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textbook model for fermionic superfluids

BCS ’57 Fermions ↑↓ with density n = k3
F/3π2 and

attractive two-particle interaction V↑↓(x) = ḡ · δ(x)

pairs form and condense at Tc ∼ exp− 1
|ḡ|N(0) � TF

what happens at infinite coupling g =∞ ?
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scattering length in 6Li gN(0)→ 2kFa/π

-5

0

5
E

ne
rg

y 
[M

H
z]

543 834650
Magnetic Field [G]

-20x103

-10

0

10

20
S

cattering length [a
0 ]

3



Outline

I) Unitary gas thermodynamics

II) Viscosity and spin-diffusion

III) Universality of the 3-body parameter in Efimov physics
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The unitary Fermi gas at a =∞ x→ λx gives

H → H/λ2 scale invariance → Tr T= 0 →

pressure p = 2ε/3 Ho ’04 bulk viscosity ζ = 0 Son ’07

ground state p(∞) = ξ · p(0)
F Bertsch-parameter ξ

determines cloud size in a trap RTF = R
(0)
TF · ξ

1/4

universal numbers ξ ' 0.36, Tc ' 0.16TF , ∆0 ' 0.46 εF

transport: shear viscosity η(Tc) ' 0.5 ~n Shuryak ’04

5



Many-body theory pseudopotential V↑↓(x) = ḡ(Λ) δ(x)

Luttinger/Ward ’60 Ω = −T ln Z = Ω[Ĝ]

Ω[Ĝ] = β−1
(
−1

2Tr{− ln Ĝ+ [Ĝ−1
0 Ĝ− 1]} −Φ[Ĝ]

)

Ladder-approximation

−1

3

2
1

l
l

δΩ[Ĝ]/δĜ = 0 variational principle for G(k, τ) and F(k, τ)

Haussmann/Rantner/Cerrito/Zw. ’07, PR A75, 023610
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why does Luttinger-Ward work well ?

• it is conserving → all th. dyn. relations are obeyed

• it obeys the Tan relations

LE = L[ψσ] + L[Φ] + g̃

(
Φ̄Bψ↑ψ↓+ h.c.

)

change of Ω with scattering length
∂Ω

∂(−1/a)
=

= Tr

GB ∂G−1
B,0

∂(−1/a)

 =
∑
X,X ′

GB(X,X ′)g̃2 m

4π~2
δX,X ′ =

~2C

4πm
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pressure as a function of T/TF and 1/kFa (ξ = 0.36)
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comparison with experiments

(
P0(µ, T ) =

kBT

λ3
T

f5/2(z)

)
tion and theory (23). At low temperatures, the
reduced chemical potential m/EF saturates to the
universal value x. As the internal energy E and
the free energy F satisfy E(T ) > E(0) = 3

5N xEF =
F(0) > F(T ) for all T, the reduced quantities
fE ≡ 5

3
E

NEF
¼ p̃ and fF ≡ 5

3
F

NEF
¼ 5

3
m
EF
− 2

3 p̃ (Fig.
3A) provide upper and lower bounds for x (29).
Taking the coldest points of these three curves and
including the systematic error due to the effective
interaction range, we find x = 0.376(4). The un-
certainty in the Feshbach resonance is expected
to shift x by at most 2% (13). This value is con-
sistent with a recent upper bound x < 0.383(1) from
(30), is close to x = 0.36(1) from a self-consistent
T-matrix calculation (23), and agrees with x =
0.367(9) from an epsilon expansion (31). It lies
below earlier estimates x = 0.44(2) (32) and x =
0.42(1) (33) from fixed-node quantumMonteCarlo
calculation that provides upper bounds on x. Our
measurement agrees with several less accurate ex-
perimental determinations (6) but disagrees with
the most recent experimental value 0.415(10) that
was used to calibrate the pressure in (12).

