THE UNITARY FERMI GAS: A BENCHMARK CASE FOR MANY-BODY PHYSICS

Haussmann/Rantner/Cerrito/Zw. PR A75, 023610 '07

Enss/Haussmann/Zw. Ann. Phys. 326, 777 '11

Enss/Haussmann arXiv:1207.3103

Schmidt/Rath/Zw. arXiv:1201.4310 Efimov physics

textbook model for fermionic superfluids

BCS '57 Fermions $\uparrow \downarrow$ with density $n = k_F^3/3\pi^2$ and attractive two-particle interaction $V_{\uparrow \downarrow}(x) = \bar{g} \cdot \delta(x)$ pairs form and condense at $T_c \sim \exp{-\frac{1}{|\bar{g}|N(0)}} \ll T_F$

what happens at infinite coupling $g = \infty$?

Outline

- I) Unitary gas thermodynamics
- **II)** Viscosity and spin-diffusion

III) Universality of the 3-body parameter in Efimov physics

The unitary Fermi gas at $a = \infty$ $x \to \lambda x$ gives $H \rightarrow H/\lambda^2$ scale invariance \rightarrow Tr T= 0 \rightarrow pressure $p = 2\epsilon/3$ Ho '04 bulk viscosity $\zeta = 0$ Son '07 ground state $p(\infty) = \xi \cdot p_F^{(0)}$ Bertsch-parameter ξ determines cloud size in a trap $R_{TF} = R_{TF}^{(0)} \cdot \xi^{1/4}$ universal numbers $\xi \simeq 0.36$, $T_c \simeq 0.16 T_F$, $\Delta_0 \simeq 0.46 \epsilon_F$ transport: shear viscosity $\eta(T_c) \simeq 0.5 \hbar n$ Shuryak '04

Many-body theory pseudopotential $V_{\uparrow\downarrow}(x) = \bar{g}(\Lambda) \, \delta(x)$

Luttinger/Ward '60 $\Omega = -T \ln Z = \Omega[\hat{G}]$

$$\Omega[\hat{G}] = \beta^{-1} \left(-\frac{1}{2} \operatorname{Tr}\{-\ln \hat{G} + [\hat{G}_0^{-1} \hat{G} - 1]\} - \Phi[\hat{G}] \right)$$

Ladder-approximation

$$\Phi[G] = \sum_{l=1}^{\infty} 3 \left(\begin{array}{c} 1 \\ 1 \\ 2 \end{array} \right)^{l}$$

 $\delta\Omega[\hat{G}]/\delta\hat{G} = 0$ variational principle for $\mathcal{G}(\boldsymbol{k},\tau)$ and $\mathcal{F}(\boldsymbol{k},\tau)$

Haussmann/Rantner/Cerrito/Zw. '07, PR A75, 023610

why does Luttinger-Ward work well ?

- it is **conserving** \rightarrow all th. dyn. relations are obeyed
- it obeys the **Tan relations**

$$\mathcal{L}_E = \mathcal{L}[\psi_{\sigma}] + \mathcal{L}[\Phi] + \tilde{g} \Big(\bar{\Phi}_B \psi_{\uparrow} \psi_{\downarrow} + \text{h.c.} \Big)$$

 $\frac{\partial\Omega}{\partial(-1/a)} =$

change of $\boldsymbol{\Omega}$ with scattering length

$$= \operatorname{Tr}\left[G_B \frac{\partial G_{B,0}^{-1}}{\partial (-1/a)}\right] = \sum_{X,X'} G_B(X,X') \tilde{g}^2 \frac{m}{4\pi\hbar^2} \delta_{X,X'} = \frac{\hbar^2 C}{4\pi m}$$

pressure as a function of T/T_F and $1/k_Fa$ ($\xi = 0.36$)

comparison with experiments

theory Haussmann/Rantner/Cerrito/Zw. PR A75 (2007)

exact LW theory: bold diagrammatic MC van Houcke et al 2012

Momentum resolved rf-spectroscopy measures

hole spectral function $A_{-}(k, \varepsilon_{k} - \hbar\omega)$ Stewart, Gaebler, Jin '08

$$A(\mathbf{k},\varepsilon)$$
 from $\mathcal{G}(\mathbf{k},\tau)$ via $\mathcal{G}(\mathbf{k},\omega_n) = \int d\varepsilon \frac{A(\mathbf{k},\varepsilon)}{-i\hbar\omega_n + \varepsilon - \mu}$ (Maxent)

numerical spectral functions $A(k,\varepsilon)$ at T=0 (PR **A80** '09)

 $(k_F a)^{-1} = -1$ unitarity $(k_F a)^{-1} = +1$

II) The unitary gas as a 'perfect fluid' (Kovtun Son Star. '05)

AdS/CFT $\mathcal{N} = 4$ SSYM-Theory in the t'Hooft limit

 $\lambda = g^2 N \rightarrow \infty$ is equivalent to a **classical** theory of gravity

AdS-metric
$$ds^2 = \frac{L^2}{z^2} \left(-dt^2 + dx^2 + dz^2 \right)$$
 $\frac{L}{\ell_P} = \lambda^{1/4} \to \infty$

'radial' coord. z is effectively an RG-scale (McGreevy '09)

Conjecture: **All** (relativistic, scale invariant) fluids have

$$\boxed{\frac{\eta}{s} \geq \frac{\hbar}{4\pi k_B}}$$

Why does string theory apply to water ?

