
8 Applications of symbolic calculus and different quanti-
zations

In this section we describe some applications of symbolic calculus and we also describe different
quantizations.

8.1 Commutators

An immediate application of the results obtained so far is the following one, regarding commu-
tators.

Theorem 8.1. Let a ∈ Sm, b ∈ Sm�
, then exists c ∈ Sm+m�−1 such that

[Op (a) , Op (b)] = Op (c) .

The symbol c is given by

c := a#b− b#a ∼
�

α

1

α!
(∂α

ξ aD
α
x b− ∂α

ξ bD
α
xa) (8.1)

=
1

i
{a, b}+ Sm+m�−2 (8.2)

and one has the quantitative estimate: ∀j ∈ N, there exist C,N > 0 such that

℘m+m�−1
j (c) ≤ C ℘m

N (a)℘m�
N (b) . (8.3)

Proof. It is sufficient to note that, by composition of pseudodifferential operators

[Op (a) , Op (b)] = Op (a) Op (b)−Op (b) Op (a) = Op (a#b− b#a) .

Furthermore (7.13) gives

a#b− b#a = ab+ ∂ξaDxb+ Sm+m�−2 − ba− ∂ξbDxa+ Sm+m�−2

=
1

i
{a, b}+ Sm+m�−2

We define the Moyal bracket by

{a, b}M := i(a#b− b#a) (8.4)

= {a, b}+ Sm+m�−2

Then

i [Op (a) ,Op (b)] = Op ({a, b}M) (8.5)

= Op ({a, b}) + Op
�
Sm+m�−2

�
(8.6)
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8.2 Symbol recovery

Given a pseudodifferential operator Op (a) with symbol a ∈ S, we can recover its symbol by the
formula

a(x, ξ) := e−ixξOp (a) [eixξ]. (8.7)

Remark that such a formula is well defined (in the distributional sense), because we have proved
that Op (a) : S � → S �, and eixξ ∈ S �. To prove (8.7), use the calculus of oscillatory integrals to
compute

Op (a) [eixξ](x) = (2π)−n

�
ei(x−y)η a(x, η) eiyξdηdy

= lim
�→0

(2π)−n

�
ei(x−y)η a(x, η) eiyξ χ(�y)χ(�η) dηdy

= lim
�→0

(2π)−n

�
eixη a(x, η)χ(�η)

��
eiy(ξ−η) χ(�y)dy

�
dη

= lim
�→0

(2π)−n

�
eixη a(x, η)χ(�η)

1

�n
�χ
�
η − ξ

�

�
dη

η=�ζ+ξ
= lim

�→0
(2π)−n

�
eix(ξ+�ζ) a(x, �ζ + ξ)χ(�2ζ + �ξ) �χ(ζ)dζ

= eixξa(x, ξ)χ(0) (2π)−n

�
�χ(ζ)dζ

= eixξ a(x, ξ)

Exercise 8.2. Prove that if (aj)j≥1 ⊂ S approximates a ∈ Sm in the usual sense, then for any
u ∈ S �, Op (aj)u → Op (a)u in S �. Deduce equality (8.7).

Consider now an operator A : S � → S �, and put

σA(x, ξ) := e−ixξA[eixξ]; (8.8)

then we can recoverA from its symbol σA. Indeed for u, v ∈ S write (F−1v)(ξ) = (2π)−n �eξ, v�S�,S ,

where eξ(x) := eixξ, and recalling the definition of transposed operator, write

�Au, v�S�,S =
�
u,Atv

�
S�,S =

�
�u,F−1(Atv)

�
S�,S

=
�
�u, (2π)−n

�
eξ, A

tv
�
S�,S

�
S�,S

=
�
�u, (2π)−n �Aeξ, v�S�,S

�
S�,S

=
�
�u, (2π)−n �eξσA(·, ξ), v�S�,S

�
S�,S

=
1

(2π)n

�
�u(ξ)eixξσA(x, ξ)v(x)dξdx

=

�
1

(2π)n

�
�u(ξ)eixξσA(x, ξ)dξ, v

�

S�,S

so in particular, if σA is a symbol, we get that A = Op (a), hence A is a pseudodiff.
Thus, given an operator A, if we want to prove that it is a pseudodifferential operator, it is
sufficient to compute (8.8) and then check that it is a symbol in some appropriate class.

