6 Stationary phase and oscillatory integrals

In this section we study integrals of the form (5.10) when the function a is not necessarily
bounded. We want to give meaning to such integrals and find a way to compute them.
Actually the first step is to study integrals of the form

/ en®(®) a(z)dz (6.1)
Rd

when a € C§°(R?), p € C* is real valued, and £ is a small parameter. The idea is that, when h
is small, the phase (which is real valued) is fast oscillating and the integral is small.
There are essentially two distinct cases to analyze: the first is when

Ve # 0 on suppa (6.2)

and the second one when
Jxzo €suppa:  Ve(zg) =0. (6.3)

In the first case we will see that the integral is O(A") VNN, while in the second one we will get
an expansion in powers of A.

6.1 Rapid decay

Let us analyze the first case. We have the following result.

Theorem 6.1 (Rapid decay). Assume Vo # 0 on suppa. Then VN € N there is a constant
Cn = Cy(suppa,d, ) > 0 such that VO < h < 1 one has

/ en?(®) a(z)dx
Rd

<Oy hY Z sup |0%a(x)|. (6.4)

la|<N z€R4
In particular the integral is smaller than any power of A.

Proof. Define the differential operator

and note that

then clearly VN € N

Consequently

/ en?(@) a(z) dx :/ Ly (eifﬁ”(”)) a(z)dz :/ en?(®) (LYNa(z) dz
Rd Rd Rd
Everything is well defined as Vi # 0 on supp a. By the assumptions it follows that

IVo(x)| > co >0 on supp a
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But now note that
h
L*a = ——div (%Vg@) ,
1 V()]

(L)Y (a(@))| < On BV D sup [0 a(x)]

d
jaj <N PER

thus we get

which is the claimed estimate. O

6.2 Stationary phase

We consider now the second case, and just in case the phase is a quadratic function:

1
ol2) = ¢ (Qu,).
We also assume that @ is not degenerate, namely det Q # 0. This implies that Vp(z) = 0 iff

x = 0. We also assume 0 € suppa. In this case we have the following result

Theorem 6.2 (Stationary phase). Let Q be a real d X d matriz, symmetric, det Q # 0. Then
for any u € C§°(R?) and N > 1 one has

i (Qu.o) (2m) /2 ¢l sien @ Py Y 1 k
; de = D, D, ] Ry(u,h) (6.5
/Rdeh ulw)ds |det Q' kzzo (20)F k! [<Q ) “} pop T EN(wR) - (65)
where
sign ) = #positive eig — # negative eig
and Ntd)2
Ch N
Ry(u,h)| < —————— > 109(Q 7" Dy, Da)” 2. (6.6)
2N N |det Q|1/2 || <d+1

In order to prove the theorem we need the following fact about the Fourier transform of
imaginary Gaussian functions:

Lemma 6.3. If Q is a symmetric d x d real matrixz with det Q # 0, then

Qe n /2 o
]__<6%<Q., >) _ iTsianQ pd/2 (2m) s o B(Q7ee) (6.7)
et Q)

The lemma is proved in [Zwol2, Lemma 3.7].

Proof of Theorem 6.2. By definition of the Fourier transform on &', we have

i (Qu,x) i (Qz,x) i (Qz,x) _
en 2 wux)dr = <eﬁ 2 ,u> = <]—' (eﬁ 2 ) ,F 1u>
R §.,8 8.8

(6.7) hd/2 21t d/2 6i%signQ 1 ChijA—1 R
- (de)tQ|1/2 (2m)d e"B(@7ee) u(§) dg (6.8)

Now we have Vi € R
N-1

it it)*
© _Z(zj

k=0

[
< —
=N
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thus expanding the complex exponential we obtain

- N—-1 k
cH@9 Y L (R@76) e (6.9)

where the remainder is given by
Nt i (o1 h N
= [ a-pNle Q) (2 1
e = G L =0V bereg) a0
and it fulfills the estimate
N 1 N
rn (&P < S RTEO]T (6.11)

Substituting the expression (6.9) in the integral (6.8) and using that

/ (Q'¢.&) a(e) e = / S (Q e, €) (e de

= (2n)? [(Q”Dm,Dﬁku} L:O (6.12)

z=0

we get the finite sum of (6.5). To get the estimate of the remainder just use that

[t matene] < cn [ @66 ao)]ae (6.13)
and the estimate

ol = [ O © @)1de < Call (' Tz < Ca 3 [0l
la|<d+1
applied to 7= (Q716,6)" () = (@102, D)) (©) =

Before showing applications of this expansion in some specific case, it is useful to keep in
mind the following identity:

Lemma 6.4. Let A be a d x d, real, symmetric matriz. Then for u € S one has
ei%signA

(2m)4/2 |det A|'/?

