
7 Symbolic calculus

We are ready to prove rigorously the results about symbolic calculus. We will use Peetre’s
inequality

Lemma 7.1 (Peetre’s inequality). For any s,∈ R, for any ξ, η ∈ Rn one has

�ξ�s ≤ Cs �ξ − η�|s| �η�s (7.1)

Proof. For s ≥ 0 is trivial. For s < 0 use that

�η�−s ≤ Cs �ξ − η�−s �ξ�−s
.

It is also useful to approximate symbols with Schwartz functions.

Lemma 7.2 (Approximation of symbols). Let a ∈ Sm, m ∈ R. Then there exists a sequence
(aj)j∈N ⊂ S such that

(i) (aj)j∈N is bounded in Sm, i.e.

℘m
k (aj) ≤ Ck ℘

m
k (a), ∀j ∈ N.

(ii) ∀α,β ∈ Nd
0, ∂

α
x ∂

β
ξ aj(x, ξ) → ∂α

x ∂
β
ξ a(x, y) uniformly on compacts.

(iii) aj → a in Sm�
as j → ∞ for any m� > m.

Proof. Let χ ∈ C∞
0 , χ ≡ 1 in B1(0). Set

aj(x, ξ) := a(x, ξ)χ(2−jx)χ(2−jξ) ∈ C∞
0 .

By Leibnitz rule, ∂α
x ∂

β
ξ aj equals

χ(2−jx)χ(2−jξ)∂α
x ∂

β
ξ a(x, ξ)+

�

0�=α�≤α

0�=β�≤β

Cα�,β�2−j|α�+β�|(∂α�
x χ)(2−jx) (∂β�

ξ χ)(2−jξ) (∂α−α�
x ∂β−β�

ξ a(x, ξ))

In particular, using the boundedness of χ and its derivatives, we get for each fixed k and |α+β| ≤
k, that ���∂α

x ∂
β
ξ aj(x, ξ)

��� ≤ C �ξ�m ℘m
k (a)

proving (i). Item (ii) follows by taking the punctual limit in the expression above. Finally to
prove item (iii) we remark that a− aj = (1− χ(2−jx)χ(2−jξ))a

���∂α
x ∂

β
ξ (aj − a)(x, ξ)

��� �
���(1− χ(2−jx)χ(2−jξ))∂α

x ∂
β
ξ a(x, ξ)

���

+
�

0�=β�≤β

2−j|β�|(∂β�

ξ χ)(2−jξ)
���∂α−α�

x ∂β−β�

ξ a(x, ξ)
���
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from which we deduce that, ∀m� > m,

�ξ�−m�+|β|
���∂α

x ∂
β
ξ (aj − a)(x, ξ)

��� � ℘m
k (a) sup

|ξ|≥2j
�ξ�−m�+m

+ ℘m
k (a) sup

|ξ|∼2j
�ξ�−m�+m+|β�|

2−j|β�|

� ℘m
k (a)2−j(m�−m)

using that in the first term |ξ| ≥ 2j , while in the second term |ξ| ∼ 2j . Hence ℘m�
k (aj − a) → 0

as j → ∞, as claimed.

This means that, when we work with symbols of some pseudodifferential operators, we can
always assume that they are Schwartz and then argue by approximation.

7.1 Adjoint

For the adjoint one has the following result

Theorem 7.3 (Adjoint). Let a ∈ Sm. Then exists a∗ ∈ Sm such that Op (a)
∗
= Op (a∗). In

particular

a∗(x, ξ) =
1

(2π)n

�

R2n

e−iyη a(x+ y, ξ + η) dy dη (7.2)

and one has the asymptotic expansion

a∗(x, ξ) ∼
�

α

1

α!
∂α
ξ D

α
xa(x, ξ) (7.3)

Finally for every j ∈ N0 there exist C,N > 0 such that

℘m
j (a∗) ≤ C ℘m

j+N (a) (7.4)

The proof of the theorem can be found in [AG91].

