6 Stationary phase and oscillatory integrals

In this section we study integrals of the form (5.10) when the function a is not necessarily bounded. We want to give meaning to such integrals and find a way to compute them.

Actually the first step is to study integrals of the form

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{\frac{i}{\hbar} \varphi(x)} a(x) \mathrm{d} x \tag{6.1}
\end{equation*}
$$

when $a \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \varphi \in C^{\infty}$ is real valued, and \hbar is a small parameter. The idea is that, when \hbar is small, the phase (which is real valued) is fast oscillating and the integral is small.
There are essentially two distinct cases to analyze: the first is when

$$
\begin{equation*}
\nabla \varphi \neq 0 \text { on } \operatorname{supp} a \tag{6.2}
\end{equation*}
$$

and the second one when

$$
\begin{equation*}
\exists x_{0} \in \operatorname{supp} a: \quad \nabla \varphi\left(x_{0}\right)=0 \tag{6.3}
\end{equation*}
$$

In the first case we will see that the integral is $O\left(\hbar^{N}\right) \forall N$, while in the second one we will get an expansion in powers of \hbar.

6.1 Rapid decay

Let us analyze the first case. We have the following result.
Theorem 6.1 (Rapid decay). Assume $\nabla \varphi \neq 0$ on $\operatorname{supp} a$. Then $\forall N \in \mathbb{N}$ there is a constant $C_{N} \equiv C_{N}(\operatorname{supp} a, d, \varphi)>0$ such that $\forall 0<\hbar \leq 1$ one has

$$
\begin{equation*}
\left|\int_{\mathbb{R}^{d}} e^{\frac{i}{\hbar} \varphi(x)} a(x) \mathrm{d} x\right| \leq C_{N} \hbar^{N} \sum_{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{d}}\left|\partial_{x}^{\alpha} a(x)\right| . \tag{6.4}
\end{equation*}
$$

In particular the integral is smaller than any power of \hbar.
Proof. Define the differential operator

$$
L:=\frac{\hbar}{\mathrm{i}} \frac{1}{|\nabla \varphi(x)|^{2}} \nabla \varphi(x) \cdot \nabla
$$

and note that

$$
L\left(e^{\frac{i}{\hbar} \varphi}\right)=e^{\frac{i}{\hbar} \varphi}
$$

then clearly $\forall N \in \mathbb{N}$

$$
L^{N}\left(e^{\frac{i}{\hbar} \varphi}\right)=e^{\frac{i}{\hbar} \varphi} .
$$

Consequently

$$
\int_{\mathbb{R}^{d}} e^{\frac{i}{\hbar} \varphi(x)} a(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} L^{N}\left(e^{\frac{i}{\hbar} \varphi(x)}\right) a(x) \mathrm{d} x=\int_{\mathbb{R}^{d}} e^{\frac{i}{\hbar} \varphi(x)}\left(L^{*}\right)^{N} a(x) \mathrm{d} x
$$

Everything is well defined as $\nabla \varphi \neq 0$ on supp a. By the assumptions it follows that

$$
|\nabla \varphi(x)| \geq c_{0}>0 \quad \text { on supp } a
$$

But now note that

$$
L^{*} a=-\frac{\hbar}{\mathrm{i}} \operatorname{div}\left(\frac{a}{|\nabla \varphi(x)|^{2}} \nabla \varphi\right)
$$

thus we get

$$
\left|\left(L^{*}\right)^{N}(a(x))\right| \leq C_{N} \hbar^{N} \sum_{|\alpha| \leq N} \sup _{x \in \mathbb{R}^{d}}\left|\partial_{x}^{\alpha} a(x)\right|
$$

which is the claimed estimate.

6.2 Stationary phase

We consider now the second case, and just in case the phase is a quadratic function:

$$
\varphi(x)=\frac{1}{2}\langle Q x, x\rangle .
$$

We also assume that Q is not degenerate, namely $\operatorname{det} Q \neq 0$. This implies that $\nabla \varphi(x)=0$ iff $x=0$. We also assume $0 \in \operatorname{supp} a$. In this case we have the following result

Theorem 6.2 (Stationary phase). Let Q be a real $d \times d$ matrix, symmetric, $\operatorname{det} Q \neq 0$. Then for any $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and $N \geq 1$ one has

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{\frac{\mathrm{i}}{\hbar} \frac{\langle Q x, x\rangle}{2}} u(x) \mathrm{d} x=\left.\frac{(2 \pi)^{d / 2} e^{\mathrm{i} \frac{\pi}{4} \operatorname{sign} Q}}{|\operatorname{det} Q|^{1 / 2}} \sum_{k=0}^{N-1} \frac{\hbar^{d / 2}}{(2 \mathrm{i})^{k} k!}\left[\left\langle Q^{-1} D_{x}, D_{x}\right\rangle^{k} u\right]\right|_{x=0}+R_{N}(u, \hbar) \tag{6.5}
\end{equation*}
$$

where
$\operatorname{sign} Q=\#$ positive eig $-\#$ negative eig
and

$$
\begin{equation*}
\left|R_{N}(u, \hbar)\right| \leq \frac{C \hbar^{N+d / 2}}{2^{N} N!|\operatorname{det} Q|^{1 / 2}} \sum_{|\alpha| \leq d+1}\left\|\partial_{x}^{\alpha}\left\langle Q^{-1} D_{x}, D_{x}\right\rangle^{N} u\right\|_{L^{2}} \tag{6.6}
\end{equation*}
$$

In order to prove the theorem we need the following fact about the Fourier transform of imaginary Gaussian functions:

Lemma 6.3. If Q is a symmetric $d \times d$ real matrix with $\operatorname{det} Q \neq 0$, then

$$
\begin{equation*}
\mathcal{F}\left(e^{\frac{i}{\hbar} \frac{\langle Q x, x\rangle}{2}}\right)=e^{\mathrm{i} \frac{\pi}{4} \operatorname{sign} Q} \hbar^{d / 2} \frac{(2 \pi)^{d / 2}}{|\operatorname{det} Q|^{1 / 2}} e^{-\frac{\hbar \mathrm{i}}{2}\left\langle Q^{-1} \xi, \xi\right\rangle} \tag{6.7}
\end{equation*}
$$

