
13 Application: flow of Schrödinger equation

In this section we apply methods of pseudodifferential operators to prove several results on the
flow of Schrödinger equation with unbounded coefficients.

13.1 Local smoothing effect

Consider the Cauchy problem �
iu̇ = Au

u(0) = u0

(13.1)

where A = Opw (a) has a real symbol a(x, ξ) ∈ Sm, for instance −∂xj
(ajk(x)∂xk

), or −Δ, or
i∂3

x. Since A is selfadjoint, the operator −iA is skew-adjoint, hence the L2 norm of the flow is
preserved.

We want to prove the so called (local in time) local smoothing estimates, which says, roughly
speaking, that the flow generated by A locally in space regularize a bit the solution, provided
one integrate over time. The classical smoothing estimate reads

� T

0

�

|x|≤R

����D�
m−1

2 u(t, x)
���
2

dx dt ≤ CT,R�u0�20 (13.2)

where the positive constant CT,R depends on T,R.

In particular inequality (13.2) implies that if u0 ∈ L2(Rd) the solution e−itAu0 ∈ H
m−1

2

loc for
almost all t. Notice that this gain of derivatives is a pure dispersive phenomenon, which cannot
hold in hyperbolic problems.

A very nice method of proof relies on the so called positive commutator method, which we
now illustrate.
Let us take a bounded operator B, and consider the usual energy estimate, which reads

d

dt
�Bu, u� =

�
1

i
[B,A]u, u

�
= �i[A,B]u, u� ,

as −iA is skew-adjoint. Integrating in time from 0 to T and using that B is bounded and the
flow is unitary in L2 we get � T

0

�i[A,B]u, u� dt ≤ C�u0�20. (13.3)

Now the crucial point: choose B such that i[A,B] ≥ 0 is positive.
Let us see some examples.
Case A = −Δ. In this case we have the following result, due to Doi [?]:

Lemma 13.1 (Doi). Let λ be even, radially decreasing, non negative, λ ∈ L1([0,∞)), smooth.
Then there exists a real value symbol b ∈ S0 and a constant 0 < β < 1 such that

{|ξ|2, b} ≥ βλ(|x|)|ξ|− 1

β

Proof. Define f(t) :=
� t

0
λ(r)dr and let

Φ(x) = (f(x1), . . . , f(xd))
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so that Φ(x) is smooth and bounded. Let

Φ�
sym(x) :=

1

2

�
∂xjfi + ∂xifj

�
=




λ(x1) 0 . . . 0
0 λ(x2) . . . 0
...

... . . .
...

0 0 . . . λ(xd)


 ≥ λ(|x|)Id

as λ is even and decreasing. Define

b(x, ξ) := Φ(x) · ξ

�ξ� ∈ S0.

Then

{|ξ|2, b} = 2
ξ

�ξ� ·∇x(Φ(x) · ξ) =
2

�ξ�Φ
�
sym(x)ξ · ξ ≥ 2λ(|x|) |ξ|

2

�ξ� .

By Doi’s lemma, we have that

{a, b}M = {|ξ|2, b}+ r0 ≥ λ(|x|) |ξ|− c0

and therefore by Garding inequality

�i[A,B]u, u� ≥
�
Op

�
λ(|x|) �ξ�m−1

�
u, u

�
− c0�u�20 − C�u�20

Finally use that

λ(|x|) |ξ| =
�
λ(|x|) |ξ|

�
λ(|x|) |ξ| =

��
λ(|x|) |ξ|

�∗
#
�
λ(|x|) |ξ|+ S0

so that
�
Op

�
λ(|x|) �ξ�m−1

�
u, u

�
= �Op

�
λ(|x|) 1

2 |ξ| 12
�
u�20 − �Op (r)u, u� , r ∈ S0

Altogether we have proved that

� T

0

�Op
�
λ(|x|) 1

2 |ξ| 12
�
u�20dt ≤ CT �u0�20,

which is the smoothing effect.
Case A = −∂xj (ajk(x)∂xk

. The proof is analogous to the previous one. In this case, so get
the analogous statement than Lemma 13.2, one needs to require that

(H1) A(x) = (ajk(x)) is real, symmetric and positive definite.

(H2) ajk ∈ C∞
b and

|∇ajk(x)| = o(|x|−1), x → ∞

(H3) the Hamiltonian flow of A(x)ξ · ξ is non trapped in one direction, i.e. the orbits of the
hamiltonian system with hamiltonian A(x)ξ · ξ are unbounded for any initial datum.

