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completely suppressed, the phase coherence of the BEC
is lost in agreement with the physical picture of a sudden
‘switch-off’ of the inter-well coupling and a subsequent
independent evolution of the local phases due to colli-
sions between the atoms [16, 17].

Our system consisting of a Bose-Einstein condensate
inside a (sinusoidally) shaken one-dimensional optical lat-
tice is approximately described by the Hamiltonian

Ĥ0 = −J
∑

〈i,j〉

(ĉ†i ĉj+ĉ†j ĉi)+
U

2

∑

j

n̂j(n̂j−1)+K cos(ωt)
∑

j

jn̂j ,

(1)

where ĉ(†)
i are the boson creation and annihilation opera-

tors on site i, n̂i = ĉ†i ĉi are the number operators, and K
and ω are the strength and angular frequency of the shak-
ing, respectively. The first two terms in the Hamiltonian
describe the Bose-Hubbard model [14] with the tunnel-
ing matrix element J and the on-site interaction term
U . The shaking of the lattice is expected to renormalize
the tunneling matrix element J , leading to an effective
tunneling parameter [2]

Jeff = JJ0(K0), (2)

where J0 is the zeroth-order ordinary Bessel function and
we have introduced the dimensionless parameter K0 =
K/h̄ω.

In our experiment we created BECs of about 5 × 104

87-rubidium atoms using a hybrid approach in which
evaporative cooling was initially effected in a magnetic
time-orbiting potential (TOP) trap and subsequently in
a crossed dipole trap. The dipole trap was realized using
two intersecting gaussian laser beams at 1030 nm wave-
length and a power of around 1 W per beam focused
to waists of 50 µm. After obtaining pure condensates
of around 5 × 104 atoms the powers of the trap beams
were adjusted in order to obtain elongated condensates
with the desired trap frequencies (≈ 20 Hz in the lon-
gitudinal direction and 80 Hz radially). Along the axis
of one of the dipole trap beams a one-dimensional opti-
cal lattice potential was then added by ramping up the
power of the lattice beams in 50 ms (the ramping time
being chosen such as to avoid excitations of the BEC).
The optical lattices used in our experiments were cre-
ated using two counter-propagating gaussian laser beams
(λ = 852 nm) with 120 µm waist and a resulting optical
lattice spacing dL = λ/2 = 0.426 µm. The depth V0 of
the resulting periodic potential is measured in units of
Erec = h̄2π2/(2md2

L), where m is the mass of the Rb
atoms. By introducing a frequency difference ∆ν be-
tween the two lattice beams (using acousto-optic mod-
ulators which also control the power of the beams), the
optical lattice could be moved at a velocity v = dL∆ν
or accelerated with an acceleration a = dL

d∆ν
dt . In or-

der to periodically shake the lattice, ∆ν was sinusoidally
modulated with angular frequency ω, leading to a time-
varying velocity v(t) = dL∆νmax sin(ωt) and hence to a

time-varying force

F (t) = mωdL∆νmax cos(ωt) = Fmax cos(ωt). (3)

The peak shaking force Fmax is related to the shaking
strength K appearing in Eq. (1) by

K = FmaxdL, (4)

and hence the dimensionless shaking parameter

K0 =
K

h̄ω
=

md2
L∆νmax

h̄
=

π2∆νmax

2ωrec
. (5)

The spatial shaking amplitude ∆xmax can then be writ-
ten as

∆xmax =
2

π2

ωrec

ω
K0dL, (6)

so for a typical shaking frequency ω/2π = 3 kHz we have
∆xmax ≈ 0.5dL at K0 = 2.4.

After loading the BECs into the optical lattice, the
frequency modulation of one of the lattice beams cre-
ating the shaking was switched on either suddenly or
using a linear ramp with a timescale of a few millisec-
onds. Finally, in order to measure the effective tunneling
rate |Jeff | between the lattice wells (where the modulus
indicates that we are not sensitive to the sign of J , in
contrast to the time-of-flight experiments described be-
low), we then switched off the dipole trap beam that
confined the BEC along the direction of the optical lat-
tice, leaving only the radially confining beam switched
on (the trap frequency of that beam along the lattice di-
rection was on the order of a few Hz and hence negligible
on the timescales of our expansion experiments, which
were typically less than 200 ms). The BEC was now free
to expand along the lattice direction through inter-well
tunneling and its in-situ width was measured using a res-
onant flash, the shadow cast by which was imaged onto
a CCD chip. The observed density distribution was then
fitted with one or two gaussians.

In a preliminary experiment without shaking (K0 = 0),
we verified that for our expansion times the growth in
the condensate width σx along the lattice direction was
to a good approximation linear and that the dependence
of dσx/dt on the lattice depth (up to V0/Erec = 9) fol-
lowed the expression for J(V0/Erec) in the lowest energy
band [18]

J

(

V0

Erec

)

=
4Erec√

π

(

V0

Erec

)3/4

e−2
√

V0/Erec. (7)

This enabled us to confirm that dσx/dt measured at a
fixed time was directly related to J and, in a shaken
lattice, to |Jeff(K0)|. The results of our measurements of
|Jeff(K0)/J |, for various lattice depths V0 and driving fre-
quencies ω are summarized in Fig. 2. We found a univer-
sal behaviour of |Jeff/J | that is in very good agreement
with the Bessel-function re-scaling of Eq. (2). We were

Periodic lattice modulations offer 
new possibilities for engineering 

lattice models with cold gases 
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Dynamical control of matter-wave tunneling in periodic potentials

H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini, O. Morsch and E. Arimondo
CNR-INFM, Dipartimento di Fisica ‘E. Fermi’, Università di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

We report on measurements of dynamical suppression of inter-well tunneling of a Bose-Einstein
condensate (BEC) in a strongly driven optical lattice. The strong driving is a sinusoidal shaking
of the lattice corresponding to a time-varying linear potential, and the tunneling is measured by
letting the BEC freely expand in the lattice. The measured tunneling rate is reduced and, for certain
values of the shaking parameter, completely suppressed. Our results are in excellent agreement with
theoretical predictions. Furthermore, we have verified that in general the strong shaking does not
destroy the phase coherence of the BEC, opening up the possibility of realizing quantum phase
transitions by using the shaking strength as the control parameter.

PACS numbers: 03.65.Xp, 03.75.Lm

Quantum tunneling of particles between potential wells
connected by a barrier is a fundamental physical effect.
While typically quantum systems decay faster when they
are perturbed, if the wells are periodically shaken back
and forth (or a time-varying potential is applied in a dif-
ferent way), the tunneling rate can actually be reduced
and, for certain shaking strengths, even completely sup-
pressed [1, 2].

Modifications of the dynamics of quantum systems by
applying periodic potentials have been investigated in
a number of contexts including the renormalization of
Landé g-factors in atoms [3], the micromotion of a single
trapped ion [4] and the motion of electrons in semicon-
ductor superlattices [5]. In particular, theoretical studies
of double-well systems and of periodic potentials have led
to the closely related concepts of coherent destruction of
tunneling and dynamical localization [1, 6]. In the latter,
tunneling between the sites of a periodic array is inhib-
ited by applying a periodically varying potential, e.g. by
shaking the array back and forth (see Fig. 1), and as a
consequence the tunneling parameter J representing the
gain in kinetic energy in a tunneling event is replaced by
|Jeff | < |J |. In a number of experiments signatures of
this tunneling suppression have been observed [5, 7, 8],
and recently dynamical localization and coherent sup-
pression of tunneling have been demonstrated using light
propagating in coupled waveguide arrays [9, 10]. Also,
the predictions of the Bose-Hubbard model in a moving
frame were recently tested [11]. So far, however, an ex-
act experimental realization of the intrinsically nonlinear
Bose-Hubbard model [2] driven by a time-periodic poten-
tial has not been reported.

In this Letter, we report on the observation of the
dynamical tunneling suppression predicted in refs. [2,
12] using Bose-Einstein condensates (BECs) in strongly
driven periodic optical potentials [13]. In contrast to
other systems, the characteristics of such optical lattices
- potential depth, lattice spacing, driving strength and
frequency - can be freely chosen and allow us to control
the tunneling over a wide range of parameters. In this
way we were able to experimentally confirm theoretical
predictions with great accuracy. Also, our system allows
us to observe the effects of the shaking both by monitor-

FIG. 1: Suppression of tunneling by strong driving. The
dynamics of a Bose-Einstein condensate in a periodic po-
tential is governed by the tunneling matrix element J and
the on-site interaction energy U (above). If the potential is
strongly shaken, tunneling between the wells is dynamically
suppressed, leading to a renormalized tunneling matrix ele-
ment Jeff (below) but leaving the interaction energy U unaf-
fected.

ing the real-space expansion of the BEC in the optical
lattice and by performing time-of-flight experiments in
which the phase coherence of the BEC can be measured.
The latter experiments allow us to verify that the tunnel-
ing suppression occurs in a phase-coherent way in spite
of the strong shaking.

Furthermore, BECs have an intrinsic nonlinear on-site
interaction energy (represented by U in Fig. 1), the in-
terplay of which with the tunneling parameter J has been
shown to lead to the Mott-insulator quantum phase tran-
sition for a critical value of the ratio U/J [14, 15]. It has
been theoretically predicted that for a BEC in a shaken
optical lattice, this ratio can be replaced by U/Jeff and
hence that it should be possible to drive the system across
the quantum phase transition by varying the shaking pa-
rameter [2, 12]. In this work, we demonstrate the feasi-
bility of the key ingredients of this scheme. In particu-
lar, we show that when tunneling in the shaken lattice is

[From Lignier et al., PRL 99, 220403 (2007)] 

Jeff = JJ0
K
ω
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Ĥeff = −Jeff ĉi
+ĉ j + h.c.( )

<i, j>
∑

+
U
2

n̂i n̂i −1( )
i
∑ −µ n̂i

i
∑

For a strong shaking, ω>>U,J 
Modified hopping which 
may even change sign! 

[Eckardt et al., PRL 95, 260404 (2005); Lignier, et al., PRL 99, 220403 (2007); Kierig et al., PRL 100, 190405 (2008);  
Zenesini et al., PRL 102, 100403 (2009); Struck et al., Science 333, 996 (2011)] 



Control of atoms in OLs: One and two-particle hard core 
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If U0 is large enough one may forbid double 
occupation per site (hard-core regime)  bi

+( )
2
= 0

In the presence of strong 3-body losses 
one may induce an effective 2-body hard-core 
[Daley et al., PRL 102, 040402 (2009)] 

 
Recent experiment in Innsbruck [Mark et al., PRL 108, 215302 (2012)] 

b+i( )
3
= 0
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FIG. 2: (Color online) iTEBD results for the holon (circles)
and doublon (squares) populations as a function of J/U0 for a
1D system with µ/U0 = 0.3 and Ω = 2.405. Note the absence
of defects in the MI (J/U0 < 0.15), and the appearance of the
holon (H-SF) and doublon SF (D-SF).

|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑

<i,j>

h†
ihj + (µ− U0(n− 1))

∑

i

h†
ihi, (5)

Hp = −J(n+ 1)
∑

<i,j>

p†ipj + (U0n− µ)
∑

i

p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-

[Greschner et al., arXiv:1202.5386] 



Ultra-cold gases in zig-zag optical lattices 

Zig-zag optical lattices may be obtained 
e.g. by overimposing a triangular lattice 
[Becker et al., NJP 12, 065025 (2010)]  
and a superlattice of doubled period 
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The value of t and t´ may be 
controlled independently by 
elliptical shaking (also their 
signs!) [Struck et al., Science 333, 996 (2011)] 

We shall consider the case where both t,t‘<0 (AF coupling) 
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Bosons in zig-zag optical lattices 



Frustrated AF spin-1 chains 

t 

t´ 

The system resembles 
to a large extent a 
frustrated AF spin-1 
chains with uniaxial 
single-ion anisotropy 
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6 Assuming bosons with mean 
occupation n=1, we introduce the 
pseudo-spin 
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AF spin-1 chains 
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[Dalla-Torre, Berg and Altman, PRL 97, 260401 (2006)] Density wave …0202020202020202… 
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1D polar gases in optical lattices: Haldane-insulator phase 

[ ] ( ) ∑∑∑ ++
+ +−++−=

i
ii

i
ii

i
ii nnUnnUcHbbtH 11

0
1 1

2
..

