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Outline.	
  
1.  High	
  temperature	
  expansion	
  –	
  Short	
  +me	
  expansion.	
  	
  

a)  Breakdown	
  of	
  short	
  +me	
  perturba+on	
  theory	
  and	
  phase	
  
transi+on	
  in	
  +me	
  for	
  a	
  quench	
  in	
  a	
  quantum	
  Ising	
  chain.	
  
(with	
  M.	
  Heyl	
  and	
  S.	
  Kehrein)	
  	
  

b)  (Many	
  body)	
  energy	
  localiza+on	
  transi+on	
  in	
  periodically	
  
driven	
  systems	
  and	
  breakdown	
  of	
  Magnus	
  expansion.	
  (with	
  L.	
  
D’Alessio).	
  
	
  

2.  Dynamics	
  and	
  the	
  renormaliza+on	
  group:	
  Kosterlitz-­‐Thouless	
  
phase	
  transi+on	
  following	
  a	
  quench	
  (with	
  L.	
  Mathey	
  2010,	
  also	
  R.	
  Vosk	
  and	
  E.	
  
Altman,	
  2012).	
  

3.  Universality	
  of	
  quantum	
  and	
  classical	
  dynamics	
  (C.	
  De	
  Grandi	
  et.	
  al.	
  2011,	
  
M.	
  Kolodrubetz	
  et.	
  al.	
  2011,	
  A.	
  Chandran	
  et.	
  al.	
  2012,	
  C.-­‐W.	
  Liu,	
  A.P.,	
  A.	
  Sandvik	
  in	
  
progress,	
  E.	
  Dalla	
  Torre,	
  A.	
  P.,	
  E.	
  Demler	
  in	
  progress).	
  



High	
  temperature	
  expansion	
  and	
  Lee-­‐Yang	
  (Fisher)	
  zeros.	
  

Equilibrium:	
  all	
  informa+on	
  about	
  observables	
  is	
  contained	
  in	
  the	
  
par++on	
  func+on	
  

High	
  temperature	
  (small	
  interac+ons):	
  can	
  use	
  high	
  temperature	
  
expansion	
  

Phase	
  transi+ons:	
  free	
  energy	
  becomes	
  non-­‐analy+c	
  func+on	
  of	
  
temperature	
  (tuning	
  parameter).	
  The	
  high	
  temperature	
  
expansion	
  breaks	
  down.	
  	
  	
  



Lee-­‐Yang	
  theorem	
  (1952):	
  understood	
  non-­‐analy+city	
  through	
  the	
  	
  
condensa+on	
  of	
  zeros	
  of	
  the	
  par++on	
  func+on	
  in	
  the	
  complex	
  plane.	
  	
  

Lee-­‐Yang:	
  all	
  zeros	
  zi	
  are	
  complex.	
  They	
  condense	
  near	
  
real	
  axis	
  at	
  the	
  phase	
  transi+on.	
  Taylor	
  expansion	
  breaks.	
  	
  	
  

M.	
  Fisher	
  (1965).	
  Extension	
  of	
  these	
  
ideas	
  to	
  the	
  high	
  temperature	
  
expansion.	
  Consider	
  h=0.	
  

Singulari+es	
  develop	
  in	
  the	
  complex	
  
temperature	
  (coupling)	
  plane:	
  
breakdown	
  of	
  the	
  Taylor	
  expansion	
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Near S = 1, one finds for the density of zeros on this circle g ( S )  - IIm SI, consistent 
with the logarithmic singularity in the specific heat (see Fisher 1965). The behaviour 
near the antiferromagnetic intersection at S = -1 is similar. 

In agreement with the arguments given in the introduction, ( 6 )  immediately shows 
that the zeros of Z fall in areas whenever K 1  # K2:  while the zeros depend only on 
the single parameter a + p in the isotropic case K ,  = K2 (and so fall on lines), they 
depend on the two parameters a and p separately as soon as the symmetry is broken. 
Therefore lines bifurcate to areas in the anisotropic case. This can most easily be 
illustrated explicitly by investigating the case when K 1  = K,  K2  = 3K. Since sinh 6 K  = 
3 sinh 2K + 4  sinh3 2K and cosh 6 K  = -3 cosh 2K + 4  cosh3 2K, we have 

cosh 2K cosh 6K - a sinh 2K - p  sinh 6 K  = 4S4-4pS3+5S2-(a +3p)S+ 1. ( 9 )  

Thus, for K ,  = K = f K 2 ,  the partition function is a polynomial in S = sinh 2K which 
can according to ( 6 )  and ( 9 )  be written as a product of factors of the form (9 ) .  For 
every value of a and p, there are therefore four zeros in the complex S plane, two in 
the upper half plane and two in the lower half plane. By varying a and p, one obtains 
the various locations of the zeros, and since la1 d 1 and IpI d 1, the areas in which they 
fall are generally bounded. This is illustrated in figure 1, where the shaded areas 

ImS 

Re 8 

Figure 1. Location of the zeros in the upper half of the complex S = sinh 2K plane for 
the square Ising model with reduced interactions K and 3K. The zeros are everywhere 
dense in the shaded areas, which touch the real axis at S = *+. At the boundaries of the 
areas, where a = *1 or p = * l ,  the density of zeros diverges as p-”* where p is the 
distance from the boundary. 

contain the zeros. Obviously, the zeros become everywhere dense within these areas 
in the thermodynamic limit. However, since according to (7) a = cos 41 and p = cos 42 
with 41 and 42 equally distributed on the interval [ 0 , 2 ~ ] ,  the density of zeros per 
unit area g diverges at the boundaries of the areas, where a = f 1 or p = * 1. This is 
also apparent from the explicit behaviour of g near the point where the areas ‘pinch 
off’ the real axis. This occurs at the critical values of the square Ising model where 
sinh 2K1 sinh 2K2 = 1 (in the case K 1  = f K 2  = K,  this yields S, = i). For small SS = S -  S, 

2D	
  anisotropic	
  
Ising	
  model	
  
W.	
  Saarloos	
  and	
  
D.	
  Kurtze	
  (1984)	
  
	
  



Par++on	
  func+on	
  is	
  the	
  generator	
  of	
  moments	
  of	
  (interac+on	
  
energy)	
  energy	
  

Analogue	
  of	
  the	
  par++on	
  func+on	
  for	
  quench	
  dynamics:	
  Loschmidt	
  
echo	
  –	
  generator	
  of	
  the	
  moments	
  of	
  work	
  W	
  (A.	
  Silva,	
  2008)	
  

Close	
  analogy	
  between	
  equilibrium	
  physics	
  and	
  quench	
  dynamics:	
  	
  
Par++on	
  func+on	
  –	
  Loschmidt	
  echo,	
  
Inverse	
  temperature	
  –	
  +me,	
  
high	
  temperature	
  expansion	
  –	
  short	
  +me	
  expansion.	
  	
