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We study the superfluid pairing in a two-species gas of heteronuclear fermionic molecules with equal density.
The interplay of the isotropic s-wave interaction and anisotropic long-range dipolar interaction reveals rich
physics. We find that the single-particle momentum distribution has a characteristic ellipsoidal shape that can
be reasonably represented by a deformation parameter α defined similarly to the normal phase. Interesting
momentum-dependent features of the order parameter are identified. We calculate the critical temperatures of
both the singlet and triplet superfluids, suggesting a possible pairing symmetry transition by tuning the s-wave
or dipolar interaction strength.
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I. INTRODUCTION

The recent experimental realization and coherent control of
high phase-space density quantum gas of the polar molecules
40K87Rb [1–3] provides an excellent opportunity to study the
effects of anisotropic long-range dipole-dipole interactions.
Theoretical proposals employing degenerate polar molecules
range from the study of exotic quantum phases of matter [4,5]
and quantum gas dynamics [6,7] to quantum simulations of
highly correlated condensed matter systems [8] and schemes
for quantum information processing [9].

Two fundamental properties of dipolar Fermi gases are
superfluid pairing [10–13] and Fermi surface deformation
[14–16], originating from the partially attractive nature of the
dipolar interaction and anisotropic Fock exchange interaction.
For dipolar Fermi gases with two hyperfine states, one
can tune not only the dipole-dipole interaction by a fast
rotating orienting field [17], but also the s-wave interspecies
interaction via a Feshbach resonance. Therefore, one expects
that rich physics will emerge as a result of the interplay of
the anisotropic long-range dipole interaction and short-range
s-wave interaction.

In this work, we study BCS pairing by taking account of
the Fock exchange term in a self-consistent way. We find
that the anisotropic nature of the dipolar interaction leads to
an anisotropic momentum space distribution of the number
density and an anisotropic order parameter. We generalize
the definition of the deformation parameter introduced in
Ref. [14] to describe the anisotropic number distribution in
the pairing phase and find that it gives a good description.
Interesting features of the order parameter in momentum space
are revealed, manifesting fascinating consequences of the
dipolar interaction. Competing effects of the contact s-wave
interaction and the dipolar interaction are identified in the study
of the transition temperature of the superfluid state, suggesting
the possibility of tuning the pairing symmetry by tuning the
dipolar interaction.

II. MODEL

We consider a homogeneous gas of two species of fermionic
heteronuclear molecules σ =↑ and ↓. For simplicity, we
further assume that each species has the same mass, density,
and dipole moment. The electric dipoles of the molecules with

moment d are oriented along the z axis by a sufficiently strong
external electric field such that the spin-independent part of
the electronic dipole-dipole interaction becomes Vdd (q) =
(4π/3)d2(3 cos2 θq − 1), with θq being the angle between
momentum q and the direction of the z axis in which the
dipoles are aligned. In addition, we assume that molecules
also interact via a contact interaction with strength g. This
system is described by the following Hamiltonian

H − µn =
∑

kσ

(εk − µ)c†kσ ckσ

+ 1
2V

∑

kpqσσ ′

Vσσ ′(q)c†k+qσ c
†
p−qσ ′cpσ ′ckσ , (1)

where µ is the chemical potential, n is the total number density,
V is the volume, and εk = k2/2m (where we have set h̄ = 1).
The interaction potential Vσσ ′(q) = gδσ,−σ ′ + Vdd (q) contains
both dipole-dipole and contact interactions. Anticipating the
importance of the Fock exchange term, we decouple the
interaction in all three channels [18]: direct channel, exchange
channel, and Cooper channel, resulting in the following
effective mean-field Hamiltonian

HMF =
∑

kσ

ξkσ c
†
kσ ckσ

+ 1
2

∑

kσσ ′

[(∗
σ ′σ (k)c−kσ ′ckσ + (σ ′σ (k)c†kσ c

†
−kσ ′]. (2)

Here ξkσ = εk − µ + gn/2 + )kσ , with self-consistent mean
fields defined as

)kσ = − 1
V

∑

p

Vdd (p − k)〈c†pσ cpσ 〉, (3)

(σ ′σ (k) = 1
V

∑

p

Vσσ ′(k − p)〈c−kσ ′ckσ 〉. (4)

Some comments are in order: The contact interaction affects
the single-particle spectrum by shifting the chemical potential,
which may be redefined as µ̃ = µ − gn/2. The self-energy
)kσ encodes the anisotropic dipolar contribution from the Fock
exchange term to the dressed single-particle spectrum, which
justifies our treatment. In addition, both parts of the interaction
contribute to the pairing field.
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The Hamiltonian (2) is diagonalized by invoking the
Bogoliubov transformation [19]. We obtain self-consistent
equations for the self-energy, the order parameters, and the
number density

!kσ = −
∑

p

Vdd (p − k)
[

1
2

− ξkσ

2Ekσ

tanh
βEkσ

2

]
, (5)