Haldane-
insulator 

…101…121…101…121… 

Os
2 ≡ lim

i− j→∞
δni exp iπ δnl

l=i+1

j−1
∑

&
'(

)
*+
δnj ≠ 0String order: 

Mott-insulator …1021…1201…1201… 

Op
2 ≡ lim

i− j→∞
exp iπ δnl

l=i+1

j−1
∑

&
'(

)
*+
≠ 0Parity order: 

Experiment [Endres et al., Science 334, 200 (2011)] 
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D=0 (and Δ=Δ´) phase diagram 

Chirality 
( ) 01 ≠×≡ +iii SS


κ

Frustrated AF spin-1 chains 
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D>0 (and Δ=Δ´=1) phase diagram 

Frustrated AF spin-1 chains 

D 

For Δ=0 gapless chiral here 

Haldane phase is expected (even for  
Δ=0) for sufficiently low D. 



Bosons in zig-zag optical lattices 
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In absence of dipolar interactions (U1=U´1=0, and hence Δ=0) 

Haldane phase is expected 
(even for  Δ=0)  
for sufficiently low D. 

Haldane-insulator expected 
(even for non-polar gases) 
for sufficiently low U0. 

However, for unconstrained bosons this is not what occurs, 
since for low U0 the boson ↔spin mapping fails 



Bosons in zig-zag optical lattices (unconstrained bosons) 
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control the value of t and t′ independently. Interestingly,
their sign may be controlled as well. In the following we
consider an inverted sign for both hoppings, which result
in an anti-ferromagnetic coupling between sites [7].
Model. Ordering the sites as indicated in Fig. 1, the

physics of the system is given by a Bose-Hubbard Hamil-
tonian with on-site interactions characterized by the cou-
pling constant U , nearest-neighbor hopping t < 0 and
next-nearest-neighbor hopping t′ < 0:

H =
∑

i

[

−
t

2
b†ibi+1 −

t′

2
b†i bi+2 +H.c

]

(1)

+
U

2

∑

i

ni(ni − 1) + U3

∑

i

ni(ni − 1)(ni − 2),

where b†i , bi are the bosonic creation/annihilation opera-

tors of particles at site i, ni = b†ibi, and we have added
the possibility of three-body interactions, characterized
by the coupling constant U3. We assume below an aver-
age unit filling n̄ = 1.
Unconstrained bosons. We discuss first the ground-

state properties of unconstrained bosons (U3 = 0). At
U = 0, the Hamiltonian (1) is diagonalized in quasi-
momentum space H =

∑

k ε(k)b
†
kbk, with the dispersion

ε(k) = |t|(cos k + j cos 2k), with j ≡ t′/t. Depending
on the frustration j we may distinguish two regimes. If
j < 1/4, the dispersion ε(k) presents a single minimum
at k = π, and hence small U will introduce a super-
fluid (SF) phase, with quasi-condensate at k = π. If
j > 1/4, ε(k) presents two non-equivalent minima at
k = k0 ≡ ± arccos[−1/4j]. As shown below, interac-
tions favor the predominant population of one of these
minima, and the system enters a chiral superfluid (CSF)
phase with a non-zero local boson current characterized
by a finite chirality 〈κi〉, with κi = i

2 (b
†
ibi+1 − H.c.). At

j = 1/4, the Lifshitz point, the dispersion becomes quar-
tic at the k = π minimum, ε(k) ∼ (k − π)4, the effective
mass m = (∂2ε(k)/∂k2)−1

k=π = 1/t(1 − 4j) diverges, and
even vanishingly small interactions become relevant.
To study the effect of interactions we combine numer-

ical calculations based on the density matrix renormal-
ization group (DMRG) method [25] (with up to N = 300
sites keeping per block on average 400 states for gapped
phases and 600 states for gapless ones), and bosoniza-
tion techniques to unveil the low-energy behavior of
model (1). For j < 1/4, we employ standard bosoniza-
tion transformations [19], with an additional oscillating
factor bi → (−1)iei

√
πθ(x), to obtain the low-energy effec-

tive theory, which is given by the sine-Gordon model

H=
vs
2

[

(∂xφ)2

K
+K(∂xθ)

2

]

−M cos[2πn̄x−
√
4πφ], (2)

where θ and ∂xφ describe phase and density fluctuations
of bosons respectively, [θ(x), ∂yφ] = iδ(x − y), vs is the
sound velocity and K the Luttinger parameter. In the

U
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FIG. 2: Phase diagram for unconstrained bosons as a function
of the frustration parameter j and (a) the on-site interaction
U (with U3 = 0) and (b) the three-body repulsion U3 (and
U = 0). In the figures, © indicate the boundary of the chiral
phases characterized by long-range ordered chirality-chirality
correlations 〈κiκj〉; ! indicate the boundary of the SF-phases
indicated by the critical Luttinger parameter K = 2. Note
that narrow CMI and CHI phases may occur as well. For
U, U3 ≥ 0.5 keeping nmax = 4 bosons per site in the DMRG-
simulation can be shown to be sufficient.

weak-coupling, Um ( 1, hydrodynamic relations are ex-
pected to hold: vs(j) ∼

√

n̄U/mπ2 = vs(0)
√
1− 4j and

K(j) ∼
√

n̄π2/Um = K(0)
√
1− 4j, clearly showing that

j enhances correlations. At j = 1/4, m diverges and the
system enters a Mott-insulator (MI) even for vanishingly
small U (Fig. 2(a)). The SF-MI transition takes place
however in the strong-coupling regime in which vs and
K must be determined numerically. We obtain K from
the single-particle correlations Gij = 〈bib†j〉 which in the

SF decay as ∼ (−1)i−j |i− j|−1/2K . The value K = 2
marks the boundary between SF (U < Uc, K > 2) and
MI (U > Uc, K < 2, and M > 0). The MI phase
is characterized by a hidden parity order [17], O2

P =

lim|i−j|→∞〈(−1)
∑

i<l<j δnl〉 ∼ 〈cos
√
πφ〉2, which has

been recently measured in site-resolved experiments [20].
The j > 1/4 case is best understood from bosonization

in the j ) 1 regime. We may then introduce two pairs
of bosonic fields (θ1,φ1) and (θ2,φ2), describing, respec-
tively, the subchains of even and odd sites. The effective
model is governed by the Hamiltonian density

H =
∑

α=±

vα
2

[

(∂xφα)2

Kα
+Kα(∂xθα)

2

]

(3)

+ λ∂xθ+ sin
√
2πθ− − 2M cos

√
2πφ+ cos

√
2πφ−

where θ± = (θ1 ± θ2)/
√
2, φ± = (φ1 ± φ2)/

√
2, v±, K±,

and M are phenomenological parameters (in the regimes
displayed on Figure 2 (a)), λ ∼ j−1. Note that the chi-
rality is given by κi → sin

√
2πθ−(x). In weak-coupling,

Um′ ( 1, with m′ = (∂2ε(k)/∂k2)−1
k0

= 4j/t(16j2 − 1),

v± ∼
√

n̄U/m′π2 and K± ∼
√

n̄π2/Um′. In this case
only the term ∂xθ+ sin

√
2πθ− is relevant, resulting in

〈sin
√
2πθ−〉 *= 0 [21]. Hence, a small U is expected

to favor a CSF for j > 1/4, as our numerical results
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control the value of t and t′ independently. Interestingly,
their sign may be controlled as well. In the following we
consider an inverted sign for both hoppings, which result
in an anti-ferromagnetic coupling between sites [7].
Model. Ordering the sites as indicated in Fig. 1, the

physics of the system is given by a Bose-Hubbard Hamil-
tonian with on-site interactions characterized by the cou-
pling constant U , nearest-neighbor hopping t < 0 and
next-nearest-neighbor hopping t′ < 0:
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where b†i , bi are the bosonic creation/annihilation opera-

tors of particles at site i, ni = b†ibi, and we have added
the possibility of three-body interactions, characterized
by the coupling constant U3. We assume below an aver-
age unit filling n̄ = 1.
Unconstrained bosons. We discuss first the ground-

state properties of unconstrained bosons (U3 = 0). At
U = 0, the Hamiltonian (1) is diagonalized in quasi-
momentum space H =

∑

k ε(k)b
†
kbk, with the dispersion

ε(k) = |t|(cos k + j cos 2k), with j ≡ t′/t. Depending
on the frustration j we may distinguish two regimes. If
j < 1/4, the dispersion ε(k) presents a single minimum
at k = π, and hence small U will introduce a super-
fluid (SF) phase, with quasi-condensate at k = π. If
j > 1/4, ε(k) presents two non-equivalent minima at
k = k0 ≡ ± arccos[−1/4j]. As shown below, interac-
tions favor the predominant population of one of these
minima, and the system enters a chiral superfluid (CSF)
phase with a non-zero local boson current characterized
by a finite chirality 〈κi〉, with κi = i

2 (b
†
ibi+1 − H.c.). At

j = 1/4, the Lifshitz point, the dispersion becomes quar-
tic at the k = π minimum, ε(k) ∼ (k − π)4, the effective
mass m = (∂2ε(k)/∂k2)−1

k=π = 1/t(1 − 4j) diverges, and
even vanishingly small interactions become relevant.
To study the effect of interactions we combine numer-

ical calculations based on the density matrix renormal-
ization group (DMRG) method [25] (with up to N = 300
sites keeping per block on average 400 states for gapped
phases and 600 states for gapless ones), and bosoniza-
tion techniques to unveil the low-energy behavior of
model (1). For j < 1/4, we employ standard bosoniza-
tion transformations [19], with an additional oscillating
factor bi → (−1)iei
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πθ(x), to obtain the low-energy effec-

tive theory, which is given by the sine-Gordon model

H=
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[
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√
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where θ and ∂xφ describe phase and density fluctuations
of bosons respectively, [θ(x), ∂yφ] = iδ(x − y), vs is the
sound velocity and K the Luttinger parameter. In the
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of the frustration parameter j and (a) the on-site interaction
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simulation can be shown to be sufficient.
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1− 4j, clearly showing that

j enhances correlations. At j = 1/4, m diverges and the
system enters a Mott-insulator (MI) even for vanishingly
small U (Fig. 2(a)). The SF-MI transition takes place
however in the strong-coupling regime in which vs and
K must be determined numerically. We obtain K from
the single-particle correlations Gij = 〈bib†j〉 which in the

SF decay as ∼ (−1)i−j |i− j|−1/2K . The value K = 2
marks the boundary between SF (U < Uc, K > 2) and
MI (U > Uc, K < 2, and M > 0). The MI phase
is characterized by a hidden parity order [17], O2

P =

lim|i−j|→∞〈(−1)
∑

i<l<j δnl〉 ∼ 〈cos
√
πφ〉2, which has

been recently measured in site-resolved experiments [20].
The j > 1/4 case is best understood from bosonization

in the j ) 1 regime. We may then introduce two pairs
of bosonic fields (θ1,φ1) and (θ2,φ2), describing, respec-
tively, the subchains of even and odd sites. The effective
model is governed by the Hamiltonian density

H =
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where θ± = (θ1 ± θ2)/
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2, v±, K±,

and M are phenomenological parameters (in the regimes
displayed on Figure 2 (a)), λ ∼ j−1. Note that the chi-
rality is given by κi → sin

√
2πθ−(x). In weak-coupling,

Um′ ( 1, with m′ = (∂2ε(k)/∂k2)−1
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= 4j/t(16j2 − 1),

v± ∼
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n̄U/m′π2 and K± ∼
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n̄π2/Um′. In this case
only the term ∂xθ+ sin

√
2πθ− is relevant, resulting in
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√
2πθ−〉 *= 0 [21]. Hence, a small U is expected

to favor a CSF for j > 1/4, as our numerical results
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control the value of t and t′ independently. Interestingly,
their sign may be controlled as well. In the following we
consider an inverted sign for both hoppings, which result
in an anti-ferromagnetic coupling between sites [7].
Model. Ordering the sites as indicated in Fig. 1, the

physics of the system is given by a Bose-Hubbard Hamil-
tonian with on-site interactions characterized by the cou-
pling constant U , nearest-neighbor hopping t < 0 and
next-nearest-neighbor hopping t′ < 0:
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where b†i , bi are the bosonic creation/annihilation opera-

tors of particles at site i, ni = b†ibi, and we have added
the possibility of three-body interactions, characterized
by the coupling constant U3. We assume below an aver-
age unit filling n̄ = 1.
Unconstrained bosons. We discuss first the ground-

state properties of unconstrained bosons (U3 = 0). At
U = 0, the Hamiltonian (1) is diagonalized in quasi-
momentum space H =

∑

k ε(k)b
†
kbk, with the dispersion

ε(k) = |t|(cos k + j cos 2k), with j ≡ t′/t. Depending
on the frustration j we may distinguish two regimes. If
j < 1/4, the dispersion ε(k) presents a single minimum
at k = π, and hence small U will introduce a super-
fluid (SF) phase, with quasi-condensate at k = π. If
j > 1/4, ε(k) presents two non-equivalent minima at
k = k0 ≡ ± arccos[−1/4j]. As shown below, interac-
tions favor the predominant population of one of these
minima, and the system enters a chiral superfluid (CSF)
phase with a non-zero local boson current characterized
by a finite chirality 〈κi〉, with κi = i