Remark 7.4. We can write
a∗(x, y) = [eiDx·Dξa](x, ξ) (7.5)

where the equality is meant in sense of Fourier multipliers. See (6.15) for a proof .
Formula (7.12) gives us a mnemonic way to compute the expansion of the symbol: indeed

formally

eiDx·Dξa(x, ξ) =
�

k

ik

k!
(Dx ·Dξ)

ka(x, ξ) =
�

α

1

α!
∂α
ξ D

α
xa(x, ξ)

where we used the multinomial theorem

(

n�

j=1

xj)
k =

�

α∈Nn
|α|=k

�
k

α

�
xα,

�
k

α

�
=

k!

α!

Remark 7.5. The expansion (7.3) is in decreasing symbols, since ∂α
ξ D

α
xa(x, ξ) ∈ Sm−|α|. In

particular symbolic calculus tells us that

a∗(x, ξ) = a(x, ξ) + Sm−1 (7.6)
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Remark 7.6. Since a ∈ Sm implies a∗ ∈ Sm, we have Op (a)
∗
: S(Rn) → S(Rn). In particular

we can extend the action of Op (a) by duality over S �(Rn):

�Op (a)u, v�S�,S :=
�
u,Op (a)

∗
v
�
S�,S

, ∀u ∈ S �, ∀v ∈ S (7.7)

where the conjugate operator A is defined by

Av := Av.

To deduce (7.7) we used that

�Op (a)u, v�S�,S = �Op (a)u, v�L2 =
�
u,Op (a)

∗
v
�
L2 =

�
u,Op (a)

∗
v
�
S�,S

Remark that Op (a) is a pseudodifferential operator with symbol

Op (a(x, ξ)) = Op
�
a(x,−ξ)

�
(7.8)

indeed

Op (a)v = Op (a) v = (2π)−n

�
e−i(x−y)ξ a(x, ξ) v(y) dydξ = (2π)−n

�
ei(x−y)ξ a(x,−ξ) v(y) dydξ

7.2 Composition

Theorem 7.7 (Composition). Let a ∈ Sm, b ∈ Sm�
, then exists c := a#b ∈ Sm+m�

such that

Op (a) ◦Op (b) = Op (c) .

In particular

c(x, ξ) =
1

(2π)n

�
e−iyη a(x, ξ + η) b(x+ y, ξ) dydη (7.9)

and one has the asymptotic expansion

c(x, ξ) ∼
�

α

1

α!
∂α
ξ aD

α
x b (7.10)

Finally for every j ∈ N0 there exist C,N > 0 such that

℘m+m�

j (a#b) ≤ C ℘m
j+N (a)℘m�

j+N (b) (7.11)

Remark 7.8. We can write

c(x, y) = eiDy·Dη (a(x, η)b(y, ξ))| y=x
η=ξ

(7.12)

where the equality is meant in sense of Fourier multipliers. See (6.15) for a proof.
Formula (7.12) gives us a mnemonic way to compute the expansion of the symbol: indeed

formally

eiDy·Dη (a(x, η)b(y, ξ))| y=x
η=ξ

=
�

k

ik

k!
(Dy ·Dη)

k(a(x, η)b(y, ξ))| y=x
η=ξ

=
�

α

1

α!
∂α
ξ a(x, ξ)D

α
x b(x, ξ)
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Remark 7.9. Note that ∂α
ξ a(x, ξ)D

α
x b(x, ξ) ∈ Sm−|α|, hence the expansion is in decreasing

symbols. In particular symbolic calculus tells us that

a#b = ab+ ∂ξaDxb+ Sm+m�−2 (7.13)

Remark 7.10. It holds that

(i) a#1 = 1#a = 1

(ii) (a#b)#c = a#(b#c)

which follows immediately by the properties of the corresponding quantizations.

Proof of Theorem 7.7. We split the proof in several steps.
Step 1: c(x, y) is a symbol.

