Mapping the Berry Curvature of Optical Lattices

Nigel Cooper Cavendish Laboratory, University of Cambridge

Quantum Simulations with Ultracold Atoms ICTP, Trieste, 16 July 2012

Hannah Price & NRC, PRA 85, 033620 (2012)

NRC, PRL **106**, 175301 (2011) NRC & Jean Dalibard, EPL **95**, 66004 (2011)

イロト イポト イヨト イヨト

Outline

Topology of 2D Bands

Bloch Oscillations Bloch Oscillations in 2D Experimental Considerations

Example Systems

Honeycomb Lattice, $\mathcal{C} = 0$ Optical Flux Lattices, $\mathcal{C} \neq 0$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Topological Invariants

Gaussian curvature
$$\kappa=rac{1}{R_1R_2}$$

negative, zero and positive κ

(ロ) (同) (E) (E) (E)

$$\frac{1}{2\pi} \int_{\text{closed surface}} \kappa \, dA = (2 - 2g)$$
 Gauss-Bonnet Theorem

genus g = 0, 1, 2, ... for sphere, torus, 2-hole torus...

Topological invariant: g cannot change under smooth deformations

Topological Features of 2D Bands

(

[Thouless, Kohmoto, Nightingale & den Nijs (1982)]

Chern number

$$\mathcal{C} = rac{1}{2\pi} \int_{\mathrm{BZ}} d^2 \mathbf{k} \; \Omega_{\mathbf{k}}$$

Berry curvature $\Omega_{\mathbf{k}} = -$

$$\Omega_{\mathbf{k}} = -i\nabla_{\mathbf{k}} \times \langle u | \nabla_{\mathbf{k}} u \rangle \cdot \hat{\mathbf{z}}$$

Crystal momentum **k**, Bloch state $|u_k\rangle$

▲圖 ▶ ▲ 国 ▶ → 国 ▶ →

Topological invariant:

 $\ensuremath{\mathcal{C}}$ cannot change under smooth variations of the band

 $\ensuremath{\mathcal{C}}$ can be non-zero if time-reversal symmetry is broken

Topological Bands: Physical Consequences

• Integer quantum Hall effect

$$\sigma_{xy} = \mathcal{C} \frac{e^2}{h}$$

Gapless chiral edge state

Bragg spectroscopy

- Fx

i.e.
$$j_x = C \frac{r_y}{h}$$

$$\frown$$

[Goldman, Beugnon & Gerbier, arXiv:1203.1246]

[Thouless, Kohmoto, Nightingale & den Niis (1982)]

- Expansion imaging [Zhao *et al.*, PRA 84, 063629 (2011); Alba *et al.*, PRL 107, 235301 (2011)] In simple cases one can reconstruct $|u_k\rangle$
- ▷ Bloch oscillations [Hannah Price & Measure Ω_k

[Hannah Price & NRC, PRA 85, 033620 (2012)]

イロト イヨト イヨト イヨト

Bloch Oscillations in 2D Experimental Considerations

イロン イヨン イヨン イヨン

æ

Bloch Oscillations (1D)

Oscillations in \dot{x} (and x) with period $T_{\rm B} = \frac{2\hbar k_L}{F}$

Bloch Oscillations in 2D Experimental Considerations

Bloch Oscillations (1D)

Accelerated 1D lattice

[Ben Dahan, Peik, Reichel, Castin & Salomon, PRL 76, 4508 (1996)]

<ロ> (日) (日) (日) (日) (日)

Bloch Oscillations in 2D Experimental Considerations

Bloch Oscillations in 2D

Modified by the geometry of the Bloch wave functions $|u_k\rangle$

[Chang & Niu, PRL 75, 1348 (1995)]

$$\begin{aligned} \hbar \dot{\mathbf{k}} &= \mathbf{F} \\ \dot{\mathbf{r}} &= \frac{1}{\hbar} \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \mathbf{k}} - (\dot{\mathbf{k}} \times \hat{\mathbf{z}}) \Omega_{\mathbf{k}} \end{aligned}$$

Berry curvature

 $\Omega_{\mathbf{k}} = -i\nabla_{\mathbf{k}} \times \langle u | \nabla_{\mathbf{k}} u \rangle \cdot \hat{\mathbf{z}}$

Crystal momentum **k**, Bloch state $|u_{\mathbf{k}}\rangle$

・ロト ・回ト ・ヨト ・ヨト

3

The physical properties of a band depend on both $\varepsilon_{\mathbf{k}}$ and $\Omega_{\mathbf{k}}$

