6 Stationary phase and oscillatory integrals

In this section we study integrals of the form (5.10) when the function a is not necessarily bounded. We want to give meaning to such integrals and find a way to compute them.

Actually the first step is to study integrals of the form

$$\int_{\mathbb{R}^d} e^{\frac{\mathrm{i}}{\hbar}\varphi(x)} a(x) \,\mathrm{d}x \tag{6.1}$$

when $a \in C_0^{\infty}(\mathbb{R}^d)$, $\varphi \in C^{\infty}$ is real valued, and \hbar is a small parameter. The idea is that, when \hbar is small, the phase (which is real valued) is fast oscillating and the integral is small. There are essentially two distinct cases to analyze: the first is when

$$\nabla \varphi \neq 0 \text{ on supp } a$$
 (6.2)

and the second one when

$$\exists x_0 \in \operatorname{supp} a: \quad \nabla \varphi(x_0) = 0. \tag{6.3}$$

In the first case we will see that the integral is $O(\hbar^N) \forall N$, while in the second one we will get an expansion in powers of \hbar .

6.1 Rapid decay

Let us analyze the first case. We have the following result.

Theorem 6.1 (Rapid decay). Assume $\nabla \varphi \neq 0$ on supp *a*. Then $\forall N \in \mathbb{N}$ there is a constant $C_N \equiv C_N(\operatorname{supp} a, d, \varphi) > 0$ such that $\forall 0 < \hbar \leq 1$ one has

$$\left| \int_{\mathbb{R}^d} e^{\frac{i}{\hbar}\varphi(x)} a(x) \, \mathrm{d}x \right| \le C_N \, \hbar^N \sum_{|\alpha| \le N} \sup_{x \in \mathbb{R}^d} \left| \partial_x^{\alpha} a(x) \right|.$$
(6.4)

In particular the integral is smaller than any power of \hbar .

Proof. Define the differential operator

$$L := \frac{\hbar}{\mathrm{i}} \frac{1}{\left|\nabla\varphi(x)\right|^2} \nabla\varphi(x) \cdot \nabla$$

and note that

$$L\left(e^{\frac{\mathrm{i}}{\hbar}\varphi}\right) = e^{\frac{\mathrm{i}}{\hbar}\varphi};$$

then clearly
$$\forall N \in \mathbb{N}$$

$$L^N\left(e^{\frac{\mathrm{i}}{\hbar}\varphi}\right)=e^{\frac{\mathrm{i}}{\hbar}\varphi}.$$

Consequently

$$\int_{\mathbb{R}^d} e^{\frac{\mathrm{i}}{\hbar}\varphi(x)} a(x) \,\mathrm{d}x = \int_{\mathbb{R}^d} L^N\left(e^{\frac{\mathrm{i}}{\hbar}\varphi(x)}\right) a(x) \,\mathrm{d}x = \int_{\mathbb{R}^d} e^{\frac{\mathrm{i}}{\hbar}\varphi(x)} \,(L^*)^N a(x) \,\mathrm{d}x$$

Everything is well defined as $\nabla \varphi \neq 0$ on supp a. By the assumptions it follows that

$$|\nabla \varphi(x)| \ge c_0 > 0 \qquad \text{on supp} \, a$$

But now note that

$$L^*a = -\frac{\hbar}{\mathrm{i}}\mathrm{div}\left(\frac{a}{\left|\nabla\varphi(x)\right|^2}\nabla\varphi\right),$$

thus we get

$$\left| (L^*)^N \left(a(x) \right) \right| \le C_N \, \hbar^N \sum_{|\alpha| \le N} \sup_{x \in \mathbb{R}^d} \left| \partial_x^{\alpha} a(x) \right|$$

which is the claimed estimate.

6.2 Stationary phase

We consider now the second case, and just in case the phase is a quadratic function:

$$\varphi(x) = \frac{1}{2} \langle Qx, x \rangle.$$

We also assume that Q is not degenerate, namely det $Q \neq 0$. This implies that $\nabla \varphi(x) = 0$ iff x = 0. We also assume $0 \in \text{supp } a$. In this case we have the following result

Theorem 6.2 (Stationary phase). Let Q be a real $d \times d$ matrix, symmetric, det $Q \neq 0$. Then for any $u \in C_0^{\infty}(\mathbb{R}^d)$ and $N \geq 1$ one has

$$\int_{\mathbb{R}^d} e^{\frac{i}{\hbar} \frac{\langle Qx, x \rangle}{2}} u(x) dx = \frac{(2\pi)^{d/2} e^{i\frac{\pi}{4} \operatorname{sign} Q}}{\left| \det Q \right|^{1/2}} \sum_{k=0}^{N-1} \frac{\hbar^{d/2}}{(2i)^k k!} \left[\left\langle Q^{-1} D_x, D_x \right\rangle^k u \right] \Big|_{x=0} + R_N(u, \hbar) \quad (6.5)$$

where

$$\operatorname{sign} Q = \# \operatorname{positive} \operatorname{eig} - \# \operatorname{negative} \operatorname{eig}$$

and

$$|R_N(u,\hbar)| \le \frac{C\,\hbar^{N+d/2}}{2^N\,N!\,\left|\det Q\right|^{1/2}} \sum_{|\alpha|\le d+1} \|\partial_x^{\alpha} \left\langle Q^{-1}D_x, D_x \right\rangle^N u\|_{L^2}.$$
(6.6)

In order to prove the theorem we need the following fact about the Fourier transform of imaginary Gaussian functions:

Lemma 6.3. If Q is a symmetric $d \times d$ real matrix with det $Q \neq 0$, then

$$\mathcal{F}\left(e^{\frac{\mathrm{i}}{\hbar}\frac{\langle Qx,x\rangle}{2}}\right) = e^{\mathrm{i}\frac{\pi}{4}\mathrm{sign}\,Q} \,\hbar^{d/2} \,\frac{(2\pi)^{d/2}}{\left|\det Q\right|^{1/2}} e^{-\frac{\hbar\mathrm{i}}{2}\langle Q^{-1}\xi,\xi\rangle} \tag{6.7}$$

The lemma is proved in [Zwo12, Lemma 3.7].