{e%(ADz’DHu} (z) = /Rd e~ (A7 22) w(z + 2)dz (6.14)

Proof. By the definition of Fourier multiplier and using Lemma 6.3

i 1 3 i 1 i A
$(AD,.Dy),, _ i(2—9)E o E(ALE) _ $(ALe) _
e “= Gyl / e e u(y) dédy @n)i / u(y) (6 ) (y —2)dy

ei%signA / —i<A*1( B B
= e AT R we) g (y) dy
(2m)4/2 |det A|"?

iZsignA ; B
= - 7 /67§<A '2.2) u(z + z)dz
(2m)4/2 |det A|
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Examples. There are several nice applications of these formula. We will see those appearing
in the pseudodifferential calculus.

(i) If u € S(R®™), u = u(x,y), d = 2n and

0 1
=0

1 Da: DT _
then 5 <A (Dg '\ D = (Dy, D¢), so we get

i 1 .
|:€1<D17D§>Ui| (%75) = W /]Rz eﬂyn u(y + .1'75 +77) dyd’l’] (615)
A
=> Rl [(871 20y (-4, +€) e T BN (6.16)
k=0 V=s
1
= ) =108 Diu) (&) + Ry (6.17)
la|<N

where Ry fulfills
Rv|<Cn > 110505 (Dyi- 0y)Null 2 (6.18)
|a+B|<2n+1

(ii) If u € S(R*™), u = u(z,w) and

o(zw) = (Jz,w) = <<Oﬂ %) zw>

then writing z = (z,£), w = (y,n)

. 1 R
{ew(DZ’D“’)u} (z,w) = @ / e G0 W(Z + 2, W 4 w) dZ, dw (6.19)
R47’1,
SIS
=> [(U(Dg, Do) ul-+ 2, + w)} o+ By (6.20)
k=0~ y==

N
=S L [(De Dy — Dy Dyl €y + Ry (6.21)

6.3 Oscillatory integrals

We are now ready to study integrals of the form

/ 9% q(z) dx (6.22)
R

with @ a real, symmetric, d x d matrix and a a function polynomially growing in x. In particular
we take a to be in the class of the amplitudes:

AP(RY) = {a € C®°(R%,C): Vae N 30, >0: |0%(z)| < Cu <x>m*5'a‘} . (6.23)

If 6 = 0 we simply write Aj* = A™.
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Remark that amplitudes behave similar to symbols, in the sense that
a€ AP, be AP = abe AT

We endow AY* with the seminorms

Ni(a) =" sup [9%a(x)| {x)” " (6.24)

d
lo| <k z€R

which turn the space AJ" into Frechet.
Define the linear form

Ig(a) == /]Rd 9% o(z) dz

which is well defined for a € AJ* when m < —n. We want to prolong Ig continuously to the
space Aj' also for m > —n.

Theorem 6.5. Let a € A, 6 € (—1,1]. Let Q real, symmetric, det@ # 0 and ¢ € S with
©(0) = 1. Then the limit

lim [ €% %q(z)p(ex)dz

e—0 Rd

exists and is independent of p, as soon as p(0) = 1. We define

Ig(a) :=lim [ € 9%(z)p(ex)da (6.25)
e—0 Rd
Moreover
10(@)] < Cguma Nitsass (a) (6.26)

Therefore Ig can be extended with continuity to all AJ*. The extension is unique due to the
density of S in this space.