Under these conditions, Doi [?] proved that Lemma 13.2 is true with A(x)ξ · ξ replacing |ξ|2.
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13.2 Cauchy theory for non-selfadjoint perturbation

Consider the Schrödinger equation

iu̇ = −Δu+ b(x) · ∂xu+ c(x)u

where b(x) = (b1(x), . . . , bd(x)) ∈ C∞(Rd,Cd) with

|∂α
x bj(x)| ≤ Cα ∀α, ∀j = 1, . . . , d.

The difficult is that b might have a real part, and the perturbation Re b∂x is bad in an energy
estimate.

We assume that Re b(x) decrease when x → ∞, and in particular that

|Re b(x)| ≤ C

�x�2
(13.4)

Let us see why.
First we write the operator using Weyl quantization (it is useful because the adjoint are much

easier to compute!) We have that

−Δ = Opw
�
|ξ|2

�

b(x)∂x = Op (biξ) = Opw
�
ib(x) · ξ − 1

2
∇xb

�

c(x) = Opw (c)

where we used the change of quantization formula Op (f) = Opw (g) with

g ∼
�

α

�
−1

2

�|α|
1

α!
∂α
ξ D

α
xf .

Hence we rewrite the equation in decreasing order as

iu̇ = Opw
�
|ξ|2

�
u+Opw (ib(x) · ξ)u+Opw (c0)u, c0 ∈ S0. (13.5)

Let us make an energy estimate in Hs: if

A :=
1

i
Opw

�
|ξ|2 + ib(x) · ξ + c0

�
,

we have that

d

dt

�
�D�2s u, u

�
=

�
(A+A∗) �D�2s u, u

�
+
�
[�D�2s , A]u, u

�
. (13.6)

We need to bound the two terms in Hs. We start with the second one, which does not create
problems. Indeed

[�D�2s , A] = 1

i
[�D�2s ,Opw

�
|ξ|2 + b(x)iξ + c− 1

2
bx

�
]

=
1

i
[�D�2s ,Opw (ib(x) · ξ + c0)] ∈ Opw

�
S2s

�
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hence [�D�2s , A] is good in an energy estimate:
���
�
[�D�2s , A]u, u

���� ≤ �[�D�2s , A]u�−s�u�s ≤ Cs�u�2s.

The other term in (13.6) is worse. Let us compute it:

A+A∗ =
1

i
Opw

�
|ξ|2 + ib(x) · ξ + c0

�
− 1

i
Opw

�
|ξ|2 − ib(x) · ξ + c0

�

= Opw
�
(b+ b) · ξ + c1

�
, c1 ∈ S0

= Opw (2(Re b) · ξ) + Opw (c1)

The first term is a problem in an energy estimate!! We have too many derivatives. Indeed we
cannot bound ���

�
(A+A∗) �D�2s u, u

���� ≤ Cs�u�2s

because the term Opw (2(Re b) · ξ) �D�2s ∈ Op
�
S2s+1

�
and we cannot close the energy estimate.

We do not surrender: can we make a change of coordinates which “simplify the term”?
So we look for a change of coordinates of the form

ϕ = U(1, 0)u,

where U(1, 0) is the time 1 flow of the PDE generated by a pseudodifferential operatorX = Op (χ)

u̇ = Xu,

with χ ∈ S0 to be determined later on. Note that U(1, 0) is invertible and maps Hs → Hs ∀s.
Thus if we prove good estimates for ϕ, they hold also for u.

Then ϕ fulfills the equation

iϕ̇ = U(1, 0)Opw
�
|ξ|2 + ib(x) · ξ + c0

�
U(1, 0)−1ϕ.

Decompose

U(1, 0)Opw
�
|ξ|2 + ib(x) · ξ + c0

�
U(1, 0)−1 = U(1, 0)Opw

�
|ξ|2

�
U(1, 0)−1

+ U(1, 0)Opw (ib(x) · ξ) U(1, 0)−1

+ U(1, 0)Opw (c0)U(1, 0)−1

We expand each line in decreasing order:

U(1, 0)Opw
�
|ξ|2

�
U(1, 0)−1 = Opw

�
|ξ|2

�
+ [X,Opw

�
|ξ|2

�
] +R0

U(1, 0)Opw (ib(x) · ξ) U(1, 0)−1 = Opw (ib(x) · ξ) +R0

U(1, 0)Opw (c0)U(1, 0)−1 = R0

where R0 is a bounded operator from Hs → Hs , ∀s. Collecting the terms of the same order we
find that

iϕ̇ = Hϕ

with

H :=Opw
�
|ξ|2

�

+ [X,Opw
�
|ξ|2

�
] + Opw (i Re b(x) · ξ)−Opw (Im b(x) · ξ)

+R0
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Now Opw (Im b(x) · ξ) is selfdjoint, so it does not give us problems in an energy estimate. On
the contrary, as we have seen, Opw (iRe b(x) · ξ) is problematic and we would like to eliminate it.