8.3 Parametrix

We shall now construct an approximate inverse to an elliptic operator.
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Theorem 8.3. Let a ∈ Sm, m > 0 be elliptic, namely ∃c > 0 such that

|a(x, ξ)| ≥ c �ξ�m , ∀|ξ| ≥ ρ. (8.9)

Then there exists b ∈ S−m such that

Op (a)Op (b) = 1+R, Op (b)Op (a) = 1+R�, R,R� ∈ Op
�
S−∞�

(8.10)

Proof. By symbolic calculus, we will construct b, b� ∈ S−m such that a#b− 1, b�#a− 1 ∈ S−∞.
Quantizing them, we obtain two operators Op (b), Op (b�) such that

Op (a)Op (b) = 1+R, Op (b�)Op (a) = 1+R�, R,R� ∈ Op
�
S−∞�

,

so they are right and left approximate inverses. Before diving into the proof, notice that

Op (b)−Op (b�) = Op (b)
�
1−Op (a)Op (b�)

�

� �� �
∈Op(S−∞)

+
�
Op (b)Op (a)− 1

�

� �� �
∈Op(S−∞)

Op (b�) ∈ Op
�
S−∞�

,

which implies that

Op (b)Op (a) =
�
Op (b)−Op (b�)

�

� �� �
∈Op(S−∞)

Op (a) + Op (b�)Op (a)� �� �
1+Op(S−∞)

= 1+Op
�
S−∞�

,

i.e., a left approximate inverse is also a right approximate inverse, and viceversa.
We show now how to construct b such that a#b−1 ∈ S−∞, the construction of b� is analogous.

We proceed iteratively. Let χ ∈ C∞
0 , χ ≡ 1 in |ξ| ≤ ρ. Then define

b0(x, ξ) :=
1− χ(ξ)

a(x, ξ)
∈ S−m

Now by symbolic calculus (see (7.13))

a#b0 = a b0 + S−1 = 1− χ+ S−1 = 1− r−1 , r−1 ∈ S−1.

Now we iterate. We look for b = b0 + b1 + l.o.t in such a way that a�b becomes a symbol in a
class of lower and lower order. Note how the construction is perturbative in nature, where the
perturbative parameter is the order of the symbol. So now let us look for b1 ∈ S−m−1 in such a
way that a�(b0 + b1) is in S−2. We have

a#(b0 + b1) = a#b0 + a#b1 = 1− r−1 + a#b1

= 1− r−1 + ab1 + r−2 = 1− r−2

provided we choose, for example,

b1 := r−1
1− χ(ξ)

a(x, ξ)
= r−1b0 ∈ S−m−1.

We can iterate this process at any order: assume to have found b0, . . . , bK , with bj ∈ S−m−j , ∀j,
such that

a�(b0 + . . .+ bK) = 1− r−K−1, r−K−1 ∈ S−K−1,
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then, defining

bK+1 := r−K−1
1− χ(ξ)

a(x, ξ)
∈ S−m−K−1

we have

a#(b0 + . . .+ bK + bK+1) = a#(b0 + . . .+ bK) + a#bK+1 = 1− r−K−1 + a#bK+1

= 1− r−K+1 + abK+1 + r−K−2 = 1− r−K−2.

The construction can be performed at any order, then we define b ∼ �
j bj as asymptotic series.

Lemma 4.11 produces a symbol b ∈ S−m asymptotic to
�

j bj , which fulfills a#b − 1 ∈ S−M

∀M ∈ R.

