10 Garding-like inequalities

If $a(D)$ is a Fourier multiplier, and its symbol $a(\xi) \geq 0$, then the operator $a(D)$ is positive, in the sense that

$$
\langle a(D) u, u\rangle \geq 0, \quad \forall u \in \mathcal{S}
$$

We want to extend this kind of result to pseudodifferential operators. These results, which go under the name of Garding inequalities, allow to prove that a pseudodifferential operator whose symbol is positive is bounded from below.

The first result of this type is the weak Garding inequality
Theorem 10.1 (Weak Garding inequality). Let $a \in \mathcal{S}^{m}$ with real part is elliptic, i.e.

$$
\operatorname{Re} a(x, \xi) \geq c\langle\xi\rangle^{m}, \quad \forall|\xi| \geq R
$$

Then $\forall N \in \mathbb{N}, \exists C_{N}>0$ s.t.

$$
\begin{equation*}
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle \geq \frac{c}{4}\|u\|_{\frac{m}{2}}^{2}-C_{N}\|u\|_{-N}^{2} . \tag{10.1}
\end{equation*}
$$

Remark that the theorem does not say that $\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle$ is positive, but that it is possible to sum a arbitrary negative norm of u to this term to make it positive:

$$
\operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle+C_{N}\|u\|_{-N}^{2} \geq \frac{c}{2}\|u\|_{\frac{m}{2}}^{2}
$$

In particular we can choose $N=0$ and find a constant C_{0} such that $\mathrm{Op}(a)+C$ is bounded from below.

Proof. First remark that

$$
\begin{aligned}
\operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle & =\frac{\langle\mathrm{Op}(a) u, u\rangle+\overline{\langle\mathrm{Op}(a) u, u\rangle}}{2}=\frac{\langle\mathrm{Op}(a) u, u\rangle+\langle u, \mathrm{Op}(a) u\rangle}{2} \\
& =\left\langle\frac{\mathrm{Op}(a)+\operatorname{Op}\left(a^{*}\right)}{2} u, u\right\rangle=\left\langle\operatorname{Op}\left(\frac{a+a^{*}}{2}\right) u, u\right\rangle \\
& =\langle\operatorname{Op}(\operatorname{Re} a) u, u\rangle+\langle\mathrm{Op}(b) u, u\rangle
\end{aligned}
$$

where $b \in \mathcal{S}^{m-1}$.
Let $\chi(\xi) \in C_{0}^{\infty}\left(\mathbb{R}^{d}, \mathbb{R}\right)$ such that $\chi \equiv 0$ for $|\xi| \leq R$ and define

$$
p(x, \xi):=\sqrt{\left(\operatorname{Re} a(x, \xi)-\frac{c}{2}\langle\xi\rangle^{m}\right)(1-\chi(\xi))} \in \mathcal{S}^{\frac{m}{2}} .
$$

Note that $p(x, \xi)$ is a symbol as $\operatorname{Re} a(x, \xi)-\frac{c}{2}\langle\xi\rangle^{m} \geq \frac{c}{2}\langle\xi\rangle^{m}$ for $|\xi|$ large enough. Now

$$
p^{*} \# p=p^{*} p+\mathcal{S}^{m-1}=p^{2}+\mathcal{S}^{m-1}=\operatorname{Re} a(x, \xi)-\frac{c}{2}\langle\xi\rangle^{m}+\mathcal{S}^{m-1}
$$

quantizing it we find

$$
\mathrm{Op}(p)^{*} \mathrm{Op}(p)=\mathrm{Op}(\operatorname{Re} a)-\frac{c}{2}\langle D\rangle^{m}+\operatorname{Op}(r), \quad r \in \mathcal{S}^{m-1}
$$

and applying it to u and taking the scalar product with u we get

$$
0 \leq\|\operatorname{Op}(p) u\|_{0}=\langle\operatorname{Op}(\operatorname{Re} a) u, u\rangle-\frac{c}{2}\|u\|_{\frac{m}{2}}^{2}+\langle\operatorname{Op}(r) u, u\rangle,
$$

namely

$$
\langle\mathrm{Op}(\operatorname{Re} a) u, u\rangle \geq \frac{c}{2}\|u\|_{\frac{m}{2}}^{2}-\langle\mathrm{Op}(r) u, u\rangle
$$

Combining it with the first inequality

$$
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle \geq \frac{c}{2}\|u\|_{\frac{m}{2}}^{2}+\langle\mathrm{Op}(b-r) u, u\rangle
$$

As $b+r \in \mathcal{S}^{m-1}$, we have

$$
|\langle\mathrm{Op}(b-r) u, u\rangle| \leq\|\operatorname{Op}(b-a) u\|_{-\frac{m}{2}}\|u\|_{\frac{m}{2}} \leq C\|u\|_{\frac{m}{2}-1}\|u\|_{\frac{m}{2}} .
$$

Hence we found

$$
\langle\operatorname{Op}(\operatorname{Re} a) u, u\rangle \geq \frac{c}{2}\|u\|_{\frac{m}{2}}^{2}-C\|u\|_{\frac{m}{2}-1}\|u\|_{\frac{m}{2}} .
$$

Finally we interpolate. As it holds that

$$
\langle\xi\rangle^{\frac{m}{2}-1} \leq \epsilon^{2}\langle\xi\rangle^{\frac{m}{2}}+C_{\epsilon, N}^{2}\langle\xi\rangle^{-N}, \quad \forall \epsilon, N>0
$$