The lemma is proved in [Zwo12, Lemma 3.7].
Proof of Theorem 6.2. By definition of the Fourier transform on \mathcal{S}^{\prime}, we have

$$
\begin{align*}
\int_{\mathbb{R}^{d}} e^{\frac{i}{\hbar} \frac{\langle Q x, x\rangle}{2}} u(x) \mathrm{d} x & =\left\langle e^{\frac{i}{\hbar} \frac{\langle Q x, x\rangle}{2}}, u\right\rangle_{\mathcal{S}^{\prime}, \mathcal{S}}=\left\langle\mathcal{F}\left(e^{\frac{i}{\hbar} \frac{\langle Q x, x\rangle}{2}}\right), \mathcal{F}^{-1} u\right\rangle_{\mathcal{S}^{\prime}, \mathcal{S}} \\
& \stackrel{(6.7)}{=} \frac{\hbar^{d / 2}(2 \pi)^{d / 2} e^{i \frac{\pi}{4} \operatorname{sign} Q}}{|\operatorname{det} Q|^{1 / 2}} \frac{1}{(2 \pi)^{d}} \int e^{-\frac{\hbar i}{2}\left\langle Q^{-1} \xi, \xi\right\rangle} \widehat{u}(\xi) \mathrm{d} \xi \tag{6.8}
\end{align*}
$$

Now we have $\forall t \in \mathbb{R}$

$$
\left|e^{\mathrm{i} t}-\sum_{k=0}^{N-1} \frac{(\mathrm{i} t)^{k}}{k!}\right| \leq \frac{|t|^{N}}{N!}
$$

thus expanding the complex exponential we obtain

$$
\begin{equation*}
e^{-\frac{\hbar \mathrm{i}}{2}\left\langle Q^{-1} \xi, \xi\right\rangle}=\sum_{k=0}^{N-1} \frac{1}{k!}\left(\frac{\hbar}{2 \mathrm{i}}\left\langle Q^{-1} \xi, \xi\right\rangle\right)^{k}+r_{N}(\xi, \hbar) \tag{6.9}
\end{equation*}
$$

where the remainder is given by

$$
\begin{equation*}
r_{N}(\xi, \hbar)=\frac{\hbar^{N}}{(N-1)!} \int_{0}^{1}(1-t)^{N-1} e^{-\frac{t \hbar \mathrm{i}}{2}\left\langle Q^{-1} \xi, \xi\right\rangle}\left(\frac{\hbar}{2 \mathrm{i}}\left\langle Q^{-1} \xi, \xi\right\rangle\right)^{N} \mathrm{~d} t \tag{6.10}
\end{equation*}
$$

and it fulfills the estimate

$$
\begin{equation*}
\left|r_{N}(\xi, \hbar)\right| \leq \frac{\hbar^{N}}{2^{N} N!}\left|\left\langle Q^{-1} \xi, \xi\right\rangle\right|^{N} \tag{6.11}
\end{equation*}
$$

Substituting the expression (6.9) in the integral (6.8) and using that

$$
\begin{equation*}
\int\left\langle Q^{-1} \xi, \xi\right\rangle^{k} \widehat{u}(\xi) \mathrm{d} \xi=\left.\int e^{\mathrm{i} x \xi}\left\langle Q^{-1} \xi, \xi\right\rangle^{k} \widehat{u}(\xi) \mathrm{d} \xi\right|_{x=0}=\left.(2 \pi)^{d}\left[\left\langle Q^{-1} D_{x}, D_{x}\right\rangle^{k} u\right]\right|_{x=0} \tag{6.12}
\end{equation*}
$$

we get the finite sum of (6.5). To get the estimate of the remainder just use that

$$
\begin{equation*}
\left|\int r_{N}(\xi, h) \widehat{u}(\xi) \mathrm{d} \xi\right| \leq C \hbar^{N} \int\left|\left\langle Q^{-1} \xi, \xi\right\rangle^{N} \widehat{u}(\xi)\right| \mathrm{d} \xi \tag{6.13}
\end{equation*}
$$

and the estimate

$$
\|\widehat{v}\|_{L^{1}}=\int\langle\xi\rangle^{-d-1}\langle\xi\rangle^{d+1}|\widehat{v}(\xi)| \mathrm{d} \xi \leq C_{d}\left\|\langle\xi\rangle^{d+1} \widehat{v}\right\|_{L^{2}} \leq C_{d} \sum_{|\alpha| \leq d+1}\left\|\partial_{x}^{\alpha} v\right\|_{L^{2}}
$$

applied to $\widehat{v}=\left\langle Q^{-1} \xi, \xi\right\rangle^{N} \widehat{u}(\xi)=\left(\left\langle Q^{-1} D_{x}, D_{x}\right\rangle^{N} u\right)^{\wedge}(\xi)$.
Before showing applications of this expansion in some specific case, it is useful to keep in mind the following identity:

Lemma 6.4. Let A be $a d \times d$, real, symmetric matrix. Then for $u \in \mathcal{S}$ one has

$$
\begin{equation*}
\left[e^{\frac{i}{2}\left\langle A D_{x}, D_{x}\right\rangle} u\right](x)=\frac{e^{\mathrm{i} \frac{\pi}{4} \operatorname{signA}}}{(2 \pi)^{d / 2}|\operatorname{det} A|^{1 / 2}} \int_{\mathbb{R}^{d}} e^{-\frac{\mathrm{i}}{2}\left\langle A^{-1} z, z\right\rangle} u(x+z) \mathrm{d} z \tag{6.14}
\end{equation*}
$$

