 

a symbol in the class S̃ν
k,� if for every α, β ∈ Nn there exists a constant Cα,β > 0 s.t.

∣∣∂α
x ∂

β
ξ A(x, ξ)

∣∣ ≤ Cα,β λk,�(x, ξ)(ν−k|α|−�|β|)+ , (5.18)

where r+ := max(0, r).

The class S̃ν
k,� does not contain symbols of strictly negative order. In particular a 

symbol A ∈ S̃ν
k,� with ν < 0 is not decreasing faster at infinity than a symbol simply 

in S̃0
k,�. Thus we define also the following class of symbols:

Definition 5.13. Fix ν ∈ R, k, � ∈ R+. A function A(x, ξ) ∈ C∞(Rn
x×Rn

ξ , C) will be called 
a symbol in the class Sν

k,� if for every α, β ∈ Nn there exists a constant Cα,β > 0 s.t.

∣∣∂α
x ∂

β
ξ A(x, ξ)

∣∣ ≤ Cα,β λk,�(x, ξ)ν−k|α|−�|β| . (5.19)

Such classes were introduced in [31,18], where it is proved that OpW
� (A) is well defined 

for A ∈ S̃ν
k,�.

Remark 5.14. (i) For ν = 2, k = � = 1, S̃2
1,1 is the class of symbols satisfying the 

sub-quadratic growth condition
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∣∣∂α
x ∂

β
ξ A(x, ξ)

∣∣ ≤ Cα,β , ∀ |α| + |β| ≥ 2.

(ii) The function λν
k,� belongs to Sν

k,�.
(iii) If A ∈ Sν

k,�, ν ≥ 0, then A ∈ S̃ν
k,�.

We endow S̃ν
k,� with the family of semi-norms defined by

pναβ(A) := sup
x,ξ∈Rn

λk,�(x, ξ)−(ν−k|α|−�|β|)+
∣∣∂α

x ∂
β
ξ A(x, ξ)

∣∣ , (5.20)

and for every integer M we define

|A|M,ν := sup
|α|+|β|≤M

pναβ(A) . (5.21)

Correspondingly we endow Sν
k,� with the family of semi-norms defined by

pναβ(A) := sup
x,ξ∈Rn

λk,�(x, ξ)−(ν−k|α|−�|β|) ∣∣∂α
x ∂

β
ξ A(x, ξ)

∣∣ , (5.22)

and for every integer M we define (abusing notation)

|A|M,ν := sup
|α|+|β|≤M

pναβ(A) . (5.23)

We define now the reference operator H to be

H ≡ Ĥk+�
k,� := OpW

� (λk+�
k,� ) .

The constant a > 0 in the definition of λk,� is chosen large enough such that Ĥk+�
k,� is a 

positive self-adjoint operator in L2(Rn). As usual we define the scale of Hilbert spaces 

Hr := D

((
Ĥk+�

k,�

)r/2
)

for every real r ≥ 0. Formally one has

Hr = {u ∈ L2(Rn) | u ∈ H
(k+�)r

2k (Rn), |x|
(k+�)r

2� u ∈ L2(Rn)} (5.24)

equipped with a natural norm of Hilbert space.

Remark 5.15. In the class of sub-quadratic symbols S̃2
1,1 one has simply that H = Ĥosc ≡

−Δ + |x|2 (harmonic oscillator) and Hr are the more classical spaces

Hr(Rn) :=
{
u ∈ L2(Rn) | xα (�∂x)β u ∈ L2(Rn), |α| + |β| ≤ r

}
. (5.25)

In order to study evolution equations we need to consider time dependent symbols. 
We give the following
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Definition 5.16. Let I ⊆ R. We say that a time-dependent symbol A(·) ∈ C0
b (I, S̃ν

k,�)
iff A(t) ∈ S̃ν

k,� for every t ∈ I and the map t �→ pναβ(A(t)) is continuous and uniformly 
bounded for every α, β.

We are ready to state the results:

Theorem 5.17. Fix k, � ∈ R+ and ν ∈ R with ν ≤ k + �. Then the following is true:

(i) Assume that A is a real symbol with A ∈ S̃ν
k,�. Then OpW

� (A) is essentially self-
adjoint with core S(Rn).

(ii) Assume that A(·) ∈ C0
b (R, S̃ν

k,�). Then the Schrödinger equation (1.1) with L(t) ≡
OpW

� (A(t)) generates a flow U(t, s) which fulfills (i)–(iv) of Theorem 1.2.
(iii) If ν < k + �, then the flow U(t, s) fulfills the bound

‖U(t, s)‖L(Hr) ≤ C 〈t− s〉
r (k+�)

2 (k+�−ν) .

Proof. (i) It follows by the same arguments used to prove item (ii) and Proposition A.2.
(ii) We verify the assumptions of Theorem 1.2 using the symbolic calculus for symbols 

in the classes S̃ν
k,�. By Remark 5.14, λν

k,� is a symbol in Sν
k,� and it is invertible provided 

a is sufficiently large. By symbolic calculus the operator H is invertible and its inverse 
H−1 ∈ OpW

� (S−(k+�)
k,� ). It follows easily by symbolic calculus (see Theorem E.1, E.2 and 

Corollary E.3) that [A(t), H]H−1 ∈ OpW
� (S̃ν−(k+�)

k,� ). Then by Calderon–Vaillancourt 
theorem (see Theorem E.4) if ν ≤ k+ � such operator is bounded on the scale of Hilbert 
spaces (5.24). Theorem 1.2 can be applied.

