Superfluidity of a 2D Bose gas (arXiv:1205.4536v1)

Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard

H H

IFRA

Trieste 18.07.2012

_aboratoire Kastler Brossel

Physique quantique et applications

Phase transitions in 2D

- Mermin-Wagner theorem: no long ranged order in low dimensions (no breaking of continuous symmetry). In particular no BEC at finite T in uniform system.
- But Berezinskii-Kosterlitz Thouless (BKT) transition to state with quasilong-ranged order below T_{BKT} (algebraic decay of coherence).

 Coherence and microscopic nature of the transition were studied with cold atoms. But a direct proof of superfluidity is missing with these systems.

Hadzibabic et al., Nature **441**, 1118 (2006) Tung et al., PRL **105**, 230408 (2010) Cladé et al., PRL **102**, 170401 (2009)

Superfluidity (in 2D and 3D)

Fluid flows with velocity v with respect to container walls or impurity

- Flow without friction, persistent current.
- Metastable state: equilibrium means fluid at rest (v = 0).
- Height of energy barrier depends on v and T and disappears at a critical velocity v_c .
- Decay time can be very long.
- Elementary excitations: phonons, vortices, rotons...

Persistent current in 3D toroidal trap Moulder et al., arXiv:1112.0334 (2012)

Leggett, Quantum Liquids, Oxford Univ. Press (2006) Pitaevskii and Stringari, Bose-Einstein Condensation, Oxford Science Publications (2003)

Landau criterion

An excitation with momentum p opposes the flow.

- Derived critical velocity for a dispersion relation $\epsilon(p)$ from consideration of transformation of energy and momentum.
- Excitation energy in rest frame of container $\epsilon(p) + p \cdot v$ Landau critical velocity $v_c = \min_p \frac{\epsilon(p)}{p}$
- For free particles $v_c = 0$
- For Bogoliubov spectrum $v_c = c_s$ (~ 1 mm/s for cold atoms)

Leggett, Quantum Liquids, Oxford Univ. Press (2006) Pitaevskii and Stringari, Bose-Einstein Condensation, Oxford Science Publications (2003)

Stability of the superfluid flow

The flow can decay via vortex pairs (rings in 3D) that oppose the flow.

- Energy as function of vortex separation d has barrier E_{max}
- Stability for $\gamma k_{\rm B} T \lesssim E_{\rm max} \Rightarrow v < v_c$
- Extended obstacle with diameter w: vortex pair created with $d \sim w$. If $w > d_{max}$ (or $v > v_c = \hbar/mw$) the flow is unstable.
- Similar argument by Feynman for flow through channel to explain the low $v_c \ll c_s$ observed for liquid helium.

Feynman (1955)Langer and Fisher, PRL 19, 560 (1967)Ma (1985)Stießberger and Zwerger , PRA 62, 061601R (2000)

Stirring the superfluid

Experiments with cold atoms (3D systems)

- move a small defect (laser beam or 1D lattice) through the cloud
- observe subsequent heating or excitations
- done for Bosonic and Fermionic systems

Transpose technique to 2D system

- Allows smaller defect (no divergence of laser beam inside cloud)
- Allows mesurements at fixed density by stirring in a circle

Raman et al., PRL **83**, 2502 (1999) Raman et al., J. Low Temp. Phys. **122**, 99 (2001) Neely et al., PRL **104**, 160401 (2010) Onofrio et al., PRL **85**, 2228 (2000) Engels and Atherton, PRL **99**, 160405 (2007) Miller et al., PRL **99**, 070402 (2007)

Preparation of 2D Bose gases

- Superimpose a blue-detuned dipole potential to a degenerate 3D gas (⁸⁷Rb) in a magnetic TOP trap
- Depump atoms in the side wells with resonant light
- Evaporate with RF to reach degeneracy

Typical cloud :

$$T = 65 - 120 \text{ nK}$$

 $N = 3 - 9 \cdot 10^4$
 $\mu = k_B \cdot 35 - 60 \text{ nK}$
 $\omega_r = 2\pi \cdot 25 \text{ Hz}$
 $\omega_z = 2\pi \cdot 1.4 \text{ kHz}$
 $\tilde{g} = \sqrt{8\pi} a/l_z = 0.093$
 $\xi \sim 0.5 \text{ µm}$

Quasi 2D regime: $\hbar \omega_z = k_B \times 70$ nK comparable to $k_B T$ and $U_{int} \sim k_B \times 40$ nK.