Proof. By the definition of Fourier multiplier and using Lemma 6.3

$$
\begin{aligned}
e^{\frac{\mathrm{i}}{2}\left\langle A D_{x}, D_{x}\right\rangle} u & =\frac{1}{(2 \pi)^{d}} \int e^{\mathrm{i}(x-y) \xi} e^{\frac{\mathrm{i}}{2}\langle A \xi, \xi\rangle} u(y) \mathrm{d} \xi \mathrm{~d} y=\frac{1}{(2 \pi)^{d}} \int u(y)\left(e^{\frac{\mathrm{i}}{2}\langle A \xi, \xi\rangle}\right)^{\wedge}(y-x) \mathrm{d} y \\
& =\frac{e^{\mathrm{i} \frac{\pi}{4} \operatorname{signA}}}{(2 \pi)^{d / 2}|\operatorname{det} A|^{1 / 2}} \int e^{-\frac{\mathrm{i}}{2}\left\langle A^{-1}(y-x), y-x\right\rangle} u(y) \mathrm{d} y \\
& =\frac{e^{\mathrm{i} \frac{\pi}{4} \operatorname{signA}}}{(2 \pi)^{d / 2}|\operatorname{det} A|^{1 / 2}} \int e^{-\frac{\mathrm{i}}{2}\left\langle A^{-1} z, z\right\rangle} u(x+z) \mathrm{d} z
\end{aligned}
$$

Examples. There are several nice applications of these formula. We will see those appearing in the pseudodifferential calculus.
(i) If $u \in \mathcal{S}\left(\mathbb{R}^{2 n}\right), u=u(x, y), d=2 n$ and

$$
A=\left(\begin{array}{ll}
0 & \mathbb{1} \\
\mathbb{1} & 0
\end{array}\right)
$$

then $\frac{1}{2}\left\langle A\binom{D_{x}}{D_{\xi}},\binom{D_{x}}{D_{\xi}}\right\rangle=\left\langle D_{x}, D_{\xi}\right\rangle$, so we get

$$
\begin{align*}
{\left[e^{\mathrm{i}\left\langle D_{x}, D_{\xi}\right\rangle} u\right](x, \xi) } & =\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} u(y+x, \xi+\eta) \mathrm{d} y \mathrm{~d} \eta \tag{6.15}\\
& =\sum_{k=0}^{N} \frac{1}{\mathrm{i}^{k} k!}\left[\left(\partial_{\eta} \cdot \partial_{y}\right)^{k} u(\cdot+x, \cdot+\xi)\right]_{\substack{\eta=\xi \\
y=x}}+R_{N} \tag{6.16}\\
& =\sum_{|\alpha| \leq N} \frac{1}{\alpha!}\left[\partial_{\xi}^{\alpha} D_{x}^{\alpha} u\right](x, \xi)+R_{N} \tag{6.17}
\end{align*}
$$

where R_{N} fulfills

$$
\begin{equation*}
\left|R_{N}\right| \leq C_{N} \sum_{|\alpha+\beta| \leq 2 n+1}\left\|\partial_{\eta}^{\alpha} \partial_{y}^{\beta}\left(\partial_{\eta} i \cdot \partial_{y}\right)^{N} u\right\|_{L^{2}} \tag{6.18}
\end{equation*}
$$

(ii) If $u \in \mathcal{S}\left(\mathbb{R}^{4 n}\right), u=u(z, w)$ and

$$
\sigma(z, w)=\langle J z, w\rangle=\left\langle\left(\begin{array}{cc}
0 & \mathbb{1} \\
-\mathbb{1} & 0
\end{array}\right) z, w\right\rangle
$$

then writing $z=(x, \xi), w=(y, \eta)$

$$
\begin{align*}
{\left[e^{\mathrm{i} \sigma\left(D_{z}, D_{w}\right)} u\right](z, w) } & =\frac{1}{(2 \pi)^{2 n}} \int_{\mathbb{R}^{4 n}} e^{-\mathrm{i} \sigma(\widetilde{z}, \widetilde{w})} u(\widetilde{z}+z, \widetilde{w}+w) \mathrm{d} \widetilde{z}, \mathrm{~d} \widetilde{w} \tag{6.19}\\
& =\sum_{k=0}^{N} \frac{1}{\mathrm{i}^{k} k!}\left[\left(\sigma\left(D_{\widetilde{z}}, D_{\widetilde{w}}\right)^{k} u(\cdot+z, \cdot+w)\right]_{\substack{\eta=\xi \\
y=x}}+R_{N}\right. \tag{6.20}\\
& =\sum_{k=0}^{N} \frac{1}{\mathrm{i}^{k} k!}\left[\left(D_{\xi} \cdot D_{y}-D_{x} \cdot D_{\eta}\right)^{k} u\right](x, \xi, y, \eta)+R_{N} \tag{6.21}
\end{align*}
$$

6.3 Oscillatory integrals

We are now ready to study integrals of the form

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} e^{\mathrm{i} x \cdot Q x} a(x) \mathrm{d} x \tag{6.22}
\end{equation*}
$$

with Q a real, symmetric, $d \times d$ matrix and a a function polynomially growing in x. In particular we take a to be in the class of the amplitudes:

$$
\begin{equation*}
A_{\delta}^{m}\left(\mathbb{R}^{d}\right)=\left\{a \in C^{\infty}\left(\mathbb{R}^{d}, \mathbb{C}\right): \quad \forall \alpha \in \mathbb{N}^{d} \exists C_{\alpha}>0: \quad\left|\partial_{x}^{\alpha} a(x)\right| \leq C_{\alpha}\langle x\rangle^{m-\delta|\alpha|}\right\} \tag{6.23}
\end{equation*}
$$

If $\delta=0$ we simply write $A_{0}^{m} \equiv A^{m}$.

