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Outline.

1. High temperature expansion — Short time expansion.

a) Breakdown of short time perturbation theory and phase

transition in time for a quench in a quantum Ising chain.
(with M. Heyl and S. Kehrein)

b) (Many body) energy localization transition in periodically
driven systems and breakdown of Magnus expansion. (with L.
D’Alessio).

2. Dynamics and the renormalization group: Kosterlitz-Thouless
phase transition following a quench (with L. Mathey 2010, also R. Vosk and E.
Altman, 2012).



High temperature expansion and Lee-Yang (Fisher) zeros.

Equilibrium: all information about observables is contained in the
partition function

7 = /dXdPeXp[—B(HO(X, P)+ H;t (X, P))] = Zo(exp|—BH;nt: (X, P)])o

High temperature (small interactions): can use high temperature
expansion

n/Bn
F=-Tlog(Z)=F,—T Z (Hint)o.c
n>1

Phase transitions: free energy becomes non-analytic function of
temperature (tuning parameter). The high temperature
expansion breaks down.



Lee-Yang theorem (1952): understood non-analyticity through the
condensation of zeros of the partition function in the complex plane.

H=-J)» s;5;— thj, z = exp|—20h)] T
(7) J l,

{s:} n=0 i=1

Lee-Yang: all zeros z; are complex. They condense near
real axis at the phase transition. Taylor expansion breaks.
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M. Fisher (1965). Extension of these S 2D anisotropic
ideas to the high temperature | Ising model
expansion. Consider h=0. ., W. Saarloos and

D. Kurtze (1984)
Zn = e PJAN Z P, exp|—28Jr]
T

Singularities develop in the complex
temperature (coupling) plane:
breakdown of the Taylor expansion




Partition function is the generator of moments of (interaction
energy) energy

F = —Tlog( F() — T Z 6 ’Lnt>0,C
n>1

Analogue of the partition function for quench dynamics: Loschmidt
echo — generator of the moments of work W (A. Silva, 2008)

H = Hy+0HO(t), L(t) = (exp[iHot] exp[—iH1])o
(~i) e
n!

(W)

L(t) = (exp|—iWt])o = f(t) =log|L(t)] = Z

n

Close analogy between equilibrium physics and quench dynamics:
Partition function — Loschmidt echo,

Inverse temperature — time,

high temperature expansion — short time expansion.

Can we have phase transitions in time?



Dynamical phase transition in the transverse field Ising model
(M. Heyl, A. P., S. Kehrein, arXiv: 1206.2505)
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state to PM phase. Study:
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Emergent time (energy) scale, not the gap
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Physical origin of the transition: emergence of inverse

* population (negative temperature) for some modes
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Observing the dynamical phase transition

Expectation values of of common observables are analytic in time.

Physically L(t)=0 implies a state orthogonal to the initial state. Expect Small return
probability for a double quench.

dit g

Define work probability after a double quench

P(w,t) =) [(n|(t))[6(En — By — w)

4go | ~ t r(w,t) = ——log(P(w,t)), 7(0,t)=2R[f(t)]

W plays the role of temperature. At zero
work recover guantum phase transition.

General idea: can use post-selection as a

) - 04 non-equilil?rium coqung. l.e. anilyze

£ 02 . (] 03 only experiments withw < w" .
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g 01 1L 01 Expect quantum critical behavior of

’ o - . . 0 post-selected observables asw™ — 0.

time ¢/t*



Energy localization transition in periodically driven systems and
break down of (short time) Magnus expansion. (with L. D’Alessio)

Instead of a single quench consider a periodic sequence of pulses:

dit g

What is the long time limit in
—>—> .

this system?
Tn I3

time

Small energies: chaos

Fermi-Ulam problem (prototype of I
= and diffusion. Large

the Fermi acceleration problem).
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(G. M. Zaslavskii and B. V. Chirikov, 1964 M = 20. Iterations of several selected
M. A. Liberman and J. Lichenberg 1972) trajectories.



Kicked rotor (realization of standard Chirikov map)
2

_ b B Transition from regular (localized) to chaotic
H(p,z,t) = 2 + K cos(z) Z o(t —n) (delocalized) motion as K increases. Chirikov, 1971
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K=0.5 K=K,=0.971635 K=5 (images taken from
scholarpedia.org)

Delocalization transition at K.=1.2 (B. chirikov (1979)).

Quantum systems: (dynamical) localization due to interference even
in the chaotic regime (F. Izrailev, B. Chirikov, ... 1979).

What about periodically driven ergodic systems in thermodynamic limit?



Example: take an optical lattice and start shaking it in
time with a small amplitude
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Wait for a long time, follow the energy.

Expectations:

1. Long period: system constantly absorbs energy until reaching
infinite temperature

2. Short period: quench to a time average potential — finite
energy increase: energy localization.

Is there an energy localization transition or a crossover?