Note that c(x, ξ) is defined through an oscillatory integral. So first we verify that

(y, η) �→ cx,ξ(y, η) := a(x, ξ + η) b(x+ y, ξ)

is an amplitude in Am ≡ Am
0 , namely ∀α,β ∈ Nd

��∂α
y ∂

β
η cx,ξ

�� ≤ Cα,β �(y, η)�m

By the fact that a, b are symbols and Peetre’s inequality we have

��∂α
y ∂

β
η cx,ξ(y, η)

�� ≤
��∂β

η a(x, ξ + η)
�� ��∂α

y b(y + x, ξ)
��

� ℘m
|β|(a) �ξ + η�m−|β|

℘m�
|α|(b) �ξ�m

�

� �ξ + η�m �ξ�m
�
℘m
|β|(a)℘

m�
|α|(b)

(7.1)

� �ξ�m+m�
�η�|m|

℘m
|β|(a)℘

m�
|α|(b)

� �ξ�m+m�
(1 + |y|+ |η|)|m|℘m

|β|(a)℘
m�
|α|(b)

In particular cx,ξ ∈ A|m| so the oscillatory integral is well defined. We can also be more precise:
as

N
|m|
|m|+2n+1(cx,ξ) ≤ �ξ�m+m�

℘m
|m|+2n+1(a)℘

m�
|m|+2n+1(b)

we get, with N = |m|+ 2n+ 1,

|c(x, ξ)| ≤ CN
|m|
|m|+2n+1(cx,ξ) ≤ �ξ�m+m�

℘m
N (a)℘m�

N (b)

To prove that c(x, ξ) is a symbol we need to compute the derivatives ∂α
x ∂

β
ξ c(x, ξ). We use

that we can exchange derivative and oscillatory integral and obtain

∂α
x ∂

β
ξ c(x, ξ) =

�

α�+α��=α
β�+β��=β

Cβ�,β��

α�,α��

(2π)n

�
e−iyη (∂α�

x ∂β�

ξ a(x, ξ + η)) (∂α��
x ∂β��

ξ (b(x+ y, ξ))
� �� �

�cx,ξ(y,η)

dydη (7.14)
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We know that the oscillatory integral is bounded by the seminorms of the amplitude, so we
compute them. Take |δ + γ| ≤ K, then

��∂γ
y ∂

δ
η�cx,ξ(y, η)

�� �
���∂α�

x ∂β�+δ
η a(x, ξ + η)

���
���∂α��+γ

y ∂β��

ξ b(y + x, ξ)
���

� �ξ + η�m−|β�|−|δ|
℘m
K+|α+β|(a) �ξ�m

�−|β��|
℘m�
K+|α+β|(b)

� �ξ + η�m−|β�| �ξ�m
�−|β��|

℘m
K+|α+β|(a)℘

m�
K+|α+β|(b)

(7.1)

� C �ξ�m+m�−|β| �η�|m−|β�||
℘m
K+|α+β|(a)℘

m�
K+|α+β|(b)

� C �ξ�m+m�−|β|
(1 + |y|+ |η|)|m−|β�|||℘m

K+|α+β|(a)℘
m�
K+|α+β|(b)

hence each term in the finite sum in (7.14) is an amplitude in A|m−|β|| ⊂ A|m|+|β|. It follows by
(6.26) that for |α+ β| ≤ j we have

���∂α
x ∂

β
ξ c(x, ξ)

��� ≤ C N
|m|+j
|m|+j+2n+1(�cx,ξ) ≤ �ξ�m+m�−|β|

℘m
2j+N (a)℘m�

2j+N (b)

where N = |m| + 2n + 1. This because we need to control |γ + δ| ≤ K ≤ |m| + |β| + 2n + 1
derivatives in the seminorm, thus K + |α+ β| ≤ K + j ≤ |m|+ 2j + 2n+ 1.

This proves that c(x, ξ) is a symbol and the estimate on its seminorms.

Step 2: Asymptotic expansion.
To prove the asymptotic expansion, we use Taylor expansion 2

a(x, ξ + η) b(x+ y, ξ) =
�

|α+β|≤2k−1

ηα

α!

yβ

β!