Stirring the cloud

- Use the imaging microscope objective to focus a blue-detuned laser beam (waist $w_0 = 2 \mu m$, trap depth $V = k_B \times 80 n$ K)
- Stir in circles at constant velocity v for $t_{stir} = 200 \text{ ms.}$
- Let the cloud equilibrate and measure temperature *T* (average over 10 shots).

Evidence for a critical velocity

- In the core (superfluid state): clear threshold behaviour with no discernable dissipation below a critical velocity.
- In the wings (normal state): quadratic heating without threshold.
 Due to linear scaling of the drag force.
- Model with fit function : $T = T_{\nu=0} + \kappa \cdot t_{stir} \cdot \max[\nu^2 \nu_c^2, 0]$
- Record the fit parameters κ and v_c for a given experimental configuration (N,T,r)

Evidence for a critical velocity

The trapped 2D Bose gas

Local Density Approximation (LDA):

- For each configuration (N, T, r), apply LDA to determine $\mu_{loc}(r) = \mu_0 V(r)$
- relate to the uniform gas with T and μ_{loc}

Scale invariance:

- Plot v_c against $\mu_{loc}/k_B T$.
- Due to the scale invariance of the 2D Bose gas, dimensionless quantities depend only on this ratio.
- It is univocally related to PSD and characterizes the degree of degeneracy of the cloud.

Hung et al., Nature **470**, 236 (2011) Yefsah et al., PRL **107**, 130401 (2011)

Across the BKT transition

• Two regimes: $v_c = 0$ and $v_c > 0$

- *x* error bars represent the finite beam size and the "background heating"
- BKT transition expected at $\mu_{loc}/k_BT = 0.15$ (for homogeneous system and $\tilde{g} = 0.093$) but shifted to 0.24, possibly due to the size of the beam.

Prokoveff and Svistunov, PRA 66, 043608 (2002)

Dissipation mechanisms

- What can we tell from the value of the critical velocity? We find $v_c = 0.5 1.0$ mm/s.
- This means $v_c/c_s = 0.3 0.7$ (compare to 0.1 in 3D experiments)
- We are in intermediate regime, cannot determine dominant mechanism from value of v_c.
- Simulations for similar systems suggest vortices (one should observe vortices directly)

Langer and Fischer, PRL **19**, 560 (1967) Frisch, Pomeau, Rica, PRL **69**, 1644 (1992) Winiecki, McCann, Adams, PRL **82**, 5186 (1999) Stießberger and Zwerger, PRA **62**, 061601R (2000) Crescimanno et al., PRA **62**, 063612 (2000)

 $c_s = \hbar/m \sqrt{\tilde{g}n}$ (for uniform gas, T = 0) $c_s \sim 1.6$ mm/s (for n = 50 atoms/µm²)

Heating coefficient

- Normal region (red): heating coefficient scales linear with the normal density (averaged over the beam size).
- Maximum of normal density around the expected superfluid transition.
- Compatible with model of single-particles colliding with beam.
- Superfluid region (blue): stronger scaling with density (here quadratic).

Summary

- We measured the superfluid behaviour of a 2D Bose gas via the dissipationless response to a moving obstacle.
- We probed a trapped system at fixed density, and directly observed the transition between the normal and the superfluid phase.

Desbuquois et al., arXiv:1205.4536v1 (2012), to appear in Nature Physics

The Team at LKB

Jérôme Beugnon

Tarik Yefsah

Rémi Desbuquois

Jean Dalibard

Sylvain Nascimbène Christof Weitenberg

Lauriane Chomaz