

Novel scenarios for ultra-cold lattice gases: zig-zag lattices and periodically modulated interactions

Luis Santos Institute of Theoretical Physics and Center of Excellence QUEST Leibniz Universität Hannover

Trieste, July 19, 2012

Control of atoms in optical lattices

Internal structure

Interactions (Feshbach resonances, dipolar interactions)

Lattice geometry

Disorder

 \sim

Low dimensions

Also variable in real time!

LASER

Control of atoms in OLs: periodic modulations

Periodic lattice modulations offer new possibilities for engineering lattice models with cold gases

$$\hat{H}_0 = -J \sum_{\langle i,j \rangle} (\hat{c}_i^{\dagger} \hat{c}_j + \hat{c}_j^{\dagger} \hat{c}_i) + \frac{U}{2} \sum_j \hat{n}_j (\hat{n}_j - 1) + K \cos(\omega t) \sum_j j \hat{n}_j$$

For a strong shaking, ω>>U,J Modified hopping which may even change sign!

$$J_{eff} = JJ_0 \left(\frac{K}{\hbar\omega}\right)$$

$$\hat{H}_{eff} = -J_{eff} \sum_{\langle i,j \rangle} \left(\hat{c}_i^{+} \hat{c}_j + h.c. \right)$$

 $+\frac{U}{2}\sum_{i}\hat{n}_{i}(\hat{n}_{i}-1)-\mu\sum_{i}\hat{n}_{i}$

[Eckardt et al., PRL **95**, 260404 (2005); Lignier, et al., PRL **99**, 220403 (2007); Kierig et al., PRL **100**, 190405 (2008); Zenesini et al., PRL **102**, 100403 (2009); Struck et al., Science **333**, 996 (2011)] Control of atoms in OLs: One and two-particle hard core

 $\left(b_i^{+}\right)^2 = 0$

 $\left(b_i^{+}\right)^3 = 0$

If U_0 is large enough one may forbid double occupation per site (hard-core regime)

LASER

In the presence of strong 3-body losses one may induce an effective 2-body hard-core [Daley et al., PRL **102**, 040402 (2009)]

Recent experiment in Innsbruck [Mark et al., PRL 108, 215302 (2012)]

This talk

Ultra-cold bosons in zig-zag optical lattices

[Greschner et al., arXiv:1202.5386]

Atoms with periodically modulated interactions

Ultra-cold gases in zig-zag optical lattices

Zig-zag optical lattices may be obtained e.g. by overimposing a triangular lattice [Becker et al., NJP 12, 065025 (2010)] and a superlattice of doubled period

The value of t and t' may be controlled independently by elliptical shaking (also their signs!) [Struck et al., Science 333, 996 (2011)]

We shall consider the case where both t,t '<0 (AF coupling)

Bosons in zig-zag optical lattices

Frustrated AF spin-1 chains

5

Assuming bosons with mean occupation n=1, we introduce the pseudo-spin $(|n-0\rangle \Rightarrow |m-1\rangle)$

$$S_i^z = 1 - n_i \quad \begin{cases} |n = 0\rangle \Rightarrow |m = +1/\\ |n = 1\rangle \Rightarrow |m = 0\rangle\\ |n = 2\rangle \Rightarrow |m = -1\rangle \end{cases}$$

The system resembles to a large extent a frustrated AF spin-1 chains with uniaxial single-ion anisotropy $H = J \sum_{i} \left[\left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)_{\Delta} + j \left(\vec{S}_{i} \cdot \vec{S}_{i+2} \right)_{\Delta'} + D \left(S_{i}^{z} \right)^{2} \right]$ $J = 2 \left| t \right| \qquad j = t'/t \qquad D = U_{0} / 4 \left| t \right|$ $\Delta = U_{1} / 2 \left| t \right| \qquad \Delta = U'_{1} / 2 \left| t' \right|$

AF spin-1 chains

$$H = J \sum_{i} \left[S_{i}^{x} \cdot S_{i+1}^{x} + S_{i}^{y} \cdot S_{i+1}^{y} + \Delta S_{i}^{z} \cdot S_{i+1}^{z} + D\left(S_{i}^{z}\right)^{2} \right]$$

[Chen, Hida and Sanctuary, PRB 67, 104401 (2003)]

