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- Recent experimental realization  of syntethic gauge fields 

is providing new challenging many-body configurations in 

ultra-cold atomic gases 

 

- Conservation laws are modified  by spin coupling 

 

 - New quantum phases (stripes, spin polarized) and  

   new phase transitions in both Bose and Fermi gases 

 

- New dynamic properties 

 

- Sum rules: well suited tool to emphasize the role of the  

    new conservation laws in the dynamical behavior 

 

- Focus of the present paper: center of mass oscillation in 

    in spinor BEC gases with equal Rashba and Dresselhaus  

    coupling. Key role played by spin polarizability 



Center of mass oscillation in spin-orbit coupled BEC 
      ( Yun Li, Giovanni Martone and S.S,  arXive: 1205.6398)  

New SO Hamiltonian 

(equal Rashba and  

Dresselhaus couplings) 

BEC with two minima 
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First experimental  

Implementation with BEC’s 

Spielman, Nature 2011) 

 
Theory of new quantum phases: 

Ho and Zhang (PRL 2011)  

Many theoretical papers (……) 

 
Recent Trento paper (Li, Pitaevskii, S.S,  PRL 2012) 

 

 

 

 

 

 

 

stripes  

k=0 min 

spin separ.  



Ansatz for ground state order parameter (spinor BEC gas): 
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Minimization of energy with  

 

                                                                        

 

 

    and 

 

yields   three different phases                              
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PHASE I (Stripes) 

 

 

 

 

 

 

 

PHASE II (spin separated) 

 

 

 

 

 

 

PHASE III (zero momentum) 
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Quantum phases of the spin-orbit coupled spinor BEC 

(weak coupling regime)  

4/

)0(0

22

01 

 

kk

CorC




































xikxik
eCeC

V

N
11

cos

sin

sin

cos











)21/(22 2

0    kIII

2

02kIIIII  

)/()(   gggg



Beyond  

weak coupling limit 
(Li et al. PRL 2012)   

Main features: 

 

-   Transition frequency between Phase II and Phase III 

     depends on interaction: 

  

- Jump in the value of      between Phase I and Phase II 

 

-  Existence of tri-critical point  at density 

     above which phase II disappears  

     (transition I-III characterized by sizable jump in      )  

1k

1k

2/)(2 2

0   ggnkIIIII










gg

gg

g

k
nc

2

2

0



Dynamics of spin-orbit coupled BEC’s in harmonic trap 

center of mass oscillation 

Li, Martone and S.S. arXiv:1205.6398 

Coupling between center of mass (               )  and  

Spin (               ) degrees of freedom   

emphasized by commutation rule of dipole operator 

 

 

 

-  Reflects modification of equation of continuity  

-  Implies new dynamic behavior of center of mass coordinate 
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Changes of dynamic behavior of center of mass 

can be  explored using sum rule approach 

In the absence of spin-orbit coupling dipole operator X  

excites a single mode with frequency      (Kohn’s theorem)  
x



Relevant sum rules for the dipole operator 

Energy weigthed  (k=1) sum rule (f-sum rule) :            

                  

 

 

 

- Comment: Despite the fact that  

    depends on spin, the double commutator does not. 

    Universality and model independence of f-sum rule.  
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Inverse energy weigthed (k=-1) sum rule  

(dipole polarizability sum rule) :     

 

The              sum rule  can be calculated exactly in the presence 

of harmonic trapping using the commutation relation: 

 

 

(follows from translation invariance of two-body interaction)   

 

One finds:      

                  

 

 

 

- Comment: both energy weighted and inverse-energy 

weighted sum rules are independent of spin-orbit coupling 
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Where does spin orbit coupling enter the sum rule approach ? 

Cubic inverse energy weigthed  (k=-3) sum rule 

 

- Very sensitive to low energy part of excitation spectrum 

- Can be worked out explicitly using commutation rules 

 

First step: use commutation relation   

 

 

 

 

 

 

 

Second step: use commutation rule 

and identify spin polarizability  
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Cubic inverse energy weigthed  (k=-3) sum rule 

 

 

 

with                                spin polarizability. 