From the energy, pressure, and chemical po-
tential, we can obtain the entropy S = 1

T(E + PV −
mN), and hence the entropy per particle S=NkB ¼
TF
T

p̃ −
m
EF

! "
as a function of T/TF (Fig. 3B). At

high temperatures, S is close to the entropy of
an ideal Fermi gas at the same T/TF. Above Tc,
the entropy per particle is nowhere small com-
pared with kB. Also, the specific heat CV is not
linear in T in the normal phase. This shows that
the normal regime above Tc cannot be described in
terms of a Landau Fermi Liquid picture, although
some thermodynamic quantities agree surpris-
ingly well with the expectation for a Fermi liquid
[see (12) and (13)]. Below about T/TF = 0.17, the
entropy starts to strongly fall off comparedwith that
of a noninteracting Fermi gas, which we again
interpret as the freezing out of single-particle excita-
tions as a result of the formation of fermion pairs.
Far below Tc, phonons dominate. They only have a
minute contribution to the entropy (23), less than
0.02 kB at T/TF = 0.1, consistent with our measure-
ments. At the critical point, we obtain Sc = 0.73(13)
NkB, in agreement with theory (23). It is encourag-
ing for future experiments with fermions in optical
lattices that we obtain entropies less than 0.04 N
kB, far below critical entropies required to reach
magnetically ordered phases.

From the chemical potential m/EF andT=TF ¼
4p

ð3p2Þ2=3
1

ðnl3Þ2=3, we finally obtain the density EoS

n(m,T ) ≡ 1
l3
fnðbmÞ, with the de Broglie wave-

length l ¼
ffiffiffiffiffiffiffiffi
2pħ2
mkBT

q
. The pressure EoS follows

as P(m,T ) ≡ kBT
l3

fPðbmÞ, with fP ¼ 2
5
TF
T p̃fnðbmÞ.

Figure 4 shows the density and pressure nor-
malized by their noninteracting counterparts at
the same chemical potential and temperature. For
the normal state, a concurrent theoretical calcu-
lation employing a new Monte Carlo method
agrees excellently with our data (34). Our data

deviate from a previous experimental determi-
nation of the pressure EoS (12) that was cal-
ibrated with an independently measured value of

x = 0.415(10) (35) and disagree with the energy
measurement in (11) that used a thermometry in-
consistent with the Virial expansion (10). Around
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Fig. 3. (A) Chemical potential m, energy E, and free energy F of the unitary Fermi gas versus T/TF. m (red
solid circles) is normalized by the Fermi energy EF, and E (black solid circle) and F (green solid circle) are
normalized by E0 = 3

5N EF. At high temperatures, all quantities approximately track those for a non-
interacting Fermi gas, shifted by xn − 1 (dashed curves). The peak in the chemical potential signals the
onset of superfluidity. In the deeply superfluid regime at low temperatures, m/EF, E/E0, and F/F0 all approach
x (blue dashed line). (B) Entropy per particle. At high temperatures, the entropy closely tracks that of a
noninteracting Fermi gas (black solid curve). The open squares are from the self-consistent T-matrix
calculation (23). A few representative error bars are shown, representing mean T SD.
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Fig. 4. (A) Density and (B) pressure of a unitary Fermi gas versus m/kB T, normalized by the density and
pressure of a noninteracting Fermi gas at the same chemical potential m and temperature T. Red solid
circles: experimental EoS. Blue dashed curves: low-temperature behavior with x = 0.364 (upper), 0.376
(middle), and 0.388 (lower). Black dashed curve: low-temperature behavior with x at upper bound of 0.383
from (30). Green solid circles (black fine dashed line): MIT experimental data (theory) for the ideal Fermi
gas. Blue solid squares (blue curve): diagrammatic Monte Carlo calculation (34) for density (pressure, with
blue dashed curves denoting the uncertainty bands). Solid green line: third-order Virial expansion. Open
black squares: self-consistent T-matrix calculation (23). Open green circles: lattice calculation (36). Orange
star and blue triangle: critical point from the Monte Carlo calculations (26) and (27), respectively. Solid
diamonds: Ecole Normale Supérieure experiment (12). Purple open diamonds: Tokyo experiment (11).
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MIT

Ku, .. Zwierlein

Science 335

p. 563 (2012)

Tc/TF ' 0.16 at

(µ/kBT )c ' 2.5

theory Haussmann/Rantner/Cerrito/Zw. PR A75 (2007)

exact LW theory: bold diagrammatic MC van Houcke et al 2012
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Momentum resolved rf-spectroscopy measures

hole spectral function A−(k, εk − ~ω) Stewart,Gaebler,Jin ’08

A(k, ε) from G(k, τ) via G(k, ωn) =
∫
dε

A(k, ε)

−i~ωn + ε− µ
(Maxent)

numerical spectral functions A(k, ε) at T = 0 (PR A80 ’09)

(kFa)−1 = −1 unitarity (kFa)−1 = +1
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II) The unitary gas as a ’perfect fluid’ (Kovtun Son Star. ’05)