Haldane phase ...0+0...0-0...0+0...0-0... $(,,diluted AF order^{((())})$ String order: $\lim_{|i-j|\to\infty} \left\langle -S_i^z \exp\left[i\pi \sum_{l=i+1}^{j-1} S_l^z\right] S_j^z \right\rangle \neq 0$ Large-D phase ...0+-0...0-+0...0-+0... Parity order: $\lim_{|i-j|\to\infty} \left\langle \exp\left[i\pi \sum_{l=i+1}^{j-1} S_l^z\right] \right\rangle \neq 0$ Néel phase ...+-+-+-+-+-+-+-

1D polar gases in optical lattices: Haldane-insulator phase

$$H = -t \sum_{i} \left[b_{i}^{+} b_{i+1}^{-} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} \left(n_{i}^{-} - 1 \right) + U_{1} \sum_{i} n_{i} n_{i+1}^{-}$$

[Dalla-Torre, Berg and Altman, PRL 97, 260401 (2006)]

Haldane-...101...121...101...121 insulator String order: $O_s^2 = \lim_{|i-j| \to \infty} \left\langle \delta n_i \exp \left| i\pi \sum_{l=i+1}^{j-1} \delta n_l \left| \delta n_j \right\rangle \neq 0 \right\rangle$ Mott-insulator ...1021...1201...1201... Parity order: $O_p^2 = \lim_{|i-j| \to \infty} \left\langle \exp\left[i\pi \sum_{l=i+1}^{j-1} \delta n_l\right] \right\rangle \neq 0$ Experiment [Endres et al., Science 334, 200 (2011)] Density wave ...0202020202020202...

Frustrated AF spin-1 chains

$$H = J \sum_{i} \left[\left(\vec{S}_i \cdot \vec{S}_{i+1} \right)_{\Delta} + j \left(\vec{S}_i \cdot \vec{S}_{i+2} \right)_{\Delta'} + D \left(S_i^z \right)^2 \right]$$

Frustrated AF spin-1 chains

$$H = J \sum_{i} \left[\left(\vec{S}_{i} \cdot \vec{S}_{i+1} \right)_{\Delta} + j \left(\vec{S}_{i} \cdot \vec{S}_{i+2} \right)_{\Delta'} + D \left(S_{i}^{z} \right)^{2} \right]$$

D>0 (and $\Delta = \Delta' = 1$) phase diagram

[Hikihara, J. Phys. Soc. Jpn. 71, 319 (2002)]

Haldane phase is expected (even for $\Delta=0$) for sufficiently low D.

For $\Delta = 0$ gapless chiral here

Bosons in zig-zag optical lattices

$$H = \sum_{i} \left[|t| b_i^+ b_{i+1} + |t'| b_i^+ b_{i+2} + H.c. \right] + \frac{U_0}{2} \sum_{i} n_i (n_i - 1)$$

In absence of dipolar interactions ($U_1=U'_1=0$, and hence $\Delta=0$)

Haldane phase is expected (even for $\Delta=0$) for sufficiently low D.

Haldane-insulator expected (even for non-polar gases) for sufficiently low U_0 .

However, for unconstrained bosons this is not what occurs, since for low U_0 the boson \leftrightarrow spin mapping fails

Leibniz Universität Hannover

102

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1} + |t'| b_{i}^{+} b_{i+2} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1)$$

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1} + |t'| b_{i}^{+} b_{i+2} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1)$$

For
$$U_0 = 0$$
: $H = 2|t| \sum_{k} \left[\cos k + j \cos 2k \right] b_k^+ b_k$

Leibniz Universität

102

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1} + |t'| b_{i}^{+} b_{i+2} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1)$$

Lifshitz-point (j=1/4)

For U₀=0:
$$H = 2|t| \sum_{k} \left[\cos k + j \cos 2k \right] b_{k}^{+} b_{k}$$

Chirality $\kappa_{i}^{z} \equiv \frac{i}{2} \left\langle b_{j+1}^{+} b_{j} - b_{j}^{+} b_{j+1} \right\rangle$
 $\kappa \equiv \sum_{i} \kappa_{i}^{z} = \sum_{k} \sin k \left\langle b_{k}^{+} b_{k} \right\rangle$

When U_0 grows a Mott-Insulator (=large-D for spin-1 chains) opens starting at the Lifshitz point