  

Can	
  we	
  have	
  phase	
  transi+ons	
  in	
  +me?	
  



Dynamical	
  phase	
  transi+on	
  in	
  the	
  transverse	
  field	
  Ising	
  model	
  
(M.	
  Heyl,	
  A.	
  P.,	
  S.	
  Kehrein,	
  arXiv:	
  1206.2505)	
   2

RESULTS

The key quantity of interest in this work is the parti-

tion function

Z(z) = �Ψi| e−zH |Ψi� (3)

in the complex plane z ∈ C. For imaginary z = it this

just describes the overlap amplitude (2). For real z = R

it can be interpreted as the partition function of the

field theory described by H with boundaries described

by boundary states |Ψi� separated by R [6]. In the ther-

modynamic limit one defines the free energy (apart from

a different normalization)

f(z) = − lim
N→∞

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-

ject to a few technical conditions one can show that the

partition function (3) is an entire function of z since in-

serting an eigenbasis of H yields sums of terms e
−zEj ,

which are entire functions of z. According to the Weier-

strass factorization theorem an entire function with ze-

roes zj ∈ C can be written as

Z(z) = e
h(z)

�

j

�
1− z

zj

�
(5)

with an entire function h(z). Thus

f(z) = − lim
N→∞

1

N



h(z) +
�

j

ln

�
1− z

zj

�

 (6)

and the non-analytic part of the free energy is solely de-

termined by the zeroes zj . A similar observation was

originally made by M. E. Fisher [1], who pointed out that

the partition function (1) is an entire function in the com-

plex temperature plane. This observation is analogous to

the Lee-Yang analysis of equilibrium phase transitions in

the complex magnetic field plane [7]. For example in the

2d Ising model the Fisher zeroes in the complex temper-

ature plane approach the real axis at the critical temper-

ature z = βc in the thermodynamic limit, indicating its

phase transition [8].

We now work out these analytic properties explicitly for

the one dimensional transverse field Ising model

H(g) = −
N−1�

i=1

σ
z

i
σ
z

i+1 + g

N�

i=1

σ
x

i
(7)

For magnetic field g < 1 the system is ferromagnetically

ordered at zero temperature, and a paramagnet for g > 1

[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. ∆ = |g − 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale �k∗ (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 → g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 → g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t∗n (the times t∗n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be

mapped to to a free fermion model [9–11] with dispersion

relation �k(g) =

�
(g − cos k)2 + sin

2
k. In a quantum

quench experiment the system is prepared in the ground

state at magnetic field g0, |Ψi� = |ΨGS(g0)�, while its

time evolution is driven with a Hamiltonian H(g1) with

a different magnetic field g1. Partition function (3) and

free energy (4) describing this sudden quench g0 → g1

can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-

tion function in the complex plane coalesce on a family

of lines, which are depicted in Fig. 2 for a quench within

the same phase or across the quantum critical point. As

expected there are no cuts across the real axis, other-

wise one would have an equilibrium phase transition for

a certain boundary separation. However, for a quench

across the quantum critical point there are unavoidably
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mapped to to a free fermion model [9–11] with dispersion
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�
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In the thermodynamic limit the zeroes zj of the parti-

tion function in the complex plane coalesce on a family

of lines, which are depicted in Fig. 2 for a quench within

the same phase or across the quantum critical point. As

expected there are no cuts across the real axis, other-

wise one would have an equilibrium phase transition for
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across the quantum critical point there are unavoidably
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point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be

mapped to to a free fermion model [9–11] with dispersion

relation �k(g) =

�
(g − cos k)2 + sin

2
k. In a quantum

quench experiment the system is prepared in the ground

state at magnetic field g0, |Ψi� = |ΨGS(g0)�, while its

time evolution is driven with a Hamiltonian H(g1) with

a different magnetic field g1. Partition function (3) and
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In the thermodynamic limit the zeroes zj of the parti-

tion function in the complex plane coalesce on a family

of lines, which are depicted in Fig. 2 for a quench within

the same phase or across the quantum critical point. As

expected there are no cuts across the real axis, other-

wise one would have an equilibrium phase transition for

a certain boundary separation. However, for a quench

across the quantum critical point there are unavoidably

Emergent	
  +me	
  (energy)	
  scale,	
  not	
  the	
  gap	
  	
  

3

non-analyticities on the time axis due to the limiting be-
havior of the lines of Fisher zeroes for R → ±∞.

Now the free energy (4) is just the rate function of the
return amplitude (2)

G(t) = �Ψi|Ψi(t)� = �Ψi|e−iH(g1)t|Ψi� = e
−N f(it) (8)

Likewise for the return probability (Loschmidt echo)

L(t)
def
= |G(t)|2 = exp(−N l(t)) one has l(t) = f(it) +

f(−it). The behavior of the Fisher zeroes for quenches
across the quantum critical point therefore translates into
non-analytic behavior of the rate functions for return am-
plitude and probability at certain times t

∗
n
. For sudden

quenches one can work out these times easily

t
∗
n
= t

∗
�
n+

1

2

�
, n = 0, 1, 2, . . . (9)

with t
∗ = π/�k∗(g1) and k

∗ determined by

cos k∗ =
1 + g0 g1

g0 + g1
(10)

We conclude that for any quench across the quantum crit-
ical point the short time expansion for the rate function
of the return amplitude and probability breaks down in
the thermodynamic limit, analogous to the breakdown of
the high-temperature expansion at an equilibrium phase
transition. In fact, the non-analytic behavior of l(t)
at the times tn has already been derived by Pollmann
et al. [13] for slow ramping across the quantum critical
point. For a slow ramping protocol �k∗(g1) becomes the
mass gap m(g1) = |g1−1| of the final Hamiltonian, but in
general it is a new energy scale generated by the quench
and depending on the ramping protocol. In the universal
limit for a quench across but very close to the quantum
critical point, g1 = 1 + δ, |δ| � 1 and fixed g0, one finds
�k∗(g1)/m(g1) ∝ 1/

�
|δ|. Hence in this limit the non-

equilibrium energy scale �k∗ becomes very different from
the mass gap, which is the only equilibrium energy scale
of the final Hamiltonian (compare Fig. 1).

