
11 Flow generation

In the section we aim to use pseudodifferential operators to generate a flow. We shall take
symbols a(t, x, ξ) depending on time, which we might regard as an external parameter. We will
view these symbols as continuous maps from R → Sm, in the sense that the map

t �→ ℘m
k (∂�

ta)

is continuous ∀k ∈ N and ∀0 ≤ � ≤ N . In this case we will write a ∈ CN (R,Sm). We write
C∞(R,Sm) =

�
N CN (R,Sm).

The problem is then the following: consider the Cauchy problem
�
∂tu = Op (a(t))u

u(t0) = f ∈ Hs.
(11.1)

We want to discuss the following questions:

(Q1) Can we give conditions on the symbol a(t, x, ξ) which guarantees the existence of a propa-
gator U(t, s), namely a linear, bounded operator so that U(t, t0)f solves (11.1)? Moreover,
is U(t, t0) bounded as an operator from Hs → Hs?

(Q2) Let b ∈ Sm�
: can we say that

U(t, t0)−1 Op (b)U(t, t0)

is a pseudodifferential operator? Which is its symbol?

We will first investigate the problem of existence of the flow. In the next section we will study
how pseudodifferential operators transform under flow conjugation.

The key step of the argument is to provide energy estimates. We give a result in a quite
general setup.

Lemma 11.1 (Formal energy estimate). Let H be Hilbert space with scalar product �·, ·�, X a
dense subset of H, and consider the abstract Cauchy problem

�
u̇ = A(t)u

u(0) = u0 ∈ X

Assume that u(t) ∈ C(R,X ) is a solution of the Cauchy problem. Then, for any operator
B(t) : X → H, we have

d

dt
�B(t)u, u� = �(A+A∗)Bu, u�+ �[B,A]u, u�+

�
Ḃu, u

�
(11.2)

Proof. Just compute

d

dt
�Bu, u� =

�
Ḃu, u

�
+ �Bu̇, u�+ �Bu, u̇�

=
�
Ḃu, u

�
+ �BAu, u�+ �Bu,Au�

=
�
Ḃu, u

�
+ �ABu, u�+ �[B,A]u, u�+ �A∗Bu, u�

=
�
Ḃu, u

�
+ �(A+A∗)Bu, u�+ �[B,A]u, u�
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The following corollary is often useful:

Corollary 11.2. In the same assumptions of Lemma 11.1, assume furthemore that A is skew-
selfadjoint (on its domain), i.e. A∗ = −A. Then the flow is unitary, i.e. the L2 norm of the
solution is preserved:

�u(t)�0 = �u0�0
Proof. Choose B = 1 in the formal energy estimate to deduce that ∂t �u, u� = 0.

11.1 Existence of flow for hyperbolic equation

Let us begin with the following result:

Theorem 11.3 (Flow generation for hyperbolic systems). Consider the Cauchy problem (11.1).
Assume that

(H1) for some m ≤ 1, a(t, x, ξ) ∈ C(R,Sm) and t �→ a(t, x, ξ) bounded in Sm.

(H2) a∗ + a ∈ C(R,S0).

Then (11.1) has a unique propagator U(t, t0) such that t �→ U(t, t0)f is the unique global solution
of (11.1) in Hr. Moreover one has

(i) Group property: for any t, τ, t0 ∈ R

U(t, τ)U(τ, t0) = U(t, t0), U(t, t) = 1, U(t, t0)−1 = U(t0, t)

(ii) Continuity: U(t, t0) is bounded as a linear operator from from Hr to Hr for any r ∈ R.

(iii) Derivatives: One has

∂tU(t, t0) = Op (a(t))U(t, t0) , ∂τU(t, τ) = −U(t, τ)Op (a(τ))

(iv) Unitarity: if Op (a(t)) is anti-selfadjoint, i.e. Op (a(t))
∗
= −Op (a(t)) ∀t, then U(t, t0) is

unitary in L2.

