
5 Pseudodifferential operators

We are ready to define pseudodifferential operators.

Definition 5.1. Let a ∈ Sm(Rn×Rn,C). The pseudodifferential operator with symbol a is the
linear operator

[Op (a)u] (x) :=
1

(2π)n

�

Rn

eixξ a(x, ξ) �u(ξ) dξ (5.1)

We will say that Op (a) has order m, and we will write Op (a) ∈ Op (Sm). Sometimes we will
write Op (a) = a(x,D).

Example 5.2. We give few example of quantization of symbols

• If a = a(x), then [Op (a)u](x) = a(x)u(x), the multiplication operator.

• If a = a(ξ), then Op (a)u = a(D)u is a Fourier multiplier.

• If a = f(x)g(ξ), then Op (a)u = f(x)g(D)u.

We start by showing that pseudodifferential operators are well defined on the Schwartz class:

Proposition 5.3. Let a ∈ Sm. Then the following holds true:

(i) If u ∈ S, then Op (a)u ∈ S. The map

Sm × S → S, (a, u) �→ Op (a)u

is continuous, in the sense that ∀k ≥ 0, there exist M ∈ N, C > 0 such that

℘k(Op (a)u) ≤ C℘m
M (a)℘M (u).

(ii) If Op (a) = Op (b) as operator in S, then a = b.

(iii) One has the commutation rules

[Op (a) , Dj ] = iOp
�
∂xj

a
�
, [Op (a) , xj ] = −iOp

�
∂ξja

�
. (5.2)

Proof. Since �u ∈ S, the integral in (5.1) is convergent. Consequently the map x �→ [Op (a)u](x)
is a continuous function and it fulfills

|[Op (a)u](x)| ≤ (2π)−n

�
�ξ�m |�u(ξ)| dξ sup

x,ξ∈Rn

����ξ�−m
a(x, ξ)

���

≤ (2π)−n℘m
0 (a)

�
�ξ�m+n+1 |�u(ξ)| �ξ�−n−1

dξ

≤ C℘m
0 (a)℘m+n+1(�u) ≤ C℘m

0 (a)℘m+3n+1(u)

Thus Op (a)u ∈ L∞ ∩ C0.
Let us prove immediately item (iii). We have

Op (a)Dju(x) = (2π)−n

�
eixξ a(x, ξ) (Dju)

∧(ξ)dξ = (2π)−n

�
eixξ a(x, ξ) ξj�u(ξ)dξ
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while

DjOp (a)u(x) = (2π)−n

�
(Dje

ixξ) a(x, ξ) �u(ξ)dξ + (2π)−n

�
eixξ (Dja(x, ξ)) �u(ξ)dξ

= (2π)−n

�
ξje

ixξ a(x, ξ) ξj�u(ξ)dξ + (2π)−n

�
eixξ (

1

i
∂xja(x, ξ)) �u(ξ)dξ

Hence [Op (a) , Dj ]u = Op
�
− 1

i ∂xj
a
�
u and one gets the first of (5.2) immediately. The second

identity is proven similarly.
In particular we have that xjOp (a)u = Op (a)xju+ iOp

�
∂ξja

�
u, and in general

xαDβ [Op (a)u](x) = lin. com.
α�≤α

β�≤β

�
Op

�
∂α�
ξ ∂β�

x a
�
xα−α�

Dβ−β�
u
�
(x)

But now ∂α�
ξ ∂β�

x a ∈ Sm−|α�| and xα−α�
Dβ−β�

u ∈ S, thus we can proceed as above and prove

that x �→ xαDβ [Op (a)u](x) ∈ L∞ ∩ C0 with
��xαDβ [Op (a)u](x)

�� ≤ Cαβ ℘
m
M (a)℘M (u)

for some M sufficiently large.
Finally we prove (ii). We show that Op (a) = 0 implies a = 0. By contradiction assume that

a �= 0. Then take v ∈ S, M large (fix it later), and define

�u = �ξ�−M
v(ξ).

With this choice, we have that

(Op (a)u)(x) =

�
a(x, ξ)

�ξ�M
eixξv(ξ)dξ;

now if M is sufficiently large the function ξ �→ α(x,ξ)

�ξ�M ∈ L2(Rn), thus we write

(Op (a)u)(x) = �b(x, ·), �v� = 0, b(x, ξ) :=
α(x, ξ)

�ξ�M
, �v = e−ixξv(ξ)

Since the equality above holds for all ṽ of that form, which form a dense set in S, we conclude
that b = 0, hence a = 0.

Remark 5.4. The commutation relations (5.2) tell us something interesting immediately: [Op (a) , Dj ]
is a pseudodifferetial operator of order m (as ∂xj

a ∈ Sm), while [Op (a) , xj ] is a pseudodifferetial
operator of order m− 1 (as ∂ξja ∈ Sm−1).