Proof of Theorem 6.2. By definition of the Fourier transform on \mathcal{S}' , we have

$$\int_{\mathbb{R}^d} e^{\frac{i}{\hbar} \frac{\langle Qx, x \rangle}{2}} u(x) dx = \left\langle e^{\frac{i}{\hbar} \frac{\langle Qx, x \rangle}{2}}, u \right\rangle_{\mathcal{S}', \mathcal{S}} = \left\langle \mathcal{F}\left(e^{\frac{i}{\hbar} \frac{\langle Qx, x \rangle}{2}}\right), \mathcal{F}^{-1}u \right\rangle_{\mathcal{S}', \mathcal{S}}$$

$$\stackrel{(6.7)}{=} \frac{\hbar^{d/2} \left(2\pi\right)^{d/2} e^{i\frac{\pi}{4} \operatorname{sign} Q}}{\left|\det Q\right|^{1/2}} \frac{1}{(2\pi)^d} \int e^{-\frac{\hbar i}{2} \left\langle Q^{-1}\xi, \xi \right\rangle} \widehat{u}(\xi) d\xi \qquad (6.8)$$

Now we have $\forall t \in \mathbb{R}$

$$\left| e^{it} - \sum_{k=0}^{N-1} \frac{(it)^k}{k!} \right| \le \frac{|t|^N}{N!},$$

thus expanding the complex exponential we obtain

$$e^{-\frac{\hbar i}{2} \langle Q^{-1}\xi,\xi\rangle} = \sum_{k=0}^{N-1} \frac{1}{k!} \left(\frac{\hbar}{2i} \langle Q^{-1}\xi,\xi\rangle\right)^k + r_N(\xi,\hbar)$$
(6.9)

where the remainder is given by

$$r_N(\xi,\hbar) = \frac{\hbar^N}{(N-1)!} \int_0^1 (1-t)^{N-1} e^{-\frac{t\hbar i}{2} \langle Q^{-1}\xi,\xi \rangle} \left(\frac{\hbar}{2i} \langle Q^{-1}\xi,\xi \rangle\right)^N dt$$
(6.10)

and it fulfills the estimate

$$|r_N(\xi,\hbar)| \le \frac{\hbar^N}{2^N N!} \left| \left\langle Q^{-1}\xi,\xi \right\rangle \right|^N.$$
(6.11)

Substituting the expression (6.9) in the integral (6.8) and using that

$$\int \left\langle Q^{-1}\xi,\xi\right\rangle^k \widehat{u}(\xi) \,\mathrm{d}\xi = \int e^{\mathrm{i}x\xi} \left\langle Q^{-1}\xi,\xi\right\rangle^k \widehat{u}(\xi) \,\mathrm{d}\xi \bigg|_{x=0} = (2\pi)^d \left[\left\langle Q^{-1}D_x,D_x\right\rangle^k u \right] \bigg|_{x=0} \quad (6.12)$$

we get the finite sum of (6.5). To get the estimate of the remainder just use that

$$\left|\int r_N(\xi,h)\widehat{u}(\xi)\mathrm{d}\xi\right| \le C\hbar^N \int \left|\left\langle Q^{-1}\xi,\xi\right\rangle^N \widehat{u}(\xi)\right|\mathrm{d}\xi \tag{6.13}$$

and the estimate

$$\|\widehat{v}\|_{L^{1}} = \int \langle \xi \rangle^{-d-1} \, \langle \xi \rangle^{d+1} \, |\widehat{v}(\xi)| \, \mathrm{d}\xi \le C_{d} \| \, \langle \xi \rangle^{d+1} \, \widehat{v}\|_{L^{2}} \le C_{d} \sum_{|\alpha| \le d+1} \|\partial_{x}^{\alpha} v\|_{L^{2}}$$

applied to $\widehat{v} = \left\langle Q^{-1}\xi, \xi \right\rangle^N \, \widehat{u}(\xi) = \left(\left\langle Q^{-1}D_x, D_x \right\rangle^N u \right)^{\wedge} (\xi) \, .$

Before showing applications of this expansion in some specific case, it is useful to keep in mind the following identity:

Lemma 6.4. Let A be a $d \times d$, real, symmetric matrix. Then for $u \in S$ one has

$$\left[e^{\frac{i}{2}\langle AD_x, D_x \rangle} u\right](x) = \frac{e^{i\frac{\pi}{4}\operatorname{signA}}}{(2\pi)^{d/2} |\det A|^{1/2}} \int_{\mathbb{R}^d} e^{-\frac{i}{2}\langle A^{-1}z, z \rangle} u(x+z) \,\mathrm{d}z \tag{6.14}$$

Proof. By the definition of Fourier multiplier and using Lemma 6.3

$$e^{\frac{i}{2}\langle AD_{x},D_{x}\rangle}u = \frac{1}{(2\pi)^{d}}\int e^{i(x-y)\xi} e^{\frac{i}{2}\langle A\xi,\xi\rangle} u(y) \,\mathrm{d}\xi \mathrm{d}y = \frac{1}{(2\pi)^{d}}\int u(y) \left(e^{\frac{i}{2}\langle A\xi,\xi\rangle}\right)^{\wedge} (y-x)\mathrm{d}y$$
$$= \frac{e^{i\frac{\pi}{4}\mathrm{signA}}}{(2\pi)^{d/2} |\det A|^{1/2}} \int e^{-\frac{i}{2}\langle A^{-1}(y-x),y-x\rangle} u(y) \,\mathrm{d}y$$
$$= \frac{e^{i\frac{\pi}{4}\mathrm{signA}}}{(2\pi)^{d/2} |\det A|^{1/2}} \int e^{-\frac{i}{2}\langle A^{-1}z,z\rangle} u(x+z) \,\mathrm{d}z$$

Г		
I		
I		
I		

Examples. There are several nice applications of these formula. We will see those appearing in the pseudodifferential calculus.