Proof. The strategy is the following: we regularize (11.1) using a family of smoothing operators
J�, construct a family of propagators U�(t, s) and then pass to the limit � → 0. The crucial step
is to prove energy estimates, which means estimates of �U�(t, t0)�Hr→Hr uniform in �, so that
they holds also for the limiting object.

Step 1: regularization. Let ϕ ∈ S(Rd,R), ϕ(0) = 1 and put

J� := ϕ(�Dx) ≡ Op (ϕ(�ξ)) . (11.3)

Since ϕ ∈ S, J� is a smoothing operator for any � ∈ (0, 1) and fulfills

�J�u�Hr ≤ sup
ξ∈Rd

|ϕ(�ξ)| �u�Hr ≤ C �u�Hr , ∀r ∈ R, ∀� ∈ (0, 1). (11.4)

Moreover

�J�u�Hr ≤ sup
ξ∈Rd

|�ξ� ϕ(�ξ)| �u�Hr−1 ≤ C

�
�u�Hr−1 , ∀r ∈ R. (11.5)
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In particular ∀� ∈ (0, 1) the operator J�Op (a(t)) J� is bounded Hr → Hr for any r, but its
norm is not bounded uniformly in �, as

�J�Op (a(t)) J�u�Hr ≤ C

�
�u�Hr .

However we will prove that the norm of the propagator is bounded uniformly in �.
First of all consider the regularized Cauchy problem

∂tu� = J�Op (a(t)) J�u�, u�(t0) = f ∈ Hr; (11.6)

it can be seen as a Banach-space value ordinary differential equation, to which the Picard iteration
method applies. Thus, given f ∈ Hr, we can solve (11.6) and produce a unique solution u�(t) ∈
Hr. Hence we get a propagator U�(t, t0), defined for all times t, t0 in R fulfilling (i)–(iv) of the
theorem.

Step 2: energy estimates. The key part of the proof is to show uniform energy estimates,
namely that for any t, t0 in R, there exists Cr(t, t0) > 0 such that

�U�(t, t0)f�Hr ≤ Cr(t, t0)�f�Hr , ∀� ∈ (0, 1) . (11.7)

To prove (11.7) we do an energy estimate: namely we consider the solution u�(t) = U�(t, s)f of
(11.6) and control its Sobolev norm

� �D�r u�(t)�2L2 =
�
�D�2r u�, u�

�

By the formal energy estimate (11.2), with B := �D�2r and A := J�Op (a(t)) J� we have

d

dt
� �D�r u��2L2 =

��
J�Op (a) J� + J∗

� Op (a)
∗
J∗
�

�
�D�2r u�, u�

�

+
��

�D�2r , J�Op (a) J�

�
u�, u�

�

Now use that J� is a Fourier multiplier with real symbol, hence it is self-adjoint and commutes
with �D�2r. We get therefore

d

dt
� �D�r u��2L2 =

�
J�

�
Op (a) + Op (a)

∗�
J� �D�2r u�, u�

�

+
�
J�

�
�D�2r ,Op (a)

�
J�u�, u�

�

Now the assumptions are clear: by symbolic calculus

(H1) =⇒
�
�D�2r ,Op (a)

�
∈ Op

�
S2r+m−1

�
⊂ Op

�
S2r

�

while
(H2) =⇒ Op (a+ a∗) ∈ Op

�
S0

�

Hence Sobolev continuity of pseudodifferential operators and estimate (11.4) give immediately:
for any r, t ∈ R, there exists Cr(t) such that

�J�
�
Op (a) + Op (a)

∗�
J� �D�2r u��H−r ≤ Cr(t)�u��Hr , ∀� ∈ (0, 1),

�J�
�
�D�2r ,Op (a)

�
J�u��H−r ≤ Cr(t)�u��Hr , ∀� ∈ (0, 1)
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(remark that the constant Cr(t) depends only on the seminorms of a!). Then by duality we get

d

dt
� �D�r u��2L2 ≤ Cr(t)�u��2Hr .

