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Topology of 2D Bands

Topological Invariants

1

GaUSSian curvature K =
RiR>

negative, zero and positive ~

1

o kdA = (2—2g) Gauss-Bonnet Theorem
7r

closed surface

genus g = 0,1,2, ... for sphere, torus, 2-hole torus...

Topological invariant: g cannot change under smooth deformations
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Topology of 2D Bands

Topological Features of 2D Bands

[Thouless, Kohmoto, Nightingale & den Nijs (1982)]

1
Chern number C / d’k Qi
BZ

:27r

Berry curvature Qu = =iV x (u|Vgu) - 2

Crystal momentum k, Bloch state |uy)

Topological invariant:
C cannot change under smooth variations of the band

C can be non-zero if time-reversal symmetry is broken
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Topology of 2D Bands

Topological Bands: Physical Consequences

° Integer quantum Hall effect [Thouless, Kohmoto, Nightingale & den Nijs (1982)]
2
e F
. . y
O'Xy:C? 1.e. JX:C?
e Gapless chiral edge state @
Bragg SpectrOSCOpy [Goldman, Beugnon & Gerbier, arXiv:1203.1246]

e Expansion imaging (zheo et a1, PRA 84, 063620 (2011); Alba et al., PRL 107, 235301 (2011)]

In simple cases one can reconstruct |u)

> Bloch oscillations [Hannah Price & NRC, PRA 85, 033620 (2012)]
Measure Qi
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Bloch Oscillations in 2D

Bloch Oscillations q A q
© Experimental Considerations

Bloch Oscillations (1D)

Wavepacket centered on
momentum k and position x

hk = F N ——
x = 1@ = 97
~ hodk "

0_
0 1
k/k

/

N

Oscillations in x (and x) with period T = iFkL
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Bloch Oscillations in 2D
Experimental Considerations

Bloch Oscillations

Bloch Oscillations (1D)

Accelerated 1D Iatt|ce [Ben Dahan, Peik, Reichel, Castin & Salomon, PRL 76, 4508 (1996)]

0 1
Ft, [Rk]

(p) from expansion images
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Bloch Oscillations in 2D

Bloch Oscillations g A q
© Experimental Considerations

Bloch Oscillations in 2D

Modified by the geometry of the Bloch wave functions |uy)

[Chang & Niu, PRL 75, 1348 (1995)]

hk = F
. 1 a&‘k .
= —— —(kx2)Q
r " (k x 2)Q
Berry curvature Q = —iVi x (u|Vgu) - 2

Crystal momentum k, Bloch state |uy)

The physical properties of a band depend on both ¢ and )y
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R Bloch Oscillations in 2D
Bloch Oscillations . : q
Experimental Considerations

Bloch Oscillations in 2D

. . 1 aEk .
hk = F =-—— —(kx2)Q
=k kA

Complicated trajectories even for 2, = 0

e.g. ek = —2J[cos kya + cos ky a|

50p
. 2Ja , . :
r = 73 (sin kya, sin kya)
2J Fxta . Fyt =
= 78 (sin 7ha,sm %a> ;25

Lissajous figures when F not along ok :
a high-symmetry direction 0 X%Sa 50
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Bloch Oscillations in 2D

Bloch Oscillations . 2 q
© Experimental Considerations

Time-Reversal Protocol

[Hannah Price & NRC, PRA 85, 033620 (2012)]

hk = F
1 ng N
r = ﬁﬁ — (k Z)Qk

Measure vi(+F) and v (—F)

et Yy

Vk(+F)+Vk(—F) = ﬁaikk _
2 e ;

W (+F) — v (-F) = —2(Fx2) kx
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R Bloch Oscillations in 2D
Bloch Oscillations . : q
Experimental Considerations

Size of the effect

h
e Bloch period Tp = — o N
aF
. Aca F Ae
e Group velocity v, ~ - —
A . .
=Xg = Vg I ~ ?E -3 3
F F
e “Berry curvature” velocity v = Qx— ~ ‘925 = Xxq~a

vo | Xq Fa

[

vg Xg Ae

For Fa ~ Ac the effects of Berry curvature are of the same scale
as conventional Bloch oscillations.
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Honeycomb Lattice, C = 0
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Honeycomb Lattice, C = 0
Optical Flux Lattices, C # 0

