Repulsive polarons in a strongly interacting Fermi gas

Georg M. Bruun Aarhus University

C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan, GMB, F. Schreck, R. Grimm, Nature **485**, 615 (2012)

Outline

- Polarons & molecules: Main concepts & results
- 2-body physics: broad vs. narrow resonances
- Many-body theory & comparison with experiments
- Itinerant Ferromagnetism

⁴⁰K-⁶Li experiments by Grimm group

RF flip

Non-interacting

QP residue

Strongly interacting

2-body physics

6

2.0

 $[\hat{H}_{spin}, \hat{V}] \neq 0$ Mixes hyperfine states \Rightarrow Scattering channels

Effective low-energy interaction: $U = \frac{2\pi}{m_r} \left[\frac{a_s + 3a_t}{4} + (a_t - a_s)\vec{S_1} \cdot \vec{S_2} \right]$

"Landau Theory" Interaction expressed in terms of observable 2body parameters

$$r_{\rm eff} a_{\rm bg} = -\frac{1}{\Delta \mu \Delta B m_r} \propto \frac{1}{g^2}$$

$$g^2 = T_{\rm bg} \Delta \mu \Delta B$$

"Dressed" molecule

GMB, E. Kolomeitsev, and A. D. Jackson, PRA **71** 052713 (2005)

"Broad" resonance $k_F r_{eff} \ll 1 \qquad \frac{g^2}{\epsilon_F} \gg \frac{1}{m_r k_F}$ Single channel

"Narrow" resonance

 $k_F r_{\rm eff} \gtrsim 1 \quad \frac{g^2}{\epsilon_F} \ll \frac{1}{m_r k_F}$ Multi-channel

Molecule energy

Many-body theory

Polaron:

Results & experiments

RF flip

Non-interacting

Polaron energies

Molecule-hole continuum

RF-probe momentum conserving $R \propto \Omega_0 \sum_{\mathbf{k}} (b^{\dagger}_{\downarrow \mathbf{k}} a_{\downarrow \mathbf{k}} + h.c.)$

Initial state: $|I\rangle = b_{\perp 0}^{\dagger} |\text{FS}\rangle$

Rabi flipping frequency:

$$\Omega = \langle \psi_P | R | I \rangle$$
$$= \sqrt{Z} \Omega_0$$

Damping of oscillations:

Molecule wave function

Repulsive Polaron Decay

2-body decay to attractive polaron:

BEC-limit

 $\Gamma_{PP} = \pi T_0^2 Z_- \int_{q < k_F < k} d^3 \check{q} d^3 \check{k} \delta (\Delta E + \epsilon_{\uparrow q} - \epsilon_{\uparrow k} - \epsilon_{\downarrow \mathbf{q} - \mathbf{k}}^*)$ $= Z_- \frac{2}{3\pi} \sqrt{\frac{m_{\uparrow} (m_r^*)^3}{m_r^4}} \sqrt{\frac{\Delta E_{PP}}{\epsilon_F}} (k_F a)^2 \epsilon_F \propto k_F a$

P. Massignan and GMB, EPJD 65, 83 (2011)

3-body decay to molecule + hole:

Broad resonance $\Gamma_P \propto (k_F a)^6 \epsilon_F \propto n_1^2 \epsilon_F$

Due to Fermi exclusion principle

GMB and P. Massignan, PRL **105** 020401 (2010)

D. S. Petrov, PRA **67** 010703 (2003)

Experiment

ltinerant ferromagnetism

Fermi gas with short range repulsive interactions

$$\hat{H} = -\int d^3r \hat{\psi}^{\dagger}_{\sigma}(\mathbf{r}) \frac{\nabla^2}{2m} \hat{\psi}_{\sigma}(\mathbf{r}) + g \int d^3r \hat{\psi}^{\dagger}_{\uparrow}(\mathbf{r}) \hat{\psi}^{\dagger}_{\downarrow}(\mathbf{r}) \hat{\psi}_{\downarrow}(\mathbf{r}) \psi_{\downarrow}(\mathbf{r})$$

Stoner theory:
$$E = \frac{3}{5}n\epsilon_F[(1+\eta)^{5/3} + (1-\eta)^{5/3} + A(1+\eta)(1-\eta)]$$

$$\eta = \frac{n_{\uparrow} - n_{\downarrow}}{n_{\uparrow} + n_{\downarrow}} \qquad A \propto g \propto k_F a$$

Not observable due to pairing instability

C. Sanner et al., PRL 108, 240404 (2012)

D. Pekker et al., PRL 106, 050402 (2011)

We have accurate theory in the limit $N_{\downarrow} \ll N_{\uparrow}$

Mixed phase energy:

 $E(N_{\uparrow}, N_{\downarrow}, T) = N_{\uparrow} \varepsilon_1^0 (N_{\uparrow}/V, T) + N_{\downarrow} \varepsilon_2^0 (N_{\downarrow}/V, T) + N_{\downarrow} \varepsilon_1^0 (N_{\uparrow}/V, T) A(T)$

S. Pilati et al., PRL 105, 030405 (2010)

Phase separated energy:

 $E(N_{\uparrow}, N_{\downarrow}, T) = N_{\uparrow} \varepsilon_1^0 (N_{\uparrow}/V_{\uparrow}, T) + N_{\downarrow} \varepsilon_2^0 (N_{\downarrow}/V_{\downarrow}, T)$

Condition for phase separation at T=0

$$A \ge \frac{5}{3} \left(\frac{m_1}{m_2}\right)^{3/5}$$

Ferromagnetism with narrow Feschbach resonance?

Minimize free energy for T>0 F = E - TS

Entropy of mixing (ideal mixture):

$$\Delta S_{\text{mix}} = -Nk_B[y\log y + (1-y)\log(1-y)] \quad y = \frac{N_{\downarrow}}{N}$$

Phase diagram

Conclusions

- Long lived repulsive polaron
- Excellent agreement between theory & experiment
- Narrow resonance increases stability of repulsive polaron
- Ferromagnetism for narrow resonance?