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1}^{-} + |t'| b_{i}^{+} b_{i+2}^{-} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1) \qquad (b_{i}^{+})^{3} = 0$$
$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1}^{-} + |t'| b_{i}^{+} b_{i+2}^{-} + H.c. \right] + U_{3} \sum_{i} (b_{i}^{+})^{3} (b_{i}^{-})^{3}$$

A Haldane-insulator (HI) phase opens for finite U_3 at the Lifshitz point

Leibniz Universität

10

$$H = \sum_{i} \left[|t| b_{i}^{\dagger} b_{i+1} + |t'| b_{i}^{\dagger} b_{i+2} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1) \qquad \left(b_{i}^{\dagger} \right)^{3} = 0$$

$$H = \sum_{i} \left[\left| t \right| b_{i}^{+} b_{i+1}^{-} + \left| t' \right| b_{i}^{+} b_{i+2}^{-} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1) \qquad \left(b_{i}^{+} \right)^{3} = 0$$

One may study large U<0 (D<0), which leads to pair-superfluidity

$$G_{ij}^{(1)} \equiv \left\langle b_i^* b_j \right\rangle$$
$$G_{ij}^{(2)} \equiv \left\langle \left(b_i^* \right)^2 b_j^2 \right\rangle$$

[Daley et al., PRL **102**, 040402 (2009); Bonnes and Wessel, PRL **106**, 185302 (2011)]

Leibniz Universität

10

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1}^{-} + |t'| b_{i}^{+} b_{i+2}^{-} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1) \qquad \left(b_{i}^{+} \right)^{3} = 0$$

Leibniz Universität

10

$$H = \sum_{i} \left[|t| b_{i}^{+} b_{i+1} + |t'| b_{i}^{+} b_{i+2} + H.c. \right] + \frac{U_{0}}{2} \sum_{i} n_{i} (n_{i} - 1) \qquad \left(b_{i}^{+} \right)^{3} = 0$$

This talk

Ultra-cold bosons in zig-zag optical lattices

Atoms with periodically modulated interactions

[Rapp et al., arXiv:1207.0641]

Lattice gases with periodically modulated interactions

Floquet analysis (similar as for shaken lattices...)

Floquet basis	$ \{n_j\}, m\rangle = e^{im\omega t} e^{-i\frac{V(t)}{2}\sum_j \hat{n}_j(\hat{n}_j - 1)} \{n_j\}\rangle$ $V(t) = \int^t \tilde{U}(t') dt'/\hbar$
$\left< \left< \{n_j'\}, m' \right .$	$\dots \{n_j\}, m\rangle\rangle = \frac{1}{T} \int_0^T \langle \{n'_j\}, m' \dots \{n_j\}, m\rangle$
Matrix elements in the Floquet basis	$\langle \langle \{n'_j\}, m' [H(t) - i\hbar\partial_t] \{n_j\}, m \rangle \rangle$ = $\delta_{m,m'} \langle \{n'_j\} H_m \{n_j\} \rangle$ - $J \sum_{\langle i,j \rangle} \langle \{n'_j\} b_i^{\dagger} F_{m'-m} (\hat{n}_i - \hat{n}_j) b_j \{n_j\} \rangle$
$H_m =$	$= m\hbar\omega + \frac{U_0}{2}\sum_j \hat{n}_j \left(\hat{n}_j - 1\right) - \sum_j \mu \hat{n}_j$
	$F_m(x) = \frac{1}{T} \int_0^T dt e^{-imt} e^{iV(t)x}$

Effective Hamiltonian

$$\hbar\omega \gg J, U_0$$
 \longrightarrow $H_{\mathrm{eff}} = -J\sum_{\langle ij
angle} b_i^{\dagger} F_0(\hat{n}_i - \hat{n}_j) b_j + rac{U_0}{2} \sum_i \hat{n}_i (\hat{n}_i - 1) - \mu \sum_i \hat{n}_i$

Periodically modulated interactions result in a nonlinear hopping that depends on the difference of occupations in nearest neighbors [This result was first derived for 2-well BECs by Gong et al., PRL **103**, 133002 (2009)]

Image: tight of t

Pair-superfluidity

If J₀(Ω)<0 the system develops pair superfluidity (PSF) [This property is shared with other systems with nonlinear hopping, Schmidt et al., PRB **74**, 174508 (2006); T. Sowiński et al., PRL **108**, 115301] (2012)]