(i) If $u \in \mathcal{S}(\mathbb{R}^{2n})$, u = u(x, y), d = 2n and

$$A = \begin{pmatrix} 0 & \mathbb{1} \\ \mathbb{1} & 0 \end{pmatrix}$$

then $\frac{1}{2} \left\langle A \begin{pmatrix} D_x \\ D_\xi \end{pmatrix}, \begin{pmatrix} D_x \\ D_\xi \end{pmatrix} \right\rangle = \langle D_x, D_\xi \rangle$, so we get

$$\left[e^{\mathrm{i}\langle D_x, D_\xi\rangle}u\right](x,\xi) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^{2n}} e^{-\mathrm{i}y\eta} u(y+x,\xi+\eta) \,\mathrm{d}y\mathrm{d}\eta \tag{6.15}$$

$$=\sum_{k=0}^{N}\frac{1}{\mathrm{i}^{k}k!}\left[\left(\partial_{\eta}\cdot\partial_{y}\right)^{k}u(\cdot+x,\cdot+\xi)\right]_{\substack{\eta=\xi\\y=x}}+R_{N}$$
(6.16)

$$= \sum_{|\alpha| \le N} \frac{1}{\alpha!} \left[\partial_{\xi}^{\alpha} D_x^{\alpha} u \right] (x,\xi) + R_N$$
(6.17)

where R_N fulfills

$$|R_N| \le C_N \sum_{|\alpha+\beta|\le 2n+1} \|\partial_\eta^\alpha \partial_y^\beta (\partial_\eta i \cdot \partial_y)^N u\|_{L^2}$$
(6.18)

(ii) If $u \in \mathcal{S}(\mathbb{R}^{4n})$, u = u(z, w) and

$$\sigma(z,w) = \langle Jz,w \rangle = \left\langle \begin{pmatrix} 0 & \mathbb{1} \\ -\mathbb{1} & 0 \end{pmatrix} z,w \right\rangle$$

then writing $z = (x, \xi), w = (y, \eta)$

$$\left[e^{\mathrm{i}\sigma(D_z,D_w)}u\right](z,w) = \frac{1}{(2\pi)^{2n}} \int_{\mathbb{R}^{4n}} e^{-\mathrm{i}\sigma(\widetilde{z},\widetilde{w})} u(\widetilde{z}+z,\widetilde{w}+w) \,\mathrm{d}\widetilde{z},\mathrm{d}\widetilde{w}$$
(6.19)

$$=\sum_{k=0}^{N} \frac{1}{i^{k} k!} \left[\left(\sigma(D_{\tilde{z}}, D_{\tilde{w}})^{k} u(\cdot + z, \cdot + w) \right]_{\substack{\eta=\xi\\y=x}} + R_{N}$$
(6.20)

$$= \sum_{k=0}^{N} \frac{1}{\mathbf{i}^{k} k!} \left[\left(D_{\xi} \cdot D_{y} - D_{x} \cdot D_{\eta} \right)^{k} u \right] (x, \xi, y, \eta) + R_{N}$$
(6.21)

6.3 Oscillatory integrals

We are now ready to study integrals of the form

$$\int_{\mathbb{R}^d} e^{\mathbf{i}x \cdot Qx} a(x) \,\mathrm{d}x \tag{6.22}$$

with Q a real, symmetric, $d \times d$ matrix and a a function polynomially growing in x. In particular we take a to be in the class of the amplitudes:

$$A^{m}_{\delta}(\mathbb{R}^{d}) = \left\{ a \in C^{\infty}(\mathbb{R}^{d}, \mathbb{C}) \colon \forall \alpha \in \mathbb{N}^{d} \; \exists C_{\alpha} > 0 \colon |\partial^{\alpha}_{x} a(x)| \le C_{\alpha} \langle x \rangle^{m-\delta|\alpha|} \right\}.$$
(6.23)

If $\delta = 0$ we simply write $A_0^m \equiv A^m$.

Remark that amplitudes behave similar to symbols, in the sense that

$$a \in A^{m_1}_{\delta}, \quad b \in A^{m_2}_{\delta} \quad \Rightarrow \quad ab \in A^{m_1+m_2}_{\delta}$$

We endow A^m_{δ} with the seminorms

$$N_k^m(a) := \sum_{|\alpha| \le k} \sup_{x \in \mathbb{R}^d} |\partial_x^\alpha a(x)| \langle x \rangle^{-m+\delta|\alpha|}$$
(6.24)

which turn the space A^m_δ into Frechet.

Define the linear form

$$I_Q(a) := \int_{\mathbb{R}^d} e^{\mathbf{i}x \cdot Qx} a(x) \, \mathrm{d}x$$

which is well defined for $a \in A_{\delta}^{m}$ when m < -n. We want to prolong I_{Q} continuously to the space A_{δ}^{m} also for $m \geq -n$.