assume a Lennard-Jones fluid $V(r) = 4\varepsilon \left[(\sigma/r)^{12} - (\sigma/r)^6 \right]$ reduced density $n^{\star} = n\sigma^3$ and temp. $T^{\star} = k_B T/\varepsilon$ critical point at $n_c^{\star} = 0.36$ and $T_c^{\star} = 1.36$ time scale for classical dynamics $\tau = \sqrt{m\sigma^2/\varepsilon} \rightarrow$ dim. analysis $\eta_{LJ} = \frac{\varepsilon \tau}{\sigma^3} \eta^*(n^*, T^*) \rightarrow \eta_{LJ}^{\min} = \text{const } \frac{\sqrt{m\varepsilon}}{\sigma^2}$ quantum viscosity $\eta^{\min} = \alpha_{\eta} \hbar n$ with $\alpha_{\eta} = \text{const}/\Lambda_{\text{DB}} \gtrsim \mathcal{O}(1)$ because the de Boer par. $\Lambda_{\text{DB}} = \hbar/\sigma \sqrt{m\varepsilon}$ cannot be $\gg 1$!

measurements of viscosity and spin diffusion of the unitary gas

Cao ... Science **331** (2011) and Sommer ... Nature **472** (2011)

shear viscosity of the unitary gas

Boltzmann-limit $\eta(T \gg T_F) = 2.8 \hbar n (T/T_F)^{3/2} = 4.2 \frac{\hbar}{\lambda_T^3}$ (density drops out!), well defined quasipart. $\hbar/\tau_\eta \ll k_B T$ superfluid below $T_c \simeq 0.16 T_F$ has finite viscosity due to a) phonon interactions: $\eta(T) \sim T^{-5}$ as $T \ll T_c$ Rupak/Schäfer '07 b) fermionic qp's: $\eta(T) \rightarrow \text{const}$ as $T \rightarrow 0$ Pethick/Smith '75 $T \ll T_c$ inaccessible since mean free path \simeq trap size

transport coefficients of the unitary gas from Luttinger-Ward

Kubo formula $Re \eta(\omega) = \frac{Im \chi_{xy}^{ret}(\omega)}{\omega}$

perturbation $\widehat{H}' = h_{\ell}(t) \cdot \widehat{\Pi}_{\ell}$ ($\ell = 0, 2 \rightarrow \text{bulk, shear}$)

euclidean time $\tau \rightarrow \chi_{\ell}(\tau) = \int d^3x \left\langle \tilde{T} \,\widehat{\Pi}_{\ell}(\boldsymbol{x},\tau) \widehat{\Pi}_{\ell}(\boldsymbol{0},0) \right\rangle$

from
$$\chi_{\ell}(\tau) = -\frac{\delta^2 \Omega}{\delta h_{\ell}(\tau) \delta h_{\ell}(0)}|_{h=0} \rightarrow \chi_{xy}(i\omega_m)$$

requires contin. to real frequencies ω (Pade, Ansatz)

spin diffusion ($\ell = 1$) minimum value $D_s \simeq 1.3 \hbar/m$ near $T = 0.5 T_F$

Ward-identities due to scale and translation inv.

- guarantee that $\zeta(\omega) \equiv 0$
- sum rule $\frac{2}{\pi} \int_0^\infty d\omega \left[\operatorname{Re} \eta(\omega) \frac{\hbar^{3/2} C}{15\pi \sqrt{m\omega}} \right] \equiv p$
- Boltzmann-limit $\eta \to 4.2 \, \frac{\hbar}{\lambda_T^3} \sim T^{3/2}$; $D_s \to 1.1 \, \hbar/m \, (T/T_F)^{3/2}$

III) Efimov physics beyond universality Schmidt, Rath, Zw. '12

Bosons form trimers at $a_{-}^{(n)} < 0$ universality $a_{-}^{(n+1)}/a_{-}^{(n)} \rightarrow 22.69...$

Feshbach coupling $\hat{H}' = \frac{g}{2} \int \chi(r_2 - r_1) \phi(\frac{r_1 + r_2}{2}) \psi^*(r_1) \psi^*(r_2)$ with finite range $\chi(r) \sim \exp{-r/\bar{a}}$ $\bar{a} =$ mean scatt. length exact solution of RG-flow for atom-dimer vertex $\lambda_3^{(k)}(q_1, q_2; E)$ poles of $\lambda_3^{(k=0)}$ give **Efimov spectrum** which is fixed by \bar{a} and the dimensionless resonance strength $s_{\text{res}} = 0.956 l_{\text{vdw}}/r^*$

non-universal ratios $a_{-}^{(1)}/a_{-} = 17.1$ exp. 19.7 O'Hara Jochim '09

The unitary gas is a benchmark for many-body physics. It

• realizes a high-temperature fermionic superfluid

 $T_c/T_F \simeq 0.16$ and a scale-invariant many-body problem with universal ratios $p/p_F = \xi \simeq 0.37$ and $S/Nk_B|_c \simeq 0.7$

• is the most perfect non-relativistic fluid with η/s close to the KSS bound and quantum-limited spin-diffusion $D_s\simeq 1.3\,\hbar/m$

The Efimov spectrum for cold atoms is fixed by $l_{\rm VdW}$ and r^{\star}

in the absence of 3-body forces