(iii) One applies Theorem 1.5 remarking that [A(t), H]H−τ ∈ OpW
� (S̃ν−τ(k+�)

k,� ). Then 
if ν < k + �, choosing τ = ν

k+� one has that τ < 1 and [A(t), H]H−τ is a bounded 
operator. �
Remark 5.18. If A ∈ S̃2

1,1 then A(t, x, ξ) is a sub-quadratic symbol in (x, ξ) and we 
recover a result already proved by Tataru [35] using a complex WKB parametrix for the 
Schrödinger equation.

Example 5.19 (A balance between position and momentum behavior). Consider a sym-
bol A of the form

A(x, ξ) = f(ξ) + g(x)

where the functions f, g are smooth and fulfill

|∂α
x f(ξ)| ≤ Cα 〈ξ〉(p−|α|)+ , |∂α

x g(x)| ≤ Cα 〈x〉(q−|α|)+ , (5.26)
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for some p, q ∈ Q such that 1
p + 1

q = 1, with 1 < p < +∞. Then OpW
� (A) is essentially 

self-adjoint. Indeed in such case it is possible to find integers k, � such that p = (k+ �)/�, 
q = (k + �)/k. Then with such k, �, one verifies easily that A ∈ S̃k+�

k,� .
Moreover if f, g are time-dependent the operator Aw(t) generates a propagator satis-

fying (i)–(iii). It satisfies (iv) if furthermore estimates (5.26) are uniform in time t ∈ R.
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Appendix A. Essentially self-adjointness

In this section we give the proof of essentially self-adjointness which is based to the 
commutator method of Nelson [26]. The method was further extended by Faris and 
Lavine [13]. The general principle is related with the Friedrichs smoothing method [15].

We start to recall some standard definitions. Let H be a complex Hilbert space and 
(·, ·)H its inner product. Let K ⊂ H be a dense subspace. Let L be a linear operator with 
domain D(L) = K and symmetric, i.e. verifying

(Lu, v)H = (u, Lv)H for every u, v ∈ K .

We say that (L, K, H) is essentially self-adjoint if L admits a unique self-adjoint extension 
as an unbounded operator on H. When this is true K is called a core for L. Let (L, K, H)
be a symmetric operator. It is known that the operator (L, K, H) is closable, i.e. it admits 
at most one closed extension (Lmin, D(Lmin), H). Lmin is the smallest closed extension 
of L, and we call (Lmin, D(Lmin), H) the minimal operator associated to L.

We denote by (L∗
min, D(L∗

min), H) the adjoint of (Lmin, D(Lmin), H). Recall that by 
definition

D(L∗
min) = {u ∈ H : |(u, Lv)H| ≤ Cu‖v‖H , ∀v ∈ K} .

It is a classical result [32, Proposition 2] that (L∗
min, D(L∗

min), H) is the largest closed 
extension of L. Denote Lmax := L∗

min. Then we call (Lmax, D(Lmax), H) the maximal 
operator associated to L. Thus L is essentially self-adjoint if Lmin is self-adjoint. This 
means that (Lmin, D(Lmin), H) and (Lmax, D(Lmax), H) coincide.

Let us introduce a smoothing family of operators {Rε}ε∈]0,1] satisfying

‖Rε‖L(H) ≤ C, ∀ε ∈ ]0, 1], (A.1)
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RεH ⊆ K, ∀ε ∈ ]0, 1], (A.2)

lim
ε→0

‖Rεu− u‖H = 0, ∀u ∈ H. (A.3)

Proposition A.1. Let (L, K, H) be a symmetric operator. Assume that the commutators 
[Rε, L] = RεL − LRε satisfies

‖[Rε, L]u‖H ≤ C‖u‖H, ∀u ∈ K, ∀ε ∈ ]0, 1], (A.4)

lim
ε→0

‖[Rε, L]u‖H = 0 , ∀u ∈ K . (A.5)

Then (L, K, H) is essentially self-adjoint.

Proof. We have to prove that D(Lmax) ⊆ D(Lmin). Let u ∈ D(Lmax). Then by prop-
erty (A.1), uε := Rεu ∈ D(Lmin) and uε → u in H. But we have

Luε = RεLu + [L,Rε]Au .

So by assumption (A.4) we get that lim
ε→0

Luε = Lu so u ∈ D(Lmin). �
The following criterium apply Proposition A.1 and is due to Nelson [26].

Proposition A.2. Let H be a positive self-adjoint operator in H with a dense domain 
D(H).

Let L be a linear and symmetric operator from D(H) into H.
Assume that the operators LH−τ (τ > 0) and H−1/2[H, L]H−1/2 are bounded on H

then (L, D(H), H) is essentially self-adjoint.

Proof. Let us repeat here the rather simple proof. We have to verify that the assumptions 
of Proposition A.1 are satisfied with Rε = e−εH .

First we have, for u ∈ D(Hτ ),

[e−εH , L]u = e−εHLu− Le−εHu .