The interpretation of the mode k
∗ follows from the

observation n(k∗) = 1/2 (see methods), where n(k) is
the occupation of the excited state in the momentum
k-mode in the basis of the final Hamiltonian Hf (g1).
Modes k > k

∗ have thermal occupation n(k) < 1/2, while
modes k < k

∗ have inverted population n(k) > 1/2 and
therefore formally negative effective temperature. The
mode k

∗ corresponds to infinite temperature. In fact,
the existence of this infinite temperature mode and thus
of the Fisher zeroes cutting the time axis periodically
is guaranteed for arbitrary ramping protocols across the
quantum critical point. For example, for slow ramping
across the quantum critical point the existence of this
mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [23].
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Figure 3: The bottom plot shows the work distribution func-
tion r(w, t) for a double quench across the quantum critical
point (g0 = 0.5, g1 = 2.0). The dashed line depicts the ex-
pectation value of the work performed, r(w, t) = 0. The top
plot shows various cuts for fixed values of the work density w.
The line w = 0 is just the Loschmidt echo: Its non-analytic
behavior at t∗n becomes smooth for w > 0, but traces of the
non-analytic behavior extend into the work density plane.

One measurable quantity in which the non-analytic be-
havior generated by the Fisher zeroes appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of
H(g0), then quench to H(g1) at time t = 0, and then
quench back to H(g0) at time t. The amount of work W

performed follows from the distribution function

P (W, t) =
�

j

δ (W − (Ej − EGS(g0))) |�Ej |Ψi(t)�|2

(11)
where the sum runs over all eigenstates |Ej� of the initial
HamiltonianH(g0). P (W, t) obeys a large deviation form
[14]

P (W, t) ∼ e
−N r(w,t) (12)

with a rate function r(w, t) ≥ 0 depending on the work
density w = W/N . In the thermodynamic limit one can
derive an exact result for r(w, t) (Methods section). Its
behavior for a quench across the quantum critical point is
shown in Fig. 3. For w = 0 the rate function just gives the
return probability to the ground state, r(w = 0, t) = l(t),
therefore the non-analytic behavior at the Fisher zeroes
shows up as non-analytic behavior in the work distribu-
tion function. However, from Fig. 3 one can see that these
non-analyticities at w = 0 also dominate the behavior for
w > 0 at t

∗
n
, corresponding to more likely values of the

performed work. The suggestive similarity to the phase
diagram of a quantum critical point, with temperature

2

RESULTS

The key quantity of interest in this work is the parti-

tion function

Z(z) = �Ψi| e−zH |Ψi� (3)

in the complex plane z ∈ C. For imaginary z = it this

just describes the overlap amplitude (2). For real z = R

it can be interpreted as the partition function of the

field theory described by H with boundaries described

by boundary states |Ψi� separated by R [6]. In the ther-

modynamic limit one defines the free energy (apart from

a different normalization)

f(z) = − lim
N→∞

1

N
ln Z(z) (4)

where N is the number of degrees of freedom. Now sub-

ject to a few technical conditions one can show that the

partition function (3) is an entire function of z since in-

serting an eigenbasis of H yields sums of terms e
−zEj ,

which are entire functions of z. According to the Weier-

strass factorization theorem an entire function with ze-

roes zj ∈ C can be written as

Z(z) = e
h(z)

�

j

�
1− z

zj

�
(5)

with an entire function h(z). Thus

f(z) = − lim
N→∞

1

N



h(z) +
�

j

ln

�
1− z

zj

�

 (6)

and the non-analytic part of the free energy is solely de-

termined by the zeroes zj . A similar observation was

originally made by M. E. Fisher [1], who pointed out that

the partition function (1) is an entire function in the com-

plex temperature plane. This observation is analogous to

the Lee-Yang analysis of equilibrium phase transitions in

the complex magnetic field plane [7]. For example in the

2d Ising model the Fisher zeroes in the complex temper-

ature plane approach the real axis at the critical temper-

ature z = βc in the thermodynamic limit, indicating its

phase transition [8].

We now work out these analytic properties explicitly for

the one dimensional transverse field Ising model

H(g) = −
N−1�

i=1

σ
z

i
σ
z

i+1 + g

N�

i=1

σ
x

i
(7)

For magnetic field g < 1 the system is ferromagnetically

ordered at zero temperature, and a paramagnet for g > 1

[5]. These two phases are separated by a quantum critical

Figure 1: Left: Phase diagram of the transverse field Ising
model. ∆ = |g − 1| is the excitation (mass) gap, which van-
ishes at the quantum critical point. Right: A quench across
the quantum critical point (green arrow) generates a new non-
equilibrium energy scale �k∗ (10), which is plotted here for a
quench starting at g0 = 0.
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Figure 2: Lines of Fisher zeroes for a quench within the same
phase g0 = 0.4 → g1 = 0.8 (left) and across the quantum
critical point g0 = 0.4 → g1 = 1.3 (right). Notice that
the Fisher zeroes cut the time axis for the quench across the
quantum critical point, giving rise to non-analytic behavior
at t∗n (the times t∗n are marked with dots in the plot).

point at g = gc = 1 (Fig. 1). The Hamiltonian (7) can be

mapped to to a free fermion model [9–11] with dispersion

relation �k(g) =

�
(g − cos k)2 + sin

2
k. In a quantum

quench experiment the system is prepared in the ground

state at magnetic field g0, |Ψi� = |ΨGS(g0)�, while its

time evolution is driven with a Hamiltonian H(g1) with

a different magnetic field g1. Partition function (3) and

free energy (4) describing this sudden quench g0 → g1

can be calculated analytically [12] (see Methods).

In the thermodynamic limit the zeroes zj of the parti-

tion function in the complex plane coalesce on a family

of lines, which are depicted in Fig. 2 for a quench within

the same phase or across the quantum critical point. As

expected there are no cuts across the real axis, other-

wise one would have an equilibrium phase transition for

a certain boundary separation. However, for a quench

across the quantum critical point there are unavoidably
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non-analyticities on the time axis due to the limiting be-
havior of the lines of Fisher zeroes for R → ±∞.