 

Comments on sum rules: 

 

- Results for k=1, k=-1 and k=-3 sum rules hold  exactly  

    for RD Hamiltonian + 2-body int. + harmonic trapping 

 

- Hold for both Bose and Fermi statistics. 

 

- Are not restricted to mean field regime  

 

- k=-3 sum rule emphasizes key role played by            

spin-orbit coupling and spin polarizability 
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Sum rules and frequency of lowest dipole mode 

 

Taking the ratio between            and              sum rules one  

finds useful estimate for  frequency of dipole oscillation: 

 

 

Comments: 

 

-      provides rigorous upper bound to lowest frequency  

    excited by dipole operator X 

  

- f-sum rule             unsuitable to describe lowest frequency 

    mode in the presence of spin-orbit coupling 

 

- result for        expected to be accurate for               . 

    For smaller Raman coupling,  lowest mode is a pure spin 

    oscillation with no coupling with center of mass oscillation 

    (try optimized choice for excitation operator                    )  
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Behavior of spin polarizability  

 

- Calculation of              based on standard definition:  evaluate 

changes of order parameter caused by external field  
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Behavior of spin polarizability  

 

- Calculation of           based on standard definition:  evaluate 

changes of order parameter caused by external field  

 

 

 

 

-  results for polarizability depend  on the phase considered 

 

- Non trivial results for the  

    behavior of            at the  

    transition between the    

    quantum phases 
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Spin polarizability of spin-orbit coupled BEC 

(weak coupling limit in uniform matter)  

PHASE I (stripes) 

 

               with 

 

spin polarizability becomes larger and larger as 

Reflecting instability of non interacting gas 
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PHASE II (spin separated) 
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- Spin polarizability diverges at the transition between  

  phases II and III (second order phase transition). 

- Spin polarizability in phases II and III are density independent 



Spin polarizability and dipole frequency  

 for choice of parameters beyond weak coupling limit  

-  shift of transition (II-III) with respect to value  

- Dipole frequency quenched with respect to oscillator value 

- Uniform matter (blue) calculation of     close to GP in trap  (red) 
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Nonlinear 

   effect 

Spin polarizability and dipole frequency  

 in weak coupling regime (exp: Chen et al (2012) 

- Uniform matter and GP calculations indistinguishible  

- Stripe phase I quenched due to smallness of ratio  

- Near transition II-III nonlinear effects in exp are important 
12 /GG



Useful analytic formula for dipole frequency  

                      in weakly interacting regime (                ) 2

012 , kGG 

)(1

1
2

0 z

xD
k 


























2

0

2

0

2

2
1

4
1

k

k

xD

xD



 PHASE II 

PHASE III 



- During  dipole oscillation,  center of mass position    ,    

    momentum        and magnetization        oscillate in time  

 

- Coupling between relative 

    amplitudes                       

 

 

 

Effect of spin orbit coupling on amplitudes of oscillations 
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Experimental evidence of coupling  

of spin and momentum amplitudes  

near II-III phase transition  

(large             - Chern et al 2002 )(2
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Measured spin polarizability from spin and momentum amplitudes 

(Zhang et al. 2012)  



Conclusions 

- Calculated frequency of dipole mode  

    for Rashba+Dresselhaus spin  

    coupling  using sum rule approach 

 

- Crucial ingredient: spin polarizability 

 

- Spin susceptibility exhibits divergent 

behavior at transition  between spin 

separated and single minimum phase 

    (second order phase transition) 

 

-   dipole  frequency exhibits deep  

     minimum at the transition 
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Perspectives and running projects in Trento 

- Anisotropy of sound propagation  and rotonic 

structure  in uniform matter (G. Martone et al. In 

preparation) 

 

- collective oscillations for  

    trapped superfluid Fermi gases 

 

- Collective modes for different spin-orbit  

    coupling (ex. Rashba)   