We have Lu ∈ H so lim
ε→0

‖e−εHLu− Lu‖H = 0. Writing Le−εHu = (LH−τ )(e−εHHτu)
we also have lim

ε→0
‖Le−εHu− Lu‖H = 0. So we have proved

lim
ε→0

‖[e−εH , L]u‖H = 0, ∀u ∈ D(Hτ ). (A.6)

Let us estimate now ‖[e−εH , L]‖L(H). We start with the following known formula

[e−εH , L] = −
ε∫
e−(ε−s)H [L,H]e−sHds . (A.7)
0
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Following [26] we have

[e−εH , L] = −
ε∫

0

e−(ε−s)HH1/2(H−1/2[L,H]H−1/2)H1/2e−sHds . (A.8)

Using that

‖H1/2e−sH‖L(H) = sup
λ≥0

λ1/2e−sλ ≤ Cs−1/2

and the beta function computation: 
∫ ε

0 (ε − s)−1/2s−1/2ds = B(1/2, 1/2) = π
2 we get

sup
ε∈]0,1]

‖[e−εH , L]‖L(H) < +∞. �

Appendix B. Technical estimates for perturbations smooth in time

In this section we prove some technical estimates which are useful in the proof of 
Theorem 1.9.

First we state a result about boundedness of the resolvent. In all the section H will be 
a self-adjoint, positive operator in H0 fulfilling (Hgap). Let HW (t) := H + W (t), W (t)
a symmetric operator fulfilling (Vs)n.

Lemma B.1. Assume that W fulfills (Vs)n. Then

Rn,0 ‖Hν(H − z)−1‖ ≤ 1
2 ,

we have for any integer 0 ≤ p ≤ n, any real 0 ≤ θ ≤ 1,

sup
t∈R

‖Hp+θ(HW (t) − z)−1H−p‖ ≤ 2‖Hθ(H − z)−1‖ . (B.1)

Proof. This is a consequence of the resolvent identity:

(HW (t) − z)−1 = (H − z)−1 − (HW (t) − z)−1W (t)(H − z)−1 , (B.2)

so we have for 0 ≤ θ ≤ 1, 0 ≤ p ≤ n,

Hp+θ(HW (t) − z)−1H−p = Hθ(H − z)−1 −
(
Hp+θ(HW (t) − z)−1H−p

)
×
(
HpW (t)H−p−ν

)
Hν(H − z)−1 . (B.3)

Provided

sup
t∈R

‖Hp W (t)H−p−ν‖ ‖Hν(H − z)−1‖ ≤ Rn,0 ‖Hν(H − z)−1‖ ≤ 1
2 ,

estimate (B.1) follows. �
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Lemma B.2. Fix n ≥ 0. Let P (t) be an operator fulfilling (Vs)n with

sup
t∈R

‖Hp ∂�
tP (t)H−p−ν‖ ≤ Dn,� , ∀� ≥ 0 , 0 ≤ p ≤ n . (B.4)

Consider the operator H+P (t). Then, provided J is sufficiently large, the following holds 
true:

(i) H + P (t) fulfills ˜(Hgap) uniformly in time t ∈ R.
(ii) Let Γj be as in (3.7). Any λ ∈ Γj belongs to the resolvent set of the operator H+P (t). 

Denote RP (t, λ) := (H + P (t) − λ)−1. Then for any λ ∈ Γj, j ≥ 1 one has

sup
t∈R

‖HpRP (t, λ)H−p‖ ≤ 2
dist(λ, σ(H)) , ∀0 ≤ p ≤ n (B.5)

sup
t∈R

‖Hp ∂�
tRP (t, λ)H−p‖ ≤ Cn,�

dist(λ, σ(H))
1

Δ̃δ
j−1

, ∀0 ≤ p ≤ n , � ≥ 1 , (B.6)

where Cn,� does not depend on j, J.
(iii) For any j ≥ 1 define the projector

Πj(t) := − 1
2πi

∮
Γj

RP (t, λ) dλ . (B.7)

It fulfills

sup
t∈R

‖Hp ∂�+1
t Πj(t)H−p‖ ≤ Cn,�

Δ̃δ
j−1

, ∀0 ≤ p ≤ n, � ≥ 0 ,

where Cn,� does not depend on j, J.

Proof. (i) It follows by Lemma 3.2 provided J is sufficiently large to fulfill condition (3.9). 
Thus σ(H + P (t)) ⊆

⋃
j≥1 σ̃j (with σ̃j as in (3.10)).

(ii) By the previous item each Γj is contained in the resolvent set of H + P (t). To 
estimate ‖RP (t, λ)‖ we use Lemma B.1 and Lemma 3.4. Indeed for J sufficiently large 
and λ ∈ Γj we have

Dn,0‖Hν(H − λ)−1‖ ≤ Dn,0
C̃H

Δ̃δ
j−1

≤ Dn,0
C̃H
2Jμδ ≤ 1

2 ,

hence we can apply Lemma B.1 with θ = 0 to obtain estimate (B.5).
To prove (B.6), use the formula

∂�
tRP (t, λ) =

�∑
k=1

∑
n1,...,nk∈N

n1+···+nk=�

(
�

n1 · · ·nk

)
RP (t, λ) (∂n1

t P (t))RP (t, λ) (∂n2
t P (t))

· · · (∂nk
t P (t))RP (t, λ) (B.8)
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and take the conjugates with Hp to obtain

Hp ∂�
tRP (t, λ)H−p =

�∑
k=1

∑
n1,...,nk∈N

n1+···+nk=�

(
�

n1 · · ·nk

)
(HpRP (t, λ)H−p)

× [Hp(∂n1
t P (t))H−p−ν ] [Hp+ν RP (t, λ)H−p] · · ·

· · · [Hp (∂nk
t P (t))H−p−ν ] [Hp+ν RP (t, λ)H−p] . (B.9)

