5 Pseudodifferential operators

We are ready to define pseudodifferential operators.

Definition 5.1. Let a € S™(R™ xR"™,C). The pseudodifferential operator with symbol a s the

linear operator
1

Op (a) o] () = 52

/ ¢ o, €) A(E) de (5.1)
RTL

We will say that Op (a) has order m, and we will write Op (a) € Op (8§™). Sometimes we will
write Op (a) = a(x, D).

Example 5.2. We give few example of quantization of symbols
e Ifa=a(zx), then [Op (a) u](z) = a(z)u(x), the multiplication operator.
o Ifa=a(§), then Op(a)u = a(D)u is a Fourier multiplier.
o Ifa= f(x)g(§), then Op (a)u = f(z)g(D)u.
We start by showing that pseudodifferential operators are well defined on the Schwartz class:
Proposition 5.3. Let a € S™. Then the following holds true:
(i) If u € S, then Op (a)u € S. The map
S"xS8—=S, (a,u)—Op(a)u
is continuous, in the sense that Yk > 0, there exist M € N, C' > 0 such that
or(Op (a) u) < Cpir(a) par(w).
(ii) If Op (a) = Op (b) as operator in S, then a = b.
(i) One has the commutation rules

[Op (a),D;] =iOp (95,a) , [Op (a), ;] = —iOp (¢, a) . (5.2)

Proof. Since u € S, the integral in (5.1) is convergent. Consequently the map x — [Op (a) u](z)
is a continuous function and it fulfills

[Op (@) (@) < 2r)™" [ (" [@O1d sup [(© " ala )

z,EER™

< (2m) " (a) / €™ jae)] € de
< Cpg'(a) pmant1(u) < Cpp'(a) Pmasnr(uw)

Thus Op (a) u € L= N C°.
Let us prove immediately item (ii7). We have

Op () Dyju(x) = (27) " / €€ a(z, €) (Dyu) (€)dE = (2m) " / €€ a(z, €) €(€)d
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while
D;0p (a) u(z) = (27)" / (D;e) alz, €) A(E)dE + (2m)~ / € (Dja(r, €)) A(€)d¢
r) " [ & ale, O + (2" [ € (0,000, €)) A(E)E

Hence [Op (a), DjJu = Op (—10,,a) u and one gets the first of (5.2) immediately. The second
identity is proven similarly.
In particular we have that z;0p (a) u = Op (@) z;u + iOp (8&, a) u, and in general

D" [Op (@) u](2) = lin. com. [Op (9¢'0'a) 22" D*~7'u] ()
51<8

But now 8?'3£'a e Sm 1ol and 22~ DP-F'y € S, thus we can proceed as above and prove
that = +— *DP[Op (a) u](z) € L>® N C° with

|2*DP[Op (a) u(z)| < Cup 7 (a) par(u)

for some M sufficiently large.
Finally we prove (i¢). We show that Op (a) = 0 implies a = 0. By contradiction assume that
a # 0. Then take v € §, M large (fix it later), and define

= (&)~ o().
With this choice, we have that

O (@) wi) = [ “gﬁ) ¢E(E) e

now if M is sufficiently large the function £ — <(£>’§) € L%(R"™), thus we write

_ a@8
(Op (@) u)() = (b(z,),5) =0,  bx,€) i= <<,§>M>, 7 = e ()
Since the equality above holds for all v of that form, which form a dense set in S, we conclude
that b = 0, hence a = 0. O

Remark 5.4. The commutation relations (5.2) tell us something interesting immediately: [Op (a),

is a pseudodifferetial operator of order m (as 0;a € 8™ ), while [Op (a) , z;] is a pseudodifferetial
operator of order m —1 (as O¢,a € S™1).

5.1 Kernels

Assume that a € S™°°. Then, for u € S, using Fourier transform and Fubini theorem

[Op (a) u] () = e a(z, &) u(€) d¢

/
i

T a(x, €) uy) dE dy

Dj]



Thus we can write Op (a) as an operator with integral kernel, namely in the form
[Au](z) = g K(z,y)u(y)dy.

In our case we have

K(z,y) = (27)" / AE—0E (5 £)de, (5.3)

n

Remark that such expression makes sense for a € 8™ with m < —n, which gives in particular
that K € C°(R™ x R™).
In case a € 8™ with m > —n, we need to give a meaning to the expression

1

a)u)(xr) = —— @V (2, &) u
O (@)@ = g [ () uly) dé dy

and to the kernel. There are several possibilities, we show some of them:
1) Note that the kernel K in (5.3) is the inverse Fourier transform of £ — a(z,§) evaluated at
the point (z — y), namely

K(z,y) = F (a(@,)lamy = K@o—y)=F (alz,))ly (5-4)

So the first possibility is to view (5.3) as a distributional identity, which allows us also to recover
the symbol from the integral by taking the inverse Fourier transform. In particular we get

€)= 7 (Ko —9) = [ K,z - )y (55

So in this way I see Op (a) as a linear operator with distributional kernel acting on Schwartz
functions.

2) As an oscillatory integral. We will study these objects in details later on, but the idea is the
following: Let x € C§°(R™,R), x = 1 around 0, and define

1

u)(z) = —— e @E N (e€) a(z, &) u .
(@) = oy [ e oo €) i) ddy

Now the integral is well defined. Using that
—A, el @8 = |¢|2ei@=V)E,

we find that for any IV integer
€N a- AN lF9E = (ile—v)E,

Hence, integrating by parts, one gets

(Iy.eu)(x) =

/ @08 (TN (ef) alx, &) (1 — Ay)Nu(y) dE dy

R xR"™

(2r)"

Now if N is sufficiently large we have that the integrand is L'. We can therefore apply Lebesgue
dominated convergence theorem and get that (provided N is large enough) the limit exists and
is well defined; in particular

lim (I, cu)(z) = (TN (2,6) (1 - Ay)Nu(y) dEdy

e—0 (27‘(’)"
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Moreover such limit does not depend on x. So we put

(Op (a) u)(x) := lim (I cu)(z)

e—0

An important property of pseudodifferential operators is that their integral kernel is smooth
outside the diagonal and rapidly decaying as |x — y| — oo:

Proposition 5.5. Let a € S™. Then the integral kernel K(x,y) of Op(a) (given by (5.3))
satisfies
|0 y)| < Cnp le—y[™" (5.6)

for N >m+n+|8| and x # y. Thus K(ac7 y) is smooth outside the diagonal and rapidly decaying
as |z — y| — oo.