(indeed for $\langle\xi\rangle \geq \frac{1}{\epsilon^{2}},\langle\xi\rangle^{\frac{m}{2}-1} \leq \epsilon^{2}\langle\xi\rangle^{\frac{m}{2}}$, while for $\langle\xi\rangle \leq \frac{1}{\epsilon^{2}},\langle\xi\rangle^{N}\langle\xi\rangle^{\frac{m}{2}-1} \leq C_{\epsilon, N}^{2}$) we get

$$
\begin{aligned}
\|u\|_{\frac{m}{2}-1}\|u\|_{\frac{m}{2}} & \leq \epsilon^{2}\|u\|_{\frac{m}{2}}^{2}+C_{\epsilon, N}^{2}\|u\|_{-N}\|u\|_{\frac{m}{2}} \\
& \leq \epsilon^{2}\|u\|_{\frac{m}{2}}^{2}+C_{\epsilon, N}^{2}\left(\frac{\eta}{2}\|u\|_{\frac{m}{2}}^{2}+\frac{1}{2 \eta}\|u\|_{-N}^{2}\right) \\
& \left.\leq\left(\epsilon^{2}+C_{\epsilon, N}^{2} \eta\right)\|u\|_{\frac{m}{2}}^{2}+\frac{C_{\epsilon, N}^{2}}{2 \eta}\|u\|_{-N}^{2}\right)
\end{aligned}
$$

Now choose ϵ and η so small so that $\epsilon^{2}+C_{\epsilon, N}^{2} \eta \leq \frac{c}{4}$ and we obtain the claimed estimate.
As we already commented, if $a(x, \xi)$ is positive, in the sense that

$$
a(x, \xi) \geq 0
$$

the operator $\mathrm{Op}(a)$ is not nonnegative. Consider for example $a(x, \xi):=a(x) \xi^{2}$ with $a \in C_{0}^{\infty}(\mathbb{R})$ and $a(x) \geq 0$. Then the associated operator is $\mathrm{Op}(a)=-a(x) \partial_{x}^{2}$, but it is not nonnegative! For instance if $u \in C_{0}^{\infty}(\mathbb{R})$ satisfies $u^{\prime \prime}=u$ on the support of $a(x)$, then

$$
\langle\mathrm{Op}(a) u, u\rangle=-\int a(x) u^{2}(x) \mathrm{d} x<0
$$

On the other end, the operator $-\partial_{x} a \partial_{x}$ is nonnegative, and it agrees with $\mathrm{Op}(a)$ up to a term of one lower order.

This is true in general for pseudodifferential operators. Specifivally, if $a(x, \xi) \geq 0$, then, up to a lower order correction, $\mathrm{Op}(a)$ is also nonnegative. More precisely one has the following result, due to Friedrichs.

Theorem 10.2. Let $a \in \mathcal{S}^{m}$ and assume that $a(x, \xi) \geq 0$. Then one can write

$$
a(x, \xi)=a_{F}(x, \xi)+r(x, \xi)
$$

where $r \in \mathcal{S}^{m-1}$ and

$$
\left\langle\mathrm{Op}\left(a_{F}\right) u, u\right\rangle \geq 0, \quad \forall u \in \mathcal{S} .
$$

The proof of this result is quite technical, and the reader can find it in [?]. However, an easy consequence is the following strong Garding inequality.

Theorem 10.3 (Strong Garding inequality). Let $a \in \mathcal{S}^{m}$ with $\operatorname{Re} a(x, \xi) \geq 0$. Then

$$
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle \geq-C\|u\|_{H^{\frac{m-1}{2}}}^{2}
$$

for some $C>0$.
Proof. First recall that

$$
\operatorname{Re}\langle\operatorname{Op}(a) u, u\rangle=\langle\operatorname{Op}(\operatorname{Re} a) u, u\rangle+\langle\operatorname{Op}(b) u, u\rangle
$$

where $b \in \mathcal{S}^{m-1}$. By Theorem 10.2 applied to $\operatorname{Re} a(x, \xi)$,

$$
\operatorname{Re} a(x, \xi)=a_{F}(x, \xi)+r(x, \xi), \quad r \in \mathcal{S}^{m-1}
$$

Then

$$
\begin{aligned}
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle & =\left\langle\mathrm{Op}\left(a_{F}\right) u, u\right\rangle+\langle\mathrm{Op}(b+r) u, u\rangle \quad \geq-|\langle\mathrm{Op}(b+r) u, u\rangle| \\
& \geq-C\|u\|_{H^{\frac{m-1}{2}}}^{2}
\end{aligned}
$$

where we used that by Sobolev continuity

$$
\|\mathrm{Op}(b+r) u\|_{H^{-\frac{m-1}{2}}} \leq C\|u\|_{H^{\frac{m-1}{2}}}
$$

Remark that for nonnegative symbols of order 2 , strong Garding inequality gives

$$
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle \geq-C\|u\|_{H^{\frac{1}{2}}}^{2}
$$

An impressive improvement is given by the Fefferman-Phong inequality:
Theorem 10.4 (Fefferman-Phong inequality). If $a \in \mathcal{S}^{m}$ fulfills $a \geq 0$, then for some $C>0$

$$
\operatorname{Re}\langle\mathrm{Op}(a) u, u\rangle+C\|u\|_{\frac{m-2}{2}}^{2} \geq 0
$$