Then using estimate (B.5), Lemma B.1 with θ = ν, estimates (B.4) and (3.13), we obtain 
for λ ∈ Γj , j ≥ 1

sup
t∈R

‖Hp ∂�
tRP (t, λ)H−p‖ ≤ Cn,�

dist(λ, σ(H))
1

Δ̃δ
j−1

, ∀� ≥ 1 , 0 ≤ p ≤ n , (B.10)

where the Cn,� can be chosen independent of j, J. (iii) For � ≥ 1, one has Hp ∂�
tΠ(t) H−p =

− 1
2πi

∮
Γj

Hp ∂�
tRP (t, λ)H−p dλ, hence by (B.6)

sup
t∈R

‖Hp ∂�
tΠ(t)H−p‖ ≤ Cn,�

Δ̃δ
j−1

1
2π

∮
Γj

dλ

dist(λ, σ(H)) ≤ Cn,�

Δ̃δ
j−1

where to pass from the first to the second inequality we used that, deforming the con-
tour Γj to two vertical lines passing between the middle of the gaps one has

1
2π

∮
Γj

dλ

dist(λ, σ(H)) ≤ 1
2π

∞∫
−∞

(
1

(Δ̃j−1/2)2 + x2)1/2
+ 1

(Δ̃j/2)2 + x2)1/2

)
dx

≤ 2 � (B.11)

Lemma B.3. Fix n ≥ 0. Let P (t), Q(t) be operators fulfilling (Vs)n with estimates as 
in (B.4). Furthermore assume that B(·) ∈ C∞

b (R, L(H2p)), ∀0 ≤ p ≤ n, fulfilling the 
estimates

sup
t∈R

‖Hp ∂�
tB(t)H−p‖ ≤ bn,� , ∀� ≥ 0, 0 ≤ p ≤ n . (B.12)

Provided J is sufficiently large, the operator

K(t) := − 1
2πi

∮
Γj

RP (t, λ)B(t)RQ(t, λ) dλ

is well defined and bounded from H2p to itself, ∀0 ≤ p ≤ n, and fulfills

sup
t∈R

‖Hp ∂�
tK(t)H−p‖ ≤ Cn,�

Δ̃j−1
sup
l≤�

bn,l , ∀� ≥ 0 , 0 ≤ p ≤ n .
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Proof. By Lemma B.2, provided J is sufficiently large, Γj is contained in the resolvent 
sets of H +P (t) and H +Q(t), thus K(t) is well defined. To estimate it, take first � = 0. 
Then by (B.5) and (B.12)

sup
t∈R

‖Hp K(t)H−p‖ ≤ 1
2π

∮
Γj

4 bn,0 dλ
dist(λ, σ(H))2 ≤ 16 bn,0

Δ̃j−1
,

where once again we deformed the contour as in (B.11). Take now � ≥ 1. By Leibnitz 
formula we get

∂�
tK(t) = − 1

2πi

∮
Γj

RP (t, λ) (∂�
tB(t)) RQ(t, λ) dλ (B.13)

−
∑

n1+n2=�
n1≥1

(
�

n1 n2

)
1

2πi

∮
Γj

(∂n1
t RP (t, λ)) (∂n2

t B(t)) RQ(t, λ) dλ (B.14)

−
∑

n2+n3=�
n3≥1

(
�

n2 n3

)
1

2πi

∮
Γj

RP (t, λ) (∂n2
t B(t)) (∂n3

t RQ(t, λ)) dλ (B.15)

−
∑

n1+n2+n3=�
n1,n3≥1

(
�

n1 n2 n3

)
1

2πi

∮
Γj

(∂n1
t RP (t, λ)) (∂n2

t B(t)) (∂n3
t RQ(t, λ)) dλ

(B.16)

Using (B.12) and (B.5) one finds easily that ∂�
tK(t) fulfills the claimed estimate (see the 

proof of Lemma C.3 for the details in the case of perturbations analytic in time). �
Appendix C. Technical estimates for perturbations analytic in time

In this section we repeat the estimates of the previous section in case of perturbations 
analytic in time.

In the following we fix n ∈ N ∪ {0} and L ∈ N. Then for any 0 ≤ p ≤ n, all constants 
may depend on n, but not on L. Finally we denote by A a constant as in (4.2).

Lemma C.1. Let P and Q be operators analytic in time fulfilling ∀0 ≤ � ≤ L, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tP (t) H−p‖ ≤ a bmin(�,1) ck+� (k + �)!

A(1 + �)2 , (C.1)

and

sup ‖Hp ∂�
tQ(t) H−p‖ ≤ d fmin(�,1) ci+� (i + �)!

2 , (C.2)

t∈R A(1 + �)
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for some positive constants a, b, c, d, f ∈ R and k, i ∈ N ∪ {0}. Then ∀0 ≤ � ≤ L, 
∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
t (PQ)(t) H−p‖ ≤ a d (b + f + bf)min(�,1) ck+i+� (k + i + �)!

A(1 + �)2 .

Proof. First consider the case � = 0. One has supt∈R ‖Hp P (t)Q(t) H−p‖ ≤
a d ck+i (k+i)!

A , where we used A ≥ 1. Now take 1 ≤ � ≤ L. By Leibnitz formula

∂�
t (PQ) = (∂�

tP )Q + P (∂�
tQ) +

�−1∑
j=1

(
�

j

)
(∂j

tP ) (∂�−j
t Q) .