�
∂α
ξ a(x, ξ)

� �
∂β
x b(x, ξ)

�
+ rk(x, ξ, y, η)

rk(x, ξ, y, η) =
�

|α+β|=2k

(2k)
ηα

α!

yβ

β!
rαβ(x, ξ, y, η)

rαβ(x, ξ, y, η) =

� 1

0

(1− t)2k−1∂α
η a(x, ξ + tη) ∂β

y b(x+ ty, ξ) dt

Insert the expansion in the integral and use that

c(x, ξ) =
�

|α+β|≤2k−1

∂α
ξ a(x, ξ) ∂

β
x b(x, ξ)

1

(2π)n

�
e−iyη η

α

α!

yβ

β!
dy dη +Rk(x, ξ)

where

Rk(x, ξ) := (2π)−n

�
e−iyηrk(x, ξ, y, η)dydη. (7.15)

Now recall from (6.34) that

�

R2n

e−iyη yα

α!

ηβ

β!
dy dη =

�
0 α �= β

(2π)n (−i)|α|

α! α = β

2Recall multivariable Taylor expansion at order 2k − 1

f(x) =
�

|α|≤k

Dαf(a)

α!
(x− a)α +

�

|β|=k+1

Rβ(x)(x− a)β ,

Rβ(x) =
|β|
β!

� 1

0
(1− t)|β|−1Dβf

�
a+ t(x− a)

�
dt.
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so we get that only the terms with α = β survive, and

c(x, ξ) =
�

|α|≤k−1

1

α!
∂α
ξ a(x, ξ)D

α
x b(x, ξ)� �� �

∈Sm+m�−|α|

+Rk(x, ξ) (7.16)

We get the finite terms of the asymptotic expansion. So have a truly an asymptotic expansion
we have to show that

c(x, ξ)−
�

|α|≤k−1

1

α!
∂α
ξ a(x, ξ)D

α
x b(x, ξ) = Rk(x, ξ) ∈ Sm+m�−k

We begin by proving

|Rk(x, ξ)| � �ξ�m+m�−k
. (7.17)

As above, the strategy is to show that Rk is well defined as an oscillatory integral with amplitude
rk, then use the bound (6.26) to prove (7.17). First we remark that

�
e−iyηrk(x, ξ, y, η)dydη = lin. com.

|α+β|=2k

�
e−iyη ηα yβ rαβ(x, ξ, y, η) dydη

Now we use integration by parts, first in η and then in y (the integration by parts is justified by
Proposition 6.6), using that yβe−iyη = (−i)|β|β! (∂β

η e
−iyη)

lin. com.
|α+β|=2k

�
e−iyη ηα yβ rαβ(x, ξ, y, η) dydη = lin. com.

|α+β|=2k

� �
∂β
η e

−iyη
�
ηα rαβ(x, ξ, y, η) dydη

= lin. com.
|α+β|=2k

γ≤β

�
e−iyη ηα−γ ∂β−γ

η rαβ(x, ξ, y, η) dydη

= lin. com.
|α+β|=2k

γ≤β,α

� �
∂α−γ
y e−iyη

�
∂β−γ
η rαβ(x, ξ, y, η) dydη

= lin. com.
|α+β|=2k

γ≤β,α

�
e−iyη ∂α−γ

y ∂β−γ
η rαβ(x, ξ, y, η) dydη

Note that we have the conditions γ ≤ β, γ ≤ α, otherwise one gets zero in the second passage.
In particular 2|γ| ≤ |α+ β| = 2k, hence |γ| ≤ k and

|α+ β − γ| ≥ k. (7.18)

Now, using that
∂β−γ
η ∂α

ξ a(x, ξ + tη) = t|β−γ|∂α+β−γ
ξ a(x, ξ + tη),

we prove that Rk is linear combination of terms of the form

�
e−iyη

� 1

0

f(t)
�
∂α+β−γ
ξ a(x, ξ + tη)

� �
∂α+β−γ
x b(x+ ty, ξ)

�
dtdydη

Now we show that

(y, η) �→
�
∂α+β−γ
ξ a(x, ξ + tη)

� �
∂α+β−γ
x b(x+ ty, ξ)

�
≡ rα,β,γx,ξ (y η)

in an amplitude in Am−k ⊆ A|m−k|. In particular we verify that

N
|m−k|
|m−k|+2n+1

�
rα,β,γx,ξ

�
� �ξ�m+m�−k

(7.19)