Theorem 6.5. Let $a \in A^m_{\delta}$, $\delta \in (-1,1]$. Let Q real, symmetric, det $Q \neq 0$ and $\varphi \in S$ with $\varphi(0) = 1$. Then the limit

$$\lim_{\epsilon \to 0} \int_{\mathbb{R}^d} e^{\mathbf{i} x \cdot Q x} a(x) \varphi(\epsilon x) \mathrm{d} x$$

exists and is independent of φ , as soon as $\varphi(0) = 1$. We define

$$I_Q(a) := \lim_{\epsilon \to 0} \int_{\mathbb{R}^d} e^{ix \cdot Qx} a(x) \varphi(\epsilon x) \mathrm{d}x$$
(6.25)

Moreover

$$|I_Q(a)| \le C_{Q,m,d} N^m_{\frac{m+d+1}{1+\delta}}(a)$$
(6.26)

Therefore I_Q can be extended with continuity to all A^m_{δ} . The extension is unique due to the density of S in this space.

Proof. Take $\chi \in C_0^{\infty}(\mathbb{R}^d)$, $\chi \equiv 1$ in $B_1(0)$, $\chi \equiv 0$ outside $B_2(0)$. Define

$$I_j := \int e^{\mathrm{i}x \cdot Qx} a(x) \,\chi(2^{-j}x) \mathrm{d}x.$$

We prove that $\{I_j\}_{j\geq 1} \subset \mathbb{C}$ is Cauchy. First

$$I_{j} - I_{j-1} = \int e^{ix \cdot Qx} a(x) \left(\chi(2^{-j}x) - \chi(2^{-j+1}x) \right) dx$$
$$\stackrel{y=2^{-j}x}{=} \int e^{2^{2j}iy \cdot Qy} a(2^{j}y) \underbrace{(\chi(y) - \chi(2y))}_{\text{supp} \subset \{\frac{1}{2} \le |y| \le 2\}} 2^{jd} dy$$

Since the support of the function is bounded away from zero, we can apply stationary phase with rapid decay, namely Theorem 6.1, with $\hbar = 2^{-2j}$: then $\forall M > 0$ (we will fix it later), $\exists C_M > 0$ s.t.

$$|I_j - I_{j-1}| \le 2^{jd} C_M \hbar^M \sum_{|\alpha| \le M} \sup_{\frac{1}{2} \le |y| \le 2} \left| \partial_y^{\alpha} \left[a(2^j y) \ (\chi(y) - \chi(2y)) \right] \right|$$

Now we have

$$\left|\partial_y^{\alpha}[a(2^jy)]\right| \le 2^{j|\alpha|} \left|(\partial_y^{\alpha}a)(2^jy)\right| \le 2^{j|\alpha|} \left\langle 2^jy \right\rangle^{m-\delta|\alpha|} N_{|\alpha|}^m(a)$$

so we get, using also Leibnitz rule,

$$\begin{aligned} |I_j - I_{j-1}| &\leq C_M \, N_M^m(a) \, 2^{jd} \, 2^{-2jM} \sum_{|\alpha| \leq M} 2^{j|\alpha|} \sup_{\frac{1}{2} \leq |y| \leq 2} \left\langle 2^j y \right\rangle^{m-\delta|\alpha|} \\ &\leq C_M \, N_M^m(a) \, 2^{jd-2jM+jm} \sum_{k \leq M} 2^{j(1-\delta)k} \\ &\leq C_M \, N_M^m(a) \, 2^{jd-2jM+jm+j(1-\delta)M} \\ &\leq C_M \, N_M^m(a) \, 2^{j(d+m-(1+\delta)M)} \\ &\leq C_M \, N_M^m(a) \, 2^{-j} \end{aligned}$$

choosing $M = \frac{d+m+1}{1+\delta}$. Clearly we need $\delta > -1$. The choice of M also fixes the constant C_M . Thus $\{I_j\}_{j\geq 1}$ converges and

$$I_Q(a) = \lim_{j \to \infty} I_j$$

Next we prove that the limit (6.25) exists and is independent of ϵ . Denote

$$I_j(\epsilon) := \int_{\mathbb{R}^d} e^{\mathbf{i} x \cdot Qx} a(x) \,\varphi(\epsilon x) \chi(2^{-j}x) \,\mathrm{d}x.$$

Note that by dominated convergence theorem $\epsilon \mapsto I_j(\epsilon) \in C^0([0,1],\mathbb{C})$ and

$$\lim_{\epsilon \to 0} I_j(\epsilon) = I_j, \qquad \lim_{j \to \infty} I_j(\epsilon) = \int e^{ix \cdot Qx} a(x) \varphi(\epsilon x) dx$$

We prove that $\{I_j(\epsilon)\}_{j\geq 1}$ is Cauchy in $(C^0([0,1],\mathbb{C}), \|\cdot\|_{\infty})$. Then $\{I_j(\epsilon)\}_{j\geq 1}$ converges uniformly in [0,1], and we are allowed to exchange the order of limits, getting

$$\lim_{\epsilon \to 0} \int e^{ix \cdot Qx} a(x) \varphi(\epsilon x) dx = \lim_{\epsilon \to 0} \lim_{j \to \infty} I_j(\epsilon) = \lim_{j \to \infty} \lim_{\epsilon \to 0} I_j(\epsilon) = \lim_{j \to \infty} I_j = I_Q(a)$$

which proves that the limit does not depend on the regularizing function.