Bloch Oscillations in 2D Experimental Considerations

Bloch Oscillations in 2D

$$\hbar \dot{\mathbf{k}} = \mathbf{F}$$
 $\dot{\mathbf{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \mathbf{k}} - (\dot{\mathbf{k}} \times \hat{\mathbf{z}}) \Omega_{\mathbf{k}}$

Complicated trajectories even for $\Omega_{\mathbf{k}}=\mathbf{0}$

e.g. $\varepsilon_{\mathbf{k}} = -2J \left[\cos k_x a + \cos k_y a\right]$

$$\dot{\mathbf{r}} = \frac{2Ja}{\hbar} (\sin k_x a, \sin k_y a)$$
$$= \frac{2Ja}{\hbar} \left(\sin \frac{F_x ta}{\hbar}, \sin \frac{F_y ta}{\hbar} \right)$$

Lissajous figures when **F** not along a high-symmetry direction

イロン イヨン イヨン イヨン

3

Bloch Oscillations in 2D Experimental Considerations

Time-Reversal Protocol

[Hannah Price & NRC, PRA 85, 033620 (2012)]

$$\begin{split} & \bar{\mathbf{k}} \mathbf{\dot{k}} &= \mathbf{F} \\ & \dot{\mathbf{r}} &= \frac{1}{\hbar} \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \mathbf{k}} - (\dot{\mathbf{k}} \times \hat{\mathbf{z}}) \Omega_{\mathbf{k}} \end{split}$$

Measure $v_{\mathbf{k}}(+\mathbf{F})$ and $v_{\mathbf{k}}(-\mathbf{F})$

$$\begin{split} \mathbf{v}_{\mathbf{k}}(+\mathbf{F}) + \mathbf{v}_{\mathbf{k}}(-\mathbf{F}) &= \frac{2}{\hbar} \frac{\partial \varepsilon_{\mathbf{k}}}{\partial \mathbf{k}} \\ \mathbf{v}_{\mathbf{k}}(+\mathbf{F}) - \mathbf{v}_{\mathbf{k}}(-\mathbf{F}) &= -\frac{2}{\hbar} (\mathbf{F} \times \hat{\mathbf{z}}) \Omega_{\mathbf{k}} \end{split}$$

イロン イヨン イヨン イヨン

æ

Bloch Oscillations in 2D Experimental Considerations

Size of the effect

• Bloch period
$$T_{\rm B} = \frac{h}{aF}$$

• Group velocity $v_g \sim \frac{\Delta \varepsilon a}{h}$ $\Rightarrow x_g = v_g T_B \sim \frac{\Delta \varepsilon}{F}$

イロン イ部ン イヨン イヨン 三日

• "Berry curvature" velocity $v_{\Omega} = \Omega_{\mathbf{k}} \frac{F}{\hbar} \sim a^2 \frac{F}{\hbar} \Rightarrow x_{\Omega} \sim a$

$$rac{v_\Omega}{v_g} = rac{x_\Omega}{x_g} \sim rac{Fa}{\Delta arepsilon}$$

For $Fa \simeq \Delta \varepsilon$ the effects of Berry curvature are of the same scale as conventional Bloch oscillations.

Honeycomb Lattice, $\mathcal{C} = 0$ Optical Flux Lattices, $\mathcal{C} \neq 0$

・ロト ・回ト ・ヨト ・ヨト

3

Outline

Topology of 2D Bands

Bloch Oscillations Bloch Oscillations in 2D Experimental Considerations

Example Systems

Honeycomb Lattice, $\mathcal{C} = 0$ Optical Flux Lattices, $\mathcal{C} \neq 0$

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Honeycomb Lattice

$$arepsilon_{\mathbf{k}} = \pm |V_{\mathbf{k}}|$$
 $V_{\mathbf{k}} = J[e^{i\mathbf{k}\cdot\mathbf{R}_1} + e^{i\mathbf{k}\cdot\mathbf{R}_2} + e^{i\mathbf{k}\cdot\mathbf{R}_3}]$

Dirac points at K, K'

Nigel Cooper Cavendish Laboratory, University of Cambridge

Mapping the Berry Curvature of Optical Lattices

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Asymmetric Honeycomb Lattice