Using (C.1) and (C.2) we get immediately

sup
t∈R

‖Hp ∂�
t (PQ)(t) H−p‖ ≤ a (b + f) d ck+�+i (k + � + i)!

A(1 + �)2

+ a d b f ck+�+i (k + � + i)!
A2

�−1∑
n=1

(
�

j

)(
k + i + �

k + j

)−1

× 1
(1 + j)2 (1 + �− j)2 .

Now use that 
(
k+i+�
k+j

)
≥

(
�
j

)
and (4.2) to conclude the proof. �

Lemma C.2. Let P be an operator analytic in time fulfilling ∀0 ≤ � ≤ L, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tP (t) H−p−ν‖ ≤ a bmin(�,1) �! c�

A(1 + �)2 (C.3)

for some positive constants a, b, c ∈ R. Provided that

24 CH a(1 + b) ≤ 2Jμδ , (C.4)

the following holds true:

(i) H + P (t) fulfills ˜(Hgap) uniformly in time t ∈ R.
(ii) Let Γj be as in (3.7). Any λ ∈ Γj belongs to the resolvent set of the operator H+P (t). 

Denote RP (t, λ) := (H + P (t) − λ)−1 Then for any λ ∈ Γj, ∀j ∈ N, estimate (B.5)
holds and furthermore

sup
t∈R

‖Hp ∂�
tRP (t, λ)H−p‖ ≤ �! c�

A(1 + �)2
23 CH a b

Δ̃δ
j−1 dist(λ, σ(H))

,

∀0 ≤ p ≤ n , 1 ≤ � ≤ L . (C.5)
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(iii) For any j ≥ 1 consider the projector (B.7). It fulfills

sup
t∈R

‖Hp ∂�
tΠj(t)H−p‖ ≤ �! c�

A(1 + �)2
24 CH a b

Δ̃δ
j−1

, ∀0 ≤ p ≤ n, 1 ≤ � ≤ L .

Proof. (i) See the proof of Lemma B.1(i).
(ii) We prove only estimate (C.5). The other statements are proved as in Lemma B.2(ii). 

First remark that by Lemma B.1 with θ = ν and Lemma 3.4

sup
t∈R

‖Hp+ν RP (t, λ) H−p‖ ≤ 2 CH
Δ̃δ

j−1
, ∀λ ∈ Γj , ∀0 ≤ p ≤ n (C.6)

provided

a 4 CH ≤ Δ̃δ
j−1 .

Clearly such condition is implied by (C.4).
Now take 1 ≤ � ≤ L. Formula (B.9) and estimates (C.3), (B.5), (C.6) give for any 

λ ∈ Γj , ∀j ≥ 1, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tRP (t, λ) H−p‖ (C.7)

≤ �! c�
�∑

k=1

2
dist(λ, σ(H))

(
2 CH a b

Δ̃δ
j−1

)k
1
Ak

∑
n1,...,nk∈N

n1+···+nk=�

1
(1 + n1)2

· · · 1
(1 + nk)2

≤ �! c�

A(1 + �)2
2

dist(λ, σ(H))

�∑
k=1

(
2 CH a b

Δ̃δ
j−1

)k

≤ �! c�

A(1 + �)2
23 CH a b

Δ̃δ
j−1 dist(λ, σ(H))

where to pass from the third to fourth line we used that by (C.4) 2 CH a b

Δ̃δ
j−1

≤ 1
2 . Thus 

(C.5) is proved.
(iii) By (C.5) one has ∀1 ≤ � ≤ L, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tΠ(t) H−p‖ ≤ �! c�

A(1 + �)2
23 CH a b

Δ̃δ
j−1

1
2π

∮
Γj

dλ

dist(λ, σ(H))

≤ �! c�

A(1 + �)2
24 CH a b

Δ̃δ
j−1

where we used also (B.11). �
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Lemma C.3. Let P (t), Q(t) be operators analytic in time fulfilling ∀0 ≤ � ≤ L, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tP (t) H−p−ν‖ , sup

t∈R

‖Hp ∂�
tQ(t) H−p−ν‖ ≤ a bmin(�,1) �! c�

A(1 + �)2 . (C.8)

Assume that (C.4) holds. Furthermore let B(t) be an operator analytic in time fulfilling 
∀0 ≤ � ≤ L

sup
t∈R

‖Hp ∂�
tB(t) H−p‖ ≤ h c�

�!
A(1 + �)2 , ∀0 ≤ p ≤ n (C.9)

for some positive h ∈ R. Then the operator

K(t) := − 1
2πi

∮
Γj

RP (t, λ)B(t)RQ(t, λ) dλ

is analytic in time, bounded from Hp to Hp ∀0 ≤ p ≤ n, and fulfills ∀0 ≤ � ≤ L, 
∀0 ≤ p ≤ n

sup
t∈R

‖∂�
tK(t)‖ ≤ �! cl

A(1 + �)2
h 25

Δ̃j−1
.

Proof. First consider the resolvents RP (t, λ), RQ(t, λ). Proceeding as in the proof of 
Lemma B.2, they are well defined for any λ ∈ Γj , ∀j ≥ 1, and fulfill estimates (B.5), (C.5). 
Consider now K(t). For � = 0 one has

sup
t∈R

‖Hp K(t) H−p‖ ≤ h

A

1
2π

∮
Γj

4 dλ
dist(λ, σ(H))2 ≤ 4h

A Δ̃j−1
, ∀0 ≤ p ≤ n .