In particular Gronwall inequality gives for the propagator

�u�(t)�Hr ≤ �Cr(t, t0) �u�(0)�Hr ≤ �Cr(t, t0) �f�Hr , ∀� ∈ (0, 1). (11.8)

This proves the boundedness of the regularized propagator.
Step 3: passage to the limit. We know that the solution (11.8), {u� : 0 ≤ � ≤ 1} is a

bounded set of C([t0, t], H
r). Since u̇� = J�Op (a) J�u�, it follows that

�u̇��Hr−1 ≤ �Op (a) J�u��Hr−1 ≤ �u��Hr ≤ �Cr(t, t0) �f�Hr , ∀� ∈ (0, 1)

so {u̇� : 0 ≤ � ≤ 1} is a bounded set of C([t0, t], H
r−1). Hence {u� : 0 ≤ � ≤ 1} is a bounded subset

of C1([t0, t], H
r−1). Furthermore, for each τ ∈ [t0, t], {u�(τ) : 0 ≤ � ≤ 1} , being a bounded subset

of Hr, is a relatively compact subset of Hr−1. Hence, by Ascoli’s theorem3, there is a sequence
�n → 0 such that u�n converges, in C([t0, t], H

r−1), to a limit we call u∞ ∈ C([t0, t], H
r−1) which

fulfills also the original equation.
Step 4: construction of solution. Now we want to construct a solution of the original

Cauchy problem (11.1). So let uj0 ∈ Hr+4, with uj0 → u0 ∈ Hr. By the previous construction,
the propagator U(t, t0)uj0 ∈ C([t0, t], H

r+2) and solves the equation. Then we can apply the
energy inequality and deduce that

�U(t, t0)uj0�Hr ≤ C�uj0�Hr ;

as the propagator is linear one deduces that {U(t, t0)uj0} is a Cauchy sequence is C([t0, t], H
r).

The limit solves our Cauchy problem.
For the uniqueness apply again the energy inequality.

Application: we will often apply Theorem 11.3 to the Schrödinger equation

�
i∂tu = Op (a(t))u

u(t0) = u0 ∈ Hr
(11.9)

We are in the setup of Theorem 11.3 substituting a � −ia. In this case assumptions (H1) – (H2)
become

(H1) a ∈ C(R,Sm), m ≤ 1

(H2) If a = am + am−1, with am ∈ Sm, am−1 ∈ Sm−1, then am is real.

Indeed to fulfill assumption (H2) one needs that (−ia)∗ − ia ∈ S0, hence

(−ia)∗ − ia = (−iam)− iam + Sm−1 = i(am − am) + Sm−1 ∈ S0

namely one needs am to be real valued.

3Let X be a compact Hausdorff space. Then a subset F of C(X) is relatively compact in the topology induced
by the uniform norm if and only if it is equicontinuous and pointwise bounded.
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11.2 Existence of flow for elliptic symbols

Consider now the case of Schrödinger equations with elliptic, real valued symbols

�
iu̇ = Opw (a(t, x, ξ))u

u(t0) = u0 ∈ Hr.
(11.10)

We assume that the symbol a(t, x, ξ) fulfills the following assumptions

(H1) There exists m ≤ 2 such that t �→ ∂�
ta(t, x, ξ) ∈ Sm is bounded, for any � ∈ N.

(H2) a(t, x, ξ) is real valued.

(H3) a(t, x, ξ) is elliptic, i.e. ∃R,C > 0 such that

a(t, x, ξ) ≥ Ca �ξ�m , ∀|ξ| ≥ R, ∀t ∈ R. (11.11)

The difficulty is that the operator is time dependent and variable coefficients.
An example of symbols that fulfills the assumptions (H1)–(H3) is the Schrödinger equation

iu̇ = −


�

j,k

∂xk
aj,k(t, x)∂xj


u

whose symbol is the second order variable coefficients laplacian

a(t, x, ξ) :=
�

j,k

aj,k(t, x)ξjξk.