Wave function (density matrix) after n-periods
[Y(nT)) = [U(T)]" |vo), U(T) = exp|—iHyTy]exp[—iH1Ti] = exp[—iHpT]
(nT')) = exp[—iH pnT|[¢o)

Time evolution is like a single quench to the Floquet Hamiltonian

Hp=Hy+V,V = Hp — H,.
If V is small and local expect that the energy (Hy) is localized.

Magnus expansion:

' 1
Hp = %log[exp[—iHlTl]exp[—z’HQTg]] = T/ dtH (t / dt1/ dto [H(t1), H(t2)]+. . .

e Each term in the expansion is extensive and local (like in high temperature expansion)

* Higher order terms are suppressed by the period T but become more and more non-local.

* Competition between suppression of higher order term and their non-locality — similar to
many-body localization.

* The expansion is well defined classically if we change commutators to the Poisson brackets.



Specific model: classical or quantum spin chain
H=-h) si=J|g) sisizi+) (57570 + 575/ )
j j j

J e T, 7 Start in the ground state of
the noninteracting system.
e | Follow the noninteracting

= S SR B I > energy.
T T, time

Analytically tractable limit: 11 — O Classical limit: commutators -> Poisson brackets.

loglexp[X]explY]| =X +Y + %[X, Y]+ %[X, (X, Y]] +... +O(Y?)

X =ihTy Y 8%, Y =iTyJ gy sisiq+ Y (sfsiy+5;551)
J J J

1T
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Hp = H+J(g—1) o) (hTy cot(hTy) — 1) 2(0505+1—J?0?+1)+. . AO(JTY)
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Singularity (phase transition?) at ATy = =«



Simulations: classical spin chain

Final for Magnetization Spin

Strong evidence for (many-body) localization transition in energy space



Excess Energy divided by HalfBandwidth
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Quantum spin chain (comparison with Magnus expansion)
Infinite Time Average, NS=16
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Excess Energy divided by HalfBandwidth

Temporal simulations of a quantum spin chain.

Exact Time Evolution, NS=16

# number of cycles
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Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.



Diagonal Entropy divided Smax=Log(N)

Entropy (log of number if occupied states)

Exact Time Evolution, NS=16
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Potential implications for driven dissipative systems



Thermalization forllowing 2D quench as an RG process
(together with L. Mathey, K. Gunter, J. Dalibard)

Realization with 2 component bosons

t t

/2 S T

FIG. 1: We prepare a 2D atom cloud in state 1 (blue), and
apply a 7/2 pulse at t.,5. We apply a field gradient at ¢,

which separates state 1 and 2 (red) spatially. We release the
I atoms at time ¢, and measure their interference properties.

Due to number phase
uncertainty small phase
fluctuations lead to large
number fluctuations.



Reverse Kibble-Zurek mechanism
Kibble-Zurek
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Expect smaller number of topologically protected defects
than in equilibrium




Initial prethermalization via light cone dynamics

<ei(</>(a:,t)—¢6(0,t))> ~ C1|aj‘_T* /4 T 5 20t
Colt|™T7 /% 2 > 20t

50 .

1™ depends on initial conditions,

T* ~ U/J for the Hubbard model
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vortex unbinding above KT temperature
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Need to solve nonlinear Hamiltonian equations of motion:

([ ‘ 17

—p = A0 + 7 —sin 6
d

—0 = ulnp.

dt HAP

ldea: split p and 6 into low-momentum and high momentum sectors

0=0 +0°

Use perturbative approach to treat 6~
Time average over fast oscillating modes
Follow equations of motion for ¢°

Additional subtlety: need to follow equations of motion for the energy.

Overall formalism very similar to the adiabatic perturbation theory.



Result: flow equations for couplings, very similar to usual KT form

d_g B (‘) B 1 ) Flow parameter /is the (exponent) of
dl - \"  Ax)\ /" the real time!

d\ qg°

— = . Quantum RG dynamics (R. Vosk and E. Altman,

dl A 2012)

Recover for this problem two scenarios of relevant (normal) and
irrelevant (superfluid) vortices with exponentially divergent time

scale.

For this problem equilibrium = thermodynamics emerges as a
result of the renormalization group process

RG is a semigroup transformation (no inverse). Lost information in
the time averaging of fast modes.



Comparison with numerical simulations

Interference: measure

ip(r)—ip(0)\ -,
<e > r7/4

Fit of the RG prediction (at different times) and the numerical simulations

d)
(t,)

2.0t




Conclusions

Close analogy between high temperature expansion and
short time expansion.

Possibility of phase transitions in time as a result of
breakdown of short time expansion: Fisher zeros in

Loschmidt echo and dynamical (many-body) energy
localization transition.

Relaxational dynamics can be thought of as a
renormalization process in time. Mounting number of
examples.

Universality of quench and slow dynamics (another evidence
for RG).



