
12 Conjugation of pseudodifferential operators by flows

Let a(t) ∈ C0(R,Sm). We know from the previous section that if a is real valued and m ≤ 1,
then �

i∂tu = Op (a(t))u

u(t0) = u0 ∈ Hs
(12.1)

has a unitary propagator U(t, t0) bounded Hr → Hr. We want to understand how pseudod-
ifferential operators are transformed by the propagator U(t, t0). First we have the following
result.

Lemma 12.1. Assume that −ia fulfills (H1)–(H2) of Theorem 11.3, and denote by U(t, t0) the
propagator of (12.1). Let b ∈ Sρ, ρ ∈ R and set

Bt := U(t, 0)Op (b) U(t, 0)−1.

Then Bt fulfills the Heisenberg equation

d

dt
Bt = −i[Op (a(t)) , Bt] . (12.2)

Proof. Since
∂t U(t, 0) = −iOp (a(t))U(t, 0)

and
∂t (U(t, 0)−1) = −U(t, 0)−1 (∂tU(t, 0))U(t, 0)−1 = +iU(t, 0)−1 Op (a(t)) ,

we have

d

dt
Bt = −iOp (a(t))U(t, 0)Op (b) U(t, 0)−1 + iU(t, 0)Op (b)U(t, 0)−1Op (a(t))

= −iOp (a(t))Bt + iBtOp (a(t)) = −i[Op (a(t)) , Bt].

There are two conceptually distinct cases to treat: the first one is when a ∈ Sm with m < 1,
the second one when m = 1. The difference is that in the first case the commutator in (12.2)
reduces the order of pseudodifferential operators, while in the second case the order is preserved.
So we treat the two cases differently.

12.1 The case m < 1

In this section we deal with m < 1, and only in the the autonomous case, namely we assume
that the symbol a ∈ Sm does not depend on time (this is the case we will encounter in the
applications).

In this case the flow of (12.1) is a one parameter group of transformations U(t) fulfilling:

U(t+ s) = U(t)U(s) , U(0) = 1, U(−t) = U(t)−1. (12.3)

Remark that Op (a) commutes with its propagator, namely

Op (a)U(t) = U(t)Op (a) . (12.4)

This follows since, as a direct computation gives, d
dt (U(−t)Op (a) U(t)) = 0 which implies

U(−t)Op (a)U(t) = Op (a).
In this case we can obtain an expansion of Bt in pseudodifferential operators of decreasing

order, plus an arbitrary regularizing remainder.
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Lemma 12.2. Assume that a ∈ Sm, m < 1, and b ∈ Sρ, ρ ∈ R are time independent. Then for
every N ≥ 0 one has

U(t)Op (b) U(−t) =

N�

�=0

(−i)�t�

�!
ad�Op(a)(Op (b)) +RN (12.5)

where
adX(A) = [X,A], (12.6)

and RN is given by

RN =
tN+1 (−i)N+1

N !

� 1

0

(1− τ)N+1 U(τ t) adN+1
Op(a)(Op (b))U(−τ t)dτ . (12.7)

The expansion (12.5) is in decreasing order, indeed

ad�Op(a)(Op (b)) ∈ Op
�
Sρ−�(1−m)

�
, RN : Hr → Hr−ρ+(N+1)(1−m) (12.8)

Proof. We know that

d

dt
(U(t)Op (b) U(−t)) = −i [Op (a) , U(t)Op (b) U(−t)] = U(t) (−i[Op (a),Op (b)])U(−t)

(12.9)
which evaluated at t = 0 gives

d

dt
(U(t)Op (b) U(−t))

����
t=0

= −i adOp(a)(Op (b)) .

Then iterating (12.9) we obtain

d�

dt�
(U(t)Op (b) U(−t))

����
t=0

= (−i)� ad�Op(a)(Op (b))

and the Taylor formula gives us (12.5) and (12.7).
Now by symbolic calculus we have

adOp(a)(Op (b)) ∈ Op
�
Sρ−(1−m)

�
⇒ ad�Op(a)(Op (b)) ∈ Op

�
Sρ−�(1−m)

�

Concerning RN , it is sufficient to use (12.7) and the fact that U(t) is bounded from Hr → Hr

for any r ∈ R.

The condition m < 1 is fundamental, since it allows us to get an expansion in decreasing
order of pseudodifferential operators.

12.2 The case m = 1

The second case is when m = 1. This is conceptually different from the previous one, because
the expansion (12.5) is not anymore in decreasing order, so we must proceed differently.