Now the free energy (4) is just the rate function of the
return amplitude (2)

G(t) = �Ψi|Ψi(t)� = �Ψi|e−iH(g1)t|Ψi� = e
−N f(it) (8)

Likewise for the return probability (Loschmidt echo)

L(t)
def
= |G(t)|2 = exp(−N l(t)) one has l(t) = f(it) +

f(−it). The behavior of the Fisher zeroes for quenches
across the quantum critical point therefore translates into
non-analytic behavior of the rate functions for return am-
plitude and probability at certain times t

∗
n
. For sudden

quenches one can work out these times easily

t
∗
n
= t

∗
�
n+

1

2

�
, n = 0, 1, 2, . . . (9)

with t
∗ = π/�k∗(g1) and k

∗ determined by

cos k∗ =
1 + g0 g1

g0 + g1
(10)

We conclude that for any quench across the quantum crit-
ical point the short time expansion for the rate function
of the return amplitude and probability breaks down in
the thermodynamic limit, analogous to the breakdown of
the high-temperature expansion at an equilibrium phase
transition. In fact, the non-analytic behavior of l(t)
at the times tn has already been derived by Pollmann
et al. [13] for slow ramping across the quantum critical
point. For a slow ramping protocol �k∗(g1) becomes the
mass gap m(g1) = |g1−1| of the final Hamiltonian, but in
general it is a new energy scale generated by the quench
and depending on the ramping protocol. In the universal
limit for a quench across but very close to the quantum
critical point, g1 = 1 + δ, |δ| � 1 and fixed g0, one finds
�k∗(g1)/m(g1) ∝ 1/

�
|δ|. Hence in this limit the non-

equilibrium energy scale �k∗ becomes very different from
the mass gap, which is the only equilibrium energy scale
of the final Hamiltonian (compare Fig. 1).

The interpretation of the mode k
∗ follows from the

observation n(k∗) = 1/2 (see methods), where n(k) is
the occupation of the excited state in the momentum
k-mode in the basis of the final Hamiltonian Hf (g1).
Modes k > k

∗ have thermal occupation n(k) < 1/2, while
modes k < k

∗ have inverted population n(k) > 1/2 and
therefore formally negative effective temperature. The
mode k

∗ corresponds to infinite temperature. In fact,
the existence of this infinite temperature mode and thus
of the Fisher zeroes cutting the time axis periodically
is guaranteed for arbitrary ramping protocols across the
quantum critical point. For example, for slow ramping
across the quantum critical point the existence of this
mode and the negative temperature region in relation to
spatial correlations was discussed in Ref. [23].
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Figure 3: The bottom plot shows the work distribution func-
tion r(w, t) for a double quench across the quantum critical
point (g0 = 0.5, g1 = 2.0). The dashed line depicts the ex-
pectation value of the work performed, r(w, t) = 0. The top
plot shows various cuts for fixed values of the work density w.
The line w = 0 is just the Loschmidt echo: Its non-analytic
behavior at t∗n becomes smooth for w > 0, but traces of the
non-analytic behavior extend into the work density plane.

One measurable quantity in which the non-analytic be-
havior generated by the Fisher zeroes appears naturally
is the work distribution function of a double quench ex-
periment: We prepare the system in the ground state of
H(g0), then quench to H(g1) at time t = 0, and then
quench back to H(g0) at time t. The amount of work W

performed follows from the distribution function

P (W, t) =
�

j

δ (W − (Ej − EGS(g0))) |�Ej |Ψi(t)�|2

(11)
where the sum runs over all eigenstates |Ej� of the initial
HamiltonianH(g0). P (W, t) obeys a large deviation form
[14]

P (W, t) ∼ e
−N r(w,t) (12)

with a rate function r(w, t) ≥ 0 depending on the work
density w = W/N . In the thermodynamic limit one can
derive an exact result for r(w, t) (Methods section). Its
behavior for a quench across the quantum critical point is
shown in Fig. 3. For w = 0 the rate function just gives the
return probability to the ground state, r(w = 0, t) = l(t),
therefore the non-analytic behavior at the Fisher zeroes
shows up as non-analytic behavior in the work distribu-
tion function. However, from Fig. 3 one can see that these
non-analyticities at w = 0 also dominate the behavior for
w > 0 at t

∗
n
, corresponding to more likely values of the

performed work. The suggestive similarity to the phase
diagram of a quantum critical point, with temperature
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7

Fermi Acceleration

The so-called Fermi acceleration – the acceleration of a particle through col-
lision with an oscillating wall – is one of the most famous model systems for
understanding nonlinear Hamiltonian dynamics. The problem was introduced
by Fermi [1] in connection with studies of the acceleration mechanism of cos-
mic particles through fluctuating magnetic fields. Similar mechanisms have
been studied for accelerating cosmic rockets by planetary or stellar gravita-
tional fields. One of the most interesting aspects of such models is the deter-
mination of criteria for stochastic (statistical) behavior, despite the strictly
deterministic dynamics.

Here, we study the simplest example of a Fermi acceleration model, which
was originally studied by Ulam [2] : a point mass moving between a fixed
and oscillating wall (see Fig. 7.1). Since then, this model system has been
investigated by many authors, e.g., Zaslavskii and Chirikov [3], Brahic [4],
Lichtenberg, Lieberman, and their coworkers [5]–[8], and it is certainly one of
the first examples of the variety of kicked systems which appear in numerous
studies of nonlinear dynamics.
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Fig. 7.1. Model for Fermi acceleration.
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7.3 Computer Experiments 149

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study
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agreement between theory and experiment. In another 
experiment7, no further lattice was present along the 
direction of the tubes, but the con! nement of the 
atoms in the radial direction was further increased, 
leading to values of γ of up to 5.5. " ey measured the 
1D energy per particle and size of the atom clouds 
along the axial direction of the potential tubes and 
found good agreement with the exact results for the 
1D case42, showing increasing deviations from the 
weakly interacting results upon increasing γ. In general, 
1D quantum systems can be very well described 
by Luttinger-liquid theory43, applicable also in the 
intermediate regime for γ, which can be tested in future 
experiments. " e realization of the quantum states of 
a Tonks–Girardeau gas emphasizes the versatility of 
ultracold quantum gases in the search for novel, or 
long-predicted quantum phases, which have so far 
eluded observation.