For 1 ≤ � ≤ L, consider (B.13)–(B.16). We estimate each line. By (C.9), (B.5) one has

sup
t∈R

‖Hp (B.13) H−p‖ ≤ 4h
Δ̃j−1

�! c�

A(1 + �)2 , ∀0 ≤ p ≤ n .

To estimate the second line we use (B.5), (C.5), (C.9) and (C.4) to get ∀0 ≤ p ≤ n

sup
t∈R

‖Hp (B.14) H−p‖ ≤ 24 CH a b h

Δ̃δ
j−1

1
2π

∮
Γj

dλ

dist(λ, σ(H))2 ≤ �! c�

A(1 + �)2
26 CH h a b

Δ̃1+δ
j−1

.

The third line is estimated exactly as the second one. We pass to the last line. Using 
(C.5), (C.9) we get ∀0 ≤ p ≤ n
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sup
t∈R

‖Hp (B.16) H−p‖ ≤ �! c�

A(1 + �)2
26 C2

H a2 b2 h

Δ̃2δ
j−1

1
2π

∮
Γj

dλ

dist(λ, σ(H))2

≤ �! c�

A(1 + �)2
28 h (CH a b)2

Δ̃1+2δ
j−1

.

Altogether we find that for 1 ≤ � ≤ L, ∀0 ≤ p ≤ n

sup
t∈R

‖Hp ∂�
tK(t) H−p‖ ≤ �! c�

A(1 + �)2
22 h

Δ̃j−1

(
1 + CH a b 25

Δ̃δ
j−1

+ (CH a b)2 26

Δ̃2δ
j−1

)

≤ �! c�

A(1 + �)2
h 25

Δ̃j−1

where we used again (C.4). �
Appendix D. Proof of Lemma 3.8

We start with an abstract result. Let HW (t) := H + W (t), H being a self-adjoint 
positive operator in H0, W (t) a symmetric operator, Hν-bounded with ν < 1. We 
assume that, for a fixed n ∈ N, we have

(W)n Hp W (·) H−p−ν ∈ C0
b (R, L(H0)), supt∈R ‖Hp W (t) H−p−ν‖ ≤ Dn, ∀0 ≤ p ≤ n.

Lemma D.1. Let n ≥ 1. Assume that W satisfies condition (W)n.
Define Wn(t) = (H +W (t))n−Hn. Then we have WnH

1−n−ν ∈ L(H0). Furthermore 
there exist positive constants γ0, γ1 depending only on H such that

‖WnH
1−n−ν‖ ≤ γ0γ

n
1 D

n+1
n . (D.1)

Finally we have

cn‖ψ‖2n ≤ ‖(H + W (t) + c0)n‖0 ≤ Cn‖ψ‖2n, ∀ψ ∈ H2n, ∀t ∈ R, (D.2)

where cn, Cn depend only on Dn.

Proof. We proceed by induction on n. For n = 1 the two side estimate is a classical 
perturbation result using (W)0. For n > 1 we have

Wn+1(t) = Wn(t) H + Wn(t) W (t) + Hn W (t). (D.3)
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Let us denote an(t) = ‖Hn W (t) H−n−ν‖ and fn(t) = ‖Wn(t) H1−n−ν‖. By induction 
on n, using (D.3), we get

fp+1(t) ≤ ap(t) + fp(t) + γ0 ap(t) fp(t) (D.4)

where γ0 is a constant depending only on H. From (D.4) we get easily (D.1).
Now we can conclude easily to get (D.2) using the interpolation inequality: for 0 ≤

s < n and ε ∈ ]0, 1] we have:

‖Hsψ‖2
0 ≤ ε2‖Hnψ‖2

0 + ε
2s

s−n ‖ψ‖2
0.

From (D.1) we have

‖Wn(t)ψ‖0 ≤ ‖Wn(t) H1−n−ν‖ ‖Hn+ν−1ψ‖0 .

Taking s = n + ν − 1 and ε small enough, we get (D.2) where cn and Cn depend only 
on Dn. �
Proof of Lemma 3.8. (i) Recall that Had,m(t) = H+V (t) −Bm(t). We apply Lemma D.1
with W = V −Bm. By the assumptions on V and Lemma 3.5, W fulfills (W)n, thus we 
get (3.22).

(ii) If J is sufficiently large, by Lemma 3.2 the Hamiltonian Had,m(t) satisfy ˜(Hgap)
uniformly in t ∈ R (see Corollary 3.7). Then writing

Had,m(t) =
∑
j≥1

Πm,j(t)Had,m(t) Πm,j(t) ,

one gets easily that

∑
j≥1

(λ−
j + c0)2p‖Πm,j(t)ψ‖2

0 ≤ ‖(Had,m(t) + c0)pψ‖2
0

≤
∑
j≥1

(λ+
j + c0)2p‖Πm,j(t)ψ‖2

0 (D.5)

and ∑
j≥1

(λ+
j + c0)2p‖Πm,j(t)ψ‖2

0 ≤ Cp2J(μ+1)2p‖Λp
m(t)ψ‖2

0

∑
j≥1

(λ−
j + c0)2p‖Πm,j(t)ψ‖2

0 ≥ cp2J(μ+1)2p‖Λp
m(t)ψ‖2

0

from which (3.23) follows. �
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Appendix E. Some properties of the pseudodifferential calculus

We recall here some fundamental results of symbolic calculus. For the proof see [31,18].