51



Indeed for |δ + υ| ≤ |m− k|+ 2n+ 1 we have, recalling |α+ β| ≤ 2k,

���∂δ
y∂

υ
η rα,β,γx,ξ (y, η)

��� �
� 1

0

f(t)
���∂α+β−γ+υ

ξ a(x, ξ + tη)
���
��∂α+β−γ+δ

x b(x+ ty, ξ)
�� dt

�
� 1

0

f(t) �ξ + tη�m−|α+β−γ|−|υ| �ξ�m
�
℘m
2k+|υ|(a)℘

m
2k+|δ|(b) dt

�
� 1

0

f(t) �ξ + tη�m−k �ξ�m
�
℘m
2k+|υ|(a)℘

m
2k+|δ|(b) dt

� �ξ�m+m�−k
℘m
2k+|υ|(a)℘

m
2k+|δ|(b)

� 1

0

f(t) �tη�|m−k|
dt

� �ξ�m+m�−k �η�|m−k|
℘m
2k+|υ|(a)℘

m
2k+|δ|(b)

where in the last step we used �tη� ≤ �t� �η�. Estimate (7.19) implies

|Rk(x, ξ)| ≤
�

|α+β|≤2k
γ≤β,α

N
|m−k|
|m−k|+2n+1

�
rα,β,γx,ξ

�
� C �ξ�m+m�−k

℘m
|m|+2n+1+3k(a)℘

m�
|m|+2n+1+3k(b)

One argues similarly for the derivatives of Rk, substituting rk by ∂γ
x∂

δ
ξrk.

Step 3: Composition formula.
We prove that Op (a)◦Op (b) = Op (a�b) when a ∈ Sm, b ∈ Sm�

. By Lemma 7.2, we approximate
a ∈ Sm and b ∈ Sm�

with two sequences of symbols (aj)j∈N, (bj)j∈N ⊂ S. Recall that (aj)j∈N
is bounded in Sm, aj converges pointwise to a with all its derivatives, and aj → a in Sm+� as
j → ∞ for any � > 0; the same holds for (bj)j∈N.

Then Op (bj) f → Op (b) f in S by Proposition 5.3. By the same proposition we have that

Op (aj)Op (bj) f → Op (a)Op (b) f in S as j → ∞.

Now aj , bj ∈ S, so the formal computation of section 5.2, we deduce that Op (aj)Op (bj) f =
Op (aj�bj) f . But now, by the proof before, we know that a�b is bilinear and continuous, so

aj�bj → a�b ∈ Sm+m�+2�. Hence Op (aj�bj) f → Op (a�b) f in S. By the uniqueness of the limit
we deduce that Op (a) ◦Op (b) = Op (a�b).

Example: let us consider in dimension d = 1 the operator

A = b(x)∂xx.

Then its adjoint is
A∗ := ∂xx ◦ b(x);

note that, as operator, this means

A∗u = ∂xx(b(x)u(x)) = b(x)∂xxu+ 2bx(x)∂xu+ bxxu

i.e. we have A∗ = b(x)∂xx + 2bx(x)∂x + bxx. Let us compute A∗ by symbolic calculus. We have
A = Op

�
−bξ2

�
, hence A∗ = Op (a∗) where

a∗ = [eiDx·Dξa](x, ξ) =
�

k

1

k!
∂k
ξD

k
xa(x, ξ) =

�

k

1

k!
∂k
ξD

k
x(−bξ2) = −bξ2 − 1

i
bx2ξ −

1

2

bxx
i2

2
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so we see, using also Op (ξ) = Dx = 1
i ∂x, that Op (a∗) = b∂xx + 2bx∂x + bxx.

We can also compute A∗ by composition theorem. Indeed

∂xx ◦ b = Op
�
−ξ2

�
◦Op

�
b
�
= −Op

�
ξ2�b

�

and by symbolic calculus

ξ2�b =
�

k

1

k!
∂k
ξ (ξ

2)(Dk
xb) = ξ2b+ 2ξ

1

i
bx +

1

2
2
1

i2
bxx

hence again we find
−Op

�
ξ2�b

�
= b∂xx + 2bx∂x + bxx

which, not surprinsingly, coincides with the expression that we already found.
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