Experiments with disordered, interacting Bose gases

Giovanni Modugno

LENS and Dipartimento di Fisica, Università di Firenze

Quantum Simulations with Ultracold Atoms ICTP, Trieste, July 2012

Disorder and quantum gases

Superconductors

Graphene

Photonic media

Biological systems

Disorder tends to localize single particle eigenfunctions or classical waves (well known even before Anderson's work from 1958).

Anderson localization in 3D is hard to observe, model and numerically simulate.

The interplay of disorder and interactions is still far from being understood.

Ultracold atoms: new experimental regimes and better control.

Disorder and quantum gases

Theory:

E. Altman, B. Altshuler, Y. Castin, E. Demler, T. Giamarchi, S. Giorgini, C. Kollath, M. Lewenstein, A. Minguzzi, M. Mueller, G. Mussardo, G. Orso, N. Prokofiev, A. Polkovnikov, C. Sa De Melo, L. Sanchez-Palencia, L. Santos, G. Shlyapnikov, A. Trombettoni, T. Roscilde, and many others

Experiments:

Reviews: A. Aspect and M. Inguscio, Physics Today 62, 30 (2009); L. Sanchez-Palencia and M. Lewenstein, Nat. Phys. 6, 87 (2010); G. Modugno, Rep. Progr. Phys. 73, 102401 (2010); B. Shapiro, arXiv:1112.5736.

Interplay of disorder and interactions

Fermions in condensed-matter systems: superconducting or insulating as $T \rightarrow 0$

Bosons (in theory): quantum phases at T=0

Giamarchi & Schultz, PRB 37 325 (1988)

Punnoose & Finkel'stein, Science 310, 289 (2005)

Our goal: characterize the phase diagram of disordered bosons, starting from 1D and T~0 $\,$

Disordered lattice bosons

Disordered lattice bosons in 1D: theory

Seminal work: Giamarchi and Schulz, PRB 37 325 (1988) Fisher et al PRB 40, 546 (1989), ...

Quasiperiodic lattice

Bose glass: no superfluid fraction, exponentially decaying correlations, compressible, ...

A quasi-periodic lattice

Aubry-Andrè, or Harper model:

$$\hat{H} = -J\sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \Delta \sum_i \cos(2\pi\beta i) \hat{n}_i \qquad \beta = \frac{k_2}{k_1} \mod 1$$

Metal-insulator transition at $\Delta = 2J$

S. Aubry and G. André, Ann. Israel Phys. Soc. 3, 133 (1980). M. Modugno, New J. Phys. 11, 033023 (2009)

A quasi-periodic lattice

Rapidly oscillating correlation of the potential:

Short, uniform localization length

$$\xi \approx d / \log(\Delta/2J)$$

... and energy gaps

Tunable interactions via Feshbach resonances

 $U = \frac{2\pi\hbar^2}{m} a \int |\varphi(x)|^4 d^3x$

Interacting Aubry-Andrè or quasi-periodic Bose-Hubbard model:

$$\hat{H} = -J\sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \Delta \sum_i \cos(2\pi\beta i) \hat{n}_i + U(a) \sum_i \hat{n}_i (\hat{n}_i - 1)$$

G. Roati, et al. Phys. Rev. Lett. 99, 010403 (2007).

Experimental scheme

Strong 2D lattices with weak 3D harmonic trapping.

The radial energy separation is much larger than kinetic, potential and interaction energies: $v_r=50 \text{ kHz}$; J/h=100 Hz

Momentum distribution

Finite temperature 1D Bose gas: exponential decay of correlations

$$|\Psi(k)|^2 \propto \frac{1/L_{\phi}}{k^2 + (0.67/L_{\phi})^2} \qquad g(x) \propto \exp(-0.67|x|/L_{\phi})$$

$$L_{\phi} = \frac{n\hbar^2}{m * k_B T}$$

Estimated temperature: T≈5J

Olshanii, Shlyapnikov, Aspect, Bloch,...

Momentum distribution: SF to MI

 Δ =0, U>5J

Phase diagram from momentum distribution

Phase diagram from momentum distribution

Weak interaction: a cartoon

Lugan, PRL 98, 170403 (2007); Aleiner et al., Nat. Phys. 6, 900 (2010); Lucioni et al. PRL 106, 230403 (2011).