FERMIONIC QUANTUM GASES IN OPTICAL LATTICES

Only recently have we begun to explore the potential 
of ultracold fermions in an optical lattice. In one 
of the pioneering experiments with fermions in 
1D optical lattices, researchers studied the peculiar 

transport properties of bosons and fermions in 
periodic potentials44. " ey found that applying steep 
potential gradients inhibited transport for fermions 
in optical lattices, but that collisions with added 
bosonic atoms can stimulate transport in the system 
again. In a di# erent experiment45 they also observed 
the onset of insulating behaviour in a trapped 
Fermi gas (a single-component Fermi gas) as the 
Fermi energy approaches the bandgap. For this, the 
researchers observed oscillations of their ultracold 
fermions in a 1D optical lattice, superimposed 
harmonic con! nement and found that these 
oscillations were strongly suppressed for increased 
! lling of the lowest energy band. In another very 
recent experiment24, ultracold fermionic 40K atoms 
were loaded into a 3D optical lattice. Using the 
adiabatic mapping outlined above, they directly 
observed the Fermi surface of a Fermi gas (see 
Fig. 7). As the ! lling factor was increased, the 
fermionic system was driven into a band insulating 
state. " e authors point out that such a band 
insulator, with one fermion per site, could also be 
used as a quantum register for quantum information 
purposes, as an alternative to a Mott insulator for 
bosonic atoms. " e researchers also demonstrated 
that the usual restriction of atoms to the lowest 
Bloch band may break down if the interactions 
between two fermionic atoms in di# erent spin states 
are increased such that the onsite interaction energy 
approaches the value of the vibrational splitting 
of the harmonic oscillator levels. " eir impressive 
demonstration involved enhancing the interactions 
between two fermions in di# erent spin states 
through a Feshbach resonance and observing the 
subsequent population of higher energy bands.

OUTLOOK

What are the prospects for future investigations 
of ultracold atoms in optical lattices? I believe 
we have just cracked open the door to a wide 
interdisciplinary ! eld of physics ranging from 
nonlinear dynamics to strongly correlated 
quantum phases and quantum information 
processing, which will provide us with many 
research highlights throughout the coming years. 
One natural step forward is to load spin-mixtures 
into the lattice potential. " eorists have predicted 
fascinating quantum phases, such as a counter$ ow 
super$ uid46,47, for which the total density of a two-
component spin-mixture in a lattice is ! xed, but 
the individual spin components remain completely 
super$ uid. Further predictions include Cooper-
pair-like states48, possible ways to realize spin-Bose 
models49 or even single-atom transistors50 with 
neutral atoms. Moreover, by using spin-dependent 
lattice potentials one can map the hamiltonian of 
a two-component Bose mixture onto a controlled 
quantum-spin-system hamiltonian and investigate 
fundamental quantum magnetic systems46,51,52 in a 
highly controllable environment.

Another research e# ort will be directed towards 
disordered systems53–56. Strongly interacting quantum 
systems in random potentials are among the most 
di%  cult systems to analyse theoretically. As one of the 

a

b

Figure 6 Transition from a superfl uid to a Mott insulator. a, In the superfl uid state of a BEC, the 
underlying atoms can be described as a giant macroscopic matter wave. When such a condensate 
is released from the periodic potential, a multiple matter-wave interference pattern appears, owing 
to the phase coherence between the atomic wavefunctions on different lattice sites. In this case, the 
phase of the macroscopic matter wave is well defi ned. However, the atom number on each lattice 
site fl uctuates. b, In the other limit of a Mott insulating state of matter, each lattice site is fi lled with 
a fi xed number of atoms but the phase of the matter-wave fi eld remains uncertain. No matter-wave 
interference can be seen in this case when the quantum gases are released from the lattice potential 
(see for example, ref. 3).
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Expecta+ons:	
  

1.  Long	
  period:	
  system	
  constantly	
  absorbs	
  energy	
  un+l	
  reaching	
  
infinite	
  temperature	
  

2.	
   	
  Short	
  period:	
  quench	
  to	
  a	
  +me	
  average	
  poten+al	
  –	
  finite	
  
	
  energy	
  increase:	
  energy	
  localiza+on.	
  

Is	
  there	
  an	
  energy	
  localiza+on	
  transi+on	
  or	
  a	
  crossover?	
  

Wait	
  for	
  a	
  long	
  +me,	
  follow	
  the	
  energy.	
  



Wave	
  func+on	
  (density	
  matrix)	
  aker	
  n-­‐periods	
  

Time	
  evolu+on	
  is	
  like	
  a	
  single	
  quench	
  to	
  the	
  Floquet	
  Hamiltonian	
  	
  

Magnus	
  expansion:	
  

•  Each	
  term	
  in	
  the	
  expansion	
  is	
  extensive	
  and	
  local	
  (like	
  in	
  high	
  temperature	
  expansion)	
  
•  Higher	
  order	
  terms	
  are	
  suppressed	
  by	
  the	
  period	
  T	
  but	
  become	
  more	
  and	
  more	
  non-­‐local.	
  
•  Compe++on	
  between	
  suppression	
  of	
  higher	
  order	
  term	
  and	
  their	
  non-­‐locality	
  –	
  similar	
  to	
  

many-­‐body	
  localiza+on.	
  
•  The	
  expansion	
  is	
  well	
  defined	
  classically	
  if	
  we	
  change	
  commutators	
  to	
  the	
  Poisson	
  brackets.	
  



Specific	
  model:	
  classical	
  or	
  quantum	
  spin	
  chain	
  

timeT1

J Start	
  in	
  the	
  ground	
  state	
  of	
  
the	
  noninterac+ng	
  system.	
  	
  
Follow	
  the	
  noninterac+ng	
  
energy.	
  

T0

Analy+cally	
  tractable	
  limit:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Classical	
  limit:	
  commutators	
  -­‐>	
  Poisson	
  brackets.	
  	