2 (b
†
ibi+1 − H.c.). At

j = 1/4, the Lifshitz point, the dispersion becomes quar-
tic at the k = π minimum, ε(k) ∼ (k − π)4, the effective
mass m = (∂2ε(k)/∂k2)−1

k=π = 1/t(1 − 4j) diverges, and
even vanishingly small interactions become relevant.
To study the effect of interactions we combine numer-

ical calculations based on the density matrix renormal-
ization group (DMRG) method [25] (with up to N = 300
sites keeping per block on average 400 states for gapped
phases and 600 states for gapless ones), and bosoniza-
tion techniques to unveil the low-energy behavior of
model (1). For j < 1/4, we employ standard bosoniza-
tion transformations [19], with an additional oscillating
factor bi → (−1)iei

√
πθ(x), to obtain the low-energy effec-

tive theory, which is given by the sine-Gordon model

H=
vs
2

[

(∂xφ)2

K
+K(∂xθ)

2

]

−M cos[2πn̄x−
√
4πφ], (2)

where θ and ∂xφ describe phase and density fluctuations
of bosons respectively, [θ(x), ∂yφ] = iδ(x − y), vs is the
sound velocity and K the Luttinger parameter. In the
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FIG. 2: Phase diagram for unconstrained bosons as a function
of the frustration parameter j and (a) the on-site interaction
U (with U3 = 0) and (b) the three-body repulsion U3 (and
U = 0). In the figures, © indicate the boundary of the chiral
phases characterized by long-range ordered chirality-chirality
correlations 〈κiκj〉; ! indicate the boundary of the SF-phases
indicated by the critical Luttinger parameter K = 2. Note
that narrow CMI and CHI phases may occur as well. For
U, U3 ≥ 0.5 keeping nmax = 4 bosons per site in the DMRG-
simulation can be shown to be sufficient.

weak-coupling, Um ( 1, hydrodynamic relations are ex-
pected to hold: vs(j) ∼

√

n̄U/mπ2 = vs(0)
√
1− 4j and

K(j) ∼
√

n̄π2/Um = K(0)
√
1− 4j, clearly showing that

j enhances correlations. At j = 1/4, m diverges and the
system enters a Mott-insulator (MI) even for vanishingly
small U (Fig. 2(a)). The SF-MI transition takes place
however in the strong-coupling regime in which vs and
K must be determined numerically. We obtain K from
the single-particle correlations Gij = 〈bib†j〉 which in the

SF decay as ∼ (−1)i−j |i− j|−1/2K . The value K = 2
marks the boundary between SF (U < Uc, K > 2) and
MI (U > Uc, K < 2, and M > 0). The MI phase
is characterized by a hidden parity order [17], O2

P =

lim|i−j|→∞〈(−1)
∑

i<l<j δnl〉 ∼ 〈cos
√
πφ〉2, which has

been recently measured in site-resolved experiments [20].
The j > 1/4 case is best understood from bosonization

in the j ) 1 regime. We may then introduce two pairs
of bosonic fields (θ1,φ1) and (θ2,φ2), describing, respec-
tively, the subchains of even and odd sites. The effective
model is governed by the Hamiltonian density

H =
∑

α=±

vα
2

[

(∂xφα)2

Kα
+Kα(∂xθα)

2

]

(3)

+ λ∂xθ+ sin
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2πθ− − 2M cos

√
2πφ+ cos

√
2πφ−

where θ± = (θ1 ± θ2)/
√
2, φ± = (φ1 ± φ2)/

√
2, v±, K±,

and M are phenomenological parameters (in the regimes
displayed on Figure 2 (a)), λ ∼ j−1. Note that the chi-
rality is given by κi → sin

√
2πθ−(x). In weak-coupling,

Um′ ( 1, with m′ = (∂2ε(k)/∂k2)−1
k0

= 4j/t(16j2 − 1),

v± ∼
√

n̄U/m′π2 and K± ∼
√

n̄π2/Um′. In this case
only the term ∂xθ+ sin

√
2πθ− is relevant, resulting in

〈sin
√
2πθ−〉 *= 0 [21]. Hence, a small U is expected

to favor a CSF for j > 1/4, as our numerical results
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control the value of t and t′ independently. Interestingly,
their sign may be controlled as well. In the following we
consider an inverted sign for both hoppings, which result
in an anti-ferromagnetic coupling between sites [7].
Model. Ordering the sites as indicated in Fig. 1, the

physics of the system is given by a Bose-Hubbard Hamil-
tonian with on-site interactions characterized by the cou-
pling constant U , nearest-neighbor hopping t < 0 and
next-nearest-neighbor hopping t′ < 0:

H =
∑
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]
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+
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∑
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ni(ni − 1)(ni − 2),

where b†i , bi are the bosonic creation/annihilation opera-

tors of particles at site i, ni = b†ibi, and we have added
the possibility of three-body interactions, characterized
by the coupling constant U3. We assume below an aver-
age unit filling n̄ = 1.
Unconstrained bosons. We discuss first the ground-

state properties of unconstrained bosons (U3 = 0). At
U = 0, the Hamiltonian (1) is diagonalized in quasi-
momentum space H =

∑

k ε(k)b
†
kbk, with the dispersion

ε(k) = |t|(cos k + j cos 2k), with j ≡ t′/t. Depending
on the frustration j we may distinguish two regimes. If
j < 1/4, the dispersion ε(k) presents a single minimum
at k = π, and hence small U will introduce a super-
fluid (SF) phase, with quasi-condensate at k = π. If
j > 1/4, ε(k) presents two non-equivalent minima at
k = k0 ≡ ± arccos[−1/4j]. As shown below, interac-
tions favor the predominant population of one of these
minima, and the system enters a chiral superfluid (CSF)
phase with a non-zero local boson current characterized
by a finite chirality 〈κi〉, with κi = i

2 (b
†
ibi+1 − H.c.). At

j = 1/4, the Lifshitz point, the dispersion becomes quar-
tic at the k = π minimum, ε(k) ∼ (k − π)4, the effective
mass m = (∂2ε(k)/∂k2)−1

k=π = 1/t(1 − 4j) diverges, and
even vanishingly small interactions become relevant.
To study the effect of interactions we combine numer-

ical calculations based on the density matrix renormal-
ization group (DMRG) method [25] (with up to N = 300
sites keeping per block on average 400 states for gapped
phases and 600 states for gapless ones), and bosoniza-
tion techniques to unveil the low-energy behavior of
model (1). For j < 1/4, we employ standard bosoniza-
tion transformations [19], with an additional oscillating
factor bi → (−1)iei

√
πθ(x), to obtain the low-energy effec-

tive theory, which is given by the sine-Gordon model

H=
vs
2

[

(∂xφ)2

K
+K(∂xθ)

2

]

−M cos[2πn̄x−
√
4πφ], (2)

where θ and ∂xφ describe phase and density fluctuations
of bosons respectively, [θ(x), ∂yφ] = iδ(x − y), vs is the
sound velocity and K the Luttinger parameter. In the
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FIG. 2: Phase diagram for unconstrained bosons as a function
of the frustration parameter j and (a) the on-site interaction
U (with U3 = 0) and (b) the three-body repulsion U3 (and
U = 0). In the figures, © indicate the boundary of the chiral
phases characterized by long-range ordered chirality-chirality
correlations 〈κiκj〉; ! indicate the boundary of the SF-phases
indicated by the critical Luttinger parameter K = 2. Note
that narrow CMI and CHI phases may occur as well. For
U, U3 ≥ 0.5 keeping nmax = 4 bosons per site in the DMRG-
simulation can be shown to be sufficient.

weak-coupling, Um ( 1, hydrodynamic relations are ex-
pected to hold: vs(j) ∼

√

n̄U/mπ2 = vs(0)
√
1− 4j and

K(j) ∼
√

n̄π2/Um = K(0)
√
1− 4j, clearly showing that

j enhances correlations. At j = 1/4, m diverges and the
system enters a Mott-insulator (MI) even for vanishingly
small U (Fig. 2(a)). The SF-MI transition takes place
however in the strong-coupling regime in which vs and
K must be determined numerically. We obtain K from
the single-particle correlations Gij = 〈bib†j〉 which in the

SF decay as ∼ (−1)i−j |i− j|−1/2K . The value K = 2
marks the boundary between SF (U < Uc, K > 2) and
MI (U > Uc, K < 2, and M > 0). The MI phase
is characterized by a hidden parity order [17], O2

P =

lim|i−j|→∞〈(−1)
∑

i<l<j δnl〉 ∼ 〈cos
√
πφ〉2, which has

been recently measured in site-resolved experiments [20].
The j > 1/4 case is best understood from bosonization

in the j ) 1 regime. We may then introduce two pairs
of bosonic fields (θ1,φ1) and (θ2,φ2), describing, respec-
tively, the subchains of even and odd sites. The effective
model is governed by the Hamiltonian density

H =
∑

α=±
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[

(∂xφα)2
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2

]
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√
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where θ± = (θ1 ± θ2)/
√
2, φ± = (φ1 ± φ2)/

√
2, v±, K±,

and M are phenomenological parameters (in the regimes
displayed on Figure 2 (a)), λ ∼ j−1. Note that the chi-
rality is given by κi → sin

√
2πθ−(x). In weak-coupling,

Um′ ( 1, with m′ = (∂2ε(k)/∂k2)−1
k0

= 4j/t(16j2 − 1),

v± ∼
√

n̄U/m′π2 and K± ∼
√

n̄π2/Um′. In this case
only the term ∂xθ+ sin

√
2πθ− is relevant, resulting in

〈sin
√
2πθ−〉 *= 0 [21]. Hence, a small U is expected

to favor a CSF for j > 1/4, as our numerical results
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confirm (Fig. 2(a)). The CSF phase is characterized by
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4K+ , where κ ∼ 〈κi〉.
Moreover, depending on the values of K± bosoniza-

tion opens the possibility of two consecutive phase transi-
tions with increasing U starting from the CSF phase [22],
which we have confirmed with our DMRG calcula-
tions (Fig. 2(a)). First a KT transition occurs from CSF
to chiral-Mott (CMI), a narrow Mott phase with finite
chirality. Then an Ising transition is produced from CMI
to non-chiral MI. At both KT transition lines in Fig. 2(a)
(SF-MI and CSF-CMI), up to a logarithmic prefactor,
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4, where in CSF κ %= 0.

Constrained bosons. As mentioned above, sufficiently
large three-body losses may result in a three-body con-
straint (b†i )

3 = 0 (U3 = ∞) [9]. In that case, Model (1)
may be mapped to a large extent onto a frustrated spin-
1 chain model [23], which, presents the possibility of
a gapped Haldane phase, characterized by a non-local
string order. Hence, interestingly, constrained bosons in
a zig-zag lattice may be expected to allow for the observa-
tion of the HI phase in the absence of polar interactions.

Indeed, a model with U = 0 and finite U3

shows that at the Lifshitz point, j = 1/4, a HI
phase is stabilized for arbitrarily weak U3 (Fig. 2(b)).
The effective theory describing the HI is again the
sine-Gordon model (2) with K < 2. However,
now M < 0, which selects a hidden string or-
der O2

S ≡ lim|i−j|→∞〈δni exp[iπ
∑

i<l<j δnl]δnj〉 ∼
〈sin

√
πθ〉2 [17]. Resembling the case of Fig. 2(a), SF, HI,

chiral-HI (CHI) and CSF phases occur (Fig. 2(b)). These
phases are expected for U3 = ∞ from known results in
frustrated spin-1 chains [27–29]. Our DMRG simulations
suggest that all these phases meet at j = 1/4 for U3 → 0.

Figure 3 shows the phase diagram for constrained
bosons (U3 = ∞). Starting from the HI phase, increas-
ing U > 0 can induce a Gaussian HI-MI phase transition,
characterized by a vanishing M = 0 in (2), resembling
the phase transition between Haldane and large-D phases
induced by single-ion anisotropy in spin-1 chains [30].
The SF phase is separated from the MI and HI by
KT transitions, whereas at the CSF boundary with the
MI (HI) a CMI (CHI) occurs as mentioned above (these
very narrow regions are not resolved in Fig. 3).