The theorem allows us to construct approximative inverses to general elliptic variable coeffi-
cients operators.

Remark 8.4. The existence of a right approximate inverse of Op (a)(or equivalently of a left
one), implies that the symbol a is elliptic. Indeed, by symbolic calculus, Op (a)Op (b)− 1 ∈ S−∞

implies a�b− 1 ∈ S−∞, hence

a(x, ξ)b(x, ξ) = 1 + r−1(x, ξ), r−1 ∈ S−1.

This implies that for ξ large enough

1

2
≤ |a(x, ξ)| |b(x, ξ)| ≤ C |a(x, ξ)| �ξ�−m

, ∀|ξ| � 1.

This shows that a is elliptic. So a elliptic is equivalent to Op (a) having a right (or left) approx-
imate inverse.

Remark 8.5. If Op (a) has a left approximate inverse, it does not mean that Op (a) is injective,
but that its kernel is composed by smooth functions. Indeed assume that a is an elliptic symbol
and that u ∈ kerOp (a) with only u ∈ L2. We are going to show that actually u ∈ Hs ∀s. Indeed
let Op (b) be a parametrix, and since 1 = Op (b)Op (a)−R with R smoothing, we have

u = Op (b)Op (a)u−Ru = −Ru.

Since R is smoothing, it follows that u ∈ Hs ∀s. In particular it is smooth.
For example d

dx is elliptic, so it admits an approximate left inverse. Its kernel is composed by
constant functions, which are smooth.

8.4 Different quantization

So far we have worked with the so called “standard” quantization. However it is possible to
define a whole family of quantizations in the following way: for any 0 ≤ t ≤ 1 define

[Opt(a)u](x) =
1

(2π)n

�

Rn×Rn

ei(x−y)ξ a (tx+ (1− t)y, ξ) u(y) dydξ (8.11)

The values t = 0, 1
2 , 1 play a special role and they are called

- t = 0: right quantization, Op0(a(x)ξ) =
1
i ∂x a

- t = 1
2 : Weyl quantization, Op 1

2
(a(x)ξ) = 1

2i (a∂x + ∂xa)
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- t = 1: left quantization (standard), Op1(a(x)ξ) = a(x) 1i ∂x

Note that the symbol is the same, but the operators are different. However, the operators are
the same at highest order, and the difference is at lower order.

It is also possible to pass from one quantization to a different one:

Theorem 8.6. Fix t ∈ [0, 1], and let a ∈ Sm. Then ∀s ∈ [0, 1], there exists b ∈ Sm such that

Opt(a) = Ops(b). (8.12)

In particular

b(x, ξ) =
1

(2π)n

�
e−iyη a(x+ (s− t)y, ξ + η) dydη, (8.13)

namely one has the asymptotic expansion

b = ei(s−t)Dx·Dξa ∼
�

α

(s− t)|α|

α!
∂α
ξ D

α
xa.

Proof. Assume first that a ∈ S. The case a ∈ Sm is obtained as usual by approximation with
Schwarts symbols. We want the integral kernels of Opt(a) and Ops(b) to be equal. Hence

Ka(x, y) =

�
ei(x−y)ξa(tx+ (1− t)y, ξ) dξ =

�
ei(x−y)ηb(sx+ (1− s)y, η) dη = Kb(x, y)

We change variables in the second integral by putting
�
x− y = θ

z = sx+ (1− s)y = y + sθ
⇒

�
x = z + (1− s)θ

y = z − sθ

and get �
eiθξa(z + (t− s)θ, ξ) dξ =

�
eiθηb(z, η) dη ≡ (2π)n F−1

η (b(z, ·)
��
θ
,

hence we can invert the Fourier transform and obtain that

b(z, η) =
1

(2π)n
Fθ

��
eiθξa(z + (t− s)θ, ξ) dξ

�����
η

=
1

(2π)n

�
eiθξ e−iθη a(z + (t− s)θ, ξ) dξdθ

ξ=η+ζ
θ=−y
=

1

(2π)n

�
e−iyζ a(z + (s− t)y, ζ + η) dydζ

as claimed. The proof that b ∈ Sm and the asymptotic expansion follows as in the proof of the
adjoint theorem.