PSF exists also in 1D systems $G_2(i,j) \equiv \langle (b_i^{\dagger})^2 b_j^2 \rangle$ presents a slowlier power-law decay than $G_1(i,j) \equiv \langle b_i^{\dagger} b_j \rangle$ Selective suppression of hopping processes

 $H_{TUN} = -J \sum \hat{b}_i^* J_0 \left(\Omega \left(\hat{n}_i - \hat{n}_j \right) \right) \hat{b}_j$ Let $J_0(\Omega)=0$]

102

Defect-free Mott insulators

For J=0 the state $\bigotimes_j |n\rangle_j$ is the ground state for $n-1 < \mu/U_0 < n$

In the usual BHM, for J>0 this is not any more an eigenstate, quantum fluctuations lead to a finite population of defects (extra holes or particles)

Here the defect-free Mott state remains the ground-state in the whole Mott lobe !!

 $\left(\Delta n\right) \equiv \left\langle \hat{n}^2 \right\rangle - \left\langle \hat{n} \right\rangle^2 = 0$

Extra particles/holes cannot be destroyed, forming a 2-component Bose-gas with hard-core constraint

Leibniz Universität

102

T

$$H_{h} = -Jn \sum_{\langle i,j \rangle} h_{i}^{\dagger} h_{j} + (\mu - U_{0}(n-1)) \sum_{i} h_{i}^{\dagger} h_{i}$$
$$H_{p} = -J(n+1) \sum_{\langle i,j \rangle} p_{i}^{\dagger} p_{j} + (U_{0}n - \mu) \sum_{i} p_{i}^{\dagger} p_{i},$$
$$p_{i}^{\dagger} p_{i} + h_{i}^{\dagger} h_{i} = 0 \text{ or } 1$$

Holon- and doublon-superfluids $E_p(\mathbf{q}) = U_0 n - \mu + (n+1)\epsilon_{\mathbf{q}}^0$ $E_h(\mathbf{q}) = \mu - U_0(n-1) + n\epsilon_{\mathbf{q}}^0$ $\mu_c \equiv U_0(n-1/2) - Jz$ Pure doublon Pure holon superfluid superfluid $E_h(\mathbf{q}) = \mu - U_0(n-1) + n\epsilon_{\mathbf{q}}^0$ $E_p(\mathbf{q}) = U_0 n - \mu + (n+1)\epsilon_{\mathbf{q}}^0$ $\epsilon_{\mathbf{q}}^{0} = -2J \sum_{j=x,y,z} \cos(q_{j}d)$

1 1 Leibniz 102 Universität 1004 Hannover

Transition from holon-SF to doublon-SF

At $\mu = \mu_c$ one expects a large density jump (diverging compressibility) marking the boundary between the holon and doublon superfluids

Lattice gases with periodically modulated interactions

Translating between Floquet and laboratory basis

$$|\{n_j\}, m\rangle = e^{im\omega t} e^{-i\frac{V(t)}{2}\sum_j \hat{n}_j(\hat{n}_j - 1)} |\{n_j\}\rangle$$

- Density measurements are equal in both basis
- Other measurements (in particular TOF) must be ,,translated" since the mapping is non-linear, but for holon and doublon-SF phases it is equal in both basis

Density profiles in harmonically trapped lattice gases

The large compressibility at the holon-SF to doublon-SF transition translates into an abrupt density jump

Summary

Ultra-cold bosons in zig-zag optical lattices

- Mott-insulators for vanishing interactions
- Haldane-insulator without polar interactions

Atoms with periodically modulated interactions

- Pair-superfluidity
- Defect-free Mott states
- Holon- and doublon-SF
- Abrupt density jumps

People

T. Vekua S. Greschner

X. Deng

Experimental parameters

E.g. 85Rb $a_{bg} \approx -400a_B$ $B_r = 155.2G$ $\Delta B = -11.6G$

 $B(t)/G \approx 167.6 + 5.6\cos(\omega t)$

 $a(t) / a_B \approx 20 + 200 \cos(\omega t)$

$$s \equiv \frac{V_0}{E_R} \approx 17$$

 $J \ll U_0$ $\Omega = 2.4$ $\omega \approx 900 Hz \gg \frac{U_0}{\hbar} = 217 Hz$