We distinguish two cases.
Case d = 1. In case the dimension d = 1, we can find X to eliminate the bad part. Namely

we look for X = Opw (χ) such that

[X,Opw
�
|ξ|2

�
] + Opw (i Re b(x) · ξ) = Z0, Z0 ∈ Opw

�
S0

�
.

By symbolic calculus, it is enough to choose X = Opw (χ) such that

�
−i{χ, ξ2}+ iRe b(x)ξ = 0,

z0 = −i
�
{χ, ξ2}M − {χ, ξ2}

�
∈ S0, Z0 := Opw (z0)

The first equation is
{ξ2,χ}+Re b(x)ξ = 0

namely
2ξχx +Re b(x)ξ = 0 ⇒ 2χx +Re b(x) = 0

which is solved by

χ(x) =

� x

0

Re b(y)dy

The assumption (13.4) guarantees that χ ∈ C∞ ∩ L∞. It follows that χ ∈ S0 is a symbol and
our construction work!
With this choice, we have that ϕ fulfills

iϕ̇ =
�
Opw

�
|ξ|2

�
−Opw (Im b(x) · ξ) +R0

�
ϕ

hence it fulfills good energy estimates and we can prove that

∂t�ϕ(t)�2s ≤ Cs�ϕ�2s ⇒ �ϕ(t)�s ≤ etCs�ϕ(0)�s.

Case d ≥ 2. In this case the homological equation is more complicated, being

{|ξ|2,χ}+Re b(x) · ξ = 0

and we cannot solve it exactly (it is a PDEs in χ). However, we can impose the weaker condition
which is sufficient for our aim. Indeed it is enough to impose a sign condition. This will be done
using Doi lemma

Lemma 13.2 (Doi). Let λ be even, smooth, radially decreasing, non negative, λ ∈ L1([0,∞)).
Then there exists a real value symbol p ∈ S0 and a constant β > 0 such that

{|ξ|2, p} ≥ λ(|x|)|ξ|− β

Proof. Define f(t) :=
� t

0
λ(r)dr and let

Φ(x) = (f(x1), . . . , f(xd))

so that Φ(x) is smooth and bounded. Let

Φ�
sym(x) :=

1

2

�
∂xjfi + ∂xifj

�
=




λ(x1) 0 . . . 0
0 λ(x2) . . . 0
...

... . . .
...

0 0 . . . λ(xd)


 ≥ λ(|x|)Id
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as λ is even and decreasing. Define

p(x, ξ) := Φ(x) · ξ

�ξ� ∈ S0.

Then

{|ξ|2, p} = 2
ξ

�ξ� ·∇x(Φ(x) · ξ) =
2

�ξ�Φ
�
sym(x)ξ · ξ ≥ 2λ(|x|) |ξ|

2

�ξ� ≥ λ(|x|)|ξ|− β.

for some β > 0.

We exploit Doi Lemma. We choose λ(t) = �t�−2
, and select p ∈ S0 so that

{|ξ|2, p} ≥ |ξ|
�|x|�2

− β.

Then we put
χ := −2p ∈ S0

so that in the homological equation

{|ξ|2,χ}+Re b(x) · ξ = −2{|ξ|2, p}+Re b(x) · ξ ≤ −2
|ξ|
�x�2

+ β +
|ξ|
�x�2

≤ − |ξ|
�x�2

+ β.

Thus the homological equation has a sign. Let’s see how to use it!
Let us now perform an energy estimate. We have that

d

dt

�
�D�2s ϕ,ϕ

�
=

�
(
1

i
(H −H∗) �D�2s u, u

�
+

�
[�D�2s , 1

i
H]ϕ,ϕ

�
.