Proof. Take x € C§°(RY), x =1 in B;(0), x = 0 outside By(0). Define

I; .= /eiw'Qxa(x)x(Q*jx)dx.
We prove that {I;};>1 C Cis Cauchy. First
I -1, = /eiw'Qwa(x) (x(2772) = x(277 " 2)) da
= / 2 a(2y) (x(y) — x(29)) 2/ dy
—_————
suppC{3<|y|<2}

Since the support of the function is bounded away from zero, we can apply stationary phase with
rapid decay, namely Theorem 6.1, with i = 2727: then VM > 0 (we will fix it later), 3Cp; > 0
s.t.

L = Lia| <274Cy kM Y sup |05 [a(2y) (x(y) — x(20))]]
|a\§M%§‘y‘32

Now we have 4 . 4 | | .
95la(@y)]| < 21 |(05a)(27y)| < 27 (23)" 1 N a)
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so we get, using also Leibnitz rule,

|~ Ija] < Car Nij(a) 2092720 37 gglel gup (7)™ 71!

la|<M %§|Z/|S2
< Cuy Nﬁ(a) 2jd—2jM+jm Z 2j(1—5)k
E<M

< Cy N7 (a) 9id—2jM+jm+j(1-0)M
< Cy Nﬂ(a) 2j(d+m—(1+5)]b[)

< Cuy NHa)279

choosing M = %. Clearly we need § > —1. The choice of M also fixes the constant C;.

Thus {I;};>1 converges and
Ig(a) = lim I;

j—o0

Next we prove that the limit (6.25) exists and is independent of e. Denote
Ii(e) := / e Q% (z) plex)x (277 x) d.
Rd
Note that by dominated convergence theorem € — I;(e) € C°([0,1],C) and

lim I;(e) = I, lim I;(e) = /eiz'Qza(x)cp(ea:)dx

e—0 Jj—oo

We prove that {I;(e)};>1 is Cauchy in (C°([0,1],C), | - |l). Then {I;(e)};>1 converges
uniformly in [0, 1], and we are allowed to exchange the order of limits, getting

lim [ e 9%(2) p(ex)dz = lim lim I;(e) = lim lim I;(¢) = lim I; = Ig(a)
e—0 e—0j—00 Jj—o0 e—=0 j—o0

which proves that the limit does not depend on the regularizing function.
To prove that {I;(€)};>1 is Cauchy in (C°([0,1],C),] - |ls) one adapts the argument above
and shows .
15() = Li=1()lloo < C Nifimga (a) 2775
we leave the details as an exercise. O

Thanks to the procedure of regularization one checks that “classical” operations are valid for
oscillatory integrals:

Proposition 6.6. Let Q be real, symmetric, d x d, invertible matriz. Let a € AP, 6 € (—1,1].
Then the following holds true:

(i) Linear change of variables: Let A € Mat(R?) be real and invertible. Then
/eim'Q“c a(z)dz = /eiAy'QAy a(Ay) |det Al dy (6.27)
(it) Integration by parts: let b € AY", then
/ei””'Q"c a(x) 03b(z)dz = /(—8(;)[61”621 a(x)] b(z)dx (6.28)
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(iii) Differentiation under [: if a € AT(R" x RP), then [ e*?%a(z,y)dz € AT(RP) and
8;‘/6“3'@”3 a(z,y)de = /eix'Qx 9, a(z,y)dx (6.29)

(iv) Inversion of [: if a € AP*(R™ x RP) and if P is a non degenerate p X p real symmetric
matriz, then

/eiy'Py (/ ei”Qwa(x,y)dx) dy = /eiy'Peri”‘Qxa(x,y)dxdy (6.30)

(v) Passage to the limit under [: let {a;}jen C AJ* be bounded in AT and assume that
0ga;(x) = d5a(x) pointwisely Yoo € N,
Then a € A" and
/em'Qwa(x)dx = lim /eiw'Qwaj(ac)dcc
j—o0

Proof. The proof of the proposition consists essentially in writing the integrals as oscillatory
integrals, perform the wanted manipulations to the convergent integrals, and then take the limit
when € — 0. The details are in [SR91, Theorem 2.5].