How to deal with this case is the content of the Egorov theorem, which we state and prove
for nonautonomous classical symbols. Here nonautonomous means symbols depending explicitly
on time.

Classical symbols means the following:
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Definition 12.3. We say that a ∈ Sm
cl is a classical symbol if a ∼ �

j≥0 am−j where am−j(x, ξ)
is positively homogeneous of degree m− j in ξ and localized in x, namely there exists R > 0 such
that am−j(x, ξ) = 0 for any j if |x| ≥ R.

The main result is the following one. We follow the presentation of [Tay81].

Theorem 12.4 (Egorov). Assume that a(t, x, ξ) ∈ S1
cl, a(t, x, ξ) ∼

�
j a1−j with a1 real valued.

Let U(t, 0) be the flow of i∂tu = Op (a(t))u. Then for any b ∈ Sρ, ρ ∈ R, the operator

Bt = U(t, 0)Op (b) U(t, 0)−1 (12.10)

is a pseudodifferential operator in Op (Sρ) whose principal symbol is given by

bt(x, ξ) = b((φt,0
a1
)−1(x, ξ)) (12.11)

where φt,0
a1
(x, ξ) is the time t-flow of the time dependent Hamiltonian system having a1 as Hamil-

tonian and (x, ξ) as initial datum:
�
ẋ = ∂ξa1(t, x, ξ)

ξ̇ = −∂xa1(t, x, ξ)
, (x(0), ξ(0)) = (x, ξ) (12.12)

Proof. Recall that Bt fulfills the Heisenberg equation (12.2). We will construct an approximate
solution Qt of the Heisenberg equation (12.2) and then show that Bt−Qt is a smoothing operator.
So we are looking for Qt = Op (q(t)), q ∈ Sρ

cl solving

d

dt
Qt = −i [Op (a) , Qt] +R(t), Q0 = B0 ≡ Op (b) (12.13)

where R(t) is a smooth family of operators in Op (S−∞). We do this by constructing q(t, x, ξ) ∈
C∞(R,Sρ

cl) as an asymptotic series

q(t, x, ξ) ∼
�

j≥0

qρ−j(t, x, ξ), qρ−j ∈ C∞(R,Sρ−j)

with initial datum

qρ(0, x, ξ) = b(x, ξ), qρ−j(0, x, ξ) = 0, ∀j ≥ 1. (12.14)

We determine qρ−j recursively, starting from qρ. At the level of symbols, the Heisenberg equation
(12.13) reads

∂tq(t, x, ξ) = −{a(t), q(t)}M + r(t, x, ξ) (12.15)

and we solve this equation order by order. As

−{a(t), q(t)}M = −{a(t), q(t)}+ Sρ−1 = −{a1(t), qρ(t)}+ Sρ−1,

at principal order (12.13) is given by
�

d
dtqρ(t, x, ξ) = −{a1(t, x, ξ), qρ(t, x, ξ)}
qρ(0, x, ξ) = b(x, ξ)

(12.16)

Namely qρ is a solution of the transport equation (recall the normalization of Poisson bracket in
(4.7))

d

dt
qρ + ∂ξa1 · ∂xqρ − ∂xa1 · ∂ξqρ = 0. (12.17)
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Any solution of a transport equation is constant along its characteristics, which for (12.17) are
given by

dt

ds
= 1,

dx

ds
= ∂ξa1(t, x, ξ),

dξ

ds
= −∂xa1(t, x, ξ). (12.18)

Denote by φt,0(x, ξ) the flow of (12.12), which is the flow along system (12.18) at time t with
initial datum (x, ξ) at time 0. Note that it is a non-autonomous flow, as such it enjoys the
following properties

φt,s ◦ φs,τ = φt,τ , (φt,0)−1 = φ0,t. (12.19)

To find the solution of a transport equation, one employs the method of characteristic. This
reduces basically to the following consideration: assume that qρ(t, x, ξ) is a solution, then the
function

s �→ q(s, x, ξ) := qρ(s,φ
s,0(x, ξ)) (12.20)

is constant. Indeed denoting (x(s), ξ(s)) = φs,0(x, ξ) one has

d

ds
q(s, x, ξ) = ∂sqρ(s, x(s), ξ(s)) + (∂xqρ)(s, x(s), ξ(s))

dx(s)

ds
+ (∂ξqρ)(s, x(s), ξ(s))

dξ(s)

ds
(12.18)
= (∂tqρ + {a1, qρ}) |(s,x(s),ξ(s))