  T1 → 0

Singularity	
  (phase	
  transi+on?)	
  at	
  	
  hT0 = π



Simula+ons:	
  classical	
  spin	
  chain	
  

Strong	
  evidence	
  for	
  (many-­‐body)	
  localiza+on	
  transi+on	
  in	
  energy	
  space	
  



Quantum	
  spin	
  chain	
  (comparison	
  with	
  Magnus	
  expansion)	
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7.3 Computer Experiments 149

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study
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Thermaliza+on	
  forllowing	
  2D	
  quench	
  as	
  an	
  RG	
  process	
  
(together	
  with	
  L.	
  Mathey,	
  K.	
  Gunter,	
  J.	
  Dalibard)	
  

Due	
  to	
  number	
  phase	
  
uncertainty	
  small	
  phase	
  
fluctua+ons	
  lead	
  to	
  large	
  
number	
  fluctua+ons.	
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Dynamic Kosterlitz-Thouless transition in 2D Bose mixtures of ultra-cold atoms
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(Dated: December 7, 2011)

We propose a realistic experiment to demonstrate a dynamic Kosterlitz-Thouless transition in
ultra-cold atomic gases in two dimensions. With a numerical implementation of the Truncated
Wigner Approximation we simulate the time evolution of several correlation functions, which can
be measured via matter wave interference. We demonstrate that the relaxational dynamics is well-
described by a real-time renormalization group approach, and argue that these experiments can
guide the development of a theoretical framework for the understanding of critical dynamics.

PACS numbers: 03.75.Hh, 03.75.Mn, 05.30.Jp

The understanding of non-equilibrium phenomena, in
particular dynamic phase transitions, is an open fron-
tier in many-body physics. While for equilibrium sys-
tems a rich variety of methods has been established, non-
equilibrium systems are notoriously difficult to grasp, and
a functioning conceptual framework is lacking. Given this
state of research, ultra-cold atomic systems can play a
crucial role in further understanding many-body dynam-
ics. In fact, the unprecedented control of well-defined,
isolated systems of ultra-cold atoms, has led them to
be considered as ’quantum simulators’ [1]: Cold atom
systems are manipulated to create paradigmatic model
systems of condensed matter physics, such as the Bose-
Hubbard model [2], spin chains [3], the unitary Fermi
gas [4], magnetic systems [5], the Dirac equation [6] and
equilibration in one-dimensional (1D) gases [7]. The ex-
perimental measurements are cross-checked with theory,
to guide the development of a theoretical framework [8].

In this paper, we propose to apply the concept of quan-
tum simulation for a non-equilibrium setup, in particular
for dynamic phase transitions. We present an implemen-
tation of the time-dependent renormalization group (RG)
description, derived in [9], and demonstrate that it quan-
titatively predicts the dynamic evolution across a critical
point, by comparing it to a numerical simulation. In par-
ticular, this proves the universality of the relaxational
dynamics in this system, a concept well-established for
equilibrium phase transitions, however not developed for
dynamics in closed systems. Other RG treatments of
non-equilibrium systems were reported in [10].

We consider a system of weakly interacting bosons in
two dimensions (2D), for a review see e.g. [11], which in
equilibrium undergoes a Kosterlitz-Thouless (KT) phase
transition as a function of temperature [12]. This system
has two thermal phases, defined through the long-range
behavior of the two-point correlation function G(r) ≡
〈ψ†(0)ψ(r)〉, where ψ(r) is the particle annihilation op-
erator at site r. At low temperatures this function decays
algebraically, G(r) ∼ |r|−τ/4. The exponent τ increases
monotonically from zero to 1 as the temperature is in-
creased from zero to the critical temperature Tc. Above
Tc, the functional form of G(r) changes to exponential

t
π/2

t
s

t
r

FIG. 1: We prepare a 2D atom cloud in state 1 (blue), and
apply a π/2 pulse at tπ/2. We apply a field gradient at ts,
which separates state 1 and 2 (red) spatially. We release the
atoms at time tr and measure their interference properties.

decay, G(r) ∼ exp(−|r|/r0), with some decay length
r0. This change is due to the deconfinement of vortex-
antivortex pairs, and defines the KT transition. We trig-
ger this transition dynamically by a quench, as described
below. We find that after an intermediate time the sys-
tem develops a metastable state in which the phononic
modes have equilibrated, and G(r) shows algebraic scal-
ing with an exponent τ , which can be larger than the
critical value 1. This exponent then increases slowly in
time, until the correlation function changes to exponen-
tial scaling, indicating dynamic vortex deconfinement.
We demonstrate that the real-time evolution of τ(t) can
be described by a real-time RG approach, by comparing
it to our simulations. This constitutes a conceptually new
insight into many-body dynamics. For the ultimate vali-
dation of this theoretical approach we propose a specific
experimental setup in this paper.
In Fig. 1 we sketch the quench and measurement se-

quence. We consider a 2D gas of atoms, such as 87Rb,
at a temperature below Tc with an initial scaling expo-
nent τi < 1 in an internal state labelled 1. At some
time tπ/2, a radio-frequency or microwave pulse drives
the transition from state 1 to another state 2. The dura-
tion and intensity of the pulse are adjusted to provide a
π/2 transition, so that the superfluid (SF) is now in the
state (ψ1(r) +ψ2(r))/

√
2, where ψ1(r) and ψ2(r) are the

single-particle operators of states 1 and 2. If the inter-
action strengths between 1 and 2 are identical (as they
approximately are for the hyperfine levels of 87Rb in its

Realiza+on	
  with	
  2	
  component	
  bosons	
  



Reverse	
  Kibble-­‐Zurek	
  mechanism	
   3

Kibble-Zurek

tt
0

reverse Kibble-Zurek

t t
0

FIG. 1: Illustration of the Kibble-Zurek (KZ) mechanism,
which describes ramping across a phase transition from the
disordered phase, and its counterpart, the reverse-Kibble-
Zurek (rKZ) effect. The latter describes ramping across a
transition from the ordered side. Its defining feature is the
dynamical suppression of vortex unbinding, which happens
on a much longer time scale than the appearance of phononic
excitations. We propose to study the rKZ in a bilayer of 2D
superfluids of ultra-cold atoms, by decoupling the superfluids
and measuring the dynamics of the relative phase.

turned off. This can be achieved by increasing the po-
tential between the two condensates. The coarse-grained
Hamiltonian describing the relative phase φi of the two
superfluids corresponds to an XY model, to which we
add a hopping term to describe the phase-locking in the
initial state:

H = Ω0

(

−
∑

<ij>

κ

π
cos(φi − φj) +

π

2κ

∑

i

n2
i

−V (t)
∑

i

cos(
√
2φi)

)

, (1)

where Ω0 is an overall (Josephson) energy scale, κ de-
scribes the ratio of kinetic and potential energies. We
can formally replace these parameters by Ω0κ/π = 2Jn,
πΩ0/κ = U (so that Ω0 =