Theorem E.1 (Symbolic calculus I). Let A ∈ S̃ν
k,�, B ∈ S̃μ

k,� be symbols. Then there exists 
a unique semi-classical symbol A�B ∈ S̃ν+μ

k,� such that OpW
� (A) OpW

� (B) = OpW
� (A�B). 

A�B is the Moyal product of A and B.

The Moyal product is a bilinear continuous map. More precisely it holds the following: 
for every α, β, there exists a positive constant Cαβ (independent of A and B) and an 
integer M ≡ M(α, β) ≥ 1 such that

pν+μ
αβ (A�B) ≤ Cαβ |a|M,ν |b|M,μ .

Theorem E.2 (Symbolic calculus II). Let A ∈ S̃ν
k,�, B ∈ Sμ

k,� be symbols. Then there exists 
a unique semi-classical symbol A�B ∈ S̃ν+μ

k,� such that OpW
� (A) OpW

� (B) = OpW
� (A�B). 

A�B is the Moyal product of A and B.

Theorem E.2 is useful in case μ < 0, so that the symbol A�B gains in decay at 
infinity. The symbolic calculus implies the following result on the commutator of two 
pseudodifferential operators:

Corollary E.3 (Commutator). Let A ∈ S̃ν
k,�, ν ≥ 0, B ∈ S̃μ

k,� be symbols. Then there 

exists a unique semi-classical symbol C ∈ S̃
ν+μ−(k+�)
k,� such that [OpW

� (A), OpW
� (B)] =

OpW
� (C).

The second result concerns the boundedness of pseudodifferential operators:

Theorem E.4 (Calderon–Vaillancourt). Let A ∈ S̃0
k,� be a symbol. Then there exist con-

stants C, N > 0 such that OpW
� (A) extends to a linear bounded operator from L2 to 

itself, and the following estimate holds:

‖OpW
� (A)‖L(L2) ≤ C |A|N,0 , ∀� ∈ ]0, 1]. (E.1)

Notice that C and N are universal constants, independent on A (see for example [32]).

References

[1] D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded pertur-
bations, II, Comm. Math. Phys (2017), http://dx.doi.org/10.1007/s00220-016-2825-2.

[2] D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded pertur-
bations, I, TAMS, to appear; arXiv e-prints, June 2016.

[3] J.M. Barbaroux, A. Joye, Expectation values of observables in time-dependent quantum mechanics, 
J. Stat. Phys. 90 (5–6) (1998) 1225–1249.

http://dx.doi.org/10.1007/s00220-016-2825-2
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib62616A6Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib62616A6Fs1


780 A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781
[4] M.S. Birman, M.G. Krein, On the theory of wave operators and scattering theory, Sov. Math., Dokl. 
3 (1962) 740–744.

[5] J. Bourgain, Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential, 
Comm. Math. Phys. 204 (1) (1999) 207–247.

[6] J. Bourgain, On growth of Sobolev norms in linear Schrödinger equations with smooth time depen-
dent potential, J. Anal. Math. 77 (1999) 315–348.

[7] Y. Colin de Verdière, Sur le spectre des opérateurs elliptiques à bicaractéristiques périodiques, 
Comment. Math. Helv. 54 (3) (1979) 508–522.

[8] L. Corsi, E. Haus, M. Procesi, A KAM result on compact Lie groups, Acta Appl. Math. 137 (2015) 
41–59.

[9] J.-M. Delort, Growth of Sobolev norms for solutions of linear Schrödinger equations on some com-
pact manifolds, Int. Math. Res. Not. IMRN 12 (2010) 2305–2328.

[10] J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with 
harmonic oscillator potential, Comm. Partial Differential Equations 39 (2014) 1–33.

[11] H. Eliasson, S. Kuksin, On reducibility of Schrödinger equations with quasiperiodic in time poten-
tials, Comm. Math. Phys. 286 (1) (2009) 125–135.

[12] D. Fang, Q. Zhang, On growth of Sobolev norms in linear Schrödinger equations with time dependent 
Gevrey potential, J. Dynam. Differential Equations 24 (2) (2012) 151–180.

[13] R. Faris, W. Lavine, Commutators and self-adjointness of Hamiltonian operators, Comm. Math. 
Phys. 35 (1974) 39–48.

[14] R. Feola, M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equa-
tions, J. Differential Equations 259 (7) (2015) 3389–3447.

[15] K.O. Friedrichs, The identity of weak and strong extensions of differential operators, Trans. Amer. 
Math. Soc. 55 (1944) 132–151.

[16] B. Grébert, E. Paturel, On reducibility of quantum harmonic oscillator on Rd with quasiperiodic in 
time potential, arXiv e-prints, March 2016.

[17] B. Helffer, D. Robert, Asymptotique des niveaux d’énergie pour des hamiltoniens à un degré de 
liberté, Duke Math. J. 49 (4) (1982) 853–868.

[18] B. Helffer, D. Robert, Propriétés asymptotiques du spectre d’opérateurs pseudo-différentiels, Comm. 
Partial Differential Equations 7 (1982) 795–882.

[19] L. Hörmander, The Analysis of Linear Partial Differential Operators I–III, Grundlehren der Math-
ematischen Wissenschaften, vol. 256, Springer-Verlag, 1985.