(12.16)
= 0

It follows that
qρ(t,φ

t,0(x, ξ)) = qρ(0,φ
0,0(x, ξ)) = qρ(0, x, ξ) = b(x, ξ) (12.21)

and using (12.19) we obtain
qρ(t, x, ξ) = b((φt,0)−1(x, ξ)) (12.22)

which is exactly (12.11). It follows from Lemma 12.5 below that (12.22) defines a symbol.
So far we have obtained qρ ∈ C∞(R,Sρ) so that

∂tqρ(t, x, ξ) = −{a(t), qρ(t)}M + rρ−1 (12.23)

Then we proceed recursively: assume that we know already qρ, . . . , qρ−N+1 so that

∂t (qρ + . . .+ qρ−N+1) = −{a(t), qρ + . . .+ qρ−N+1}M + rρ−N , (12.24)

and let us compute qρ−N ∈ C∞(R,Sρ−N ) so that

∂t (qρ + . . .+ qρ−N ) = −{a(t), qρ + . . .+ qρ−N}M + rρ−N−1. (12.25)

This is achieved provided qρ−N solves

∂tqρ−N = −{a(t), qρ−N}M + rρ−N + Sρ−N−1.

As

{a, qρ−N}M =
�

j≥0

{a1−j , qρ−N}M =
�

j

{a1−j , qρ−N}� �� �
∈Sρ−(N+j)

+ r(a1−j , qρ−N )� �� �
∈Sρ−(N+j+1)

,

we get what we want provided that

d

dt
qρ−N = −{a1, qρ−N}+ bρ−N , qρ−N (0, x, ξ) = 0, (12.26)

but this is a forced version of (12.16), which is solved by Duhamel formula. We have thus solved
(12.13) up to arbitrary order.
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Now we show that Bt−Qt is a smoothing operator. We show that we show that for arbitrary
s, s� ∈ R, one has that for any f ∈ Hs

U(t, 0)Op (b)U(t, 0)−1f −Qtf ∈ Hs�

or equivalently, that
U(t, 0)Op (b) f −QtU(t, 0)f ∈ Hs�

Denote v(t) = U(t, 0)Op (b) f and w(t) = QtU(t, 0)f . Then v(t) solves

i∂tv = Op (b) v, v(0) = Op (b) f (12.27)

while, by (12.13), w(t) solves

i∂tw = Op (a)w +R(t)U(t, 0)w, w(0) = Op (b) f (12.28)

Hence taking the difference

i∂t(v − w) = Op (a) (v − w) +R(t)U(t, 0)w, v(0)− w(0) = 0 (12.29)

Hence Duhamel formula gives us

v(t)− w(t) =

� t

0

U(t, 0)−1U(s, 0)R(s)U(s, 0)w(s)ds ∈ Hs�

since R(t) is a smoothing operator.

A crucial ingredient in the proof of Egorov theorem is that (12.11) is still a symbol. This is
also the property that one has to verify in different setups, and it might fail according to the
pseudodifferential classes that are employed.

Lemma 12.5. Let a1(t, x, ξ) ∈ S1 be positive homogeneous of degree 1 is ξ and localized in x.
Denote by φt,s

a1
(x, ξ) the solution of the time dependent Hamltonian eqution

�
ẋ = ∂ξa1(t, x, ξ)

ξ̇ = −∂xa1(t, x, ξ)
, (x(s), ξ(s)) = (x, ξ) (12.30)

Then the following holds true:

(i) For any t, s ∈ R, the flow φt,s
a1
(x, ξ) exists and moreover, denoting φt,s

a1
(x, ξ) = (xt,s(x, ξ), ξt,s(x, ξ)),

one has that

xt,s(x,λξ) = xt,s(x, ξ), ξt,s(x,λξ) = λξt,s(x, ξ), ∀λ > 0, ∀t, s ∈ R (12.31)

and moreover xt,s(x, ξ)− x and ξt,s(x, ξ) are localized in x.

(ii) For any t, s ∈ R, one has xt,s(x, ξ) − x ∈ S0, ξt,s(x, ξ) ∈ S1 (meaning each component of
the flow is in the class).