(7) By definition of oscillatory integral

e—0

/eQO a(z)dz = lim [ 9% q(z) p(ex) dz
Now the integral on the r.h.s. is well defined, so we make the change of variables x = Ay we get
/eim'Q"’ a(z) p(ex)dz = /eiy'(A*QA)y a(Ay) p(eAy) | det A| dx

Now remark that $(y) := ¢(Ay) € S and $(0) = 1, while a(Ay) | det A] is an amplitude of order
m. Thus the limit

lim [ €% (A Y o(Ay) p(eAy) | det A|da

e—0

exists as oscillatory integral. This proves (7).
(74) Again we exploit the definition of oscillatory integral and compute

/eim'QI a(x) 0%b(x)dz = lim [ 9% a(x) 0%b(z) p(ex)dz

e—0

=lim [ —0%[e"® 9% a(z) p(ex)] b(z) da

e—=0

where we integrated by parts in the regularized integral. Using Leinbitz we split

o[ a@) plex)] = Y Caran (07 [ ala)] (0" p) (ex)

a’'+a’'=a

Now one checks that if o # 0, then

lim / (0% [ 9% a(a)] 182" ) (ex) b(z)dz = 0,

e—0

41



while the limit
lim | —0%1e®9% a(x)] " p(ex)b(x)da

e—=0

exists and gives the r.h.s. of (7i). We leave the details to the reader.
(491) Consider the oscillatory integral

I(y) == /ei”Qx a(z,y)de.

By the previous theorem we know that, provided we can interchange the limit and the derivative

O%I(y) =0y lim Ii(y),  Liy) = [ € % a(z,y)x(2 7 z)da
j—roo
= jli};o 9, 1;(y)

= lim [ @2 9y a(z,y) x(277z) dx

Jj—o0
= /ei”Qx 9, a(z,y)dr

and the only passage to justify is the exchange of the limit and the derivative. This is justified
provided {8;“[ i(y)} converges uniformly (at least on compact sets). But this is true, as arguing
as in the previous proof, one shows the punctual estimate

|05 (y) — 9511 (y)] = 277 ()™ 01! (6.31)

which implies uniform convergence on any compact set for the sequence {9y 1;(y)};. Actually

one concludes that (i)~ "+ 991;(y) is Cauchy in (C°(RP,C), || - [|o), so in particular the limit
fulfills 5
sup ()" o1 < €

so I(y) € AY is an amplitude.
(iv) As above let

I(y) := /eQO a(z,y)dz.

By the previous proof we already know it is an amplitude. Now

/eiy'PyI(y)dy: lim [ !V I(y) x(277y)dy

J—00

Now, denoting I;(y) as above

/6iy'PyI(y)x(2‘jy)dy=/eiy'Py Ij(y)x(2‘jy)dy+/eiy'Py (I(y) — I;(y) x(27y)dy

Now the first integral is regularized, we can exchange the integrals and pass to the limit for
j — oo, getting that

/eiy'Py Li(y) x(277y)dy = /eiyipymm a(e,y) x(277z) x(277y)dz dy — /eiylpym'QI a(z,y) dz dy
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Concerning the second integral, one passes to the limit in (6.31) and proves that

|83(I(y) - I](y))‘ <279 <y>m75|a\

namely b;(y) == (I(y) — I;(y)) x(277y) € AP with N7, (b) < Co277. Hence
1+6

’/eiy‘Py bj (y)dy. < ONapia (b) S Co277
146

which goes to 0 as 7 — oo.
(v) The proof that a € AJ" is easy and we skip it. By the linearity of the oscillatory integral
it is enough to show that

/eim'QI (a;(z) —a(z))dz — 0, j — oo.

Introduce the operator
1

1
Li=—"(14=Q '2-0,;
(a:)2 ( + ZiQ x )
then, being @) symmetric and invertible,

Lkeix-Qw — eia)-Qm vk € N

the adjoint operator is given by

]_ .
L* = — +div “ly
@ (21 @ ? )

As b; :=a; — a € A", by integration by parts in the oscillatory integrals we have

/eiI'QI b;j(z)de = /eiz'QI (L*)*[bj(2)] d

. bi() . bi(z)
L™bj)(x) = 5 div - 5 T
e =2 ¢ (21@ )

Now

is bounded by

(z)” (@ ™

In particular, as § + 1 > 0, we gained decay. With a similar estimate one shows that

[(L7)5b; ()] < )™ 4 ()"0 € LR

which is integrable for k large enough. As b;(x) — 0 punctually, we apply Lebesgue dominated
convergence theorem ans prove that

/ei’”'Q"” bi(z)dx = /eim'Qz (L*)*[bj(z)] dz — 0, J— oo
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Working with symbols, we deduce the following corollary
Corollary 6.7. Let a € S™, m € R and (a;)jen C S such that
(i) (aj)jen is bounded in S™;
(ii) Vo, B € Ng, Bgagaj(x,f) — Bgaga(x,y) uniformly on compacts.