Proof. Exploiting that K(x,-) is the inverse Fourier transform of a(z,-), evaluated at the point
x —y, one gets (in a distributional sense)

(¢ = )" K (2,9) = (= ) F lale. ) (@ — y) = F ' [(~De)ale, (@ = 9)
= (2m) " [ V4D a(a, ) g

But since a € 8™, it follows that ‘Dga(x,é)’ < Co (€)™ 11 hence provided m — |a| < —n, the

integrand is in Lé, hence converging. Thus

o= Ky < [ ("7 <C <o
This proves (5.6) with 8 = 0.
One argues similarly for the derivatives, the detail are left to the reader. O
We have also the following lemma, which connects smoothing operators and smooth kernels.

Lemma 5.6. If a € S~ then the kernel K(x,y) of Op (a) is everywhere smooth. Viceversa, if
the kernel of the operator is Schwartz, then a € S™°.

Proof. Assume that a € S™°°. Then K(x,y) is well defined and continuous everywhere, since
a(z,-) € L*. Now
aﬂlaﬁzK {E y Z C. / i(z—y)¢ £a1+52 (851*0t1a(x,£)) d¢
a1<p1

Since a is smoothing, then the integral is always convergent. This proves that the kernel is C*°
everywhere.
To prove the converse statement just use (5.5) and argue as above. O

5.2 Symbolic calculus: formal results

We work formally and try to understand the basic properties of pseudodifferential operators: in
particular, is the class closed under adjoint and composition?
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Adjoint. Consider A: S — §. We look for an operator A*: § — S such that
(A% u,v) = (u, Av) , Yu,v € S

By a density argument, if A* exists, it is unique. We call A* the (formal) adjoint of A (with
respect to the L? scalar product).!

If A* exists one can easily verify that it is unique. Remark that if A* exists then we can
extend A by duality as a map S’ — &', by defining

VuedS', YveS, (Au)(v) = u(A*);

the strange definition is due, as usual, to the fact that if u € S, then

(Au)(v) =/(AU)( Jo(z)de = (Au,0) = (U, Au) = (A*T, u) = (u, A"7) =/ () (A7) (z)dz = u(A*D).

Consider now A a linear operator with integral kernel K (z,y), namely (Au)(z) = [ K(z,y)u(y)dy.
Then
(A%u,v) = (u, Av) :/ (z) [Av](z)dx = // K(z,y)v(y)dady

</ny dxv> </Ky, dy7>

This shows that A* is an operator with integral kernel
K*(z,y) == K(y, ). (5.7)
Since Op (a) has kernel K (z,y) = (21) ™" [ /@ Va(z, £)d¢, it follows that Op (a)* has kernel

K*(2,y) = K(g2) = (2m) " / =V Gl .

Now thanks to (5.5) we can reconstruct a symbol from the kernel, from which we find that the
symbol of Op (a)” can be written as

"y = / K*(z,y)u ! / e 0% (2, €) u(y) dE dy
(277) R™ xR™

provided we define a* as the Fourier transform of K*, i.e. we put
a*(x,8) = /e_iEyK*(% z —y)dy = (2m) 7" / e eV a(x — y,n) dndy
“Erem o [ rE- g dcy (538)

This computation is rigorous if the symbol a is fast decaying at infinity (indeed in such a case
Fubini theorem justifies all the computations), but what about the general case? And even if it
is well defined, is it a symbol?

INote that in general we can define A* as an operator from S’ — S’ as (A*u )( ) = u(Av). This is always
well defined, but for u € S it restricts only to an operator S — &’ for which (A*u) = [uAv = (u, Av); so the
non trivial requirement is that A*: § — S.

For example if A: u — u(0)f, where f € S, then A: S —+ S. However

Aa)e) = [ u()Ae(a) = (u, )50

hence A*u = (u, f) dg, which is not a Schwartz function, but a distribution.
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Composition. Let us proceed formally also for the composition of pseudodifferential operators
and find the candidate symbol. We have

Op (0) Op (8)ul(w) = (2m) ™ [ "% a(z, €)(0p (8)ul(y) dyi

R2n

= (2m)~" /Rzn el@—v)¢ alx, §)(27r)_”/]R ely=2)n b(y,n) u(z) dzdndyd¢

2n
= (2m) %" / €€ e WET 7 (1, €) by, n) u(z) dndédzdy
R4n
= (27r)_"/ e =AM ¢, n) u(z)dzdy
R2n

provided

cloan) = 2m)" [ I o, ) by dye

£€=C+n

S m [ e a2 dods (5.9)
R2n
So this is the candidate symbol. We note an interesting pattern: both the candidate symbol of

the adjoint (5.8) and of the composition (5.9) have a precise structure: they are integrals of the
form

/ei“"Q“’ a(w)dw (5.10)

with @ a real, symmetric, n X n matrix and a a function polynomially growing. Indeed in both
acting on the variables (Z)

cases () has the form
0 -1
©=3 (—11 0 )
)

We will devote some time to the study of such integrals, which are called oscillatory integrals.
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