Asymmetric,
$$V_{\rm A}=-V_{\rm B}=W$$

 $arepsilon_{f k}=\pm\sqrt{W^2+|V_{f k}|^2}$

 $\Omega_{\textbf{k}} \neq 0$

Nigel Cooper Cavendish Laboratory, University of Cambridge

0

 $k_x a$

-3

Mapping the Berry Curvature of Optical Lattices

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Bloch Oscillations in Asymmetric Honeycomb Lattice

Nigel Cooper Cavendish Laboratory, University of Cambridge

Mapping the Berry Curvature of Optical Lattices

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

・ロト ・回ト ・ヨト ・ヨト

3

Outline

Topology of 2D Bands

Bloch Oscillations Bloch Oscillations in 2D Experimental Considerations

Example Systems

Honeycomb Lattice, $\mathcal{C} = 0$ Optical Flux Lattices, $\mathcal{C} \neq 0$

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Optically Induced Gauge Fields

[J. Dalibard, F. Gerbier, G. Juzeliūnas & P. Öhberg, RMP 83, 1523 (2011)]

[Y.-J. Lin, R.L. Compton, K. Jiménez-García, J.V. Porto & I.B. Spielman, Nature 462, 628 (2009)]

Nigel Cooper Cavendish Laboratory, University of Cambridge Mapping the Berry Curvature of Optical Lattices

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Optical Flux Lattices

[NRC, PRL 106, 175301 (2011); NRC & Jean Dalibard, EPL 95, 66004 (2011)]

(ロ) (同) (E) (E) (E)

• Coherent coupling of internal states of the atom

$$\hat{H} = \frac{\mathbf{p}^2}{2M}\hat{\mathbb{I}} + \hat{V}(\mathbf{r})$$

- Simple laser configurations, shallow lattices, $\mathcal{V} \sim E_R$
- Landau levels: Narrow bands with C = 1 $(n_{\phi} \simeq 10^9 \text{cm}^{-2} \Rightarrow \text{FQH} \text{ states at high particle densities})$

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Two-Photon Dressed States

[NRC & Jean Dalibard, EPL 95, 66004 (2011)]

イロン イヨン イヨン イヨン

3

 $J_e = 1/2$

Light at two frequencies:

- ω_L with Rabi freqs. $\kappa_m \ (m=0,\pm 1)$
- $\omega_L + \delta$ with Rabi freq. *E* in σ_-

$$\hat{V} = \frac{\hbar \kappa_{\rm tot}^2}{3\Delta} \hat{\mathbb{I}} + \frac{\hbar}{3\Delta} \begin{pmatrix} |\kappa_-|^2 - |\kappa_+|^2 & E\kappa_0 \\ E\kappa_0^* & |\kappa_+|^2 - |\kappa_-|^2 \end{pmatrix}$$

Topology of 2D Bands Bloch Oscillations Example Systems Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Bloch vector $\langle \psi_0(\mathbf{r}) | \hat{\vec{\sigma}} | \psi_0(\mathbf{r}) \rangle$ wraps the sphere once within the unit cell

Berry phase 2π (2-level system) $\Rightarrow N_{\phi} = 1$ flux quantum

イロト イヨト イヨト イヨト

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

Bandstructure

$$J_g=1/2$$
 (e.g. $^6\mathrm{Li}$, $^{171}\mathrm{Yb}$, $^{199}\mathrm{Hg}$)

$$\mathcal{V}=2E_{
m R}$$
, $heta=\pi/4$, $\epsilon=1.3$

イロト イポト イヨト イヨト

Narrow lowest energy band, with Chern number C = 1Optical flux lattice analogue of the lowest Landau level

Optical Flux Lattices, $C \neq 0$

Bloch Oscillations

 $\mathcal{V} = 1.8 E_R, \ \theta = 0.3, \ \epsilon = 0.4$

 $\leftarrow \Omega_k$

 $\mathbf{F} = (0, 0.1 E_R/a)$

Net transverse drift: nonzero mean Berry curvature

・ロト ・回ト ・ヨト ・ヨト

æ

Honeycomb Lattice, C = 0Optical Flux Lattices, $C \neq 0$

イロト イポト イヨト イヨト

Summary

- Two dimensional bands can have a topological character, encoded in the Berry curvature Ω_k.
- The Berry curvature modifies the Bloch oscillations of an atomic wave packet.
- A "time-reversal" protocol cleanly extracts the effects of the Berry curvature.
- ► For non-zero Chern number, there is a net drift of the wave packet transverse to the force. This drift is the lattice analogue of the edge state of the IQH effect.