Rydberg-Rydberg interactions in ultracold atomic gases

Sebastian Hofferberth

Cold Rydberg Team in Stuttgart

Rydberg BEC I

Johannes Nipper Alexander Krupp Jonathan Balewski

Sebastian Robert Tilman Löw Hofferberth Pfau

Rydberg BEC II

Stephan Jennewein

Michael Schlagmüller

Rydberg Quantum Optics

Nguyen

Rydberg atoms

quantity	scaling	43S-state of ⁸⁷ Rb
radius	$\propto n^2$	2384 a ₀
lifetime	$\propto n^{3}$	50µs
Polarizability	$\propto n^7$	8 MHz (V/cm) ⁻²
Van der Waals C ₆	$\propto n^{11}$	-1.7 x 10 ¹⁹ a.u.

Rydberg-Rydberg interactions are:

- ... strong
- ... long-range ... tunable

and the second

- ... switchable
- ... anisotropic

M. Saffman et al., Rev. Mod. Phys. 82, 2313 (2010)

van der Waals & Förster interaction

interaction operator (for $R > n^2 a_0$):

$$V_{dd} = \frac{\mathbf{p}_1 \cdot \mathbf{p}_2 - 3(\mathbf{n} \cdot \mathbf{p}_1)(\mathbf{n} \cdot \mathbf{p}_2)}{R^3}$$

finite Förster defects Δ : van-der-Waals interaction (~ 1/R⁶) no Förster defect $\Delta = 0$: resonant dipole-dipole interaction (~ 1/R³)

 $E_{dd} = \left\langle r' \left| \left\langle r'' \left| V_{dd} \right| r \right\rangle \right| r \right\rangle$

Dipolar interactions: Förster resonances

Bare states

Pair states

see also: Raithel, Pillet, Martin, van Linden, Ryabtsev, Gallagher, Weidemüller, Noel, ...

Stark tuning of Förster resonances

Rydberg excitation & detection

Rydberg atom interferometer

Goal: investigate coherence of Förster interaction Method: Ramsey spectroscopy

Ramsey spectroscopy

44d_{5/2} Förster resonances

Pair state interferometer

describe full Ramsey sequence by completely coherent 4-level model

numerical solution of Ramsey sequence reproduces dips in visibility and dispersive phase signal

<u>only free parameter:</u> average Rydberg-Rydberg distance d = 7µm

Pair state interferometer

Coherent control at Förster resonance

Double Ramsey sequence: Ramsey-like electric field pulses

Double Ramsey interferometer

Application: Rydberg dressing

Frozen Rydberg gas

see also Pohl, Lesanovsky, Pupillo,...

Rydberg dressing

Modified interaction between ground state atoms

Internal coherence between Rydberg atoms

TIT

Rydberg dressing

Weakly dressed ground state

$$\psi\rangle = \alpha \left| g \right\rangle + \beta \left| r \right\rangle$$

Long lifetime

$$\tau = \tau_r / \beta^2$$

Interaction energy $E = \left\langle \psi \left| U_{dd} \right| \psi \right\rangle = \beta^2 \left\langle r \left| U_{dd} \right| r \right\rangle = \beta^2 U(r)$

Collective Rydberg dressing

Pair state basis:

$$|gg\rangle, \frac{|gr\rangle + |rg\rangle}{\sqrt{2}}, |rr\rangle$$

$$H = \hbar \begin{pmatrix} 0 & \Omega/\sqrt{2} & 0 \\ \Omega/\sqrt{2} & \Delta & \Omega/\sqrt{2} \\ 0 & \Omega/\sqrt{2} & 2\Delta + U(r) \end{pmatrix}$$

Rydberg dressing on Förster resonance

bare states

dressed states

Experimental observation of Rydberg dressing

First dressing results

Rydberg excitation hopping

idea: move dynamics completely to Rydberg states

Rydberg networks

Experimental implementation

Requirements:

• excitation of 2 Rydberg species

single excitation detection

- deterministic preparation of Rydberg grid
 - \rightarrow GHz Rabi flopping (demonstrated)

 \rightarrow combination of lasers & microwave

- \rightarrow resolution smaller than blockade volume
- \rightarrow spatially resolved, state selective ionization
 - \rightarrow single ion detection

Single-photon nonlinear optics enabled by Rydberg interactions

Harvard/MIT Center for Ultracold Atoms

People on the CUA experiment

Rydberg Experiment:

- Thibault Peyronel
- Qiyu Liang
- Ofer Firstenberg
- Sebastian Hofferberth

Vladan Vuletic Mikhail Lukin

Theory: Thomas Pohl, Alexey Gorshkov

collective Rydberg nonlinearities

Experimental realization

some parameters: Number of atoms: ~10⁵ Waist:16 μ m (transverse)/50 μ m(long.) Peak density > 3x10¹¹ / cm³ T=45 μ K Transverse OD > 4 Longitudinal OD > 40 (with optical pumping) Lifetime: 1s (with 500kHz modulation)

atoms loaded into dipole trap

Single photon nonlinearity

T. Peyronel et al., accepted in Nature (2012)

Photon-photon correlation

g(2) width given by EIT bandwidth!! (not by blockade diameter)

polariton propagation has to be taken into account. Full theory: T. Pohl/A. Gorshkov

T. Peyronel et al., accepted in Nature (2012)

main plot: |100S_{1/2}> inset: |46S_{1/2}>

OD = 40 EIT linewidth = 20 MHz

lowest $g_2(0) = 0.13$

Conclusion

Rydberg-Rydberg interaction in BEC

- Observation of coherent Rydberg-Rydberg interaction near stark tuned Förster resonances
- Förster interaction mapped to ground state → interaction-based gates
- First observation of Rydberg dressing
- Rydberg excitation hopping as new approach to tailored strongly interacting

Rydberg mediated nonlinearity

- Rydberg-Rydberg interaction creates nonlinear medium on the single photon level
- width of correlation function given by EIT bandwidth, not blockade diameter Full theory: Pohl & Gorshkov
- next steps:

two-photon phase gate single photon switch/transistor

strongly nteracting photonic many-body systems