[20] J. Howland, Stability of quantum oscillators, J. Phys. A 25 (1992) 5177–5181.
[21] A. Joye, Geometrical and Mathematical Aspects of the Adiabatic Theorem of Quantum Mechanics, 

Thèse du Département de Physique de l’E.P.F.L. n. 1022, 1992.
[22] A. Joye, Absence of absolutely continuous spectrum of Floquet operators, J. Stat. Phys. 75 (1994) 

929–952.
[23] T. Kato, Linear evolution equations of hyperbolic type, J. Fac. Sci. Univ. Tokyo 17 (1970) 241–258.
[24] J. Kisynski, Sur les opérateurs de Green des problèmes de Cauchy abstraits, Studia Math. 23 

(1963/1964) 285–328.
[25] M. Lewin, P. Than Nam, B. Schlein, Fluctuations around Hartree states in the mean-field regime, 

Amer. J. Math. 137 (6) (2015) 1613–1650.
[26] E. Nelson, The time-ordered operators products of sharp-time quadratic forms, J. Funct. Anal. 11 

(1972) 211–219.
[27] G. Nenciu, Floquet operators without absolutely continuous spectrum, Ann. Inst. Henri Poincaré 

A, Phys. Théor. 59 (1) (1993) 91–97.
[28] G. Nenciu, Linear adiabatic theory. Exponential estimates, Comm. Math. Phys. 152 (1993) 479–496.
[29] G. Nenciu, Adiabatic theory: stability of systems with increasing gaps, Ann. Inst. Henri Poincaré 

A, Phys. Théor. 67 (4) (1997) 411–424.
[30] M. Reed, B. Simon, Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness, 

Methods of Modern Mathematical Physics, Elsevier Science, 1975.
[31] D. Robert, Propriétés spectrales d’opérateurs pseudo-différentiels, Comm. Partial Differential Equa-

tions 3 (1978) 775–826.
[32] D. Robert, Autour de l’approximation semi-classique, Progress in Mathematics, vol. 68, Birkhäuser 

Boston, Inc., Boston, MA, 1987.
[33] J. Schmid, Private communication, 2016.
[34] B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms, Princeton University 

Press, NJ, 1971.

http://refhub.elsevier.com/S0022-1236(17)30091-5/bib62696B72s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib62696B72s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib426F75726761696E31393939s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib426F75726761696E31393939s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib626Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib626Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib636476s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib636476s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib636F7273693135s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib636F7273693135s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib64656C32s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib64656C32s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib64656C31s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib64656C31s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib656C696173736F6E3039s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib656C696173736F6E3039s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7A68616E67s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7A68616E67s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib66616C61s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib66616C61s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib66656F6C613135s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib66656F6C613135s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib667269s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib667269s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F623832s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F623832s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6865726Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6865726Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib686Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib686Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib686F77s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6A6F7930s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6A6F7930s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6A6F79s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6A6F79s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6B61746Fs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6B69s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6B69s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6C6577696Es1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6C6577696Es1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E65s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E65s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E656E66s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E656E66s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E656E65s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E656Es1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib6E656Es1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib72656564313937356969s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib72656564313937356969s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F31s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F31s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F626572745F626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib726F626572745F626F6F6Bs1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib73696Ds1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib73696Ds1


A. Maspero, D. Robert / Journal of Functional Analysis 273 (2017) 721–781 781
[35] D. Tataru, Phase space transforms and microlocal analysis, in: Phase Space Analysis of Partial 
Differential Equations, vol. II, in: Publ. Cent. Ric. Mat. Ennio Giorgi, Scuola Norm. Sup., Pisa, 
2004, pp. 505–524.

[36] W.-M. Wang, Logarithmic bounds on Sobolev norms for time dependent linear Schrödinger equa-
tions, Comm. Partial Differential Equations 33 (12) (2008) 2164–2179.

[37] K. Yajima, Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys. 110 
(1987) 415–426.

[38] K. Yajima, Schrödinger evolution equations with magnetic fields, J. Anal. Math. 56 (1991) 29–76.
[39] Z. Zhang, Z. Zhao, Ballistic transport and absolute continuity of one-frequency Schrödinger opera-

tors, arXiv e-prints, December 2015.
[40] Z. Zhao, Ballistic motion in one-dimensional quasi-periodic discrete Schrödinger equation, Comm. 

Math. Phys. 347 (2) (2016) 511–549.

http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7461s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7461s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7461s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib77616E673038s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib77616E673038s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib796131s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib796131s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib796132s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7A68616F3136s1
http://refhub.elsevier.com/S0022-1236(17)30091-5/bib7A68616F3136s1

	On time dependent Schrödinger equations:  Global well-posedness and growth of Sobolev norms
	1 Introduction and statement of the main results
	1.1 Introduction
	1.2 Main result
	1.3 Scheme of the proof

	2 Existence of the propagator
	3 Growth of norms for perturbations smooth in time
	3.1 Spectral properties of H+V(t)
	3.2 Adiabatic approximation
	3.3 Proof of Lemma 3.5

	4 Growth of norms for perturbations analytic in time
	4.1 Proof of Proposition 4.1

	5 Applications
	5.1 One degree of freedom Schrödinger operators
	5.2 Operators on compact manifolds
	5.3 Time dependent electro-magnetic ﬁelds
	5.4 Differential systems of ﬁrst order
	5.5 A discrete model example
	5.6 Pseudodifferential operators on Rn

	Acknowledgments
	Appendix A Essentially self-adjointness
	Appendix B Technical estimates for perturbations smooth in time
	Appendix C Technical estimates for perturbations analytic in time
	Appendix D Proof of Lemma 3.8
	Appendix E Some properties of the pseudodifferential calculus
	References