Remark that amplitudes behave similar to symbols, in the sense that

$$
a \in A_{\delta}^{m_{1}}, \quad b \in A_{\delta}^{m_{2}} \quad \Rightarrow \quad a b \in A_{\delta}^{m_{1}+m_{2}}
$$

We endow A_{δ}^{m} with the seminorms

$$
\begin{equation*}
N_{k}^{m}(a):=\sum_{|\alpha| \leq k} \sup _{x \in \mathbb{R}^{d}}\left|\partial_{x}^{\alpha} a(x)\right|\langle x\rangle^{-m+\delta|\alpha|} \tag{6.24}
\end{equation*}
$$

which turn the space A_{δ}^{m} into Frechet.
Define the linear form

$$
I_{Q}(a):=\int_{\mathbb{R}^{d}} e^{\mathrm{i} x \cdot Q x} a(x) \mathrm{d} x
$$

which is well defined for $a \in A_{\delta}^{m}$ when $m<-n$. We want to prolong I_{Q} continuously to the space A_{δ}^{m} also for $m \geq-n$.
Theorem 6.5. Let $a \in A_{\delta}^{m}, \delta \in(-1,1]$. Let Q real, symmetric, $\operatorname{det} Q \neq 0$ and $\varphi \in \mathcal{S}$ with $\varphi(0)=1$. Then the limit

$$
\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{d}} e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x
$$

exists and is independent of φ, as soon as $\varphi(0)=1$. We define

$$
\begin{equation*}
I_{Q}(a):=\lim _{\epsilon \rightarrow 0} \int_{\mathbb{R}^{d}} e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x \tag{6.25}
\end{equation*}
$$

Moreover

$$
\begin{equation*}
\left|I_{Q}(a)\right| \leq C_{Q, m, d} N_{\frac{m+d+1}{1+\delta}}^{m}(a) \tag{6.26}
\end{equation*}
$$

Therefore I_{Q} can be extended with continuity to all A_{δ}^{m}. The extension is unique due to the density of \mathcal{S} in this space.

Proof. Take $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right), \chi \equiv 1$ in $B_{1}(0), \chi \equiv 0$ outside $B_{2}(0)$. Define

$$
I_{j}:=\int e^{\mathrm{i} x \cdot Q x} a(x) \chi\left(2^{-j} x\right) \mathrm{d} x
$$

We prove that $\left\{I_{j}\right\}_{j \geq 1} \subset \mathbb{C}$ is Cauchy. First

$$
\begin{aligned}
I_{j}-I_{j-1} & =\int e^{\mathrm{i} x \cdot Q x} a(x)\left(\chi\left(2^{-j} x\right)-\chi\left(2^{-j+1} x\right)\right) \mathrm{d} x \\
y & \stackrel{2^{-j} x}{=} \int e^{2^{2 j} \mathrm{i} y \cdot Q y} a\left(2^{j} y\right) \underbrace{(\chi(y)-\chi(2 y))}_{\operatorname{supp} \subset\left\{\frac{1}{2} \leq|y| \leq 2\right\}} 2^{j d} \mathrm{~d} y
\end{aligned}
$$

Since the support of the function is bounded away from zero, we can apply stationary phase with rapid decay, namely Theorem 6.1, with $\hbar=2^{-2 j}$: then $\forall M>0$ (we will fix it later), $\exists C_{M}>0$ s.t.

$$
\left|I_{j}-I_{j-1}\right| \leq 2^{j d} C_{M} \hbar^{M} \sum_{|\alpha| \leq M} \sup _{\frac{1}{2} \leq|y| \leq 2}\left|\partial_{y}^{\alpha}\left[a\left(2^{j} y\right)(\chi(y)-\chi(2 y))\right]\right|
$$

Now we have

$$
\left|\partial_{y}^{\alpha}\left[a\left(2^{j} y\right)\right]\right| \leq 2^{j|\alpha|}\left|\left(\partial_{y}^{\alpha} a\right)\left(2^{j} y\right)\right| \leq 2^{j|\alpha|}\left\langle 2^{j} y\right\rangle^{m-\delta|\alpha|} N_{|\alpha|}^{m}(a)
$$

so we get, using also Leibnitz rule,

$$
\begin{aligned}
\left|I_{j}-I_{j-1}\right| & \leq C_{M} N_{M}^{m}(a) 2^{j d} 2^{-2 j M} \sum_{|\alpha| \leq M} 2^{j|\alpha|} \sup _{\frac{1}{2} \leq|y| \leq 2}\left\langle 2^{j} y\right\rangle^{m-\delta|\alpha|} \\
& \leq C_{M} N_{M}^{m}(a) 2^{j d-2 j M+j m} \sum_{k \leq M} 2^{j(1-\delta) k} \\
& \leq C_{M} N_{M}^{m}(a) 2^{j d-2 j M+j m+j(1-\delta) M} \\
& \leq C_{M} N_{M}^{m}(a) 2^{j(d+m-(1+\delta) M)} \\
& \leq C_{M} N_{M}^{m}(a) 2^{-j}
\end{aligned}
$$

choosing $M=\frac{d+m+1}{1+\delta}$. Clearly we need $\delta>-1$. The choice of M also fixes the constant C_{M}.
Thus $\left\{I_{j}\right\}_{j \geq 1}$ converges and

$$
I_{Q}(a)=\lim _{j \rightarrow \infty} I_{j}
$$

Next we prove that the limit (6.25) exists and is independent of ϵ. Denote

$$
I_{j}(\epsilon):=\int_{\mathbb{R}^{d}} e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \chi\left(2^{-j} x\right) \mathrm{d} x
$$

Note that by dominated convergence theorem $\epsilon \mapsto I_{j}(\epsilon) \in C^{0}([0,1], \mathbb{C})$ and

$$
\lim _{\epsilon \rightarrow 0} I_{j}(\epsilon)=I_{j}, \quad \lim _{j \rightarrow \infty} I_{j}(\epsilon)=\int e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x
$$

We prove that $\left\{I_{j}(\epsilon)\right\}_{j \geq 1}$ is Cauchy in $\left(C^{0}([0,1], \mathbb{C}),\|\cdot\|_{\infty}\right)$. Then $\left\{I_{j}(\epsilon)\right\}_{j \geq 1}$ converges uniformly in $[0,1]$, and we are allowed to exchange the order of limits, getting

$$
\lim _{\epsilon \rightarrow 0} \int e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x=\lim _{\epsilon \rightarrow 0} \lim _{j \rightarrow \infty} I_{j}(\epsilon)=\lim _{j \rightarrow \infty} \lim _{\epsilon \rightarrow 0} I_{j}(\epsilon)=\lim _{j \rightarrow \infty} I_{j}=I_{Q}(a)
$$

which proves that the limit does not depend on the regularizing function.
To prove that $\left\{I_{j}(\epsilon)\right\}_{j \geq 1}$ is Cauchy in $\left(C^{0}([0,1], \mathbb{C}),\|\cdot\|_{\infty}\right)$ one adapts the argument above and shows

$$
\left\|I_{j}(\cdot)-I_{j-1}(\cdot)\right\|_{\infty} \leq C N_{\frac{d+m+1}{1+\delta}}^{m}(a) 2^{-j}
$$

we leave the details as an exercise.
Thanks to the procedure of regularization one checks that "classical" operations are valid for oscillatory integrals:

Proposition 6.6. Let Q be real, symmetric, $d \times d$, invertible matrix. Let $a \in A_{\delta}^{m}, \delta \in(-1,1]$. Then the following holds true:
(i) Linear change of variables: Let $A \in \operatorname{Mat}\left(\mathbb{R}^{d}\right)$ be real and invertible. Then

$$
\begin{equation*}
\int e^{\mathrm{i} x \cdot Q x} a(x) \mathrm{d} x=\int e^{\mathrm{i} A y \cdot Q A y} a(A y)|\operatorname{det} A| \mathrm{d} y \tag{6.27}
\end{equation*}
$$

(ii) Integration by parts: let $b \in A_{\delta}^{m}$, then

$$
\begin{equation*}
\int e^{\mathrm{i} x \cdot Q x} a(x) \partial_{x}^{\alpha} b(x) \mathrm{d} x=\int\left(-\partial_{x}^{\alpha}\right)\left[e^{\mathrm{i} x \cdot Q x} a(x)\right] b(x) \mathrm{d} x \tag{6.28}
\end{equation*}
$$

(iii) Differentiation under \int : if $a \in A_{\delta}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{p}\right)$, then $\int e^{\mathrm{i} x Q x} a(x, y) \mathrm{d} x \in A_{\delta}^{m}\left(\mathbb{R}^{p}\right)$ and

$$
\begin{equation*}
\partial_{y}^{\alpha} \int e^{\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x=\int e^{\mathrm{i} x \cdot Q x} \partial_{y}^{\alpha} a(x, y) \mathrm{d} x \tag{6.29}
\end{equation*}
$$

(iv) Inversion of \int : if $a \in A_{\delta}^{m}\left(\mathbb{R}^{n} \times \mathbb{R}^{p}\right)$ and if P is a non degenerate $p \times p$ real symmetric matrix, then

$$
\begin{equation*}
\int e^{\mathrm{i} y \cdot P y}\left(\int e^{\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x\right) \mathrm{d} y=\int e^{\mathrm{i} y \cdot P y+\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x \mathrm{~d} y \tag{6.30}
\end{equation*}
$$

(v) Passage to the limit under $\int:$ let $\left\{a_{j}\right\}_{j \in \mathbb{N}} \subset A_{\delta}^{m}$ be bounded in A_{δ}^{m} and assume that

$$
\partial_{x}^{\alpha} a_{j}(x) \rightarrow \partial_{x}^{\alpha} a(x) \quad \text { pointwisely } \forall \alpha \in \mathbb{N}^{d} .
$$

Then $a \in A_{\delta}^{m}$ and

$$
\int e^{\mathrm{i} x \cdot Q x} a(x) \mathrm{d} x=\lim _{j \rightarrow \infty} \int e^{\mathrm{i} x \cdot Q x} a_{j}(x) \mathrm{d} x
$$

Proof. The proof of the proposition consists essentially in writing the integrals as oscillatory integrals, perform the wanted manipulations to the convergent integrals, and then take the limit when $\epsilon \rightarrow 0$. The details are in [SR91, Theorem 2.5].
(i) By definition of oscillatory integral

$$
\int e^{\mathrm{i} x \cdot Q x} a(x) \mathrm{d} x=\lim _{\epsilon \rightarrow 0} \int e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x
$$

Now the integral on the r.h.s. is well defined, so we make the change of variables $x=A y$ we get

$$
\int e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x=\int e^{\mathrm{i} y \cdot\left(A^{*} Q A\right) y} a(A y) \varphi(\epsilon A y)|\operatorname{det} A| \mathrm{d} x
$$

Now remark that $\widetilde{\varphi}(y):=\varphi(A y) \in \mathcal{S}$ and $\widetilde{\varphi}(0)=1$, while $a(A y)|\operatorname{det} A|$ is an amplitude of order m. Thus the limit

$$
\lim _{\epsilon \rightarrow 0} \int e^{\mathrm{i} y \cdot\left(A^{*} Q A\right) y} a(A y) \varphi(\epsilon A y)|\operatorname{det} A| \mathrm{d} x
$$

exists as oscillatory integral. This proves (i).
(ii) Again we exploit the definition of oscillatory integral and compute

$$
\begin{aligned}
\int e^{\mathrm{i} x \cdot Q x} a(x) \partial_{x}^{\alpha} b(x) \mathrm{d} x & =\lim _{\epsilon \rightarrow 0} \int e^{\mathrm{i} x \cdot Q x} a(x) \partial_{x}^{\alpha} b(x) \varphi(\epsilon x) \mathrm{d} x \\
& =\lim _{\epsilon \rightarrow 0} \int-\partial_{x}^{\alpha}\left[e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x)\right] b(x) \mathrm{d} x
\end{aligned}
$$

where we integrated by parts in the regularized integral. Using Leinbitz we split

$$
\partial_{x}^{\alpha}\left[e^{\mathrm{i} x \cdot Q x} a(x) \varphi(\epsilon x)\right]=\sum_{\alpha^{\prime}+\alpha^{\prime \prime}=\alpha} C_{\alpha^{\prime}, \alpha^{\prime \prime}}\left(\partial_{x}^{\alpha^{\prime}}\left[e^{\mathrm{i} x \cdot Q x} a(x)\right] \epsilon^{\left|\alpha^{\prime \prime}\right|}\left(\partial_{x}^{\alpha^{\prime \prime}} \varphi\right)(\epsilon x)\right.
$$