√
2JnU , κ = π

√

2Jn/U)
and V (t) = 2J⊥(t)n/Ω0, which gives a representation of
two coupled Bose-Hubbard systems in the quantum rotor
limit33. In this limit the Bose operators are replaced by
the phase-density representation and the fluctuations of
density are assumed to be small. In the Bose-Hubbard
model J is the in-plane hopping amplitude, U is the on-
site interaction energy, n is the filling number, i.e. the
number of particles per site, and J⊥ is the inter-layer
hopping amplitude J⊥. This representation gives at best
a qualitative idea of how the model parameters relate
to the parameters in experiment, but gives a more in-
tuitive picture. We note that one can think about the
continuum limit as discrete, where the lattice constant
is approximately given by the zero-temperature healing

FIG. 2: We simulate the dynamics of the relative phase of
two 2D superfluids by solving the equations of motion and by
averaging over the Wigner distribution of the initial state. A
single run is shown here, for V = 100, κ = 10 and T = 2,
at the times t = 0, 5, 10, 20, 40, 100. Vortices are marked red,
anti-vortices blue.

length in the system, i.e. the length over which density
fluctuations are suppressed.

We emphasize that despite the BKT transition being
classical in origin, i.e. driven by thermal fluctuations, the
mechanism of vortex or phonon creation in the process
we consider comes from quantum fluctuations. Indeed
when the superfluids are strongly coupled together the
density (which plays the role of momentum conjugate of
the phase) strongly fluctuates because of the zero point
motion. The heating mechanism of this system can be
thought of as enhancement of this zero point motion fol-
lowing the quench.

It is convenient to introduce the rescaled quantities
t̃ = Ω0t/!, φ̃ =

√

κ
πφ, and ñ =

√

π
κn. In terms of these,

the classical equations of motion (EOMs) are

dφ̃i

dt̃
= −ñi (2)

dñi

dt̃
= −

√
2

β

∑

ji

sin
(β(φ̃ji − φ̃i)√

2

)

+ V (t)β sinβφ̃i,(3)

where we defined β =
√

2π/κ. The indices ji describe
the four neighboring sites of site i.

Expect	
  smaller	
  number	
  of	
  topologically	
  protected	
  defects	
  
than	
  in	
  equilibrium	
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put on a lattice with a lattice constant rl we obtain

H1 = Ω0

∑

i

(

−
rl
r0

∑

ji

(φi − φji)
2

2
+

g⊥r2l
2Ω0

φ2
i +

r0
2rl

n2
i

)

.

(7)
This expression can be also obtained directly linearizing
the original Hamiltonian (1). The index ji here describes
the four neighboring sites of the site i, and ni is the
filling fraction, related to the density via ni = nr2l . Ω0 is
related to the phonon velocity as Ω0 = v/rl. We therefore
find that the squeezing parameter κ/π is given by κ/π =
rl/r0, i.e. it is the ratio of the discretization length scale
rl and the short-range cut-off r0 of the system. g⊥ is
related to V (t) by g⊥r2l /2 = Ω0V (t).

We now consider the time evolution of φ and n under
(6). It is convenient to go to momentum representation
where different modes decouple from each other. Assum-
ing also that we are interested in momenta smaller than
1/rl, where the lattice effects are not important we obtain
the following equations of motion:

d

dt
nk = −Ω0

(rlε2k
r0

+ 2V
)

φ−k (8)

d

dt
φk = Ω0

r0
rl
n−k. (9)

where ε2k = 4 sin2 kx/2 + 4 sin2 ky/2, and k is dimen-
sionless, k = −π...π. We rescale the time variable as
t̃ = Ω0t/!. The initial dispersion is then given by

ω2
k,0 = ε2k + 2V r0/rl. (10)

The dispersion ωk after the quench is simply ω2
k = ε2k,

in these units. We solve these equations and calculate
the equal-time correlation function at time t after the
quench. We use

G(x, t) = 〈exp(iφ(0, t)) exp(−iφ(x, t))〉 (11)

= exp(−〈δφ2〉/2), (12)

where δφ = φ(0, t) − φ(x, t). The averaging is now triv-
ially done using the Wigner distribution (4). If we put
the system back to the lattice we then find

〈δφ2〉 =
∑

k

(2− 2 coskx)

×
( rk,0
2ωk,0

cos2(ωkt) +
rk,0ωk,0

2ω2
k

sin2(ωkt)
)

. (13)

The quantities rk,0 and ωk,0 are defined as before.
We now calculate the Green’s function in the lin-

earized regime numerically using Eqs. (12) and (13). We
choose the discretization rl = r0, the initial tempera-
ture T/Ω0 = 1, and the initial coupling V β2 = 20. In
Fig. 4 we plot 〈δφ2〉 and in Fig. 5 we plot the correla-
tion function. In both plots the light-cone dynamics is
clearly visible. Because of the translational invariance
the correlation function that emerges in the light-cone
only depends on the relative distance is given by

G(x, t) ≈ C1|x|−T∗/4TKT (14)

FIG. 4: 〈δφ2〉 of the linearized system, for T = 1 and V β2 =
20, as function of the lattice site, and vt.

FIG. 5: The correlation function of the linearized system, for
T = 1 and V β2 = 20, as function of the lattice site, and vt.

for x & 2vt, where T ∗ is an effective temperature that is
estimated below, and C1 is a numerical prefactor. Out-
side of the light cone (x ' 2vt) the function G(x, t) only
depends on time t but not on the distance x:

G(x, t) = C2|t|−T∗/4TKT , (15)

where T ∗ is the same effective temperature. At the light
cone boundary x ≈ 2vt the two asymptotics for the cor-
relation function (14) and (15) approximately coincide.
However, we note that the prefactor C2 is in general dif-
ferent from C1v−T∗/4TKT as it is evident from the exis-
tence of a wavefront that is visible in Figs. 4 and 5.