5.1 Kernels

Assume that a ∈ S−∞. Then, for u ∈ S, using Fourier transform and Fubini theorem

[Op (a)u] (x) =
1

(2π)n

�

Rn

eixξ a(x, ξ) �u(ξ) dξ

=
1

(2π)n

�

Rn

eixξ a(x, ξ)

�

Rn

u(y)e−iξy dy dξ

=
1

(2π)n

�

Rn×Rn

ei(x−y)ξ a(x, ξ)u(y) dξ dy
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Thus we can write Op (a) as an operator with integral kernel, namely in the form

[Au](x) =

�

Rn

K(x, y)u(y)dy.

In our case we have

K(x, y) := (2π)−n

�

Rn

ei(x−y)ξa(x, ξ)dξ. (5.3)

Remark that such expression makes sense for a ∈ Sm with m < −n, which gives in particular
that K ∈ C0(Rn × Rn).

In case a ∈ Sm with m ≥ −n, we need to give a meaning to the expression

(Op (a)u)(x) =
1

(2π)n

�

Rn×Rn

ei(x−y)ξ a(x, ξ)u(y) dξ dy

and to the kernel. There are several possibilities, we show some of them:
1) Note that the kernel K in (5.3) is the inverse Fourier transform of ξ �→ a(x, ξ) evaluated at
the point (x− y), namely

K(x, y) = F−1
ξ (a(x, ·))|x−y ⇒ K(x, x− y) = F−1

ξ (a(x, ·))|y (5.4)

So the first possibility is to view (5.3) as a distributional identity, which allows us also to recover
the symbol from the integral by taking the inverse Fourier transform. In particular we get

a(x, ξ) = Fy (K(x, x− y)) =

�

Rn

e−iξyK(x, x− y)dy (5.5)

So in this way I see Op (a) as a linear operator with distributional kernel acting on Schwartz
functions.
2) As an oscillatory integral. We will study these objects in details later on, but the idea is the
following: Let χ ∈ C∞

0 (Rn,R), χ = 1 around 0, and define

(Iχ,�u)(x) :=
1

(2π)n

�

Rn×Rn

ei(x−y)ξ χ(�ξ) a(x, ξ)u(y) dξ dy.

Now the integral is well defined. Using that

−Δye
i(x−y)ξ = |ξ|2ei(x−y)ξ,

we find that for any N integer

�ξ�−2N
(1−Δy)

N ei(x−y)ξ = ei(x−y)ξ.

Hence, integrating by parts, one gets

(Iχ,�u)(x) =
1

(2π)n

�

Rn×Rn

ei(x−y)ξ �ξ�−2N
χ(�ξ) a(x, ξ) (1−Δy)

Nu(y) dξ dy

Now if N is sufficiently large we have that the integrand is L1. We can therefore apply Lebesgue
dominated convergence theorem and get that (provided N is large enough) the limit exists and
is well defined; in particular

lim
�→0

(Iχ,�u)(x) =
1

(2π)n

�

Rn×Rn

ei(x−y)ξ �ξ�−2N
a(x, ξ) (1−Δy)

Nu(y) dξ dy
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Moreover such limit does not depend on χ. So we put

(Op (a)u)(x) := lim
�→0

(Iχ,�u)(x)

An important property of pseudodifferential operators is that their integral kernel is smooth
outside the diagonal and rapidly decaying as |x− y| → ∞:

Proposition 5.5. Let a ∈ Sm. Then the integral kernel K(x, y) of Op (a) (given by (5.3))
satisfies ��∂β

x,yK(x, y)
�� ≤ CN,β |x− y|−N

(5.6)

for N > m+n+ |β| and x �= y. Thus K(x, y) is smooth outside the diagonal and rapidly decaying
as |x− y| → ∞.

Proof. Exploiting that K(x, ·) is the inverse Fourier transform of a(x, ·), evaluated at the point
x− y, one gets (in a distributional sense)

(x− y)αK(x, y) = (x− y)αF−1
ξ [a(x, ·)](x− y) = F−1

ξ [(−Dξ)
αa(x, ·)](x− y)

= (2π)−n

�
ei(x−y)ξ(−Dξ)

αa(x, ξ)dξ

But since a ∈ Sm, it follows that
���Dα

ξ a(x, ξ)
��� ≤ Cα �ξ�m−|α|

, hence provided m− |α| < −n, the

integrand is in L1
ξ , hence converging. Thus

|(x− y)αK(x, y)| ≤
�

�ξ�m−|α| ≤ C < ∞

This proves (5.6) with β = 0.
One argues similarly for the derivatives, the detail are left to the reader.

We have also the following lemma, which connects smoothing operators and smooth kernels.

Lemma 5.6. If a ∈ S−∞ then the kernel K(x, y) of Op (a) is everywhere smooth. Viceversa, if
the kernel of the operator is Schwartz, then a ∈ S−∞.

