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Optical Flux Lattice Hofstadter Optical Lattice

Nigel Cooper's talk This talk

Measuring the Chern number through Bloch oscillations: Measuring the Chern number through the bulk-edge correspondence
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Bulk-Edge correspondence
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• Bulk-edge correspondence : the number of edge-states ν is topologically
protected

ν = Nchern σH =
e2

h
ν

• The edge state chirality (orientation of propagation) : sign(∂E/∂ky) = sign(ν)

Chern insulator = an insulator with robust chiral edge states, protected by topology
(Chern numbers)
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The System: The Hofstadter Optical Lattice

Current experiments in Paris (Dalibard-Gerbier), Munich (Bloch), NIST (Spielman), Hamburg (Sengstock), ...

First steps:  2D: Staggered magnetic field (Aidelsburger et al., PRL 2011)

                   1D: Lattice Shaking (Struck et al., PRL 2012)
                         
                   1D: RF fields and Raman lasers (Jimenez-Garcıa et al., PRL 2012)
                         
                         Optical flux lattices (N. R. Cooper, PRL 2011)Other schemes: 



      Magnetic field
              

synthetic magnetic field for neutral atoms

Synthetic gauge potentials in optical lattices

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, Rev. Mod. Phys. (2011)  

Electrons in a solid Cold atoms in optical lattices

atom-light coupling

......

: the electron charge : coupling constant
: gauge potential : synthetic gauge potential



Lattice Hamiltonian in the presence of a magnetic field

Relation between the magnetic flux and the Peierls phases and

Uniform magnetic flux Landau gauge:

equiv. to

"Hofstadter model"



How can we induce these phases
in a 2D optical lattice?

2). Prevent the direct tunneling along  
3). Induce the tunneling along    through atom-light coupling

1). Trap atoms in two different internal states 

Induced-tunneling:

Refs (theory): Jaksch and Zoller, NJP 2003 
                           Gerbier and Dalibard, NJP 2010



Using a single coupling: the sign problem

Staggered magnetic field!

Realized experimentally: Aidelsburger, Atala, Nascimbène, Trotsky, Chen and Bloch, PRL 2011

Refs (theory): Jaksch and Zoller, NJP 2003, Gerbier and Dalibard, NJP 2010



Using two couplings: the flux rectification

Uniform magnetic field!

Not yet realized experimentally... Challenge: requires superlattices, subtle couplings,... 

Refs: Jaksch and Zoller, NJP 2003, Gerbier and Dalibard, NJP 2010
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The Hofstadter Optical Lattice: what can we measure with cold atoms?

2) Topological properties when        is inside a bulk gap:

b) The Chern numbers associated with the bands are non-trivial

c) A single chiral edge state, with opposite chirality for 

1) General property: 

a) The synthetic magnetic field opens bulk gaps

Observation: density measurements
Ref: Gerbier and Dalibard 2010

0
1.5

-1.5

Observation: density or momentum density measurements, Bloch oscillations
Refs: Umucalilar et al. 2008, Alba et al. 2011, Zhao et al. 2011, Price-Cooper 2012 

Could we "see" these edge states and probe their chirality?

bulk

edge
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The Hofstadter Optical Lattice: the edge state structure

 A single chiral edge state, with opposite chirality for 
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Dispersion relation

Find a probe to demonstrate the presence of topological edge states:

- Localized states with energy inside the bulk gaps

- Dispersion relation dictated by the Chern numbers

Goal
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Light Bragg spectroscopy

• We probe the edge states and their chirality with a time-dependent perturbation

ĤBragg(t) =
~Ω

2

Z
dx ψ̂†(x)ψ̂(x)fL(r)eiqθe−iωLt + h.c., (1)
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• Probe = two lasers in Laguerre-Gaussian modes

E1,2(r) ∼ (r/r0)|l1,2|e−r
2/2r20 exp(−il1,2θ − iω1,2t) (2)

• The probe transfers angular momentum ~q = ~(l2 − l1) and energy
~ωL = ~(ω1 − ω2) to the system



• The number of scattered particles is given by the Fermi golden rule

N(q, ωL) = 2πΩ2t
X

k>EF,l≤EF

|Iqkl|
2δ(ωkl − ωL), (3)

where
Iqkl =

1

2

Z
dxφ∗k(x)φl(x)fL(r)eiqθ (4)
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• Probes the angular velocity : ωres
L ≈ ω

res
kl (q) ≈ q 〈θ̇〉edge for ωres

L �



• Probes the chirality : ωres
L ≈ q 〈θ̇〉edge, at ωL � J/~
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• When EFermi = −1.5J : signal for q < 0 (negative slope)

• When EFermi = +1.5J : signal for q > 0 (opposite chirality : positive slope !)