Remark 8.7. In particular one has Op (a) = Opw (b) with

b ∼
�

α

�
−1

2

�|α|
1

α!
∂α
ξ D

α
xa .

For example the formula tells us that if a(x, ξ) = b(x)ξ (dimension 1), then

b(x)
1

i
∂x = Op (a) = Opw

�
b(x)ξ − 1

2i
bx

�
(8.14)
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Similarly one has Opw (b) = Op (a) with

a ∼
�

α

�
1

2

�|α|
1

α!
∂α
ξ D

α
x b .

For example if b(x, ξ) = b(x)ξ (dimension 1), then

Opw (b) = Op

�
b(x)ξ +

1

2i
bx(x)

�
= b(x)

1

i
∂x +

1

2i
bx(x). (8.15)

8.5 Weyl quantization

A particular important quantization is the Weyl quantization, which we recall is given explicitly
by the formula

[Opw (a)u](x) =
1

(2π)n

�

Rn×Rn

ei(x−y)ξ a

�
x+ y

2
, ξ

�
u(y) dydξ (8.16)

Let us check how some common symbols are transformed, in dimension n = 1:

- a(x, ξ) = a(ξ), then Opw (a) = a(D).

- a(x, ξ) = a(x), then Opw (a) = a(x). This can be obtained by oscillatory integrals tech-
niques.

- a(x, ξ) = a(x)ξ, then Opw (a) = 1
2 (aDx +Dxa). Indeed, for u, a ∈ S, then

Opw (a) [u](x) = (2π)−n

�
ei(x−y)η a

�
x+ y

2

�
ξ u(y) dydξ

=
1

i
(2π)−n

�
ei(x−y)η

�
1

2
a�
�
x+ y

2

�
u(y) + a

�
x+ y

2

�
u�(y)

�
dydξ

=
1

2i
ax(x)u(x) +

1

i
a(x)ux(x)

=

�
1

i
a∂x +

1

2i
ax

�
u =

1

2i
(a∂x + ∂xa)u

If a is just bounded with bounded derivatives, or a symbol in a different class, one justifies
the computation above via oscillatory integrals.

Exercise 8.8. Compute Opw (a(x)ξ) in dimension n arbitrary.

There is an important remark about the last computation: if a(x) is real, then Opw (a) is a
selfadjoint operator:

�
1

2i
(a∂x + ∂xa)

�∗
=

−1

2i
(−∂xa− a∂x) =

1

2i
(a∂x + ∂xa).

This is a general fact, and the main reason why Weyl quantization is important:

Theorem 8.9 (Adjoint with Weyl). Let a ∈ Sm. Then

Opw (a)
∗
= Opw (a) .

In particular if a is real valued, then Opw (a) is symmetric on its domain.
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Proof. It is sufficient to recall that if K(x, y) is the kernel of A, then K∗(x, y) = K(y, x) is the
kernel of A∗. Since Opw (a) has kernel

Kw(x, y) = (2π)−n

�
ei(x−y)ξ a

�
x+ y

2
, ξ

�
dξ, (8.17)

by a direct computation we get

K∗(x, y) = Kw(y, x)(2π)−n

�
ei(x−y)ξ a

�
x+ y

2
, ξ

�
dξ,

but this is the integral kernel of Opw (a) as claimed.

Remark 8.10. From (8.17) it follows that

Kw

�
x+

t

2
, x− t

2

�
= (2π)−n

�
eitξ a(x, ξ) dξ = (Fξ→ta)(x, t) (8.18)

By taking inverse Fourier transform we get

a(x, ξ) =

�
e−itξ Kw

�
x+

t

2
, x− t

2

�
dt (8.19)

and we recover the symbol from the kernel.