Proof. Assume that a ∈ S−∞. Then K(x, y) is well defined and continuous everywhere, since
a(x, ·) ∈ L1. Now

∂β1
x ∂β2

y K(x, y) =
�

α1≤β1

Cα1

�
ei(x−y)ξ ξα1+β2

�
∂β1−α1
x a(x, ξ)

�
dξ

Since a is smoothing, then the integral is always convergent. This proves that the kernel is C∞

everywhere.
To prove the converse statement just use (5.5) and argue as above.

5.2 Symbolic calculus: formal results

We work formally and try to understand the basic properties of pseudodifferential operators: in
particular, is the class closed under adjoint and composition?
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Adjoint. Consider A : S → S. We look for an operator A∗ : S → S such that

�A∗u, v� = �u,Av� , ∀u, v ∈ S

By a density argument, if A∗ exists, it is unique. We call A∗ the (formal) adjoint of A (with
respect to the L2 scalar product).1

If A∗ exists one can easily verify that it is unique. Remark that if A∗ exists then we can
extend A by duality as a map S � → S �, by defining

∀u ∈ S �, ∀v ∈ S, (Au)(v) := u(A∗v);

the strange definition is due, as usual, to the fact that if u ∈ S, then

(Au)(v) =

�
(Au)(x) v(x)dx = �Au, v� = �v,Au� = �A∗v, u� = �u,A∗v� =

�
u(x) (A∗v)(x)dx = u(A∗v).

Consider nowA a linear operator with integral kernelK(x, y), namely (Au)(x) =
�
K(x, y)u(y)dy.

Then

�A∗u, v� = �u,Av� =
�

u(x) [Av](x)dx =

��
u(x)K(x, y)v(y)dxdy

=

��
K(x, y)u(x)dx, v

�
=

��
K(y, x)u(y)dy, v

�

This shows that A∗ is an operator with integral kernel

K∗(x, y) := K(y, x). (5.7)

Since Op (a) has kernel K(x, y) = (2π)−n
�
ei(x−y)a(x, ξ)dξ, it follows that Op (a)

∗
has kernel

K∗(x, y) = K(y, x) = (2π)−n

�
ei(x−y)η a(y, η) dη.

Now thanks to (5.5) we can reconstruct a symbol from the kernel, from which we find that the
symbol of Op (a)

∗
can be written as

Op (a)
∗
u =

�
K∗(x, y)u(y)dy =

1

(2π)n

�

Rn×Rn

ei(x−y)ξ a∗(x, ξ)u(y) dξ dy

provided we define a∗ as the Fourier transform of K∗, i.e. we put

a∗(x, ξ) =
�

e−iξyK∗(x, x− y)dy = (2π)−n

�
e−iξy eiyη a(x− y, η) dηdy

ζ=ξ−η
= (2π)−n

�
e−iζy a(x− y, ξ − ζ) dζdy (5.8)

This computation is rigorous if the symbol a is fast decaying at infinity (indeed in such a case
Fubini theorem justifies all the computations), but what about the general case? And even if it
is well defined, is it a symbol?

1Note that in general we can define A∗ as an operator from S� → S� as (A∗u)(v) := u(Av). This is always
well defined, but for u ∈ S it restricts only to an operator S → S� for which (A∗u)(v) :=

�
uAv = �u,Av�; so the

non trivial requirement is that A∗ : S → S.
For example if A : u �→ u(0)f , where f ∈ S, then A : S → S. However

(A∗u)(v) =
�

u(x)Av(x) = �u, f� v(0),

hence A∗u = �u, f� δ0, which is not a Schwartz function, but a distribution.
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Composition. Let us proceed formally also for the composition of pseudodifferential operators
and find the candidate symbol. We have

[Op (a)Op (b)u](x) = (2π)−n

�

R2n

ei(x−y)ξ a(x, ξ)[Op (b)u](y) dydξ

= (2π)−n

�

R2n

ei(x−y)ξ a(x, ξ)(2π)−n

�

R2n

ei(y−z)η b(y, η)u(z) dzdηdydξ

= (2π)−2n

�

R4n

eixξ e−iy(ξ−η) e−izη a(x, ξ) b(y, η)u(z) dηdξdzdy

= (2π)−n

�

R2n

ei(x−z)η c(x, η)u(z)dzdη

provided

c(x, η) = (2π)−n

�

R2n

ei(x−y)(ξ−η) a(x, ξ) b(y, η) dydξ

ξ=ζ+η
y=x+z
= (2π)−n

�

R2n

e−izζ a(x, ζ + η) b(x+ z, η) dζdz (5.9)

So this is the candidate symbol. We note an interesting pattern: both the candidate symbol of
the adjoint (5.8) and of the composition (5.9) have a precise structure: they are integrals of the
form �

eiw·Qw a(w) dw (5.10)

with Q a real, symmetric, n× n matrix and a a function polynomially growing. Indeed in both
cases Q has the form

Q =
1

2

�
0 −1
−1 0

�

acting on the variables

�
z
ζ

�
.

We will devote some time to the study of such integrals, which are called oscillatory integrals.
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