The second term has good estimate, as before. Concerning the first term we have (as χ is real
valued)

1

i
(H −H∗) =

2

i
[X,Opw

�
|ξ|2

�
] + 2Opw (Re b(x) · ξ)

= 2Opw
�
{|ξ|2,χ}+Re b(x) · ξ

�
+Opw (r0)

Hence, againg by symbolic calculus

�
(
1

i
(H −H∗) �D�2s u, u

�
=

�
Opw

��
{|ξ|2,χ}+Re b(x) · ξ

�
�ξ�2s

�
u, u

�
+ �Opw (r2s)u, u�

Note that the last term fulfill energy estimates, so it is ok. Concerning the first one, we have
that its symbol fulfills

g(x, ξ) :=
�
{|ξ|2,χ}+Re b(x) · ξ

�
�ξ�2s ≤ − |ξ| �ξ�2s

�x�2
+ β �ξ�2s

and by the strong Garding inequality

�Opw (g)u, u� ≤ −
�
Op

�
�x�−2 |ξ| �ξ�2s

�
u, u

�
+ C�u�2s.
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Finally use that

�x�−2 |ξ| �ξ�2s =
��

�x�−2 |ξ| �ξ�2s
�2

=

��
�x�−2 |ξ| �ξ�2s

�∗
#

�
�x�−2 |ξ| �ξ�2s + S2s

so that

�
Op

�
�x�−2 |ξ| �ξ�2s

�
ϕ,ϕ

�
= �Op

��
�x�−2 |ξ| �ξ�2s

�
ϕ�20 + �Op (r2s)ϕ,ϕ� , r2s ∈ S2s

In this way the energy estimate becomes

d

dt
�ϕ�2s ≤ −�Op

��
�x�−2 |ξ| �ξ�2s

�
ϕ�20 + C�ϕ�2s

namely

�ϕ(t)�2s +
� t

0

�Op

��
�x�−2 |ξ| �ξ�2s

�
ϕ(τ)�20dτ ≤ �ϕ(0)�2s + C

� t

0

�ϕ(τ)�2sdτ

hence we control the Hs norm!!

Case of variable coefficients at highest order We can also consider the case where the
PDEs is with variable coefficients at highest order, namely

iu̇ = −(
�

j,k

∂xk
ajk(x)∂xj

)u+ b(x) · ∂xu+ c(x)u

In this case we make the following assumptions

(H1) aj,k(x), b(x), c(x) ∈ S0 (namely smooth, bounded with bounded derivatives), and (aj,k(x))j,k
symmetric and real.

(H2) ellipticity at highest order

δ−1|ξ|2 ≤
�

aj,k(x)ξjξk

≤ δ|ξ|2

(H3) asymptotic flatness at infinity

|∂α
x (ajk(x)− 1)| ≤ C

�x�2
, ∀j, k, ∀α ∈ Nd

Also in this case we can prove that the solution exists in Hs.
Case d = 1. Let us put in dimension 1 first. Then

∂x(a(x)∂x)u = a(x)∂xxu+ ax(x)∂xu

so we write the equation as

iu̇ = −a(x)∂xxu+ (b(x) + ax)∂xu+ c(x)u

Let us put the coefficient at highest order to constant coefficient. This can be done with Egorov
theorem, but in this case it is easier to perform a direct computation: let us make the change of
variables

u(x) = v(x+ β(x))

95



with β(x) to be determined in such a way that y = x+ β(x) is a diffeomorphism. Then

∂xu = (∂xv)(x+ β(x)) (1 + βx(x))

∂xxu = (∂xxv)(x+ β(x)) (1 + βx(x))
2 + (∂xv)(x+ β(x))βxx(x)

So writing the direct and inverse diffeomorphism

y = x+ β(x), x = y + β̆(y)

we find for v the equation

iv̇ = −
�
a(1 + βx)

2
�
y+β̆(y)

∂yyv + [βxx + (1 + βx)(b+ ax)]y+β̆(y) ∂yv + cy+β̆(y)v

Now we look for β so that
a(1 + βx)

2 = 1

As the ellipticity assumption in this case gives a(x) ≥ δ−1 > 0, we have

βx =

�
1

a
− 1 =

1− a

a+
√
a

and integrating

β(x) =

� x

0

1− a(y)

a(y) +
�

a(y)
dy

Now assumption (H2) gives that |a(x)− 1| = O(�x�−2
), hence β(x) is bounded. Moreover as

1 + βx =

�
1

a
≥ δ−1/2 > 0

the function x+ β(x) is a good diffeomorphism.
With this choice we have

iv̇ = −∂yyv + b̃(y)∂yv + c̃v

with
b̃(y) := [βxx + (1 + βx)(b+ ax)]y+β̆(y)

Then one verifies, using the properties of β(x) and the assumptions, that the new coefficient b̃
fulfills ���Re b̃(y)

��� � �y�−2
.

Hence we are in the previous case.
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