To prove that $\{I_j(\epsilon)\}_{j\geq 1}$ is Cauchy in $(C^0([0,1],\mathbb{C}), \|\cdot\|_{\infty})$ one adapts the argument above and shows

$$||I_j(\cdot) - I_{j-1}(\cdot)||_{\infty} \le C N^m_{\frac{d+m+1}{1+\delta}}(a) 2^{-j};$$

we leave the details as an exercise.

Thanks to the procedure of regularization one checks that "classical" operations are valid for oscillatory integrals:

Proposition 6.6. Let Q be real, symmetric, $d \times d$, invertible matrix. Let $a \in A_{\delta}^{m}$, $\delta \in (-1, 1]$. Then the following holds true:

(i) Linear change of variables: Let $A \in Mat(\mathbb{R}^d)$ be real and invertible. Then

$$\int e^{\mathbf{i}x \cdot Qx} a(x) \,\mathrm{d}x = \int e^{\mathbf{i}Ay \cdot QAy} a(Ay) \,\left|\det A\right| \,\mathrm{d}y \tag{6.27}$$

(ii) Integration by parts: let $b \in A^m_{\delta}$, then

$$\int e^{\mathbf{i}x \cdot Qx} a(x) \,\partial_x^{\alpha} b(x) \mathrm{d}x = \int (-\partial_x^{\alpha}) [e^{\mathbf{i}x \cdot Qx} a(x)] \,b(x) \mathrm{d}x \tag{6.28}$$

(iii) Differentiation under $\int : if a \in A^m_{\delta}(\mathbb{R}^n \times \mathbb{R}^p)$, then $\int e^{ixQx}a(x,y)dx \in A^m_{\delta}(\mathbb{R}^p)$ and

$$\partial_y^{\alpha} \int e^{\mathbf{i}x \cdot Qx} a(x, y) \mathrm{d}x = \int e^{\mathbf{i}x \cdot Qx} \partial_y^{\alpha} a(x, y) \mathrm{d}x$$
(6.29)

(iv) Inversion of \int : if $a \in A^m_{\delta}(\mathbb{R}^n \times \mathbb{R}^p)$ and if P is a non degenerate $p \times p$ real symmetric matrix, then

$$\int e^{iy \cdot Py} \left(\int e^{ix \cdot Qx} a(x, y) dx \right) dy = \int e^{iy \cdot Py + ix \cdot Qx} a(x, y) dx dy$$
(6.30)

(v) Passage to the limit under $\int : let \{a_j\}_{j \in \mathbb{N}} \subset A^m_{\delta}$ be bounded in A^m_{δ} and assume that

$$\partial_x^{\alpha} a_j(x) \to \partial_x^{\alpha} a(x) \qquad \text{pointwisely } \forall \alpha \in \mathbb{N}^d.$$

Then $a \in A^m_{\delta}$ and

$$\int e^{\mathbf{i}x \cdot Qx} a(x) \mathrm{d}x = \lim_{j \to \infty} \int e^{\mathbf{i}x \cdot Qx} a_j(x) \mathrm{d}x$$

Proof. The proof of the proposition consists essentially in writing the integrals as oscillatory integrals, perform the wanted manipulations to the convergent integrals, and then take the limit when $\epsilon \to 0$. The details are in [SR91, Theorem 2.5].

(i) By definition of oscillatory integral

$$\int e^{ix \cdot Qx} a(x) \, \mathrm{d}x = \lim_{\epsilon \to 0} \int e^{ix \cdot Qx} a(x) \, \varphi(\epsilon x) \, \mathrm{d}x$$

Now the integral on the r.h.s. is well defined, so we make the change of variables x = Ay we get

$$\int e^{\mathrm{i}x \cdot Qx} a(x) \,\varphi(\epsilon x) \,\mathrm{d}x = \int e^{\mathrm{i}y \cdot (A^* Q A)y} a(Ay) \,\varphi(\epsilon A y) \,|\det A| \,\mathrm{d}x$$

Now remark that $\widetilde{\varphi}(y) := \varphi(Ay) \in S$ and $\widetilde{\varphi}(0) = 1$, while $a(Ay) |\det A|$ is an amplitude of order m. Thus the limit

$$\lim_{\epsilon \to 0} \int e^{iy \cdot (A^*QA)y} a(Ay) \varphi(\epsilon Ay) |\det A| dx$$

exists as oscillatory integral. This proves (i).

(ii) Again we exploit the definition of oscillatory integral and compute

$$\begin{split} \int e^{\mathrm{i}x \cdot Qx} \, a(x) \, \partial_x^{\alpha} b(x) \mathrm{d}x &= \lim_{\epsilon \to 0} \int e^{\mathrm{i}x \cdot Qx} \, a(x) \, \partial_x^{\alpha} b(x) \, \varphi(\epsilon x) \mathrm{d}x \\ &= \lim_{\epsilon \to 0} \int -\partial_x^{\alpha} [e^{\mathrm{i}x \cdot Qx} \, a(x) \, \varphi(\epsilon x)] \, b(x) \, \mathrm{d}x \end{split}$$

where we integrated by parts in the regularized integral. Using Leinbitz we split

$$\partial_x^{\alpha}[e^{\mathbf{i}x \cdot Qx} a(x) \varphi(\epsilon x)] = \sum_{\alpha' + \alpha'' = \alpha} C_{\alpha',\alpha''} (\partial_x^{\alpha'}[e^{\mathbf{i}x \cdot Qx} a(x)] \epsilon^{|\alpha''|} (\partial_x^{\alpha''} \varphi)(\epsilon x)$$

Now one checks that if $\alpha'' \neq 0$, then

$$\lim_{\epsilon \to 0} \int (\partial_x^{\alpha'} [e^{\mathbf{i}x \cdot Qx} a(x)] \, \epsilon^{|\alpha''|} (\partial_x^{\alpha''} \varphi)(\epsilon x) \, b(x) \mathrm{d}x = 0,$$

while the limit

$$\lim_{\epsilon \to 0} \int -\partial_x^{\alpha} [e^{\mathbf{i} x \cdot Q x} a(x)] \, \epsilon^{|\alpha''|} \varphi(\epsilon x) b(x) \mathrm{d}x$$

exists and gives the r.h.s. of (ii). We leave the details to the reader.