Then
(Op(a;) f,9) = (Op(a) f,9),  Vfg€eS. (6.32)

Proof. Write
Op (@) £.9) = [ a5, FO g(wdcaln

the r.h.s. is an oscillatory integral, thus we can apply Proposition 6.6 (v) to conclude that

~

[ a0 FO5eds » [ e ae,) fie) gla)deas

which proves (6.32). O
It is useful to show that one can actually approximate symbols.

Lemma 6.8 (Approximation of symbols). Let a € S™, m € R. Then there exists a sequence
(aj)jen C S such that

(i) (a;)jen is bounded in 8™, i.e.
or'(a;) < Cepp'(a),  VjeN
(ii) Vo, B € Ng, 8;‘8?%(:1;,5) — 858?&(%3;) uniformly on compacts.
(tit) a; — a in 8™ as j — oo for any m’ > m.
Proof. Let x € C§°, x =1 in B1(0). Set
a;(z,€) = a(z, x (277 2)x(277¢) € C5°.
By Leibnitz rule, 8;‘8? a; equals
X220 ale, )+ D Car w2 O (2 0) (9 X)(279) (030 a(,€))
0#al <a
078/<8

In particular, using the boundedness of y and its derivatives, we get for each fixed k and |a+ 3] <
k, that

0200 a;(x,6)| < CO™ o (@)

proving (i). Item (ii) follows by taking the punctual limit in the expression above. Finally to
prove item (iii) we remark that a —a; = (1 — x(2792)x(277¢))a

020{ (a; — a)(w,€)| 5| (1 = X2 72)x(279€) 90 a(z, €)|

+ > 2O 0@ o 0 ala, )|
0#£8'<p
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from which we deduce that, VYm' > m,

© ™M 0z0f (a; - ) &)| S (@) sup (617

+f(a) sup ()T gl
|€]~27

S pi(a)2 It

using that in the first term |¢| > 27, while in the second term |¢] ~ 27. Hence o} (a; — a) — 0
as j — 0o, as claimed. O

This means that, when we work with symbols of some pseudodifferential operators, we can
always assume that they are Schwartz and then argue by approximation.

Examples: The method of the proof actually gives a way to compute oscillatory integrals. We
give few examples.

(i) If a € AP(R"), § € (—1,1], then

2m)™ /}Rzn e Wg(y) dydn = (27r)*"/]R e Wq(n) dydn = a(0) (6.33)

2n

Indeed the integral is of the form (6.22) with d = 2n, @ = % (_0]1 —011)7 T = <7y7> Indeed

take p € S(R™) with ¢(0) = 1. From the theorem

/ e Wa(y)dydn = lim e Y a(y) p(ey) ¢(en)dydn

By the properties of the Fourier transform

i 1
/ eV p(en)dn = 67@0(1//6)

hence

71 ]. ~ =€z o~
/R T a(y) pley) plen)dydn = /R a(y) pley) Bly/e) dy = /R ale2) o(e2) Blz) dz
Since » € S, by dominated convergence we get
lim / a(ez) o(2) 3(z) dz = a(0) (0) / B()dz = (2m)"a(0)
e—
R,—/
=(2m)"¢(0)

which proves (6.33).
(ii) Let o, 8 € N". Then

8 1P 0 o« # B
— y-n
e Y gy dp — e 6.34
/]R ol Bt Y {(%)n“) | a=p (6.34)

al
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Indeed y®e~¥" = (—D,)% " so by integration by parts in oscillatory integrals
Y 7 y g

. a 8 . D) nB . _i\lal B—a
—iyn yf 777 :/ —iyn ( ”7) 777 — / —iyn ( 1) n d d
/Rme ol grdvdn= [ ¢ ol g vdn= | e al (B—ay Y

(2m) ()il g
a! (8 —a)!

n=0

which gives the result.
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