AdS/CFT N= 4 SSYM-Theory in the t’Hooft limit

λ = g2N →∞ is equivalent to a classical theory of gravity

AdS-metric ds2 =
L2

z2

(
−dt2 + dx2 + dz2

) L

`P
= λ1/4 →∞

’radial’ coord. z is effectively an RG-scale (McGreevy ’09)

Conjecture: All (relativistic, scale invariant) fluids have
η

s
≥

~
4πkB
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tional to the density of quasiparticles, s! kBn. Therefore,
!=s! k"1

B "mft#=n. Now #=n is the average energy per
particle. According to the uncertainty principle, the prod-
uct of the energy of a quasiparticle #=n and its mean free
time "mft cannot be smaller than !h, otherwise the quasi-
particle concept does not make sense. Therefore we obtain,
from the uncertainty principle alone, that !=s * !h=kB,
which is (15) without the numerical coefficient of
1=#4$$. We also conclude that !=s is much larger than
!h=kB in weakly coupled theories (where the mean free time
is large).

Another piece of evidence supporting the bound (15)
comes from a recent calculation [21] of !=s in the N % 4
supersymmetric SU#Nc$ Yang-Mills theories in the regime
of infinite Nc and large, but finite, ’t Hooft coupling g2Nc.
The first correction in inverse powers of g2Nc corresponds
to the first string theory correction to Einstein’s gravity.
The result reads

!
s

% !h
4$kB

!

1& 135%#3$
8#2g2Nc$3=2

& ' ' '
"

; (16)

where %#3$ ( 1:2020 569 . . . is Apéry’s constant. The cor-
rection is positive, in accordance with (15). It is natural to
assume that !=s is larger than the bound for all values of
the ’t Hooft coupling (Fig. 1).

The bound (15), in contrast to the entropy bound [22]
and Bekenstein’s bound [23], does not involve the speed
of light c and hence is nontrivial when applied to non-
relativistic systems. However, the range of applicability of
(15) to nonrelativistic systems is less certain. On the one
hand, by subdividing the molecules of a gas to an ever-
increasing number of nonidentical species one can increase
the entropy density (by adding the Gibbs mixing entropy)
without substantially affecting the viscosity. On the other

hand, the conjectured bound is far below the ratio of !=s
in any laboratory liquid. For water under normal condi-
tions, !=s is 380 times larger than !h=#4$kB$. Using stan-
dard tables [24,25] one can find !=s for many liquids and
gases at different temperatures and pressures. Figure 2
shows temperature dependence of !=s, normalized by
!h=#4$kB$, for a few substances at different pressures. It
is clear that the viscosity bound is well satisfied for these
substances. Liquid helium reaches the smallest value of
!=s, but this value still exceeds the bound by a factor of
about 9. We speculate that the bound (15) is valid at least
for a single-component nonrelativistic gas of particles with
spin 0 or 1=2.

Discussion.—It is important to avoid some common
misconceptions which at first sight seem to invalidate the
viscosity bound. Somewhat counterintuitively, a near-ideal
gas has a very large viscosity due to the large mean free
path. Likewise, superfluids have finite and measurable
shear viscosity associated with the normal component,
according to Landau’s two-component theory.

The bound (15) is most useful for strongly interacting
systems where reliable theoretical estimates of the viscos-
ity are not available. One of such systems is the quark-
gluon plasma (QGP) created in heavy ion collisions which
behaves in many respects as a droplet of a liquid. There are
experimental hints that the viscosity of the QGP at tem-
peratures achieved by the Relativistic Heavy Ion Collider
is surprisingly small, possibly close to saturating the vis-
cosity bound [26]. Another possible application of the
viscosity bound is trapped atomic gases. By using the
Feshbach resonance, strongly interacting Fermi gases of
atoms have been created recently. These gases have been
observed to behave hydrodynamically [27] and should
have finite shear viscosity at nonzero temperature. It would

0

h̄

4πkB

η

s

g2Nc

FIG. 1 (color online). The dependence of the ratio !=s on the
’t Hooft coupling g2Nc in N % 4 supersymmetric Yang-Mills
theory. The ratio diverges in the limit g2Nc ! 0 and approaches
!h=4$kB from above as g2Nc ! 1. The ratio is unknown in the
regime of intermediate ’t Hooft coupling.
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FIG. 2 (color online). The viscosity-entropy ratio for some
common substances: helium, nitrogen and water. The ratio is
always substantially larger than its value in theories with gravity
duals, represented by the horizontal line marked ‘‘viscosity
bound.’’