Interestingly, constrained bosons allow as well for the
exploration of attractive two-body interactions, U < 0,
without collapse. The U < 0 phases are also depicted in
Fig. 3. For sufficiently large |U |, bosons tend to cluster
in pairs and, as already discussed in Ref. [9], for j = 0 an
Ising transition between a SF and a pair superfluid (PSF)
occurs[24], analogous to the XY1 to XY2 phase transi-
tion in spin-1 chains induced by single-ion anisotropy [30]
(this transition has been recently studied for 2D lattices
as well [11, 12]). The PSF phase is characterized by
an exponentially decaying Gij but algebraically decay-

ing pair-correlation function G(2)
ij = 〈(b†i )2(bj)2〉. Indeed
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FIG. 3: Phase diagram for constrained bosons as a function
of the on-site interaction U and the frustration parameter j.
Narrow CMI and CHI phases may occur along the phase tran-
sition lines from CSF to MI and CSF to HI, respectively, but
their extension would be negligible in the figure. For the pre-
cise location of the PSF-DW and HI-MI transition we have
additionally analyzed the energy-level-crossings with, respec-
tively, periodic and twisted-boundary conditions. The KT
transitions from SF to MI and HI have been determined by
the extraction of the Luttinger parameter K [26].

a PSF occurs for sufficiently large |U |, also for j > 1/4
which is characterized in bosonization in Eq. (3) by a
gapped antisymmetric sector, with pinned φ−, and a gap-
less symmetric sector [31]. Though one may anticipate
an Ising phase transition between the CSF (with broken
discrete parity symmetry) and the PSF (with restored
symmetry), the behavior of O2

P and κ (not shown) hints
to a weakly first-order nature.
Small U < 0 disfavors singly-occupied sites and

thus enhances O2
S and the bulk excitation gap of the

HI phase (see Figs. 4 and 5). However, since large
U < 0 removes singly occupied sites completely, just
like strong nearest neighbour repulsion, it is expected
that the HI phase eventually will transform for growing
|U | into a gapped density-wave (DW) phase via Ising
phase transition [14], and string order will evolve into
DW order (Fig. 4 shows how Os merges with ODW ≡
limj→∞(−1)j〈nini+j〉 for U/t < −3). The DW phase is
characterized by an exponential decay of both Gij and

G(2)
ij though a finite ODW . Our DMRG results confirm

this scenario (see Fig. 4), showing that a DW phase is lo-
cated between the above mentioned PSF regions (Fig. 3).
Interestingly the DW phase remains in between both

PSF regions all the way into U → −∞. In that regime,
we may project out singly-occupied sites, and introduce
a pseudo-spin-1/2, identifying |0〉 → |↓〉, |2〉 → |↑〉, and
defining the spin operators τ−i → (−1)ib2i /

√
2, 2τzi →

b†ibi − 1. The effective model to leading order in 1/|U | is
a spin-1/2 chain:

H 1
2
=J

∑

i
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confirm (Fig. 2(a)). The CSF phase is characterized by
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4K+ , where κ ∼ 〈κi〉.
Moreover, depending on the values of K± bosoniza-

tion opens the possibility of two consecutive phase transi-
tions with increasing U starting from the CSF phase [22],
which we have confirmed with our DMRG calcula-
tions (Fig. 2(a)). First a KT transition occurs from CSF
to chiral-Mott (CMI), a narrow Mott phase with finite
chirality. Then an Ising transition is produced from CMI
to non-chiral MI. At both KT transition lines in Fig. 2(a)
(SF-MI and CSF-CMI), up to a logarithmic prefactor,
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4, where in CSF κ %= 0.

Constrained bosons. As mentioned above, sufficiently
large three-body losses may result in a three-body con-
straint (b†i )

3 = 0 (U3 = ∞) [9]. In that case, Model (1)
may be mapped to a large extent onto a frustrated spin-
1 chain model [23], which, presents the possibility of
a gapped Haldane phase, characterized by a non-local
string order. Hence, interestingly, constrained bosons in
a zig-zag lattice may be expected to allow for the observa-
tion of the HI phase in the absence of polar interactions.

Indeed, a model with U = 0 and finite U3

shows that at the Lifshitz point, j = 1/4, a HI
phase is stabilized for arbitrarily weak U3 (Fig. 2(b)).
The effective theory describing the HI is again the
sine-Gordon model (2) with K < 2. However,
now M < 0, which selects a hidden string or-
der O2

S ≡ lim|i−j|→∞〈δni exp[iπ
∑

i<l<j δnl]δnj〉 ∼
〈sin

√
πθ〉2 [17]. Resembling the case of Fig. 2(a), SF, HI,

chiral-HI (CHI) and CSF phases occur (Fig. 2(b)). These
phases are expected for U3 = ∞ from known results in
frustrated spin-1 chains [27–29]. Our DMRG simulations
suggest that all these phases meet at j = 1/4 for U3 → 0.

Figure 3 shows the phase diagram for constrained
bosons (U3 = ∞). Starting from the HI phase, increas-
ing U > 0 can induce a Gaussian HI-MI phase transition,
characterized by a vanishing M = 0 in (2), resembling
the phase transition between Haldane and large-D phases
induced by single-ion anisotropy in spin-1 chains [30].
The SF phase is separated from the MI and HI by
KT transitions, whereas at the CSF boundary with the
MI (HI) a CMI (CHI) occurs as mentioned above (these
very narrow regions are not resolved in Fig. 3).

Interestingly, constrained bosons allow as well for the
exploration of attractive two-body interactions, U < 0,
without collapse. The U < 0 phases are also depicted in
Fig. 3. For sufficiently large |U |, bosons tend to cluster
in pairs and, as already discussed in Ref. [9], for j = 0 an
Ising transition between a SF and a pair superfluid (PSF)
occurs[24], analogous to the XY1 to XY2 phase transi-
tion in spin-1 chains induced by single-ion anisotropy [30]
(this transition has been recently studied for 2D lattices
as well [11, 12]). The PSF phase is characterized by
an exponentially decaying Gij but algebraically decay-

ing pair-correlation function G(2)
ij = 〈(b†i )2(bj)2〉. Indeed
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FIG. 3: Phase diagram for constrained bosons as a function
of the on-site interaction U and the frustration parameter j.
Narrow CMI and CHI phases may occur along the phase tran-
sition lines from CSF to MI and CSF to HI, respectively, but
their extension would be negligible in the figure. For the pre-
cise location of the PSF-DW and HI-MI transition we have
additionally analyzed the energy-level-crossings with, respec-
tively, periodic and twisted-boundary conditions. The KT
transitions from SF to MI and HI have been determined by
the extraction of the Luttinger parameter K [26].

a PSF occurs for sufficiently large |U |, also for j > 1/4
which is characterized in bosonization in Eq. (3) by a
gapped antisymmetric sector, with pinned φ−, and a gap-
less symmetric sector [31]. Though one may anticipate
an Ising phase transition between the CSF (with broken
discrete parity symmetry) and the PSF (with restored
symmetry), the behavior of O2

P and κ (not shown) hints
to a weakly first-order nature.
Small U < 0 disfavors singly-occupied sites and

thus enhances O2
S and the bulk excitation gap of the

HI phase (see Figs. 4 and 5). However, since large
U < 0 removes singly occupied sites completely, just
like strong nearest neighbour repulsion, it is expected
that the HI phase eventually will transform for growing
|U | into a gapped density-wave (DW) phase via Ising
phase transition [14], and string order will evolve into
DW order (Fig. 4 shows how Os merges with ODW ≡
limj→∞(−1)j〈nini+j〉 for U/t < −3). The DW phase is
characterized by an exponential decay of both Gij and

G(2)
ij though a finite ODW . Our DMRG results confirm

this scenario (see Fig. 4), showing that a DW phase is lo-
cated between the above mentioned PSF regions (Fig. 3).
Interestingly the DW phase remains in between both

PSF regions all the way into U → −∞. In that regime,
we may project out singly-occupied sites, and introduce
a pseudo-spin-1/2, identifying |0〉 → |↓〉, |2〉 → |↑〉, and
defining the spin operators τ−i → (−1)ib2i /

√
2, 2τzi →

b†ibi − 1. The effective model to leading order in 1/|U | is
a spin-1/2 chain:

H 1
2
=J

∑

i

[
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confirm (Fig. 2(a)). The CSF phase is characterized by
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4K+ , where κ ∼ 〈κi〉.
Moreover, depending on the values of K± bosoniza-

tion opens the possibility of two consecutive phase transi-
tions with increasing U starting from the CSF phase [22],
which we have confirmed with our DMRG calcula-
tions (Fig. 2(a)). First a KT transition occurs from CSF
to chiral-Mott (CMI), a narrow Mott phase with finite
chirality. Then an Ising transition is produced from CMI
to non-chiral MI. At both KT transition lines in Fig. 2(a)
(SF-MI and CSF-CMI), up to a logarithmic prefactor,
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4, where in CSF κ %= 0.

Constrained bosons. As mentioned above, sufficiently
large three-body losses may result in a three-body con-
straint (b†i )

3 = 0 (U3 = ∞) [9]. In that case, Model (1)
may be mapped to a large extent onto a frustrated spin-
1 chain model [23], which, presents the possibility of
a gapped Haldane phase, characterized by a non-local
string order. Hence, interestingly, constrained bosons in
a zig-zag lattice may be expected to allow for the observa-
tion of the HI phase in the absence of polar interactions.

Indeed, a model with U = 0 and finite U3

shows that at the Lifshitz point, j = 1/4, a HI
phase is stabilized for arbitrarily weak U3 (Fig. 2(b)).
The effective theory describing the HI is again the
sine-Gordon model (2) with K < 2. However,
now M < 0, which selects a hidden string or-
der O2

S ≡ lim|i−j|→∞〈δni exp[iπ
∑

i<l<j δnl]δnj〉 ∼
〈sin

√
πθ〉2 [17]. Resembling the case of Fig. 2(a), SF, HI,

chiral-HI (CHI) and CSF phases occur (Fig. 2(b)). These
phases are expected for U3 = ∞ from known results in
frustrated spin-1 chains [27–29]. Our DMRG simulations
suggest that all these phases meet at j = 1/4 for U3 → 0.

Figure 3 shows the phase diagram for constrained
bosons (U3 = ∞). Starting from the HI phase, increas-
ing U > 0 can induce a Gaussian HI-MI phase transition,
characterized by a vanishing M = 0 in (2), resembling
the phase transition between Haldane and large-D phases
induced by single-ion anisotropy in spin-1 chains [30].
The SF phase is separated from the MI and HI by
KT transitions, whereas at the CSF boundary with the
MI (HI) a CMI (CHI) occurs as mentioned above (these
very narrow regions are not resolved in Fig. 3).

Interestingly, constrained bosons allow as well for the
exploration of attractive two-body interactions, U < 0,
without collapse. The U < 0 phases are also depicted in
Fig. 3. For sufficiently large |U |, bosons tend to cluster
in pairs and, as already discussed in Ref. [9], for j = 0 an
Ising transition between a SF and a pair superfluid (PSF)
occurs[24], analogous to the XY1 to XY2 phase transi-
tion in spin-1 chains induced by single-ion anisotropy [30]
(this transition has been recently studied for 2D lattices
as well [11, 12]). The PSF phase is characterized by
an exponentially decaying Gij but algebraically decay-

ing pair-correlation function G(2)
ij = 〈(b†i )2(bj)2〉. Indeed
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FIG. 3: Phase diagram for constrained bosons as a function
of the on-site interaction U and the frustration parameter j.
Narrow CMI and CHI phases may occur along the phase tran-
sition lines from CSF to MI and CSF to HI, respectively, but
their extension would be negligible in the figure. For the pre-
cise location of the PSF-DW and HI-MI transition we have
additionally analyzed the energy-level-crossings with, respec-
tively, periodic and twisted-boundary conditions. The KT
transitions from SF to MI and HI have been determined by
the extraction of the Luttinger parameter K [26].

a PSF occurs for sufficiently large |U |, also for j > 1/4
which is characterized in bosonization in Eq. (3) by a
gapped antisymmetric sector, with pinned φ−, and a gap-
less symmetric sector [31]. Though one may anticipate
an Ising phase transition between the CSF (with broken
discrete parity symmetry) and the PSF (with restored
symmetry), the behavior of O2

P and κ (not shown) hints
to a weakly first-order nature.
Small U < 0 disfavors singly-occupied sites and

thus enhances O2
S and the bulk excitation gap of the

HI phase (see Figs. 4 and 5). However, since large
U < 0 removes singly occupied sites completely, just
like strong nearest neighbour repulsion, it is expected
that the HI phase eventually will transform for growing
|U | into a gapped density-wave (DW) phase via Ising
phase transition [14], and string order will evolve into
DW order (Fig. 4 shows how Os merges with ODW ≡
limj→∞(−1)j〈nini+j〉 for U/t < −3). The DW phase is
characterized by an exponential decay of both Gij and

