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Recent experimental realization of syntethic gauge fields
IS providing new challenging many-body configurations in
ultra-cold atomic gases

Conservation laws are modified by spin coupling

- New quantum phases (stripes, spin polarized) and
new phase transitions in both Bose and Fermi gases

New dynamic properties

Sum rules: well suited tool to emphasize the role of the
new conservation laws in the dynamical behavior

- Focus of the present paper: center of mass oscillation in
In spinor BEC gases with equal Rashba and Dresselhaus
coupling. Key role played by spin polarizability




Center of mass oscillation in spin-orbit coupled BEC
( Yun LI, Giovanni Martone and S.S, arXive: 1205.6398)
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New SO Hamiltonian
(equal Rashba and
Dresselhaus couplings)
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Ansatz for ground state order parameter (spinor BEC gas):
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Quantum phases of the spin-orbit coupled spinor BEC
(weak coupling regime) N { cosd ) sing )
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Beyond
weak coupling limit
(Li et al. PRL 2012)

Malin features:

- Transition frequency between Phase Il and Phase llI
depends on interaction: | =2k?—n(g-g, )/2

- Jump in the value of k,| between Phase | and Phase Il

- Existence of tri-critical point at density n, =
above which phase Il disappears 9 9-9.-
(transition I-1ll characterized by sizable jump in |k;| )




Dynamics of spin-orbit coupled BEC’s in harmonic trap
center of mass oscillation
LI, Martone and S.S. arXiv:1205.6398

Coupling between center of mass ( X =Zi x. ) and
Spin (o =>_ 0, ) degrees of freedom
emphasized by commutation rule of dipole operator

[H , X] — _i(Px _kOGz)

- Reflects modification of equation of continuity
- Implies new dynamic behavior of center of mass coordinate

In the absence of spin-orbit coupling dipole operator X
excites a single mode with frequency o, (Kohn's theorem)

Changes of dynamic behavior of center of mass
can be explored using sum rule approach




Relevant sum rules for the dipole operator

M, (X) = [de Sy (@) =3 |<0] X |n>|(E, - E,)"

Energy weigthed (k=1) sum rule (f-sum rule) :

ml(X):%<[X,[H,X]]>:%

- Comment: Despite the fact that [H, X]
depends on spin, the double commutator does not.
Universality and model independence of f-sum rule.




Inverse energy weigthed (k=-1) sum rule
(dipole polarizability sum rule) :

The m_,(X)sum rule can be calculated exactly in the presence
of harmonic trapping using the commutation relation:

[H1Px]:iwfx PX:Zi Pi x

(follows from translation invariance of two-body interaction)

One finds:

<0| X |nJ>f i N
m, () =3 TP L colpx Rl0>=,
n 0 X

n X

- Comment: both energy weighted and inverse-energy
weighted sum rules are independent of spin-orbit coupling




Where does spin orbit coupling enter the sum rule approach ?

Cubic inverse energy weigthed (k=-3) sum rule

- Very sensitive to low energy part of excitation spectrum
- Can be worked out explicitly using commutation rules

= 2
First step: use commutation relation [H, P I=10, X
<O Py n>|°
__Z|<O|P k0|n>| Z|<O|c7|n>|
E —E, -

Second step: use commutation rule [[H, X]=-i(P, —k,o, )
and identify spin polarizability




Cubic inverse energy Weigthed (k=-3) sum rule

m_(X) = [1+k x(o,)]

with x(o,) =2m,(o;,) =spin polarizability.
Comments on sum rules:

- Results for k=1, k=-1 and k=-3 sum rules hold exactly
for RD Hamiltonian + 2-body int. + harmonic trapping

- Hold for both Bose and Fermi statistics.
- Are not restricted to mean field regime

- k=-3 sum rule emphasizes key role played by
spin-orbit coupling and spin polarizability




Sum rules and frequency of lowest dipole mode

Taking the ratio between m_,(X)and mM_;(X) sum rules one
finds useful estimate for frequency of dipole oscillation:
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Comments: 1+k; x(o,)

- @y provides rigorous upper bound to lowest frequency
excited by dipole operator X

- f-sum rule M, (X) unsuitable to describe lowest frequency
mode in the presence of spin-orbit coupling

- result for @y, expected to be accurate for Q>>w,.
For smaller Raman coupling, lowest mode is a pure spin
oscillation with no coupling with center of mass oscillation
(try optimized choice for excitation operator F =no, +P)




Behavior of spin polarizability

- Calculation of y(o,) based on standard definition: evaluate
changes of order parameter caused by external field-ho,
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Behavior of spin polarizability

- Calculation of y(o,) based on standard definition: evaluate
changes of order parameter caused by external field —ho,
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- results for polarizability depend on the phase considered

- Non trivial results for the
behavior of x(o,) at the
transition between the
guantum phases




Spin polarizability of spin-orbit coupled BEC
(weak coupling limit in uniform matter)

PHASE | (stripes)
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spin polarizability becomes larger and largeras n—0
Reflecting instability of non interacting gas

x(o,)=
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- Spin polarizability diverges at the transition between
phases Il and Ill (second order phase transition).
- Spin polarizability in phases Il and Ill are density independent




Spin polarizability and dipole frequency
for choice of parameters beyond weak coupling limit
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- shift of transition (lI-111) with respect to value\2k02
- Dipole frequency quenched with respect to oscillator value @,
- Uniform matter (blue) calculation of ¥ close to GP intrap (red)




Spin polarizability and dipole frequency

In weak coupling regime (exp: Chen et al (2012)
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- Uniform matter and GP calculations indistinguishible
- Stripe phase | quenched due to smallness of ratio G,/G,
- Near transition -1l nonlinear effects in exp are important




Useful analytic formula for dipole frequency
In weakly interacting regime ( G,,G, <<k?)
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Effect of spin orbit coupling on amplitudes of oscillations

- During dipole oscillation, center of mass position X,
momentum P, and magnetization o, oscillate in time

- Coupling between relative  |A = A ko, ¥(c,)

amplitudes A, A, A
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Experimental evidence of coupling
of spin and momentum amplitudes
near lI-11l phase transition

(large k:y(oc,)- Chern et al 2002
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Measured spin polarizability from spin and momentum amplitudes
(Zhang et al. 2012)




Conclusions

Calculated frequency of dipole mode

for Rashba+Dresselhaus spin
coupling using sum rule approach

Crucial ingredient: spin polarizability

Spin susceptibility exhibits divergent

behavior at transition between spin  2*

separated and single minimum phase
(second order phase transition)

dipole frequency exhibits deep 3
minimum at the transition

K x(,)




Perspectives and running projects in Trento

Anisotropy of sound propagation and rotonic
structure In uniform matter (G. Martone et al. In
preparation)

collective oscillations for
trapped superfluid Fermi gases

Collective modes for different spin-orbit
coupling (ex. Rashba)