Now one checks that if $\alpha^{\prime \prime} \neq 0$, then

$$
\lim _{\epsilon \rightarrow 0} \int\left(\partial_{x}^{\alpha^{\prime}}\left[e^{\mathrm{i} x \cdot Q x} a(x)\right] \epsilon^{\left|\alpha^{\prime \prime}\right|}\left(\partial_{x}^{\alpha^{\prime \prime}} \varphi\right)(\epsilon x) b(x) \mathrm{d} x=0,\right.
$$

while the limit

$$
\lim _{\epsilon \rightarrow 0} \int-\partial_{x}^{\alpha}\left[e^{\mathrm{i} x \cdot Q x} a(x)\right] \epsilon^{\left|\alpha^{\prime \prime}\right|} \varphi(\epsilon x) b(x) \mathrm{d} x
$$

exists and gives the r.h.s. of (ii). We leave the details to the reader.
(iii) Consider the oscillatory integral

$$
I(y):=\int e^{\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x
$$

By the previous theorem we know that, provided we can interchange the limit and the derivative

$$
\begin{aligned}
\partial_{y}^{\alpha} I(y) & =\partial_{y}^{\alpha} \lim _{j \rightarrow \infty} I_{j}(y), \quad I_{j}(y):=\int e^{\mathrm{i} x \cdot Q x} a(x, y) \chi\left(2^{-j} x\right) \mathrm{d} x \\
& =\lim _{j \rightarrow \infty} \partial_{y}^{\alpha} I_{j}(y) \\
& =\lim _{j \rightarrow \infty} \int e^{\mathrm{i} x \cdot Q x} \partial_{y}^{\alpha} a(x, y) \chi\left(2^{-j} x\right) \mathrm{d} x \\
& =\int e^{\mathrm{i} x \cdot Q x} \partial_{y}^{\alpha} a(x, y) \mathrm{d} x
\end{aligned}
$$

and the only passage to justify is the exchange of the limit and the derivative. This is justified provided $\left\{\partial_{y}^{\alpha} I_{j}(y)\right\}$ converges uniformly (at least on compact sets). But this is true, as arguing as in the previous proof, one shows the punctual estimate

$$
\begin{equation*}
\left|\partial_{y}^{\alpha} I_{j}(y)-\partial_{y}^{\alpha} I_{j-1}(y)\right| \preceq 2^{-j}\langle y\rangle^{m-\delta|\alpha|} \tag{6.31}
\end{equation*}
$$

which implies uniform convergence on any compact set for the sequence $\left\{\partial_{y}^{\alpha} I_{j}(y)\right\}_{j}$. Actually one concludes that $\langle y\rangle^{-m+\delta|\alpha|} \partial_{y}^{\alpha} I_{j}(y)$ is Cauchy in $\left(C^{0}\left(\mathbb{R}^{p}, \mathbb{C}\right),\|\cdot\|_{\infty}\right)$, so in particular the limit fulfills

$$
\sup _{y}\left|\langle y\rangle^{-m+\delta|\alpha|} \partial_{y}^{\alpha} I(y)\right| \leq C
$$

so $I(y) \in A_{\delta}^{m}$ is an amplitude.
(iv) As above let

$$
I(y):=\int e^{\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x
$$

By the previous proof we already know it is an amplitude. Now

$$
\int e^{\mathrm{i} y \cdot P y} I(y) \mathrm{d} y=\lim _{j \rightarrow \infty} \int e^{\mathrm{i} y \cdot P y} I(y) \chi\left(2^{-j} y\right) \mathrm{d} y
$$

Now, denoting $I_{j}(y)$ as above

$$
\int e^{\mathrm{i} y \cdot P y} I(y) \chi\left(2^{-j} y\right) \mathrm{d} y=\int e^{\mathrm{i} y \cdot P y} I_{j}(y) \chi\left(2^{-j} y\right) \mathrm{d} y+\int e^{\mathrm{i} y \cdot P y}\left(I(y)-I_{j}(y)\right) \chi\left(2^{-j} y\right) \mathrm{d} y
$$

Now the first integral is regularized, we can exchange the integrals and pass to the limit for $j \rightarrow \infty$, getting that

$$
\int e^{\mathrm{i} y \cdot P y} I_{j}(y) \chi\left(2^{-j} y\right) \mathrm{d} y=\int e^{\mathrm{i} y \cdot P y+\mathrm{i} x \cdot Q x} a(x, y) \chi\left(2^{-j} x\right) \chi\left(2^{-j} y\right) \mathrm{d} x \mathrm{~d} y \rightarrow \int e^{\mathrm{i} y \cdot P y+\mathrm{i} x \cdot Q x} a(x, y) \mathrm{d} x \mathrm{~d} y
$$

Concerning the second integral, one passes to the limit in (6.31) and proves that

$$
\left|\partial_{y}^{\alpha}\left(I(y)-I_{j}(y)\right)\right| \lesssim 2^{-j}\langle y\rangle^{m-\delta|\alpha|}
$$

namely $b_{j}(y):=\left(I(y)-I_{j}(y)\right) \chi\left(2^{-j} y\right) \in A_{\delta}^{m}$ with $N_{\frac{m+p+1}{1+\delta}}^{m}(b) \lesssim C_{0} 2^{-j}$. Hence

$$
\left|\int e^{\mathrm{i} y \cdot P y} b_{j}(y) \mathrm{d} y\right| \leq C N_{\frac{m+p+1}{1+\delta}}^{m}(b) \lesssim C_{0} 2^{-j}
$$

which goes to 0 as $j \rightarrow \infty$.
(v) The proof that $a \in A_{\delta}^{m}$ is easy and we skip it. By the linearity of the oscillatory integral it is enough to show that

$$
\int e^{\mathrm{i} x \cdot Q x}\left(a_{j}(x)-a(x)\right) \mathrm{d} x \rightarrow 0, \quad j \rightarrow \infty
$$