G(2)
ij though a finite ODW . Our DMRG results confirm

this scenario (see Fig. 4), showing that a DW phase is lo-
cated between the above mentioned PSF regions (Fig. 3).
Interestingly the DW phase remains in between both

PSF regions all the way into U → −∞. In that regime,
we may project out singly-occupied sites, and introduce
a pseudo-spin-1/2, identifying |0〉 → |↓〉, |2〉 → |↑〉, and
defining the spin operators τ−i → (−1)ib2i /

√
2, 2τzi →

b†ibi − 1. The effective model to leading order in 1/|U | is
a spin-1/2 chain:
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FIG. 4: Order parameters O2
P (!), O2

S (!), ODW ("), and
energy gap (×) as function of U for constrained bosons on
the j = 0.3 line (N = 160). The parity, as defined in the
Mott state, must get an additional oscillating factor in the
DW phase O2

P → (−1)i−jO2
P .

where J = t2/|U |. For j = 0, this is a SU(2) symmet-
ric chain, whereas the j2J terms break the symmetry
down to U(1), moving the effective theory obtained after
bosonization of H 1

2
towards the irrelevant direction (in

the renormalization group sense). As a result of this, a
gapless XY phase of the spin-1/2 chain is expected, i.e.
a PSF phase. Higher order terms in 1/|U | (not shown
explicitely) break, even for j = 0, the SU(2) symmetry
to U(1) in the irrelevant direction. However, interest-
ingly, the ring exchange along the elementary triangle of
the zig-zag chain, with amplitude jt3/U2, forces the ef-
fective theory towards the relevant direction, leading to
a gapped Néel phase of the spin-1/2 chain, i.e. the DW
phase. The competition between exchange along the lat-
tice bonds and ring-exchange leads hence to two consec-
utive KT phase transitions induced by j, for j ! 1 first
from PSF to DW, followed by DW back to PSF. The
width of the DW phase is ∼ t/|U |, and it extends all the
way into the U → −∞ limit.
Finally, our DMRG simulations show a narrow re-

gion where a direct, apparently first-order, HI-PSF tran-
sition occurs, characterized by discontinuous jumps of
O2

S,P (Fig. 5). This first-order nature is explained be-
cause on one hand increasing |U | within the HI phase
increases O2

S due to the suppression of singly-occupied
sites, and on the other hand, for 0.6 " j " 0.75 (Fig. 3),
a growing |U | destroys the insulating state in favour of a
PSF phase, where string order cannot exist. On the con-
trary, O2

S diminishes for decreasing |U | when approaching
the HI-CSF boundary (Fig. 5)
Conclusions. In summary, the interplay between geo-

metrical frustration and interactions leads to rich physics
for ultra-cold bosons in zig-zag optical lattices. Un-
constrained bosons may present chiral superfluidity, and
Mott insulator for vanishingly small interactions. Con-
strained bosons may allow for the observation of Haldane-
insulator without the necessity of polar interactions, as
well as pair-superfluid and density wave phases at at-
tractive interactions. All the predicted phases may be
detected using state of the art techniques. The SF and
CSF phases may be distinguished by means of time-of-
flight (TOF) techniques, in a similar way as recently done
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FIG. 5: Order parameters O2
P (!), O2

S (!), and κ2 (©) as
function of U for constrained bosons on the j = 0.6 line (N =
160). Both O2

P,S show jumps at the HI to PSF transition
at U ' −2.5. In the PSF, similar to the DW phase, O2

P is
defined with an additional oscillating factor.

for condensates in triangular optical lattices [7]. The DW
and PSF phases are characterized by double or zero oc-
cupancy, which could be detected using parity measure-
ments as those introduced in Refs [32, 33], and could be
discerned from each other by the absence/presence of in-
terference fringes in TOF [34]. Finally, the string-order
of the HI phase may be studied using similar site-resolved
measurements as those recently reported for the measure-
ment of non-local parity order in Mott insulators [20].
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confirm (Fig. 2(a)). The CSF phase is characterized by
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4K+ , where κ ∼ 〈κi〉.
Moreover, depending on the values of K± bosoniza-

tion opens the possibility of two consecutive phase transi-
tions with increasing U starting from the CSF phase [22],
which we have confirmed with our DMRG calcula-
tions (Fig. 2(a)). First a KT transition occurs from CSF
to chiral-Mott (CMI), a narrow Mott phase with finite
chirality. Then an Ising transition is produced from CMI
to non-chiral MI. At both KT transition lines in Fig. 2(a)
(SF-MI and CSF-CMI), up to a logarithmic prefactor,
Gij ∼ (−1)i−je−iκ(i−j)|i− j|−1/4, where in CSF κ %= 0.

Constrained bosons. As mentioned above, sufficiently
large three-body losses may result in a three-body con-
straint (b†i )

3 = 0 (U3 = ∞) [9]. In that case, Model (1)
may be mapped to a large extent onto a frustrated spin-
1 chain model [23], which, presents the possibility of
a gapped Haldane phase, characterized by a non-local
string order. Hence, interestingly, constrained bosons in
a zig-zag lattice may be expected to allow for the observa-
tion of the HI phase in the absence of polar interactions.

Indeed, a model with U = 0 and finite U3

shows that at the Lifshitz point, j = 1/4, a HI
phase is stabilized for arbitrarily weak U3 (Fig. 2(b)).
The effective theory describing the HI is again the
sine-Gordon model (2) with K < 2. However,
now M < 0, which selects a hidden string or-
der O2

S ≡ lim|i−j|→∞〈δni exp[iπ
∑

i<l<j δnl]δnj〉 ∼
〈sin

√
πθ〉2 [17]. Resembling the case of Fig. 2(a), SF, HI,

chiral-HI (CHI) and CSF phases occur (Fig. 2(b)). These
phases are expected for U3 = ∞ from known results in
frustrated spin-1 chains [27–29]. Our DMRG simulations
suggest that all these phases meet at j = 1/4 for U3 → 0.

Figure 3 shows the phase diagram for constrained
bosons (U3 = ∞). Starting from the HI phase, increas-
ing U > 0 can induce a Gaussian HI-MI phase transition,
characterized by a vanishing M = 0 in (2), resembling
the phase transition between Haldane and large-D phases
induced by single-ion anisotropy in spin-1 chains [30].
The SF phase is separated from the MI and HI by
KT transitions, whereas at the CSF boundary with the
MI (HI) a CMI (CHI) occurs as mentioned above (these
very narrow regions are not resolved in Fig. 3).

Interestingly, constrained bosons allow as well for the
exploration of attractive two-body interactions, U < 0,
without collapse. The U < 0 phases are also depicted in
Fig. 3. For sufficiently large |U |, bosons tend to cluster
in pairs and, as already discussed in Ref. [9], for j = 0 an
Ising transition between a SF and a pair superfluid (PSF)
occurs[24], analogous to the XY1 to XY2 phase transi-
tion in spin-1 chains induced by single-ion anisotropy [30]
(this transition has been recently studied for 2D lattices
as well [11, 12]). The PSF phase is characterized by
an exponentially decaying Gij but algebraically decay-

ing pair-correlation function G(2)
ij = 〈(b†i )2(bj)2〉. Indeed
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FIG. 3: Phase diagram for constrained bosons as a function
of the on-site interaction U and the frustration parameter j.
Narrow CMI and CHI phases may occur along the phase tran-
sition lines from CSF to MI and CSF to HI, respectively, but
their extension would be negligible in the figure. For the pre-
cise location of the PSF-DW and HI-MI transition we have
additionally analyzed the energy-level-crossings with, respec-
tively, periodic and twisted-boundary conditions. The KT
transitions from SF to MI and HI have been determined by
the extraction of the Luttinger parameter K [26].

a PSF occurs for sufficiently large |U |, also for j > 1/4
which is characterized in bosonization in Eq. (3) by a
gapped antisymmetric sector, with pinned φ−, and a gap-
less symmetric sector [31]. Though one may anticipate
an Ising phase transition between the CSF (with broken
discrete parity symmetry) and the PSF (with restored
symmetry), the behavior of O2

P and κ (not shown) hints
to a weakly first-order nature.
Small U < 0 disfavors singly-occupied sites and

thus enhances O2
S and the bulk excitation gap of the

HI phase (see Figs. 4 and 5). However, since large
U < 0 removes singly occupied sites completely, just
like strong nearest neighbour repulsion, it is expected
that the HI phase eventually will transform for growing
|U | into a gapped density-wave (DW) phase via Ising
phase transition [14], and string order will evolve into
DW order (Fig. 4 shows how Os merges with ODW ≡
limj→∞(−1)j〈nini+j〉 for U/t < −3). The DW phase is
characterized by an exponential decay of both Gij and

G(2)
ij though a finite ODW . Our DMRG results confirm

this scenario (see Fig. 4), showing that a DW phase is lo-
cated between the above mentioned PSF regions (Fig. 3).
Interestingly the DW phase remains in between both

PSF regions all the way into U → −∞. In that regime,
we may project out singly-occupied sites, and introduce
a pseudo-spin-1/2, identifying |0〉 → |↓〉, |2〉 → |↑〉, and
defining the spin operators τ−i → (−1)ib2i /

√
2, 2τzi →

b†ibi − 1. The effective model to leading order in 1/|U | is
a spin-1/2 chain:
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z
i+2−τxi τ

x
i+2−τyi τ

y
i+2)

]

, (4)
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FIG. 4: Order parameters O2
P (!), O2

S (!), ODW ("), and
energy gap (×) as function of U for constrained bosons on
the j = 0.3 line (N = 160). The parity, as defined in the
Mott state, must get an additional oscillating factor in the
DW phase O2

P → (−1)i−jO2
P .

where J = t2/|U |. For j = 0, this is a SU(2) symmet-
ric chain, whereas the j2J terms break the symmetry
down to U(1), moving the effective theory obtained after
bosonization of H 1

2
towards the irrelevant direction (in

the renormalization group sense). As a result of this, a
gapless XY phase of the spin-1/2 chain is expected, i.e.
a PSF phase. Higher order terms in 1/|U | (not shown
explicitely) break, even for j = 0, the SU(2) symmetry
to U(1) in the irrelevant direction. However, interest-
ingly, the ring exchange along the elementary triangle of
the zig-zag chain, with amplitude jt3/U2, forces the ef-
fective theory towards the relevant direction, leading to
a gapped Néel phase of the spin-1/2 chain, i.e. the DW
phase. The competition between exchange along the lat-
tice bonds and ring-exchange leads hence to two consec-
utive KT phase transitions induced by j, for j ! 1 first
from PSF to DW, followed by DW back to PSF. The
width of the DW phase is ∼ t/|U |, and it extends all the
way into the U → −∞ limit.
Finally, our DMRG simulations show a narrow re-

gion where a direct, apparently first-order, HI-PSF tran-
sition occurs, characterized by discontinuous jumps of
O2

S,P (Fig. 5). This first-order nature is explained be-
cause on one hand increasing |U | within the HI phase
increases O2

S due to the suppression of singly-occupied
sites, and on the other hand, for 0.6 " j " 0.75 (Fig. 3),
a growing |U | destroys the insulating state in favour of a
PSF phase, where string order cannot exist. On the con-
trary, O2

S diminishes for decreasing |U | when approaching
the HI-CSF boundary (Fig. 5)
Conclusions. In summary, the interplay between geo-

metrical frustration and interactions leads to rich physics
for ultra-cold bosons in zig-zag optical lattices. Un-
constrained bosons may present chiral superfluidity, and
Mott insulator for vanishingly small interactions. Con-
strained bosons may allow for the observation of Haldane-
insulator without the necessity of polar interactions, as
well as pair-superfluid and density wave phases at at-
tractive interactions. All the predicted phases may be
detected using state of the art techniques. The SF and
CSF phases may be distinguished by means of time-of-
flight (TOF) techniques, in a similar way as recently done
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FIG. 5: Order parameters O2
P (!), O2

S (!), and κ2 (©) as
function of U for constrained bosons on the j = 0.6 line (N =
160). Both O2

P,S show jumps at the HI to PSF transition
at U ' −2.5. In the PSF, similar to the DW phase, O2

P is
defined with an additional oscillating factor.

for condensates in triangular optical lattices [7]. The DW
and PSF phases are characterized by double or zero oc-
cupancy, which could be detected using parity measure-
ments as those introduced in Refs [32, 33], and could be
discerned from each other by the absence/presence of in-
terference fringes in TOF [34]. Finally, the string-order
of the HI phase may be studied using similar site-resolved
measurements as those recently reported for the measure-
ment of non-local parity order in Mott insulators [20].
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FIG. 2: (Color online) iTEBD results for the holon (circles)
and doublon (squares) populations as a function of J/U0 for a
1D system with µ/U0 = 0.3 and Ω = 2.405. Note the absence
of defects in the MI (J/U0 < 0.15), and the appearance of the
holon (H-SF) and doublon SF (D-SF).

|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑

<i,j>

h†
ihj + (µ− U0(n− 1))

∑

i

h†
ihi, (5)

Hp = −J(n+ 1)
∑

<i,j>

p†ipj + (U0n− µ)
∑

i

p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-

[Rapp et al., arXiv:1207.0641] 
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Ultracold lattice gases with periodically modulated interactions
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Institut für Theoretische Physik, Leibniz Universität, 30167 Hannover, Germany

(Dated: July 6, 2012)

We show that a time-dependent magnetic field inducing a periodically modulated scattering length
may lead to interesting novel scenarios for cold gases in optical lattices, characterized by a nonlinear
hopping depending on the number difference at neighboring sites. We discuss the rich physics
introduced by this hopping, including pair superfluidity, exactly defect-free Mott-insulator states for
finite hopping, and pure holon- and doublon superfluids. We also address experimental detection,
showing that the introduced non-linear hopping may lead in harmonically trapped gases to abrupt
drops in the density profile marking the interface between different superfluid regions.