Phase diagram from momentum distribution

Transport

A. Polkovnikov et al. Phys. Rev. A 71, 063613 (2005); applied on Bose gases by DeMarco, Naegerl, Schneble

Phase diagram from momentum distribution

Weak interaction regime

Weak radial trapping (v_r =50Hz): a 3D system with 1D disorder

Correlation function

B. Deissler et al. New J. Phys. 13, 023020 (2011)

Global and local lengths

Finite-T, finite-size effects do not allow to see the predicted change of exponent

B. Deissler et al. New J. Phys. 13, 023020 (2011). Theory: Altman, Giamarchi, Savona, ...

Correlation diagram

Finite "temperature" estimation: 3D

Finite temperature effects

The Bose glass to fluid transition shows a systematic shift to U lower than in theory.

A finite temperature should favour the coupling between localized states.

Aleiner, Altshuler, Shlyapnikov, Nat. Phys. 6, 900 (2010).

Phase diagram from momentum distribution

Comparison with theory

DMRG data, Roux et al., PRA 78, 023628 (2008)

Several issues in the comparison with theory: finite temperature, trap, averaging over density, ...

Disordered lattice bosons: experiments

The Mott insulating phase is destroyed by a strong disorder in 1D (Florence)

L. Fallani et al., PRL 98, 130404 (2007), V. Guarrera et al., PRL 100, 250403 (2008))

Disordered lattice bosons: experiments

Disorder drives an anticipated insulating phase in 3D (Urbana)
M. Pasienski et al., Nat. Phys. 6, 677 (2010)

Strong interaction cartoon

Bose glass: insulating but gapless

Diagnostics:

- momentum distribution
- > transport
- > excitation spectrum (theory by G. Orso et al. PRA 80, 033625 (2009)

Excitation spectrum

Wavepacket spreading

G. Roati et al., Nature 453, 895 (2008); analogous work in Palaiseau: J. Billy et al., Nature 453, 891 (2008).

Wavepacket spreading

G. Roati et al., Nature 453, 895 (2008); analogous work in Palaiseau: J. Billy et al., Nature 453, 891 (2008).

Interaction-assisted spreading

Lucioni et al. Phys. Rev. Lett. 106, 230403 (2011).

Coherent hopping between localized states

Theory: Shepeliansky, Fishman, Aubry, Flach, Mulansky, Pikovsky, M. Modugno, Larcher, Dalfovo, ...

Fitting with a nonlinear diffusion equation

B. Tuck, Jour. Phys. D 9, 1559 (1976); M. Mulansky, et al. Phys. Rev. E 83, 026205 (2011), Lucioni et al., in preparation.

Noise-assisted spreading

$$V_{dis} = \Delta \cos(2\pi\beta x) \ (1 + A\cos(\omega_i t))$$

Out of equilibrium noise: no fluctuation-dissipation relation

C. D'Errico et al., arXiv:1204.1313

Noise-assisted spreading

Also observed in atomic ionization (Walther), kicked rotor (Raizen) and photonic lattices (Segev&Fishman): M. Arndt et al, Phys. Rev. Lett. 67, 2435 (1991); D. A. Steck, et al, Phys. Rev. E 62, 3461 (2000).

Incoherent hopping between localized states

Theory: Ovchinnikov, Ott, Shepeliansky, Bouchaud&Georges,

Noise and interaction

Conclusions and outlook

Phase diagram of 1D lattice bosons:

Excitation spectrum Transport High temperature behaviour

Transport with interactions and noise in 1D.

Many-body localization in 3D:

How do interactions change the localization behavior close to the mobility edge?

Jendrzejewski et al., Nat. Phys. 8,398 (2012)

The team

Experiment:

Chiara D'Errico Luca Tanzi Benjamin Deissler (now in Ulm) Massimo Inguscio Eleonora Lucioni Lorenzo Gori

G.M.

Theory:

Filippo Caruso (Ulm-LENS) Marco Moratti Marco Larcher (Trento) Martin Plenio (Ulm) Michele Modugno (Bilbao) Franco Dalfovo (Trento)

We acknowledge many discussions with theory colleagues.

Past contributions by: M. Fattori, G. Roati, M. Zaccanti.