The temperature that emerges inside the light cone can
be estimated by considering the quadratures of φ at long
times:

〈φ2
k(t → ∞)〉 =

rk,0
4ωk,0

+
rk,0ωk,0

4ω2
k

. (16)

We find that the whole Wigner function in the non-
interacting evolution remains Gaussian. It means that

T ∗
depends on initial conditions,

T ∗ ∼ U/J for the Hubbard model



Long-­‐+me	
  limit:	
  vortex	
  unbinding	
  above	
  KT	
  temperature	
  

Rela+ve	
  phase	
  



Need	
  to	
  solve	
  nonlinear	
  Hamiltonian	
  equa+ons	
  of	
  mo+on:	
  

Idea:	
  split	
  p	
  and	
  θ	
  into	
  low-­‐momentum	
  and	
  high	
  momentum	
  sectors	
  
<> += θθθ

Addi+onal	
  subtlety:	
  need	
  to	
  follow	
  equa+ons	
  of	
  mo+on	
  for	
  the	
  energy.	
  

Overall	
  formalism	
  very	
  similar	
  to	
  the	
  adiaba+c	
  perturba+on	
  theory.	
  

Use	
  perturba+ve	
  approach	
  to	
  treat	
  
Time	
  average	
  over	
  fast	
  oscilla+ng	
  modes	
  
Follow	
  equa+ons	
  of	
  mo+on	
  for	
  	
  	
  	
  	
  

>θ

<θ



Result:	
  flow	
  equa+ons	
  for	
  couplings,	
  very	
  similar	
  to	
  usual	
  KT	
  form	
  

Flow	
  	
  parameter	
  l	
  is	
  the	
  (exponent)	
  of	
  
the	
  real	
  +me!	
  

Recover	
  for	
  this	
  problem	
  two	
  scenarios	
  of	
  relevant	
  (normal)	
  and	
  
irrelevant	
  (superfluid)	
  vor+ces	
  with	
  exponen+ally	
  divergent	
  +me	
  
scale.	
  

For	
  this	
  problem	
  equilibrium	
  =	
  thermodynamics	
  emerges	
  as	
  a	
  
result	
  of	
  the	
  	
  renormaliza+on	
  group	
  process	
  
	
  
RG	
  is	
  a	
  semigroup	
  transforma+on	
  (no	
  inverse).	
  Lost	
  informa+on	
  in	
  
the	
  +me	
  averaging	
  of	
  fast	
  modes.	
  	
  

Quantum	
  RG	
  dynamics	
  (R.	
  Vosk	
  and	
  E.	
  Altman,	
  
2012)	
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FIG. 4: a) Numerical data for τ , averaged over Jt = [2100, 3000]. The red, filled dots have τ < 1, the dark circles have τ > 1.
The black, continuous line is τ∗

1 with the optimal fitting parameters, fitted to the data τ < 1. The red, dotted line indicates the
critical line τ = 1. The black, dashed line is τ∗

lin. b)-d) Numerical data τ at times t1 = 1500/J , t2 = 2400/J and t3 = 2970/J
(b-d) as a function of τi. The blue lines labelled I – III are in b) τ ("∗ = 1.7), τ ("∗ = 2.1) and τ ("∗ = 2.5), respectively. In c)
τ ("∗ = 2.1), τ ("∗ = 2.5) and τ ("∗ = 2.9), respectively, and in d) τ (l∗ = 2.3), τ ("∗ = 2.7) and τ ("∗ = 3.1), respectively.

with C0 = (ln(2gm/h̄2) − 1)/4, for a 2D gas in contin-
uum. However, C0 will be renormalized for a discretized
representation, see Ref. [17], and we use it as a fitting
parameter. We show τ∗lin in Fig. 4 in comparison to the
numerical data, with the optimal C0 determined below.
We use τ∗lin as the initial value for τ(0) = τ∗lin. To deter-
mine the initial value for the fugacity, we write the flow
equation as d(αy2)/dl = 4(1 − 1/τ)(αy2). The quantity
(τ − 1)2 − 32π2αy2 is invariant under the flow, and thus
the asymptotic value for τ∗ below the critical point is
τ∗(∞) = 1− ((τ − 1)2 − 32π2αy2)1/2. This motivates to
use τ∗1 = 1− ((τ∗lin− 1)2− 32π2A)1/2 as a fitting function
for C0 and A = αy2(0). In Fig. 4 a) we show τ∗1 , with
C0 = 0.299 and A = 2.7× 10−4, and the numerical data
for τ averaged over the time range Jt = [2100, 3000]. We
use these values in our initial conditions. We integrate
the flow equations to different values $∗, in particular to
0, 0.1, 0.2, ..., 4.0. In Figs. 4 (b-d) we show the numeri-
cal results for τ at the times t1 = 1500/J , t2 = 2400/J
and t3 = 2970/J , each averaged over a time interval of
60/J . We determine the value of $∗ for which τ($∗) fits
the numerical result the closest. The ratios ti/tj are ap-

proximately exp($i/$j), but we note that because of the
logarithmic dependence of $ on t, a large numerical un-
certainty is present. We show the optimal τ($∗), and two
close-by solutions for visual comparison. We find that
the RG flow well describes the critical dynamics.
In conclusion, we have presented a realistic experiment

to investigate the dynamic KT transition in ultra-cold
gases in 2D. We demonstrate that the critical dynam-
ics can be described by the RG approach developed in
Ref. [9], as it predicts correctly the dynamic evolution
found in the TWA simulation. The time evolution of
the correlation functions can be detected via interference
measurements discussed in Ref. [11]. These predictions
and their experimental verification would pave the way
to an RG-based theory framework for critical dynamics.
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Interference:	
  measure	
  

Fit	
  of	
  the	
  RG	
  predic+on	
  (at	
  different	
  +mes)	
  and	
  the	
  numerical	
  simula+ons	
  



Conclusions	
  

•  Close	
  analogy	
  between	
  high	
  temperature	
  expansion	
  and	
  
short	
  +me	
  expansion.	
  

•  Possibility	
  of	
  phase	
  transi+ons	
  in	
  +me	
  as	
  a	
  result	
  of	
  
breakdown	
  of	
  short	
  +me	
  expansion:	
  Fisher	
  zeros	
  in	
  
Loschmidt	
  echo	
  and	
  dynamical	
  (many-­‐body)	
  energy	
  
localiza+on	
  transi+on.	
  

•  Relaxa+onal	
  dynamics	
  can	
  be	
  thought	
  of	
  as	
  a	
  
renormaliza+on	
  process	
  in	
  +me.	
  Moun+ng	
  number	
  of	
  
examples.	
  

•  Universality	
  of	
  quench	
  and	
  slow	
  dynamics	
  (another	
  evidence	
  
for	
  RG).	
  

	
  
	
  