PACS numbers: 37.10.Jk, 67.85.Hj, 73.43.Nq

Ultracold atoms in optical lattices formed by laser
beams provide an excellent environment for studying
lattice models of general relevance in condensed-matter
physics, and in particular, variations of the celebrated
Hubbard model [1, 2]. Cold lattice gases allow for an
unprecedented degree of control of various experimental
parameters, even in real time. In particular, interpar-
ticle interactions can be changed by means of Feshbach
resonances [3]. Moreover, recent milestone achievements
allow for site-resolved detection, permitting the study of
in-situ densities [4, 5], and more involved measurements,
as that of non-local parity order [6].

The modulation of the lattice parameters in real time
opens interesting possibilities of control and quantum en-
gineering. In particular, a periodic lattice modulation
translates by means of Floquet theorem [7] into a mod-
ified hopping constant [8], which may even reverse its
sign as shown in experiments [9, 10]. This technique has
been employed to drive the Mott-insulator (MI) to super-
fluid (SF) transition [11], and to simulate frustrated clas-
sical magnetism [12]. Recent experiments have explored
as well the fascinating perspectives offered by periodically
driven lattices in strongly correlated gases [13, 14].

The effective Hubbard-like models describing these ul-
tracold lattice gases are typically characterized by a hop-
ping rate which is independent of the number of particles
at the sites. This is, however, not necessarily the case.
Multiband physics may lead to occupation-dependent
hopping [15, 16]. In addition, long-range dipole-dipole
interactions may lead to number-dependent hoppings as
well, for sufficiently large dipole strengths [17]. A major
consequence of non-linear hopping is the possibility to
observe pair superfluidity (PSF) [17, 18].

In this Letter, we consider a cold lattice gas in the pres-
ence of a periodically modulated magnetic field. In the
vicinity of a Feshbach resonance, this field induces mod-
ulated interparticle interactions. Interestingly, Ref. [19]
has shown that such periodic modulations of the inter-
action potential may lead to a many-body coherent de-
struction of tunneling in two-mode BECs. As shown
below, the generalization of this effect to lattice gases,

leads under proper conditions to an effective Hubbard-
like model with a non-linear hopping which, in contrast
to other proposals mentioned above, depends on the dif-
ference of occupations at neighboring sites, and retains its
non-linear character even for weak lattices. We discuss
the rich physics introduced by this hopping, including
PSF phases, exactly defect-free MI states for finite hop-
ping, and pure holon- and doublon superfluids. We also
address experimental detection, showing that the stud-
ied non-linear hopping may lead to abrupt drops in the
density profile of harmonically trapped gases.
We consider bosons in a lattice in the presence of a

periodically modulated magnetic field B(t) = B(t + T )
(with period T = 2π/ω) chosen close to a Feshbach res-
onance, where the s-wave scattering length acquires the

form a(t) = abg
(

1 + ∆B
B(t)−Br

)

= a0 +
∑

l>0 al cos(lωt).

Here ∆B and Br determine the width and position of
the resonance, respectively, and abg is the background
scattering length [3]. Assuming that the gap between
the first two lattice bands is much larger than any other
energy scale in the problem, we consider only the low-
est band and describe the system by a Bose-Hubbard
model (BHM) [1, 2]:

H(t) = −J
∑

〈ij〉

b†ibj +
U(t)

2

∑

i

n̂i (n̂i − 1)−
∑

i

µ n̂i, (1)

where bi (b†i ) is the bosonic annihilation (creation) op-

erator at site i, n̂i = b†ibi, µ is the chemical poten-
tial, J > 0 is the hopping rate and 〈..〉 denotes nearest
neighbors. Interactions are characterized by a coupling
U(t) = U0 +

∑

l>0 Ul cos(lωt) = U0 + Ũ(t), with U0 > 0

and Ul = 4π!2al

M

∫

d3r|w(r)|4. Here w(r) is the lowest
Wannier function and M is the atomic mass.
We apply a similar analysis as the one used for shaken

lattices [8]. We specify a Floquet basis

|{nj},m〉 = eimωte−i
V (t)

2

∑
j n̂j(n̂j−1)|{nj}〉 , (2)

where m defines the Floquet sectors and |{nj}〉 is the
Fock basis, characterized by the atom number at each
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We show that a time-dependent magnetic field inducing a periodically modulated scattering length
may lead to interesting novel scenarios for cold gases in optical lattices, characterized by a nonlinear
hopping depending on the number difference at neighboring sites. We discuss the rich physics
introduced by this hopping, including pair superfluidity, exactly defect-free Mott-insulator states for
finite hopping, and pure holon- and doublon superfluids. We also address experimental detection,
showing that the introduced non-linear hopping may lead in harmonically trapped gases to abrupt
drops in the density profile marking the interface between different superfluid regions.

PACS numbers: 37.10.Jk, 67.85.Hj, 73.43.Nq

Ultracold atoms in optical lattices formed by laser
beams provide an excellent environment for studying
lattice models of general relevance in condensed-matter
physics, and in particular, variations of the celebrated
Hubbard model [1, 2]. Cold lattice gases allow for an
unprecedented degree of control of various experimental
parameters, even in real time. In particular, interpar-
ticle interactions can be changed by means of Feshbach
resonances [3]. Moreover, recent milestone achievements
allow for site-resolved detection, permitting the study of
in-situ densities [4, 5], and more involved measurements,
as that of non-local parity order [6].

The modulation of the lattice parameters in real time
opens interesting possibilities of control and quantum en-
gineering. In particular, a periodic lattice modulation
translates by means of Floquet theorem [7] into a mod-
ified hopping constant [8], which may even reverse its
sign as shown in experiments [9, 10]. This technique has
been employed to drive the Mott-insulator (MI) to super-
fluid (SF) transition [11], and to simulate frustrated clas-
sical magnetism [12]. Recent experiments have explored
as well the fascinating perspectives offered by periodically
driven lattices in strongly correlated gases [13, 14].

The effective Hubbard-like models describing these ul-
tracold lattice gases are typically characterized by a hop-
ping rate which is independent of the number of particles
at the sites. This is, however, not necessarily the case.
Multiband physics may lead to occupation-dependent
hopping [15, 16]. In addition, long-range dipole-dipole
interactions may lead to number-dependent hoppings as
well, for sufficiently large dipole strengths [17]. A major
consequence of non-linear hopping is the possibility to
observe pair superfluidity (PSF) [17, 18].

In this Letter, we consider a cold lattice gas in the pres-
ence of a periodically modulated magnetic field. In the
vicinity of a Feshbach resonance, this field induces mod-
ulated interparticle interactions. Interestingly, Ref. [19]
has shown that such periodic modulations of the inter-
action potential may lead to a many-body coherent de-
struction of tunneling in two-mode BECs. As shown
below, the generalization of this effect to lattice gases,

leads under proper conditions to an effective Hubbard-
like model with a non-linear hopping which, in contrast
to other proposals mentioned above, depends on the dif-
ference of occupations at neighboring sites, and retains its
non-linear character even for weak lattices. We discuss
the rich physics introduced by this hopping, including
PSF phases, exactly defect-free MI states for finite hop-
ping, and pure holon- and doublon superfluids. We also
address experimental detection, showing that the stud-
ied non-linear hopping may lead to abrupt drops in the
density profile of harmonically trapped gases.
We consider bosons in a lattice in the presence of a

periodically modulated magnetic field B(t) = B(t + T )
(with period T = 2π/ω) chosen close to a Feshbach res-
onance, where the s-wave scattering length acquires the

form a(t) = abg
(

1 + ∆B
B(t)−Br

)

= a0 +
∑

l>0 al cos(lωt).

Here ∆B and Br determine the width and position of
the resonance, respectively, and abg is the background
scattering length [3]. Assuming that the gap between
the first two lattice bands is much larger than any other
energy scale in the problem, we consider only the low-
est band and describe the system by a Bose-Hubbard
model (BHM) [1, 2]:

H(t) = −J
∑

〈ij〉

b†ibj +
U(t)

2

∑

i

n̂i (n̂i − 1)−
∑

i

µ n̂i, (1)

where bi (b†i ) is the bosonic annihilation (creation) op-

erator at site i, n̂i = b†ibi, µ is the chemical poten-
tial, J > 0 is the hopping rate and 〈..〉 denotes nearest
neighbors. Interactions are characterized by a coupling
U(t) = U0 +

∑

l>0 Ul cos(lωt) = U0 + Ũ(t), with U0 > 0

and Ul = 4π!2al

M

∫

d3r|w(r)|4. Here w(r) is the lowest
Wannier function and M is the atomic mass.
We apply a similar analysis as the one used for shaken

lattices [8]. We specify a Floquet basis

|{nj},m〉 = eimωte−i
V (t)

2

∑
j n̂j(n̂j−1)|{nj}〉 , (2)

where m defines the Floquet sectors and |{nj}〉 is the
Fock basis, characterized by the atom number at each



Floquet analysis (similar as for shaken lattices...) 
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We show that a time-dependent magnetic field inducing a periodically modulated scattering length
may lead to interesting novel scenarios for cold gases in optical lattices, characterized by a nonlinear
hopping depending on the number difference at neighboring sites. We discuss the rich physics
introduced by this hopping, including pair superfluidity, exactly defect-free Mott-insulator states for
finite hopping, and pure holon- and doublon superfluids. We also address experimental detection,
showing that the introduced non-linear hopping may lead in harmonically trapped gases to abrupt
drops in the density profile marking the interface between different superfluid regions.
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Ultracold atoms in optical lattices formed by laser
beams provide an excellent environment for studying
lattice models of general relevance in condensed-matter
physics, and in particular, variations of the celebrated
Hubbard model [1, 2]. Cold lattice gases allow for an
unprecedented degree of control of various experimental
parameters, even in real time. In particular, interpar-
ticle interactions can be changed by means of Feshbach
resonances [3]. Moreover, recent milestone achievements
allow for site-resolved detection, permitting the study of
in-situ densities [4, 5], and more involved measurements,
as that of non-local parity order [6].

The modulation of the lattice parameters in real time
opens interesting possibilities of control and quantum en-
gineering. In particular, a periodic lattice modulation
translates by means of Floquet theorem [7] into a mod-
ified hopping constant [8], which may even reverse its
sign as shown in experiments [9, 10]. This technique has
been employed to drive the Mott-insulator (MI) to super-
fluid (SF) transition [11], and to simulate frustrated clas-
sical magnetism [12]. Recent experiments have explored
as well the fascinating perspectives offered by periodically
driven lattices in strongly correlated gases [13, 14].

The effective Hubbard-like models describing these ul-
tracold lattice gases are typically characterized by a hop-
ping rate which is independent of the number of particles
at the sites. This is, however, not necessarily the case.
Multiband physics may lead to occupation-dependent
hopping [15, 16]. In addition, long-range dipole-dipole
interactions may lead to number-dependent hoppings as
well, for sufficiently large dipole strengths [17]. A major
consequence of non-linear hopping is the possibility to
observe pair superfluidity (PSF) [17, 18].