Introduce the operator

$$
L:=\frac{1}{\langle x\rangle^{2}}\left(1+\frac{1}{2 \mathrm{i}} Q^{-1} x \cdot \partial_{x}\right)
$$

then, being Q symmetric and invertible,

$$
L^{k} e^{\mathrm{i} x \cdot Q x}=e^{\mathrm{i} x \cdot Q x} \quad \forall k \in \mathbb{N}
$$

the adjoint operator is given by

$$
L^{*}=\frac{1}{\langle x\rangle^{2}}+\operatorname{div}\left(\frac{\cdot}{2 \mathrm{i}\langle x\rangle^{2}} Q^{-1} x\right)
$$

As $b_{j}:=a_{j}-a \in A_{\delta}^{m}$, by integration by parts in the oscillatory integrals we have

$$
\int e^{\mathrm{i} x \cdot Q x} b_{j}(x) \mathrm{d} x=\int e^{\mathrm{i} x \cdot Q x}\left(L^{*}\right)^{k}\left[b_{j}(x)\right] \mathrm{d} x
$$

Now

$$
\left(L^{*} b_{j}\right)(x)=\frac{b_{j}(x)}{\langle x\rangle^{2}}+\operatorname{div}\left(\frac{b_{j}(x)}{2 \mathrm{i}\langle x\rangle^{2}} Q^{-1} x\right)
$$

is bounded by

$$
\left|L^{*} b_{j}\right| \lesssim \frac{\left|b_{j}(x)\right|}{\langle x\rangle^{2}}+\frac{\left|\partial_{x} b_{j}(x)\right|}{\langle x\rangle} \lesssim\langle x\rangle^{m-2}+\langle x\rangle^{m-(\delta+1)}
$$

In particular, as $\delta+1>0$, we gained decay. With a similar estimate one shows that

$$
\left|\left(L^{*}\right)^{k} b_{j}(x)\right| \lesssim\langle x\rangle^{m-2 k}+\langle x\rangle^{m-(\delta+1) k} \in L^{1}\left(\mathbb{R}^{d}\right)
$$

which is integrable for k large enough. As $b_{j}(x) \rightarrow 0$ punctually, we apply Lebesgue dominated convergence theorem ans prove that

$$
\int e^{\mathrm{i} x \cdot Q x} b_{j}(x) \mathrm{d} x=\int e^{\mathrm{i} x \cdot Q x}\left(L^{*}\right)^{k}\left[b_{j}(x)\right] \mathrm{d} x \rightarrow 0, \quad j \rightarrow \infty
$$

Working with symbols, we deduce the following corollary
Corollary 6.7. Let $a \in S^{m}, m \in \mathbb{R}$ and $\left(a_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{S}$ such that
(i) $\left(a_{j}\right)_{j \in \mathbb{N}}$ is bounded in \mathcal{S}^{m};
(ii) $\forall \alpha, \beta \in \mathbb{N}_{0}^{d}, \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a_{j}(x, \xi) \rightarrow \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, y)$ uniformly on compacts.

Then

$$
\begin{equation*}
\left\langle\mathrm{Op}\left(a_{j}\right) f, g\right\rangle \rightarrow\langle\mathrm{Op}(a) f, g\rangle, \quad \forall f, g \in \mathcal{S} . \tag{6.32}
\end{equation*}
$$

Proof. Write

$$
\left\langle\mathrm{Op}\left(a_{j}\right) f, g\right\rangle=\int e^{\mathrm{i} x \xi} a_{j}(x, \xi) \widehat{f}(\xi) \bar{g}(x) \mathrm{d} \xi \mathrm{~d} x
$$

the r.h.s. is an oscillatory integral, thus we can apply Proposition $6.6(v)$ to conclude that

$$
\int e^{\mathrm{i} x \xi} a_{j}(x, \xi) \widehat{f}(\xi) \bar{g}(x) \mathrm{d} \xi \mathrm{~d} x \rightarrow \int e^{\mathrm{i} x \xi} a(x, \xi) \widehat{f}(\xi) \bar{g}(x) \mathrm{d} \xi \mathrm{~d} x
$$

which proves (6.32).
It is useful to show that one can actually approximate symbols.
Lemma 6.8 (Approximation of symbols). Let $a \in S^{m}, m \in \mathbb{R}$. Then there exists a sequence $\left(a_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{S}$ such that
(i) $\left(a_{j}\right)_{j \in \mathbb{N}}$ is bounded in \mathcal{S}^{m}, i.e.

$$
\wp_{k}^{m}\left(a_{j}\right) \leq C_{k} \wp_{k}^{m}(a), \quad \forall j \in \mathbb{N}
$$

(ii) $\forall \alpha, \beta \in \mathbb{N}_{0}^{d}, \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a_{j}(x, \xi) \rightarrow \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, y)$ uniformly on compacts.
(iii) $a_{j} \rightarrow a$ in $\mathcal{S}^{m^{\prime}}$ as $j \rightarrow \infty$ for any $m^{\prime}>m$.

Proof. Let $\chi \in C_{0}^{\infty}, \chi \equiv 1$ in $B_{1}(0)$. Set

$$
a_{j}(x, \xi):=a(x, \xi) \chi\left(2^{-j} x\right) \chi\left(2^{-j} \xi\right) \in C_{0}^{\infty} .
$$

By Leibnitz rule, $\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a_{j}$ equals
$\chi\left(2^{-j} x\right) \chi\left(2^{-j} \xi\right) \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)+\sum_{\substack{0 \neq \alpha^{\prime} \leq \alpha \\ 0 \neq \beta^{\prime} \leq \beta}} C_{\alpha^{\prime}, \beta^{\prime}} 2^{-j\left|\alpha^{\prime}+\beta^{\prime}\right|}\left(\partial_{x}^{\alpha^{\prime}} \chi\right)\left(2^{-j} x\right)\left(\partial_{\xi}^{\beta^{\prime}} \chi\right)\left(2^{-j} \xi\right)\left(\partial_{x}^{\alpha-\alpha^{\prime}} \partial_{\xi}^{\beta-\beta^{\prime}} a(x, \xi)\right)$
In particular, using the boundedness of χ and its derivatives, we get for each fixed k and $|\alpha+\beta| \leq$ k, that