Then assumptions (H1)–(H3) amounts to require that t �→ aj,k(t, x) to be real, uniformly bounded
from above and below (together with its derivatives), e.g.

c1 ≤ aj,k(t, x) ≤ c2, ∀(t, x) ∈ R× Rd

Then we have the following result:

Theorem 11.4. Consider the Cauchy problem (11.10). Assume (H1)–(H3). Then there exists
a solution global in time, and the propagator U(t, t0) is bounded as a map Hs → Hs ∀s ∈ R.

Proof. The proof is similar to the previous case. The key step is to obtain energy estimate.
However, a crucial step in the previous proof was that [�D�r ,Op (a)] ∈ Op (Sr) for any a ∈ S1

(we used this to obtain energy estimates). However now a ∈ S2, so [�D�r ,Op (a)] ∈ Op
�
Sr+1

�

and it is not clear how to close the energy estimate. The idea here is to exploit the ellipticity of
a(t, x, ξ). Put

B = Opw (b) , b(t, x, ξ) := (a(t, x, ξ))
2s
m

Then by symbolic calculus t �→ ∂�
t b(t, x, ξ) ∈ S2s is uniformly bounded ∀� ∈ N, it is real valued,

and it is elliptic of order 2s, i.e.

b(t, x, ξ) ≥ Cb �ξ�2s , ∀|ξ| ≥ R, ∀t ∈ R.

By Garding inequality
�u�2s ≤ �Opw (b)u, u�+ C0�u�20 (11.12)
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thus, if we control �Opw (b)u, u�, we control also �u�s (as the L2 norm is constant along the
flow).

Let us check the energy estimate. By the usual computation (11.2)

∂t �Opw (b)u, u� =
�
Opw

�
ḃ
�
u, u

�
+

1

i
�[Opw (b) ,Opw (a)]u, u�

where we used that, as a(t, x, ξ) is real, Opw (a)−Opw (a)
∗
= Opw (a)−Opw (a) = 0.

We estimate the two terms: first
���
�
Opw

�
ḃ
�
u, u

���� ≤ �Opw
�
ḃ
�
u�−s �u�s ≤ ℘2s

K (b)�u�2s ≤ C1�u�2s. (11.13)

Now by symbolic calculus

[Opw (b) ,Opw (a)] =
1

i
Opw ({b, a}) + Opw (r) , r ∈ S2s+m−2

The important point is that
{b, a} = {a 2s

m , a} = 0,

hence [Opw (b) ,Opw (a)] = Opw (r) and we have the estimate

|�[Opw (b) ,Opw (a)]u, u�| ≤ �Opw (r)u�−s �u�s ≤ C�u�s+m−3�u�s
≤ C�u�2s

provided m ≤ 3.
So we have obtained

∂t �Opw (b)u, u� ≤ C�u�2s
and integrating in time

�Opw (b(t))u(t), u(t)� ≤ �Opw (b(0))u(0), u(t0�+
� t

0

�u(τ)�2sdτ

By the Sobolev continuity, Garding inequality and the L2 conservation

�u(t)�2s ≤ �u(0)�2s + C

� t

0

�u(τ)�2sdτ

Then apply Gronwall inequality.
As a final comment, remark that the solution is constructed by regularization with the opera-

tors J� defined in (11.3). So one has to substitute A � J�AJ� and to compute the commutators.
Remark that J� = p(�ξ) and p(�ξ) ∈ S−∞, but its seminorms are uniformly bounded in � only
as a symbol in S0. Thus {b, p(�ξ)}M ∈ S2s−1 uniformly in �. Hence

[Op (b) , J�Op (a) J�] = J�[Op (b) ,Op (a)]J�

+ [[J�,Op (b)], J�Op (a)]

− [J�,Op (b)] [Op (a) , J�]

has a symbol in S2s+m−2 uniformly in �.
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11.3 Application: Local smoothing effect

Consider the Cauchy problem �
iu̇ = Au

u(0) = u0

(11.14)

where A = Opw (a) has a real symbol a(x, ξ) ∈ Sm, for instance −∂xj
(ajk(x)∂xk

), or −Δ, or
i∂3

x. Since A is selfadjoint, the operator −iA is skew-adjoint, hence the L2 norm of the flow is
preserved.