In this Letter, we consider a cold lattice gas in the pres-
ence of a periodically modulated magnetic field. In the
vicinity of a Feshbach resonance, this field induces mod-
ulated interparticle interactions. Interestingly, Ref. [19]
has shown that such periodic modulations of the inter-
action potential may lead to a many-body coherent de-
struction of tunneling in two-mode BECs. As shown
below, the generalization of this effect to lattice gases,

leads under proper conditions to an effective Hubbard-
like model with a non-linear hopping which, in contrast
to other proposals mentioned above, depends on the dif-
ference of occupations at neighboring sites, and retains its
non-linear character even for weak lattices. We discuss
the rich physics introduced by this hopping, including
PSF phases, exactly defect-free MI states for finite hop-
ping, and pure holon- and doublon superfluids. We also
address experimental detection, showing that the stud-
ied non-linear hopping may lead to abrupt drops in the
density profile of harmonically trapped gases.
We consider bosons in a lattice in the presence of a

periodically modulated magnetic field B(t) = B(t + T )
(with period T = 2π/ω) chosen close to a Feshbach res-
onance, where the s-wave scattering length acquires the

form a(t) = abg
(

1 + ∆B
B(t)−Br

)

= a0 +
∑

l>0 al cos(lωt).

Here ∆B and Br determine the width and position of
the resonance, respectively, and abg is the background
scattering length [3]. Assuming that the gap between
the first two lattice bands is much larger than any other
energy scale in the problem, we consider only the low-
est band and describe the system by a Bose-Hubbard
model (BHM) [1, 2]:

H(t) = −J
∑

〈ij〉

b†ibj +
U(t)

2

∑

i

n̂i (n̂i − 1)−
∑

i

µ n̂i, (1)

where bi (b†i ) is the bosonic annihilation (creation) op-

erator at site i, n̂i = b†ibi, µ is the chemical poten-
tial, J > 0 is the hopping rate and 〈..〉 denotes nearest
neighbors. Interactions are characterized by a coupling
U(t) = U0 +

∑

l>0 Ul cos(lωt) = U0 + Ũ(t), with U0 > 0

and Ul = 4π!2al

M

∫

d3r|w(r)|4. Here w(r) is the lowest
Wannier function and M is the atomic mass.
We apply a similar analysis as the one used for shaken

lattices [8]. We specify a Floquet basis

|{nj},m〉 = eimωte−i
V (t)

2

∑
j n̂j(n̂j−1)|{nj}〉 , (2)

where m defines the Floquet sectors and |{nj}〉 is the
Fock basis, characterized by the atom number at each
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes

2

0 0.25 0.5 0.75 1
z J / U0

0

0.5

1

1.5

2

µ 
/ U

0

0 0.25 0.5 0.75 1
J / U0

0

0.5

1

1.5

2

µ 
/ U

0

MI1
MI1

MI2
MI2

SF

SF

SF

SF

SF

SF

PSFPSF

FIG. 1: (Color online) Phase diagram for Ω = 4 using
GA (left) and DMRG (right). Solid curves define the MI
lobes, whereas dashed curves are the SF-PSF boundaries.

site. In Eq. (2), we defined V (t) =
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We introduce the time-averaged scalar product
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j},m′| . . . |{nj},m〉〉 = 1
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and establish the matrix elements:

〈〈{n′
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with Hm = m!ω + U0
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j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0
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∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉
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j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
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∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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+
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∑
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Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
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n fn(j)|nj〉, where fn(j) are variational param-

eters (
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n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
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n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
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+
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n̂i (n̂i − 1)− µ
∑
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n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
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j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
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n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1
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j µn̂j and

Fm(x) = 1
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∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0
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∑

i

n̂i (n̂i − 1)− µ
∑
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n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
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j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗
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0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form
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Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
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n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
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4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
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G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.
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for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes

F0 n̂i − n̂ j( ) = J0 Ω n̂i − n̂ j( )( )
Ω =U1

ω

Periodically modulated interactions result in a nonlinear hopping 
that depends on the difference of occupations in nearest neighbors 
[This result was first derived for 2-well BECs by Gong et al., PRL 103, 133002 (2009)]   
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If J0(Ω)<0 the system develops  
pair superfluidity (PSF) 

[This property is shared with other systems with 
nonlinear hopping, Schmidt et al., PRB 74, 174508 

(2006); T. Sowiński et al., PRL 108, 115301] (2012)]   
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
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∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
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∑
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n̂i (n̂i − 1)− µ
∑
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n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
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j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
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n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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site. In Eq. (2), we defined V (t) =
∫ t

Ũ(t′)dt′/!.
We introduce the time-averaged scalar product

〈〈{n′
j},m′| . . . |{nj},m〉〉 = 1

T

∫ T

0 〈{n
′
j},m′| . . . |{nj},m〉,

and establish the matrix elements:

〈〈{n′
j},m′|[H(t)− i!∂t]|{nj},m〉〉
= δm,m′ 〈{n′

j}|Hm|{nj}〉

− J
∑

〈i,j〉

〈{n′
j}|b

†
iFm′−m(n̂i − n̂j)bj |{nj}〉, (3)

with Hm = m!ω + U0
2

∑

j n̂j (n̂j − 1) −
∑

j µn̂j and

Fm(x) = 1
T

∫ T

0 dte−imteiV (t)x. If !ω $ J, U0, we may
restrict to a single Floquet sector m = 0, resulting in an
effective time-independent Hamiltonian of the form

Heff = −J
∑

〈ij〉

b†iF0(n̂i − n̂j)bj

+
U0

2

∑

i

n̂i (n̂i − 1)− µ
∑

i

n̂i. (4)

Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
of the bare hopping J . In the following we discuss the
specific case Ũ(t) = U1 cosωt. In this case, F0(x) =
J0(Ωx), with J0 the Bessel function and Ω = U1/!ω,
generalizing the result of Ref. [19] for two-well BECs.
Insight on Eq. (4) is gained by means of a Gutzwiller

Ansatz (GA) for the ground state [20], |G〉 =
∏

j

∑

n fn(j)|nj〉, where fn(j) are variational param-

eters (
∑

n |fn(j)|2 = 1), determined by minimizing
〈G|Heff |G〉. Results by choosing homogeneous real
fn(j) = fn [21] are shown in Fig. 1 (left), where we depict
the mean-field phase diagram for Ω = 4 (J0(Ω) % −0.4)
as a function of µ/U0 and zJ/U0, with z the coordi-
nation number. As usual, MI phases are characterized

by integer 〈n̂i〉, and vanishing single-particle- and pair-
condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
nounced in the vicinity of integer 〈n̂i〉. Our GA results
show that PSF phases only occur if J0(Ω) < 0. This may
be understood by considering integer filling 〈n̂i〉 = n, and
restricting the variational space to fn±1 = sin η√

2
eiϕ± and

fn = cos η. For J0(Ω) < 0, energy minimization gives
∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
4
√

n(n+ 1) > (
√
n + sign(J0(Ω))

√
n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.

The case J0(Ω) = 0 is particularly interesting, since
for neighboring sites i and j with equal number of parti-
cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
However, the hopping |n± 1〉i|n〉j → |n〉i|n± 1〉j is still
characterized by the usual rate J . This difference has a
remarkable impact for both the MI- and the SF phases.

For J = 0, the ground state of Eq. (4) is, as for the
standard BHM (Ω = 0), a defect-free MI

⊗

j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).

Conversely, particles or holes (|n ± 1〉) on top of the
state

⊗

j |n〉j acquire also remarkable properties. For
any Ω, extra particles and holes move with a hopping
rate (n + 1)J and nJ , respectively. For Ω = 0 defects
are unstable, being created and destroyed by processes
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Hence, interactions with a periodic modulation result in
a non-linear hopping term, which depends on the atom
number difference between neighboring sites. Note that
this non-linear character remains relevant for any value
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condensation parameters, 〈bi〉 and 〈b2i 〉. In addition to
the usual SF phase, we find a PSF phase characterized
by |〈b2i 〉| > |〈bi〉|2. Pair superfluidity is especially pro-
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∆ϕ ≡ ϕ+ − ϕ− = π, while ∆ϕ = 0 for J0(Ω) > 0. As a
result, for dominant hopping (2Jz/U0 $ 1), PSF needs
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n+ 1)2, which can

only be fulfilled if J0(Ω) < 0.

To complement the mean-field GA results, we have
also employed numerically exact methods in 1D. In
particular, we used the density-matrix renormalization
group (DMRG) [22] with up to 40 sites and keeping 200
states, and a related method, the infinite time-evolving
block decimation (iTEBD) [23] using a Schmidt dimen-
sion of 200. We have monitored the behavior of single-
particle and pair correlations, G1(i, j) ≡ 〈b†i bj〉 and

G2(i, j) ≡ 〈(b†i )2b2j〉, respectively. Both decay exponen-
tially in the MI. PSF phases are characterized by a dom-
inant G2, i.e., a slower power-law decay than G1. The
opposite characterizes the SF phase. Figure 1 (right)
shows the 1D phase diagram for Ω = 4, which closely
resembles the GA one. Similar to the GA, we observe a
PSF phase, which for integer 〈n̂〉 approaches all the way
to the tip of the MI lobes. On the other hand, away from
the lobe tips we observe a direct MI-SF transition. Our
1D results also confirm the absence of PSF for J0(Ω) > 0.
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cles, the process |n〉i|n〉j → |n± 1〉i|n∓ 1〉j is forbidden.
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characterized by the usual rate J . This difference has a
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j |n〉j for
n − 1 < µ/U0 < n [24]. For Ω = 0 and J > 0, this
state is not an eigenstate of Eq. (4), and quantum fluctu-
ations induce a finite particle-hole population in the MI
with an associated non-local parity order [6]. Interest-
ingly, the defect-free state remains an eigenstate of (4)
for J0(Ω) = 0. As a result, the whole MI lobe is charac-
terized by the absence of particle-hole defects. Although
this is typically an artifact in the mean-field GA, in this
case it is an exact result, and indeed our 1D iTEBD
results show a vanishing variance (∆n)2 = 〈n̂2〉 − 〈n̂〉2
within the Mott region (see Fig. 2).
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FIG. 2: (Color online) iTEBD results for the holon (circles)
and doublon (squares) populations as a function of J/U0 for a
1D system with µ/U0 = 0.3 and Ω = 2.405. Note the absence
of defects in the MI (J/U0 < 0.15), and the appearance of the
holon (H-SF) and doublon SF (D-SF).

|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑

<i,j>

h†
ihj + (µ− U0(n− 1))

∑

i

h†
ihi, (5)

Hp = −J(n+ 1)
∑

<i,j>

p†ipj + (U0n− µ)
∑

i

p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-
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J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-
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|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑
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h†
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characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of
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doublons coexist, (which only happens at the singular
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results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
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served, as discussed above, since at the MI boundary
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ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
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may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
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Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
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a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
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exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼
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J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.
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|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑
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∑
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∑
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p†ipj + (U0n− µ)
∑
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p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =
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n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
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|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where
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characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-
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At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
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cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
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|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where
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characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-
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cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of
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transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
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exclude PSF.
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for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼
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tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
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|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
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ihj + (µ− U0(n− 1))
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h†
ihi, (5)

Hp = −J(n+ 1)
∑
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p†ipj + (U0n− µ)
∑

i

p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-
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cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
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= −2J
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j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
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At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-
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exclude PSF.
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doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
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served, as discussed above, since at the MI boundary
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Ultracold lattice gases with periodically modulated interactions

Ákos Rapp, Xiaolong Deng, and Luis Santos
Institut für Theoretische Physik, Leibniz Universität, 30167 Hannover, Germany

(Dated: July 6, 2012)

We show that a time-dependent magnetic field inducing a periodically modulated scattering length
may lead to interesting novel scenarios for cold gases in optical lattices, characterized by a nonlinear
hopping depending on the number difference at neighboring sites. We discuss the rich physics
introduced by this hopping, including pair superfluidity, exactly defect-free Mott-insulator states for
finite hopping, and pure holon- and doublon superfluids. We also address experimental detection,
showing that the introduced non-linear hopping may lead in harmonically trapped gases to abrupt
drops in the density profile marking the interface between different superfluid regions.

PACS numbers: 37.10.Jk, 67.85.Hj, 73.43.Nq

Ultracold atoms in optical lattices formed by laser
beams provide an excellent environment for studying
lattice models of general relevance in condensed-matter
physics, and in particular, variations of the celebrated
Hubbard model [1, 2]. Cold lattice gases allow for an
unprecedented degree of control of various experimental
parameters, even in real time. In particular, interpar-
ticle interactions can be changed by means of Feshbach
resonances [3]. Moreover, recent milestone achievements
allow for site-resolved detection, permitting the study of
in-situ densities [4, 5], and more involved measurements,
as that of non-local parity order [6].