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a_{j}(x, \xi)\right| \leq C\langle\xi\rangle^{m} \wp_{k}^{m}(a)
$$

proving (i). Item (ii) follows by taking the punctual limit in the expression above. Finally to prove item (iii) we remark that $a-a_{j}=\left(1-\chi\left(2^{-j} x\right) \chi\left(2^{-j} \xi\right)\right) a$

$$
\begin{aligned}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(a_{j}-a\right)(x, \xi)\right| & \lesssim\left|\left(1-\chi\left(2^{-j} x\right) \chi\left(2^{-j} \xi\right)\right) \partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \\
& +\sum_{0 \neq \beta^{\prime} \leq \beta} 2^{-j\left|\beta^{\prime}\right|}\left(\partial_{\xi}^{\beta^{\prime}} \chi\right)\left(2^{-j} \xi\right)\left|\partial_{x}^{\alpha-\alpha^{\prime}} \partial_{\xi}^{\beta-\beta^{\prime}} a(x, \xi)\right|
\end{aligned}
$$

from which we deduce that, $\forall m^{\prime}>m$,

$$
\begin{aligned}
\langle\xi\rangle^{-m^{\prime}+|\beta|}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta}\left(a_{j}-a\right)(x, \xi)\right| & \lesssim \wp_{k}^{m}(a) \sup _{|\xi| \geq 2^{j}}\langle\xi\rangle^{-m^{\prime}+m} \\
& +\wp_{k}^{m}(a) \sup _{|\xi| \sim 2^{j}}\langle\xi\rangle^{-m^{\prime}+m+\left|\beta^{\prime}\right|} 2^{-j\left|\beta^{\prime}\right|} \\
& \lesssim \wp_{k}^{m}(a) 2^{-j\left(m^{\prime}-m\right)}
\end{aligned}
$$

using that in the first term $|\xi| \geq 2^{j}$, while in the second term $|\xi| \sim 2^{j}$. Hence $\wp_{k}^{m^{\prime}}\left(a_{j}-a\right) \rightarrow 0$ as $j \rightarrow \infty$, as claimed.

This means that, when we work with symbols of some pseudodifferential operators, we can always assume that they are Schwartz and then argue by approximation.

Examples: The method of the proof actually gives a way to compute oscillatory integrals. We give few examples.
(i) If $a \in A_{\delta}^{m}\left(\mathbb{R}^{n}\right), \delta \in(-1,1]$, then

$$
\begin{equation*}
(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} a(y) \mathrm{d} y \mathrm{~d} \eta=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} a(\eta) \mathrm{d} y \mathrm{~d} \eta=a(0) \tag{6.33}
\end{equation*}
$$

Indeed the integral is of the form (6.22) with $d=2 n, Q=\frac{1}{2}\left(\begin{array}{cc}0 & -\mathbb{1} \\ -\mathbb{1} & 0\end{array}\right), x=\binom{y}{\eta}$. Indeed take $\varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\varphi(0)=1$. From the theorem

$$
\int e^{-\mathrm{i} y \eta} a(y) \mathrm{d} y \mathrm{~d} \eta=\lim _{\epsilon \rightarrow 0} \int e^{-\mathrm{i} y \eta} a(y) \varphi(\epsilon y) \varphi(\epsilon \eta) \mathrm{d} y \mathrm{~d} \eta
$$

By the properties of the Fourier transform

$$
\int_{\mathbb{R}^{n}} e^{-\mathrm{i} y \eta} \varphi(\epsilon \eta) \mathrm{d} \eta=\frac{1}{\epsilon^{n}} \widehat{\varphi}(y / \epsilon)
$$

hence
$\int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} a(y) \varphi(\epsilon y) \varphi(\epsilon \eta) \mathrm{d} y \mathrm{~d} \eta=\frac{1}{\epsilon^{n}} \int_{\mathbb{R}^{n}} a(y) \varphi(\epsilon y) \widehat{\varphi}(y / \epsilon) \mathrm{d} y \stackrel{y=\epsilon z}{=} \int_{\mathbb{R}^{n}} a(\epsilon z) \varphi\left(\epsilon^{2} z\right) \widehat{\varphi}(z) \mathrm{d} z$
Since $\widehat{\varphi} \in \mathcal{S}$, by dominated convergence we get

$$
\lim _{\epsilon \rightarrow 0} \int a(\epsilon z) \varphi\left(\epsilon^{2} z\right) \widehat{\varphi}(z) \mathrm{d} z=a(0) \varphi(0) \underbrace{\int \widehat{\varphi}(z) \mathrm{d} z}_{=(2 \pi)^{n} \varphi(0)}=(2 \pi)^{n} a(0)
$$

which proves (6.33).
(ii) Let $\alpha, \beta \in \mathbb{N}^{n}$. Then

$$
\int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} \frac{y^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \mathrm{d} y \mathrm{~d} \eta= \begin{cases}0 & \alpha \neq \beta \tag{6.34}\\ (2 \pi)^{n} \frac{(-\mathrm{i})^{|\alpha|}}{\alpha!} & \alpha=\beta\end{cases}
$$

Indeed $y^{\alpha} e^{-\mathrm{i} y \eta}=\left(-D_{\eta}\right)^{\alpha} e^{-\mathrm{i} y \eta}$, so by integration by parts in oscillatory integrals

$$
\begin{aligned}
\int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} \frac{y^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \mathrm{d} y \mathrm{~d} \eta & =\int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} \frac{\left(D_{\eta}\right)^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \mathrm{d} y \mathrm{~d} \eta=\int_{\mathbb{R}^{2 n}} e^{-\mathrm{i} y \eta} \frac{(-\mathrm{i})^{|\alpha|}}{\alpha!} \frac{\eta^{\beta-\alpha}}{(\beta-\alpha)!} \mathrm{d} y \mathrm{~d} \eta \\
& =\left.\frac{(2 \pi)^{n}(-\mathrm{i})^{|\alpha|}}{\alpha!} \frac{\eta^{\beta-\alpha}}{(\beta-\alpha)!}\right|_{\eta=0}
\end{aligned}
$$

which gives the result.