(*iii*) Consider the oscillatory integral

$$I(y) := \int e^{\mathrm{i}x \cdot Qx} a(x, y) \mathrm{d}x$$

By the previous theorem we know that, provided we can interchange the limit and the derivative

$$\begin{split} \partial_y^{\alpha} I(y) &= \partial_y^{\alpha} \lim_{j \to \infty} I_j(y), \qquad I_j(y) := \int e^{ix \cdot Qx} a(x, y) \chi(2^{-j}x) dx \\ &= \lim_{j \to \infty} \partial_y^{\alpha} I_j(y) \\ &= \lim_{j \to \infty} \int e^{ix \cdot Qx} \partial_y^{\alpha} a(x, y) \, \chi(2^{-j}x) \, dx \\ &= \int e^{ix \cdot Qx} \, \partial_y^{\alpha} a(x, y) \, dx \end{split}$$

and the only passage to justify is the exchange of the limit and the derivative. This is justified provided $\{\partial_y^{\alpha}I_j(y)\}$ converges uniformly (at least on compact sets). But this is true, as arguing as in the previous proof, one shows the punctual estimate

$$\left|\partial_{y}^{\alpha}I_{j}(y) - \partial_{y}^{\alpha}I_{j-1}(y)\right| \leq 2^{-j} \langle y \rangle^{m-\delta|\alpha|}$$

$$(6.31)$$

which implies uniform convergence on any compact set for the sequence $\{\partial_y^{\alpha}I_j(y)\}_j$. Actually one concludes that $\langle y \rangle^{-m+\delta|\alpha|} \partial_y^{\alpha}I_j(y)$ is Cauchy in $(C^0(\mathbb{R}^p, \mathbb{C}), \|\cdot\|_{\infty})$, so in particular the limit fulfills

$$\sup_{y} \left| \langle y \rangle^{-m+\delta|\alpha|} \, \partial_{y}^{\alpha} I(y) \right| \le C$$

so $I(y) \in A^m_{\delta}$ is an amplitude.

(iv) As above let

$$I(y) := \int e^{\mathrm{i}x \cdot Qx} a(x, y) \mathrm{d}x.$$

By the previous proof we already know it is an amplitude. Now

$$\int e^{iy \cdot Py} I(y) dy = \lim_{j \to \infty} \int e^{iy \cdot Py} I(y) \, \chi(2^{-j}y) dy$$

Now, denoting $I_j(y)$ as above

$$\int e^{iy \cdot Py} I(y) \,\chi(2^{-j}y) \mathrm{d}y = \int e^{iy \cdot Py} I_j(y) \,\chi(2^{-j}y) \mathrm{d}y + \int e^{iy \cdot Py} \left(I(y) - I_j(y)\right) \chi(2^{-j}y) \mathrm{d}y$$

Now the first integral is regularized, we can exchange the integrals and pass to the limit for $j \to \infty$, getting that

$$\int e^{\mathrm{i}y \cdot Py} I_j(y) \,\chi(2^{-j}y) \mathrm{d}y = \int e^{\mathrm{i}y \cdot Py + \mathrm{i}x \cdot Qx} \,a(x,y) \,\chi(2^{-j}x) \,\chi(2^{-j}y) \mathrm{d}x \,\mathrm{d}y \to \int e^{\mathrm{i}y \cdot Py + \mathrm{i}x \cdot Qx} \,a(x,y) \,\mathrm{d}x \,\mathrm{d}y$$

Concerning the second integral, one passes to the limit in (6.31) and proves that

$$\left|\partial_y^{\alpha}(I(y) - I_j(y))\right| \lesssim 2^{-j} \langle y \rangle^{m-\delta|\alpha|}$$

namely $b_j(y) := (I(y) - I_j(y)) \chi(2^{-j}y) \in A^m_{\delta}$ with $N^m_{\frac{m+p+1}{1+\delta}}(b) \lesssim C_0 2^{-j}$. Hence

$$\left|\int e^{\mathbf{i}y \cdot Py} b_j(y) \mathrm{d}y\right| \le C N^m_{\frac{m+p+1}{1+\delta}}(b) \lesssim C_0 2^{-j}$$

which goes to 0 as $j \to \infty$.

(v) The proof that $a\in A^m_\delta$ is easy and we skip it. By the linearity of the oscillatory integral it is enough to show that

$$\int e^{ix \cdot Qx} \left(a_j(x) - a(x) \right) dx \to 0, \qquad j \to \infty.$$

Introduce the operator

$$L := \frac{1}{\langle x \rangle^2} \left(1 + \frac{1}{2i} Q^{-1} x \cdot \partial_x \right);$$

then, being Q symmetric and invertible,

$$L^k e^{\mathbf{i}x \cdot Qx} = e^{\mathbf{i}x \cdot Qx} \qquad \forall k \in \mathbb{N}$$

the adjoint operator is given by

$$L^* = \frac{1}{\langle x \rangle^2} + \operatorname{div}\left(\frac{\cdot}{2\mathrm{i}\langle x \rangle^2} Q^{-1} x\right)$$