Example Systems

Honeycomb Lattice

ek = £| V|

Vk — J[eik'Rl 4 eik-Rz 4 eik-Rg]

Dirac points at K, K’ [Tarruell, Greif, Uehlinger, Jotzu & Esslinger, Nature 483, 302 (2012)]
d

2q, \ E51 W

q, E

[ 9,
® Dirac points S
q q

x

Vzxy =[7,0.5,2] Eq
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Honeycomb Lattice, C = 0
Optical Flux Lattices, C # 0

Example Systems

Asymmetric Honeycomb Lattice

Ko
K Asymmetric, Vo = —Vg =W

K

K==k W2+|Vk|2

Q£ 0
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Honeycomb Lattice, C = 0

ica atti > 40
Example Systems Optical Flux Lattices, C

Bloch Oscillations in Asymmetric Honeycomb Lattice
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Honeycomb Lattice, C (0]

Example Systems Optical Flux Lattices, C # 0

Optically Induced Gauge Fields

[J. Dalibard, F. Gerbier, G. Juzeliinas & P. Ohberg, RMP 83, 1523 (2011)]

[Y.-J. Lin, R.L. Compton, K. Jiménez-Garcia, J.V. Porto & |.B. Spielman, Nature 462, 628 (2009)]
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Honeycomb Lattice, C = 0

Example Systems Optical Flux Lattices, C # 0

Optical Flux Lattices

[NRC, PRL 106, 175301 (2011); NRC & Jean Dalibard, EPL 95, 66004 (2011)]

e Coherent coupling of internal states of the atom

~ p2/\ ~
A= 1+V
Y

e Simple laser configurations, shallow lattices, V ~ Egr

e Landau levels: Narrow bands with C =1
(ny ~ 10°cm 2 =FQH states at high particle densities)
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Honeycomb Lattice, C = 0
Optical Flux Lattices, C # 0

Example Systems

Two-Photon Dressed States

[NRC & Jean Dalibard, EPL 95, 66004 (2011)]

Jo=1/2

Light at two frequencies:
e w; with Rabi fregs. xp, (m = 0,+1)
e w; + § with Rabi freq. E in o_
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Honeycomb Lattice, C = 0

Example Systems Optical Flux Lattices, C # 0

[NRC & Jean Dalibard, EPL 95, 66004 (2011)]

a Polarization

P

i i
[cf. Soltan-Panah et al., Nat. Phys. (2011)]

wr, + 4
o_ pol.

Bloch vector (1(r)|&|to(r)) wraps
the sphere once within the unit cell

Berry phase 27 (2-level system)
=Ny = 1 flux quantum
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Honeycomb Lattice, C = 0
Example Systems Optical Flux Lattices, C # 0

Bandstructure

Jg = 1/2 (e.g. OLi, T71Yb, 1°Hg)

V=2Eg, 0=7/4,e¢=13

DoS (arb.)

Narrow lowest energy band, with Chern number C =1
Optical flux lattice analogue of the lowest Landau level
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Honeycomb Lattice, C = 0
Optical Flux Lattices, C # 0

Example Systems

Bloch Oscilllations

[V=18Eg, 0 =03, ¢=0.4] [Hannah Price & NRC, PRA 85, 033620 (2012)]
4 PN 4
Ek — < /‘\ - — Qk
-~ 0 Ny 0
-
_4 ~- _4
-3 0 3
k.a
0 F=(0,0.1Er/a)
<
~ .
> TF Net transverse drift:
‘ ‘ ‘ nonzero mean Berry curvature
SR T 0
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Honeycomb Lattice, C = 0

Example Systems Optical Flux Lattices, C # 0

Summary

» Two dimensional bands can have a topological character,
encoded in the Berry curvature €.

» The Berry curvature modifies the Bloch oscillations of an
atomic wave packet.

» A'time-reversal” protocol cleanly extracts the effects of the
Berry curvature.

» For non-zero Chern number, there is a net drift of the wave
packet transverse to the force. This drift is the lattice
analogue of the edge state of the IQH effect.
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