• Excited fractions N(q, ωL) at finite times (t = 20~/J)
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• Excited fractions N(q, ωL) at finite times (t = 20~/J)
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First conclusions and Drawbacks

• Chiral edge states lead to unambiguous signatures in the Bragg spectra (excited
fraction N(q, ω))

But...

• The excited fraction N(q, ω) is not directly measured in cold-atom experiments,

And unfortunately...

• Excitations only slightly modify the particle and momentum densities (dominated
by the bulk states !)

→ the effects of the probe are not observable through in situ or TOF
measurements !
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The Shelving Method

• We transfer the excited states into an empty copy of the system

ĤShelving(t) =
~Ω

2

Z
dx ψ̂†

(−)
(x)ψ̂(+)(x)fL(r)eiqθe−iωLt + h.c., (6)
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shows a clear resonance peak

Signature of the edge state chirality
inside the first bulk gap
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Conclusions

• Our system and method to detect topological edge states
• Synthetic magnetic fields for cold atoms produce quantum Hall edge states

• Using the Shelving method, one can directly see the topological edge states, using
available imaging technics

• The Bragg spectra N(q, ωL) give the dispersion relations (chirality) of the edge states

• Our method does not rely on the lattice or on the setup which generates the synthetic
magnetic field (laser-induced, lattice shaking, atom-chip, rotation, ...)

• Method applies for all cold-atom realization of 2D topological phases (with circular
geometry)

• Our method applies in the presence of interactions (i.e. fractional Hall regime) or disorder

• Quantum simulation perspectives
• Our method is complementary to transport measurements (cond-mat framework)

• Detect, manipulate, image topological edge states in a highly controllable and clean
system

• Obtain dispersion relations of the edge states in the fractional regime : in the interacting
regime, edge physics is still intriguing

“Detecting Chiral Edge States in the Hofstadter Optical Lattice”
N. G., J. Beugnon and F. Gerbier

Phys. Rev. Lett. 108, 255303 (2012)



Ex: Magnetic field
              

             Spin-orbit coupling

synthetic magnetic field for neutral atoms

synthetic spin-orbit coupling for neutral atoms

Synthetic gauge potentials in optical lattices

J. Dalibard, F. Gerbier, G. Juzeliunas, P. Ohberg, Rev. Mod. Phys. (2011)
      

Electrons in a solid Cold atoms in optical lattices

atom-light coupling

......

: the electron charge : coupling constant
: gauge potential : synthetic gauge potential



Synthetic spin-orbit coupling: Topological insulators physics

- Majorana fermions (proximity to a superconductor)

Exquisite properties: - Robust spin transport protected by topology

- Charge fractionalization, Spin-Charge separation

- Dissipationless transport 

- intrinsic

- induced (e.g. external electric field)

: spin-orbit coupling

Xia et al. Nat. Phys. 2009

Helical Dirac fermion
(on the surface)

Helical edge states

2D: the quantum spin Hall effect 3D: topological insulators

- Helical Dirac fermions (on the surface of a 3D TI)



Synthetic spin-orbit coupling: Topological insulators physics

- Probe the physics of Majorana fermions 

Cold-atom simulator for topological insulators: Why? 

- Study the effects of interactions (Helical liquids on the edges)

Xia et al. Nat. Phys. 2009

Helical Dirac fermion
(on the surface)

Helical edge states

2D: the quantum spin Hall effect 3D: topological insulators

- Direct imaging of the helical edge states 

- Test the       classification

. . .

destroyed by disorder

- Test the robustness against TRS-breaking perturbations
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