As $b_j := a_j - a \in A^m_{\delta}$, by integration by parts in the oscillatory integrals we have

$$\int e^{\mathbf{i}x \cdot Qx} b_j(x) \, \mathrm{d}x = \int e^{\mathbf{i}x \cdot Qx} \left(L^*\right)^k [b_j(x)] \, \mathrm{d}x$$

Now

$$(L^*b_j)(x) = \frac{b_j(x)}{\langle x \rangle^2} + \operatorname{div}\left(\frac{b_j(x)}{2\mathrm{i}\langle x \rangle^2}Q^{-1}x\right)$$

is bounded by

$$|L^*b_j| \lesssim \frac{|b_j(x)|}{\langle x \rangle^2} + \frac{|\partial_x b_j(x)|}{\langle x \rangle} \lesssim \langle x \rangle^{m-2} + \langle x \rangle^{m-(\delta+1)}$$

In particular, as $\delta + 1 > 0$, we gained decay. With a similar estimate one shows that

$$|(L^*)^k b_j(x)| \lesssim \langle x \rangle^{m-2k} + \langle x \rangle^{m-(\delta+1)k} \in L^1(\mathbb{R}^d)$$

which is integrable for k large enough. As $b_j(x) \to 0$ punctually, we apply Lebesgue dominated convergence theorem and prove that

$$\int e^{\mathbf{i}x \cdot Qx} b_j(x) \, \mathrm{d}x = \int e^{\mathbf{i}x \cdot Qx} \left(L^*\right)^k [b_j(x)] \, \mathrm{d}x \to 0, \qquad j \to \infty$$

Working with symbols, we deduce the following corollary

Corollary 6.7. Let $a \in S^m$, $m \in \mathbb{R}$ and $(a_j)_{j \in \mathbb{N}} \subset S$ such that

(i) $(a_j)_{j\in\mathbb{N}}$ is bounded in \mathcal{S}^m ;

(ii) $\forall \alpha, \beta \in \mathbb{N}_0^d, \ \partial_x^{\alpha} \partial_{\xi}^{\beta} a_j(x,\xi) \to \partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,y)$ uniformly on compacts. Then

$$\langle \operatorname{Op}(a_j) f, g \rangle \to \langle \operatorname{Op}(a) f, g \rangle, \qquad \forall f, g \in \mathcal{S}.$$
 (6.32)

Proof. Write

$$\langle \operatorname{Op}(a_j) f, g \rangle = \int e^{\mathrm{i}x\xi} a_j(x,\xi) \,\widehat{f}(\xi) \,\overline{g}(x) \mathrm{d}\xi \mathrm{d}x;$$

the r.h.s. is an oscillatory integral, thus we can apply Proposition 6.6 (v) to conclude that

$$\int e^{\mathrm{i}x\xi} a_j(x,\xi) \,\widehat{f}(\xi) \,\overline{g}(x) \mathrm{d}\xi \mathrm{d}x \to \int e^{\mathrm{i}x\xi} a(x,\xi) \,\widehat{f}(\xi) \,\overline{g}(x) \mathrm{d}\xi \mathrm{d}x$$

which proves (6.32).

It is useful to show that one can actually approximate symbols.

Lemma 6.8 (Approximation of symbols). Let $a \in S^m$, $m \in \mathbb{R}$. Then there exists a sequence $(a_j)_{j \in \mathbb{N}} \subset S$ such that

(i) $(a_j)_{j \in \mathbb{N}}$ is bounded in \mathcal{S}^m , i.e.

$$\wp_k^m(a_j) \le C_k \, \wp_k^m(a), \qquad \forall j \in \mathbb{N}.$$

- (ii) $\forall \alpha, \beta \in \mathbb{N}_0^d, \ \partial_x^{\alpha} \partial_{\xi}^{\beta} a_j(x,\xi) \to \partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,y)$ uniformly on compacts.
- (iii) $a_j \to a \text{ in } S^{m'} \text{ as } j \to \infty \text{ for any } m' > m.$

Proof. Let $\chi \in C_0^{\infty}$, $\chi \equiv 1$ in $B_1(0)$. Set

$$a_j(x,\xi) := a(x,\xi)\chi(2^{-j}x)\chi(2^{-j}\xi) \in C_0^{\infty}.$$

By Leibnitz rule, $\partial_x^{\alpha} \partial_{\xi}^{\beta} a_j$ equals

$$\chi(2^{-j}x)\chi(2^{-j}\xi)\partial_x^{\alpha}\partial_\xi^{\beta}a(x,\xi) + \sum_{\substack{0\neq\alpha'\leq\alpha\\0\neq\beta'\leq\beta}} C_{\alpha',\beta'}2^{-j|\alpha'+\beta'|}(\partial_x^{\alpha'}\chi)(2^{-j}x)\left(\partial_\xi^{\beta'}\chi\right)(2^{-j}\xi)\left(\partial_x^{\alpha-\alpha'}\partial_\xi^{\beta-\beta'}a(x,\xi)\right)dx$$

In particular, using the boundedness of χ and its derivatives, we get for each fixed k and $|\alpha + \beta| \le k$, that