We want to prove the so called (local in time) local smoothing estimates, which says, roughly
speaking, that the flow generated by A locally in space regularize a bit the solution, provided
one integrate over time. The classical smoothing estimate reads

� T

0

�

|x|≤R

����D�
m−1

2 u(t, x)
���
2

dx dt ≤ CT,R�u0�20 (11.15)

where the positive constant CT,R depends on T,R.

In particular inequality (11.15) implies that if u0 ∈ L2(Rd) the solution e−itAu0 ∈ H
m−1

2

loc for
almost all t. Notice that this gain of derivatives is a pure dispersive phenomenon, which cannot
hold in hyperbolic problems.

A very nice method of proof relies on the so called positive commutator method, which we
now illustrate.
Let us take a bounded operator B, and consider the usual energy estimate, which reads

d

dt
�Bu, u� =

�
1

i
[B,A]u, u

�
= �i[A,B]u, u� ,

as −iA is skew-adjoint. Integrating in time from 0 to T and using that B is bounded and the
flow is unitary in L2 we get � T

0

�i[A,B]u, u� dt ≤ C�u0�20. (11.16)

Now the crucial point: choose B such that i[A,B] ≥ 0 is positive.
Let us see some examples.
Case A = −Δ. In this case we have the following result, due to Doi [?]:

Lemma 11.5 (Doi). Let λ be even, radially decreasing, non negative, λ ∈ L1([0,∞)), smooth.
Then there exists a real value symbol b ∈ S0 and a constant 0 < β < 1 such that

{|ξ|2, b} ≥ βλ(|x|)|ξ|− 1

β

Proof. Define f(t) :=
� t

0
λ(r)dr and let

Φ(x) = (f(x1), . . . , f(xd))

so that Φ(x) is smooth and bounded. Let

Φ�
sym(x) :=

1

2

�
∂xjfi + ∂xifj

�
=




λ(x1) 0 . . . 0
0 λ(x2) . . . 0
...

... . . .
...

0 0 . . . λ(xd)


 ≥ λ(|x|)Id
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as λ is even and decreasing. Define

b(x, ξ) := Φ(x) · ξ

�ξ� ∈ S0.

Then

{|ξ|2, b} = 2
ξ

�ξ� ·∇x(Φ(x) · ξ) =
2

�ξ�Φ
�
sym(x)ξ · ξ ≥ 2λ(|x|) |ξ|

2

�ξ� .

By Doi’s lemma, we have that

{a, b}M = {|ξ|2, b}+ r0 ≥ λ(|x|) |ξ|− c0

and therefore by Garding inequality

�i[A,B]u, u� ≥
�
Op

�
λ(|x|) �ξ�m−1

�
u, u

�
− c0�u�20 − C�u�20

Finally use that

λ(|x|) |ξ| =
�
λ(|x|) |ξ|

�
λ(|x|) |ξ| =

��
λ(|x|) |ξ|

�∗
#
�
λ(|x|) |ξ|+ S0

so that
�
Op

�
λ(|x|) �ξ�m−1

�
u, u

�
= �Op

�
λ(|x|) 1

2 |ξ| 12
�
u�20 − �Op (r)u, u� , r ∈ S0

Altogether we have proved that

� T

0

�Op
�
λ(|x|) 1

2 |ξ| 12
�
u�20dt ≤ CT �u0�20,

which is the smoothing effect.
Case A = −∂xj

(ajk(x)∂xk
. The proof is analogous to the previous one. In this case, so get

the analogous statement than Lemma 11.5, one needs to require that

(H1) A(x) = (ajk(x)) is real, symmetric and positive definite.

(H2) ajk ∈ C∞
b and

||∇ajk(x)| = o(|x|−1), x → ∞

(H3) the Hamiltonian flow of A(x)ξ · ξ is non trapped in one direction, i.e. the orbits of the
hamiltonian system with hamiltonian A(x)ξ · ξ are unbounded for any initial datum.

Under these conditions, Doi [?] proved that Lemma 11.5 is true with A(x)ξ · ξ replacing |ξ|2.
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