PRL 94, 111601 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
25 MARCH 2005

111601-3

viscosity for helium, 
nitrogen, and water

[Kovtun, Son, Starinets 2005]
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Why does string theory apply to water ?

assume a Lennard-Jones fluid V (r) = 4ε
[
(σ/r)12 − (σ/r)6

]
reduced density n? = nσ3 and temp. T ? = kBT/ε

critical point at n?c = 0.36 and T ?c = 1.36

time scale for classical dynamics τ =
√
mσ2/ε →

dim. analysis ηLJ =
ετ

σ3
η?(n?, T ?) → ηmin

LJ = const

√
mε

σ2

quantum viscosity ηmin = αη ~n with αη = const/ΛDB & O(1)

because the de Boer par. ΛDB = ~/σ
√
mε cannot be � 1 !

13



measurements of viscosity and spin diffusion of the unitary gas

 1
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 0.1  1  10

m
D

s
/− h

T/TF

Luttinger-Ward theory
Sommer et al. (2011)

classical gas

Cao ... Science 331 (2011) and Sommer ... Nature 472 (2011)
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shear viscosity of the unitary gas

Boltzmann-limit η(T � TF ) = 2.8 ~n(T/TF )3/2 = 4.2
~
λ3
T

(density drops out!), well defined quasipart. ~/τη � kBT

superfluid below Tc ' 0.16TF has finite viscosity due to

a) phonon interactions: η(T ) ∼ T−5 as T � Tc Rupak/Schäfer ’07

b) fermionic qp’s: η(T )→ const as T → 0 Pethick/Smith ’75

T � Tc inaccessible since mean free path ' trap size
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transport coefficients of the unitary gas from Luttinger-Ward

Kubo formula Re η(ω) =
Im χretxy (ω)

ω

perturbation Ĥ ′ = h`(t) · Π̂` (` = 0,2 → bulk, shear)

euclidean time τ → χ`(τ) =
∫
d3x

〈
T̃ Π̂`(x, τ)Π̂`(0,0)

〉

from χ`(τ) = −
δ2Ω

δh`(τ)δh`(0)
|h=0 → χxy(iωm)

requires contin. to real frequencies ω (Pade, Ansatz)

spin diffusion (` = 1) minimum value Ds ' 1.3 ~/m near T = 0.5TF
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Ward-identities due to scale and translation inv.

• guarantee that ζ(ω) ≡ 0

• sum rule
2

π

∫ ∞
0

dω

[
Re η(ω)−

~3/2C

15π
√
mω

]
≡ p

• Boltzmann-limit η → 4.2
~
λ3
T

∼ T3/2 ; Ds → 1.1 ~/m (T/TF )3/2
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III) Efimov physics beyond universality Schmidt, Rath, Zw. ’12

Bosons form trimers at a(n)
− < 0 universality a

(n+1)
− /a

(n)
− →22.69...

- 0.5 0.0 0.5 1.0

- 1.5

- 1.0

- 0.5

0.0

-0.5 0.0 0.5 1.0
0.0

-0.5

-1.5

-1.0

scale in (a,E)− plane set by

three-body parameter

exp. observation a− ≈ −9.45 lvdW

for the first Efimov trimer

Feshbach coupling Ĥ ′ =
g

2

∫
χ(r2 − r1)φ(

r1 + r2

2
)ψ∗(r1)ψ∗(r2)

with finite range χ(r) ∼ exp−r/ā ā = mean scatt. length
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exact solution of RG-flow for atom-dimer vertex λ
(k)
3 (q1, q2;E)

poles of λ(k=0)
3 give Efimov spectrum which is fixed by ā

and the dimensionless resonance strength sres = 0.956 lvdw/r
?

- 3 - 2 - 1 0 1 2 3

- 0.1

0.0

0.1

0.2
crossover from open-channel

dominated limit sres � 1 to

sres � 1 where a− = −10.3 r?

(Petrov ’04, Gogolin .... ’08)

non-universal ratios a
(1)
− /a− = 17.1 exp. 19.7 O’Hara Jochim ’09
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The unitary gas is a benchmark for many-body physics. It

• realizes a high-temperature fermionic superfluid

Tc/TF ' 0.16 and a scale-invariant many-body problem

with universal ratios p/pF = ξ ' 0.37 and S/NkB|c ' 0.7

• is the most perfect non-relativistic fluid with η/s close to

the KSS bound and quantum-limited spin-diffusion Ds ' 1.3 ~/m

The Efimov spectrum for cold atoms is fixed by lvdw and r?

in the absence of 3-body forces
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