We state also the theorem about composition in Weyl quantization

Theorem 8.11 (Composition with Weyl). Let a ∈ Sm, b ∈ Sm�
, then

Opw (a) ◦Opw (b) = Opw (c)

with c := a#wb ∈ Sm+m�
. Moreover, defining the symplectic form

σ(x, ξ; y, η) := ξ · y − x · η,

we have that

c(x, ξ) =
1

π2n

�
e2iσ(t,τ ;z,ζ) a(x+ z, ξ + ζ) b(x+ t, ξ + τ) dtdzdζdτ (8.20)

and one has the asymptotic expansion

c(x, ξ) ∼
�

j≥0

cj , cj(x, ξ) :=
�

|α+β|=j

1

α!β!

�
1

2

�|α| �
−1

2

�|β| �
∂α
ξ D

β
xa

� �
∂β
ξ D

α
x b

�
(8.21)

Finally for every j ∈ N0 there exist C,N > 0 such that

℘m+m�

j (a#wb) ≤ C ℘m
j+N (a)℘m�

j+N (b) (8.22)

Remark 8.12. We can write

(a#wb)(x, ξ) = e
i
2 (DξDy−DxDη)a(x, ξ)b(y, η)| y=x

η=ξ
, (8.23)

compare with (6.19).
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Remark 8.13. For Weyl quantization one has

a#wb = ab+
1

2
(∂ξaDxb−Dxa ∂ξb) + Sm+m�−2 = ab+

1

2i
{a, b}+ Sm+m�−2. (8.24)

Moreover all the terms of odd degree are antisymmetric in a, b, while all the even ones are
symmetric. Hence we have

a#wb− b#wa =
1

i
{a, b}+ Sm+m�−3 (8.25)

which implies

[Opw (a) ,Opw (b)] = Opw
�
1

i
{a, b}

�
+Opw

�
Sm+m�−3

�
(8.26)

Proof of Theorem 8.11. Let Ka and Kb be the intergal kernels of Opw (a) and Opw (b) respec-
tively. Then Opw (a)Opw (b) has integral kernel

Kc(x, y) =

�

Rn

Ka(x, z) Kb(z, y)dz

=
1

(2π)2n

�

R3n

ei(x−z)ζ a

�
x+ z

2
, ζ

�
ei(z−y)τ b

�
z + y

2
, τ

�
dτdζdz

Using formula (8.19) we get that

c(x, ξ) =

�

Rn

e−itξKc

�
x+

t

2
, x− t

2

�
dt

=
1

(2π)2n

�

R4n

ei[(x−z+t/2)(ζ−ξ)+(z−x+t/2)(τ−ξ)] a

�
x+ z + t/2

2
ζ

�
b

�
z + x− t/2

2
, τ

�
dzdζdτdt

Now make the linear change of variables





t = 2(z� − t�)

z = x+ z� + t�

ζ = ζ � + ξ

τ = τ � + ξ

dt dz dζ dτ = 4n dt� dz� dζ � dτ �

and one gets (8.20). For the asymptotic formula, one proceeds as for the proof of composition
in the standard quantization: by Taylor expansion

a(x+ z, ξ + ζ) b(x+ t, ξ + τ) ∼
�

α,β,γ,δ

(∂α
x ∂

β
ξ a(x, ξ)) (∂

γ
x∂

δ
ξ b(x, ξ)

zα

α!

ζβ

β!

tγ

γ!

τ δ

δ!

Then one has to study the oscillatory integral

�
e2i(τ ·z−t·ζ) z

α

α!

ζβ

β!

tγ

γ!

τ δ

δ!
dt dτ dz dζ

and by using integration by parts in the oscillatory integrals, one verifies that one must have
α = δ and γ = β. In such a way one obtains the asymptotic expansion. The details are let to
the reader.
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