(iii) If b ∈ Sρ, ρ ∈ R, then for any t, s in R one has

�b(x, ξ) := b(xt,s(x, ξ), ξt,s(x, ξ)) ∈ Sρ
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Proof. (i) The flow exists globally since the vector field grows at most linearly. To check the
homogeneity of the flow, denote for any λ > 0,

xt,s
λ (x, ξ) := xt,s(x,λξ) , ξt,sλ (x, ξ) := λ−1ξt,s(x,λξ)

Now we have that ∂ξa1 is positive homogeneous of degree 0 in ξ, and ∂xa1 is positive homogeneous
of degree 1 in ξ, thus we get

d

dt
xt,s
λ (x, ξ) = ∂ξa1(t,x

t,s(x,λξ), ξt,s(x,λξ)) = ∂ξa1(t,x
t,s(x,λξ),λ−1ξt,s(x,λξ))

= ∂ξa1(t,x
t,s
λ (x, ξ), ξt,sλ (x, ξ))

d

dt
ξt,sλ (x, ξ) = −λ−1∂xa1(t,x

t,s(x,λξ), ξt,s(x,λξ)) = −∂xa1(t,x
t,s(x,λξ),λ−1ξt,s(x,λξ))

= −∂xa1(t,x
t,s
λ (x, ξ), ξt,sλ (x, ξ))

and moreover

xs,s
λ (x, ξ) := xs,s(0, x,λξ) = x ,

ξs,sλ (x, ξ) := λ−1ξs,s(x,λξ) = λ−1λξ = ξ

It follows that
�
xt,s
λ (x, ξ), ξt,sλ (x, ξ)

�
solves the Cauchy problem (12.30), thus by unicity it coin-

cides with φt,s
a1
(x, ξ). This gives (12.31).

To prove that xt,s(x, ξ)− x and ξt,s(x, ξ) are localized in x it is sufficient to exploit the fact
that a1(t, x, ξ) is localized in x, thus the flow equals the identity for |x| ≥ R.

(ii) The smooth function ξt,s(x, ξ) is localized in x and positively homogeneous of degree 1
in ξ. By adapting the arguments of Section 3.1 it follows that it is symbol in S1 (up to a smooth
cutoff around the origin in ξ. An analogous argument gives xt,s(x, ξ)− x ∈ S0.

(iii) It follows by a direct computation, essentially exploiting the symbolic properties of the
symbols. First we have ����b(x, ξ)

��� �
�
ξt,s(x, ξ)

�
� �ξ�

Similarly

∂xj
�b(x, ξ) =

�

�

∂b

∂x�

�
xt,s(x, ξ), ξt,s(x, ξ)

� ∂xt,s
� (x, ξ)

∂xj
+

∂b

∂ξ�

�
xt,s(x, ξ), ξt,s(x, ξ)

� ∂ξt,s� (x, ξ)

∂xj

∂ξj
�b(x, ξ) =

�

�

∂b

∂x�

�
xt,s(x, ξ), ξt,s(x, ξ)

� ∂xt,s
� (x, ξ)

∂ξj
+

∂b

∂ξ�

�
xt,s(x, ξ), ξt,s(x, ξ)

� ∂ξt,s� (x, ξ)

∂ξj

Then use the properties of b and the flow to bound the derivatives.

Remark 12.6. In case a does not depend on time, then the propagator fulfills (12.3). In par-
ticular

U(−t)Op (b)U(t) = U(−t)Op (b)U(−t)−1 = Op
�
b ◦ (φ−t

a )−1
�
+ Sρ−1

= Op
�
b ◦ φt

a

�
+ Sρ−1
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12.3 Application: near to identity diffeomorphism

We have a PDE of the form
∂tu = Op (a)u, x ∈ R (12.32)

where a ∈ Sm, m ∈ R. We want to make a change of variables in the form of a diffeomorphism
of R, by need to perform the change of variables

v(x) = u(x+ β(x))

where β : Rn → Rn is small, namely
��β�C2 ≤ 1/2. (12.33)

We want to understand the equation fulfilled by v. Denoting

[Bu](x) = u(x+ β(x))

we put v = Bu, u = B−1v and thus (12.32) becomes

∂tv = BOp (a)B−1v

We would like to know if BOp (a)B−1 has an expansion in pseudodifferential operator and which
is the principal symbol.

Egorov theorem can help us if we are able to realize B as the time 1-flow of a certain PDE:
namely, can we find U(t, 0) propagator of a PDEs (to determine) such that Bu = U(1, 0)u? In
such a case we can apply Egorov theorem and conclude that BOp (a)B−1 is still pseudodifferen-
tial of the same order as Op (a) and we can compute its principal symbol.

The first step is to write the diffeomorphism x+ β(x) as the time 1-flow of a family of vector
fields. This is done in the following way: for t ∈ [0, 1] we define the family of diffeomorphism

φt,0(x) := x+ tβ(x). (12.34)

One has clearly
φ0,0 = 1, φ1,0 = x+ β(x).

and
d

dt
φt,0(x) = β(x).

We denote by (φt,0)−1(y) the inverse diffeomorphism; explicitly one has

y = x+ tβ(x) ⇐⇒ x = y + β̆(t, y).