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}a_j(x,\xi)\right| \le C\left<\xi\right>^m \wp_k^m(a)$$

proving (i). Item (ii) follows by taking the punctual limit in the expression above. Finally to prove item (iii) we remark that $a - a_j = (1 - \chi(2^{-j}x)\chi(2^{-j}\xi))a$

$$\begin{aligned} \left| \partial_x^{\alpha} \partial_{\xi}^{\beta}(a_j - a)(x,\xi) \right| \lesssim \left| (1 - \chi(2^{-j}x)\chi(2^{-j}\xi)) \partial_x^{\alpha} \partial_{\xi}^{\beta} a(x,\xi) \right| \\ + \sum_{0 \neq \beta' \le \beta} 2^{-j|\beta'|} (\partial_{\xi}^{\beta'}\chi)(2^{-j}\xi) \left| \partial_x^{\alpha - \alpha'} \partial_{\xi}^{\beta - \beta'} a(x,\xi) \right| \end{aligned}$$

from which we deduce that, $\forall m' > m$,

$$\begin{aligned} \left| \left\langle \xi \right\rangle^{-m'+|\beta|} \left| \partial_x^{\alpha} \partial_{\xi}^{\beta}(a_j-a)(x,\xi) \right| &\lesssim \wp_k^m(a) \sup_{|\xi| \ge 2^j} \left\langle \xi \right\rangle^{-m'+m} \\ &+ \wp_k^m(a) \sup_{|\xi| \sim 2^j} \left\langle \xi \right\rangle^{-m'+m+|\beta'|} 2^{-j|\beta'|} \\ &\lesssim \wp_k^m(a) 2^{-j(m'-m)} \end{aligned}$$

using that in the first term $|\xi| \ge 2^j$, while in the second term $|\xi| \sim 2^j$. Hence $\wp_k^{m'}(a_j - a) \to 0$ as $j \to \infty$, as claimed.

This means that, when we work with symbols of some pseudodifferential operators, we can always assume that they are Schwartz and then argue by approximation.

Examples: The method of the proof actually gives a way to compute oscillatory integrals. We give few examples.

(i) If $a \in A^m_{\delta}(\mathbb{R}^n)$, $\delta \in (-1, 1]$, then

$$(2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{-iy\eta} a(y) \, \mathrm{d}y \mathrm{d}\eta = (2\pi)^{-n} \int_{\mathbb{R}^{2n}} e^{-iy\eta} a(\eta) \, \mathrm{d}y \mathrm{d}\eta = a(0)$$
(6.33)

Indeed the integral is of the form (6.22) with d = 2n, $Q = \frac{1}{2} \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$, $x = \begin{pmatrix} y \\ \eta \end{pmatrix}$. Indeed take $\varphi \in \mathcal{S}(\mathbb{R}^n)$ with $\varphi(0) = 1$. From the theorem

$$\int e^{-iy\eta} a(y) dy d\eta = \lim_{\epsilon \to 0} \int e^{-iy\eta} a(y) \varphi(\epsilon y) \varphi(\epsilon \eta) dy d\eta$$

By the properties of the Fourier transform

$$\int_{\mathbb{R}^n} e^{-\mathrm{i}y\eta} \,\varphi(\epsilon\eta) \mathrm{d}\eta = \frac{1}{\epsilon^n} \widehat{\varphi}(y/\epsilon)$$

hence

$$\int_{\mathbb{R}^{2n}} e^{-\mathrm{i}y\eta} \, a(y) \, \varphi(\epsilon y) \, \varphi(\epsilon \eta) \, \mathrm{d}y \mathrm{d}\eta = \frac{1}{\epsilon^n} \int_{\mathbb{R}^n} a(y) \, \varphi(\epsilon y) \, \widehat{\varphi}(y/\epsilon) \, \mathrm{d}y \stackrel{y=\epsilon z}{=} \int_{\mathbb{R}^n} a(\epsilon z) \, \varphi(\epsilon^2 z) \, \widehat{\varphi}(z) \, \mathrm{d}z$$

Since $\widehat{\varphi} \in \mathcal{S}$, by dominated convergence we get

$$\lim_{\epsilon \to 0} \int a(\epsilon z) \,\varphi(\epsilon^2 z) \,\widehat{\varphi}(z) \,\mathrm{d}z = a(0) \,\varphi(0) \underbrace{\int \widehat{\varphi}(z) \,\mathrm{d}z}_{=(2\pi)^n \varphi(0)} = (2\pi)^n a(0)$$

which proves (6.33).

(ii) Let $\alpha, \beta \in \mathbb{N}^n$. Then

$$\int_{\mathbb{R}^{2n}} e^{-iy\eta} \frac{y^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \, \mathrm{d}y \, \mathrm{d}\eta = \begin{cases} 0 & \alpha \neq \beta \\ (2\pi)^n \frac{(-i)^{|\alpha|}}{\alpha!} & \alpha = \beta \end{cases}$$
(6.34)

Indeed $y^{\alpha}e^{-iy\eta} = (-D_{\eta})^{\alpha}e^{-iy\eta}$, so by integration by parts in oscillatory integrals

$$\begin{split} \int_{\mathbb{R}^{2n}} e^{-\mathrm{i}y\eta} \frac{y^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \,\mathrm{d}y \,\mathrm{d}\eta &= \int_{\mathbb{R}^{2n}} e^{-\mathrm{i}y\eta} \frac{(D_{\eta})^{\alpha}}{\alpha!} \frac{\eta^{\beta}}{\beta!} \,\mathrm{d}y \,\mathrm{d}\eta = \int_{\mathbb{R}^{2n}} e^{-\mathrm{i}y\eta} \frac{(-\mathrm{i})^{|\alpha|}}{\alpha!} \frac{\eta^{\beta-\alpha}}{(\beta-\alpha)!} \,\mathrm{d}y \,\mathrm{d}\eta \\ &= \frac{(2\pi)^{n} \; (-\mathrm{i})^{|\alpha|}}{\alpha!} \frac{\eta^{\beta-\alpha}}{(\beta-\alpha)!} \bigg|_{\eta=0} \end{split}$$

which gives the result.