The modulation of the lattice parameters in real time
opens interesting possibilities of control and quantum en-
gineering. In particular, a periodic lattice modulation
translates by means of Floquet theorem [7] into a mod-
ified hopping constant [8], which may even reverse its
sign as shown in experiments [9, 10]. This technique has
been employed to drive the Mott-insulator (MI) to super-
fluid (SF) transition [11], and to simulate frustrated clas-
sical magnetism [12]. Recent experiments have explored
as well the fascinating perspectives offered by periodically
driven lattices in strongly correlated gases [13, 14].

The effective Hubbard-like models describing these ul-
tracold lattice gases are typically characterized by a hop-
ping rate which is independent of the number of particles
at the sites. This is, however, not necessarily the case.
Multiband physics may lead to occupation-dependent
hopping [15, 16]. In addition, long-range dipole-dipole
interactions may lead to number-dependent hoppings as
well, for sufficiently large dipole strengths [17]. A major
consequence of non-linear hopping is the possibility to
observe pair superfluidity (PSF) [17, 18].

In this Letter, we consider a cold lattice gas in the pres-
ence of a periodically modulated magnetic field. In the
vicinity of a Feshbach resonance, this field induces mod-
ulated interparticle interactions. Interestingly, Ref. [19]
has shown that such periodic modulations of the inter-
action potential may lead to a many-body coherent de-
struction of tunneling in two-mode BECs. As shown
below, the generalization of this effect to lattice gases,

leads under proper conditions to an effective Hubbard-
like model with a non-linear hopping which, in contrast
to other proposals mentioned above, depends on the dif-
ference of occupations at neighboring sites, and retains its
non-linear character even for weak lattices. We discuss
the rich physics introduced by this hopping, including
PSF phases, exactly defect-free MI states for finite hop-
ping, and pure holon- and doublon superfluids. We also
address experimental detection, showing that the stud-
ied non-linear hopping may lead to abrupt drops in the
density profile of harmonically trapped gases.
We consider bosons in a lattice in the presence of a

periodically modulated magnetic field B(t) = B(t + T )
(with period T = 2π/ω) chosen close to a Feshbach res-
onance, where the s-wave scattering length acquires the

form a(t) = abg
(

1 + ∆B
B(t)−Br

)

= a0 +
∑

l>0 al cos(lωt).

Here ∆B and Br determine the width and position of
the resonance, respectively, and abg is the background
scattering length [3]. Assuming that the gap between
the first two lattice bands is much larger than any other
energy scale in the problem, we consider only the low-
est band and describe the system by a Bose-Hubbard
model (BHM) [1, 2]:

H(t) = −J
∑

〈ij〉

b†ibj +
U(t)

2

∑

i

n̂i (n̂i − 1)−
∑

i

µ n̂i, (1)

where bi (b†i ) is the bosonic annihilation (creation) op-

erator at site i, n̂i = b†ibi, µ is the chemical poten-
tial, J > 0 is the hopping rate and 〈..〉 denotes nearest
neighbors. Interactions are characterized by a coupling
U(t) = U0 +

∑

l>0 Ul cos(lωt) = U0 + Ũ(t), with U0 > 0

and Ul = 4π!2al

M

∫

d3r|w(r)|4. Here w(r) is the lowest
Wannier function and M is the atomic mass.
We apply a similar analysis as the one used for shaken

lattices [8]. We specify a Floquet basis

|{nj},m〉 = eimωte−i
V (t)

2

∑
j n̂j(n̂j−1)|{nj}〉 , (2)

where m defines the Floquet sectors and |{nj}〉 is the
Fock basis, characterized by the atom number at each

Translating between Floquet and laboratory basis 

•  Density measurements are equal in both basis 
•  Other measurements (in particular TOF) must 

be „translated“ since the mapping is non-linear, 
but for holon and doublon-SF phases it is equal 
in both basis 
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FIG. 4: (Color online) GA results for the site densities 〈n̂j〉
and the on-site holon and doublon populations for a 2D lattice
with a harmonic confinement V (jx, jy) = V0(j

2
x + j2y), with

V0/J = 0.0075, interaction U0/J = 5.33, a central chemical
potential µ0/J = 3, and Ω = 2.45 (J0(Ω) # 0). Note the
central doublon-SF region, surrounded by a holon-SF ring,
and the abrupt density drop separating both regimes. Lines
indicate local-density approximation (LDA) results.

ulated interactions are provided by 85Rb, which has a
particularly large abg ! −400aB (with aB the Bohr ra-
dius), and a broad Feshbach resonance at Br = 155.2G,
with a width ∆B = −11.6G [29]. The desired form
a(t) ≈ a0 + a1 cos(ωt) can be achieved for a magnetic
field dependence B(t)/G ! 167.56 + 5.58 cos(ωt), with
a0 ≈ 20aB and a1 ≈ 200aB. We consider a lattice spac-
ing d = 0.5µm, and potential depth VL = sER, where
ER = !2π2/2md2 is the recoil energy. For s ≈ 17
(J $ U0), the value Ω = 2.4 (J0(Ω) ! 0) is obtained
for ω ! 2π × 900 Hz & U0/! = 2π × 217 Hz, ensuring
that only one Floquet manifold is relevant.
In order to address the question of detection, we have

to consider the transformation (2) between the Floquet
|{nj},m〉 and the Fock |{nj}〉 basis. The densities 〈n̂i〉
are equivalent in both, therefore the large compressibil-
ity regions characteristic of |J0(Ω)| ! 0 may be revealed
in in-situ experiments with an additional harmonic con-
finement. This is illustrated in Fig. 4, where we show
inhomogeneous GA results for a harmonic trap in 2D.
As expected from local-density approximation, we ob-
serve an abrupt jump in the 〈n̂i〉 when the local chemical
potential crosses its critical value. Note the wedding-
cake-like form of the profile, characterized by a central
doublon-SF, surrounded by a holon-SF ring.
The interpretation of measurements of other observ-

ables, as e.g., the momentum distribution in time-of-
flight (TOF) measurements, is more involved, since
the basis conversion is non-linear, 〈{n′

j}|b
†
ibj|{nj}〉 ∼

e−iV (t)(ni−nj+1)〈{n′
j},m|b†ibj |{nj},m〉. However, for the

holon- and doublon-SF phases the TOF measurement is
almost time-independent for small |J0(Ω)|. Indeed this
weak dependence is in itself a proof of the strong holon
or doublon character of the SF. For large |J0(Ω)| the
nonlinear conversion is an issue, and in general mea-
surement results are periodic. Stroboscopic measure-

ments at selected holding times with V (t) = 0 provide,
however, a direct conversion between both basis. Inter-
estingly, time averaged measurements over times much
larger than the period T just provide the contribution of
|n, n± 1〉 → |n± 1, n〉 processes.

In summary, periodically modulated interactions lead
to a rich physics for cold gases in optical lattices, charac-
terized by a nonlinear hopping depending on the number
difference at neighboring sites. This hopping can lead
to pair superfluid phases, and also to defect-free Mott
states, and holon- and doublon superfluids, which may
be revealed by abrupt jumps of the in-situ densities in
harmonically trapped lattice gases.

We acknowledge financial support by the Cluster of
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Summary 

Ultra-cold bosons 
in zig-zag optical lattices 
•  Mott-insulators for vanishing interactions 
•  Haldane-insulator without polar interactions 

Atoms with periodically 
modulated interactions 
•  Pair-superfluidity 
•  Defect-free Mott states 
•  Holon- and doublon-SF 
•  Abrupt density jumps 
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FIG. 2: (Color online) iTEBD results for the holon (circles)
and doublon (squares) populations as a function of J/U0 for a
1D system with µ/U0 = 0.3 and Ω = 2.405. Note the absence
of defects in the MI (J/U0 < 0.15), and the appearance of the
holon (H-SF) and doublon SF (D-SF).

|n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j . Since these processes are
forbidden for J0(Ω) = 0, defects remain stable [25]. Ne-
glecting occupations other than n and n± 1, the defects
are described by an effective HamiltonianHh+Hp, where

Hh = −Jn
∑

<i,j>

h†
ihj + (µ− U0(n− 1))

∑

i

h†
ihi, (5)

Hp = −J(n+ 1)
∑

<i,j>

p†ipj + (U0n− µ)
∑

i

p†ipi, (6)

characterize, respectively, the physics of holes and parti-
cles, with the hard-core assumption p†ipi+h†

ihi = 0 or 1,
with hi (pi) the bosonic operators for extra holes (parti-
cles) at site i. In Eqns. (5) and (6) we have set the energy
of the defect-free MI state EMI = 0. Thus the system be-
haves as a two-component hard-core lattice Bose gas. For
higher dimensions, a dilute gas of extra holes (holon gas)
may be considered as a basically free (superfluid) Bose
gas, with a dispersion Eh(q) = µ−U0(n−1)+nε0q, where
ε0
q
= −2J

∑

j=x,y,z cos(qjd) for a 3D cubic lattice and d
is the lattice spacing. On the other hand, the dilute gas
of extra particles (“doublon” gas [26]) has a dispersion
Ep(q) = U0n− µ+ (n+ 1)ε0

q
.

At zero temperature, the defect gas condenses for µ <
µc ≡ U0(n− 1/2)− Jz at the bottom of the holon band,
Eh(0), acquiring a pure holon character. On the other
hand, for µ > µc the system condenses at Ep(0) into
a pure doublon gas. Hence, remarkably, we expect an
abrupt jump of 〈n̂〉 (i.e. a diverging compressibility) at
the line µ = µc, which coincides with the line of integer
〈n̂〉 = n. Figure 3 depicts our GA results for the density
as a function of µ/U0 and J/U0, which, as expected from
the previous discussion, presents an abrupt jump between
a holon and a doublon superfluid.
In 1D, the defects behave, due to the hard-core con-

straint, rather as a two-component Tonks gas, but a simi-
lar two-band reasoning as above applies, and we may also
expect the existence of pure holon and doublon superflu-
ids. Figure 2 shows our iTEBD results in the vicinity of

FIG. 3: (Color online) Homogeneous GA results for 〈n̂〉 as a
function of J/U0 and µ/U0 for Ω = 2.405. Red curves denote
the boundary of the MI and the line of integer filling 1. Note
the abrupt jump in the density at that line, indicating the
transition between the holon SF and doublon SF regimes.

〈n̂〉 = 1 for the holon (doublon) populations 〈P̂0〉 (〈P̂2〉)
, with P̂n =

∏

n′ !=n(n̂ − n′)/(n − n′). In addition to the

MI phase characterized by 〈P̂0〉 = 〈P̂2〉 = 0, we observe
a holon-SF (〈P̂2〉 = 0) and an abrupt jump to a doublon-
SF (〈P̂0〉 = 0). Note that pure doublon- or holon-SF
exclude PSF.

At constant µ the system undergoes a MI – dou-
blon (holon) SF transition at a critical tunneling Jc(µ)
for which Ep(h)(0) = EMI. In 1D, our iTEBD
results show that this transition retains a commen-
surate/incommensurate nature as in the usual 1D
BHM [27], characterized by 〈P̂0,2〉 ∼

√
J − Jc. This

growth is illustrated for the Mott – holon-SF transi-
tion in Fig. 2. On the other hand, at constant inte-
ger 〈n̂〉, there is no 1D MI-SF transition at finite hop-
ping J . This result, expected from the theory of two-
component Tonks gases [28], is due to the absence of pro-
cesses |n〉i|n〉j ↔ |n ± 1〉i|n ∓ 1〉j which precludes that
doublons and holons can swap their positions through
second-order super-exchanges. As a result, if holons and
doublons coexist, (which only happens at the singular
integer filling line) superfluidity is absent. Our DMRG
results for 〈n̂〉 = 1 confirm indeed that G1,2 decay expo-
nentially for any finite J . Interestingly, there is however
a clear transition between a defect-free insulator and an
insulator with a finite density of holon-doublon pairs.

For a finite but small J0(Ω), the SF regions retain to a
large extent their holon/doublon character, although the
concentration of doublons/holons in the holon/doublon
SF increases for growing J0(Ω) and J . The coexistence
region for holons and doublons is hence not any more
singular, although it remains characterized by a large
compressibility for small J0(Ω). For J0(Ω) < 0 this co-
existence region becomes the PSF phase discussed above.
Away from the Mott-tip a direct MI-SF transition is ob-
served, as discussed above, since at the MI boundary
holons and doublons do not coexist.

Let us finally discuss some experimental questions.
Optimal experimental conditions for periodically mod-
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Experimental parameters 

E.g. 85Rb abg ≈ −400aB
Br =155.2G

ΔB = −11.6G

B(t) /G ≅167.6+ 5.6cos(ωt) a(t) / aB ≅ 20+ 200cos(ωt)
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