The second step is to define

[U(t, 0)u](x) := u(φt,0(x)) = u(x+ tβ(x))

so that U(0, 0) = 1 and U(1, 0) = B. Now we ask if U(t, 0) is the propagator of a certain PDE.
We compute

d

dt
U(t, 0)u =

d

dt
u(φt,0(x)) = (∂xu)(φ

t,0(x)) β(x). (12.35)
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It is still not the flow of a PDE, since we have (∂xu)(φ
t,0(x)) and would like to have ∂x[U(t, 0)u](x) ≡

∂x
�
u(φt,0(x))

�
. But by the chain rule

∂x
�
u(φt,0(x))

�
= (∂xu)(φ

t(x))∂xφ
t,0(x) = (∂xu)(φ

t(x)) (1 + tβx(x))

from which we have

(∂xu)(φ
t(x)) =

1

1 + tβx(x)
∂x

�
u(φt,0(x))

�

Inserting in (12.35) we have

d

dt
U(t, 0)u =

β(x)

1 + tβx(x)
∂xU(t, 0)u

Hence U(t, 0)u is the solution of the PDE

∂tϕ = b(t, x)∂xϕ (12.36)

where

b(t, x) :=
β(x)

1 + tβx(x)
. (12.37)

We rewrite it as a Schrödinger equation

i∂tϕ = Op (−b(t, x) · ξ)ϕ (12.38)

But this is the perfect situation in order to apply Egorov theorem! Indeed we have realized
U(t, 0) as the time t flow of a PDE whose generator is a pseudodifferential operator.

At this point we are ready to apply Egorov theorem: we have b(t, x)ξ ∈ S1, thus we know
that

BOp (a)B−1 = U(1, 0)Op (a) U(1, 0)−1 = Op (�aρ) + Sρ−1

�aρ(x, ξ) = a((γ1,0)−1(x, ξ))

where γt,0(x, ξ) is the flow of the system with Hamiltonian −b(t, x) · ξ, namely

�
ẋ = ∇ξ(−b(t, x)ξ) = −b(t, x)

ξ̇ = −∇x(−b(t, x)ξ) = bx(t, x)ξ
, (x(0), ξ(0)) = (x, ξ) (12.39)

and (γt,0)−1(x, ξ) is the inverse flow.
We claim that

γt,0(y, η) =
�
(φt,0)−1(y), [dφt,0

|(φt,0)−1(y)
]T η

�

=
�
y + β̆(t, y), (1 + tβx)|x=y+β̆(t,y)η

�
(12.40)

where φt,0(x, ξ) is the flow (12.34). Indeed start from the identity

φt,0
�
(φt,0)−1(y)

�
= y,

take the time derivative and obtain

(
d

dt
φt,0)

�
(φt,0)−1(y)

�
+
�
Dφt,0

�
(φt,0)−1(y)

�� d

dt
(φt,0)−1(y) = 0
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Now recall that d
dtφ

t,0(x) = β(x), and Dφt,0(x) = (1+ tβx(x)), thus letting yt(y) := (φt,0)−1(y),
we get

d

dt
yt(y) = − β(x)

1 + tβx(x)

����
x=yt(y)

.

In other words, yt(y) solves

d

dt
yt(y) = −b(t, yt(y)), y0(y) = y

so it solves the first of (12.39).

We verify now that ηt(y, η) := (1 + tβx(y + β̆(t, y))η solves the second equation (12.39). Let
us compute

d

dt
ηt(y, η) =

�
βx(x) + tβxx(x)

d

dt
(y + β̆(t, y))

�����
x=y+β̆(t,y)

η

=

�
βx(x) + tβxx(x)

−β(x)

1 + tβx(x)

�����
x=y+β̆(t,y)

η

=

�
βx(x)

1 + tβx(x)
− tβxx(x)β(x)

(1 + tβx(x))2

�����
x=y+β̆(t,y)

(1 + tβx(x))|x=y+β̆(t,y)η

=

�
∂x

β(x)

1 + tβx(x)

�����
x=y+β̆(t,y)

ηt(y, η)

= bx(t, y
t(y)) ηt(y, η)

hence it solves the second equation!
It follows from (12.40) that

(γt,0)−1(x, ξ) =
�
φt,0(x), [dφt,0

x ]−1ξ
�

=
�
x+ β(x), (1 + β̆y)|x+tβ(x)ξ

�

hence we have
�aρ(x, ξ) = a

�
x+ β(x), (1 + β̆y)|x+tβ(x)ξ

�
. (12.41)
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