%σσ ′(k) = −
∑

p

Vσσ ′(k − p)
%σσ ′(p)

2Ekσ

tanh
βEkσ

2
, (6)

n =
∑

k

nk =
∑

kσ

1
2

[
1 − ξkσ

Ekσ

tanh
βEkσ

2

]
, (7)

where Ekσ =
√
ξ 2
kσ +

∑
σ ′ |%σσ ′(k)|2 is the quasiparticle spec-

trum and β = 1/kBT is the inverse temperature. Equation
(6) formally diverges. For the contact interaction, one can
eliminate the interaction strength g in terms of the s-wave
scattering length as using 1/g = m/(4πas) − 1

V
∑

k
1

2εk
. The

dipolar interaction can be regularized by replacing the bare
interaction Vσσ ′(k − p) with the vertex function (σσ ′(k − p)
as explained in Refs. [10,20]. To first order in the Born
approximation [21], the gap equations become

%σσ ′(k) =
∑

p

Vσσ ′(k − p)
[

tanh βEkσ

2Ekσ

− 1
2εk

]
%σσ ′(p).

The above equation, together with Eqs. (5) and (7), comprises
a complete description of the dipolar Fermi gas and needs to
be solved self-consistently.

Due to the symmetry of the interaction potential, the
momentum distribution, order parameter, and self-energy
possess azimuthal symmetry in thermal equilibrium, as can be
seen from the self-consistent equations by integrating out the
azimuthal degree of freedom φk. Thus the physical quantities
nk, %σσ ′(k) and !kσ are only functions of (k,θk). Numerically,
we parametrize these quantities by two-dimensional grids
living on the domain + = [0,kc] × [0,π ], where kc is the
momentum cutoff. For spin singlet pairing the order parameter
possesses inversion symmetry as well as azimuthal sym-
metry %(k,θk) = %(k,π − θk), while for spin triplet pairing
%(k,θk) = −%(k,π − θk). In our calculation, we parametrize
the dipolar interaction by the dimensionless coupling parame-
ter Cdd = md2(nσ )1/3, where nσ = k3

F /(6π2) = n/2, and the
Fermi energy is EF = k2

F /2m. In addition to the azimuthally
symmetric solution, vortex states with an azimuthally varying
phase (arg % = iνϕ, where ϕ is the azimuthal angle and
ν is integer) are expected to exist and can be treated by
straightforward generalization of the presented approach.

III. SPIN SINGLET PAIRING

To investigate the interplay of the contact and dipolar
interactions, we devote this paragraph to studying spin singlet
pairing at zero temperature. In the normal phase, the Fermi
surface of the dipolar gas has an ellipsoid shape [14]: n(k) =
.(k2

F − α2k2
z − k2

x/α − k2
y/α), where α is the deformation

parameter. In the superfluid phase, we propose to use the defor-
mation parameter α to measure the anisotropy of the single-
particle momentum distribution with a similar strategy. The
angular distribution nθ (θk) can be obtained by integrating out

FIG. 1. (Color online) Deformation parameter α as a function of
s-wave coupling strength 1/kF a at Cdd = 1 for the singlet superfluid.

the magnitude and azimuthal angle of the momentum nθ (θk) =∫
n(k)k2dk/(2π2). Since nθ (0)/nθ (π/2) = k3

z /k3
x and α2k2

z =
k2
x/α, we can deduce that α = [nθ (π/2)/nθ (0)]2/9. In Fig. 1 the

deformation parameter α is plotted as a function of the s-wave
coupling strength, characterized by 1/kF as , at fixed dipole
interaction strength Cdd = 1. As the s-wave coupling strength
is increased, the deformation parameter α increases before it
reaches a maximum, signaling that the anisotropy of the single-
particle momentum distribution is mitigated. It is energetically
favorable for the system to become less anisotropic to benefit
the energy gain from the BCS pairing. The appearance of a
pronounced peak suggests that there is an optimal value of the
s-wave interaction strength to mitigate anisotropy.

The single-particle momentum distribution is shown in
Fig. 2. The angular distribution nθ is symmetrical with
respect to the orbital axis, with nθ (θk) = nθ (π − θk) extending
to the polar axis with a parabolic shape, as suggested
in Fig. 2(a). The angle-averaged momentum distribution
nk(k) =

∫
n(k)d+/4π is shown in Fig. 2(b). For k < kF , the

quantum states are essentially fully occupied. For k > kF the
occupation number decreases rapidly with a k−4 tail, as can
be derived from Eq. (7). This k−4 asymptote is valid for wave
numbers smaller than the inverse range of the two-particle

FIG. 2. (Color online) (a) Momentum-integrated angular number
distribution. (b) Angle-averaged momentum number distribution
nk(k) =

∫
n(k)d+/4π at 1/kF a = −1 and Cdd = 1 for the singlet

superfluid.
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FIG. 5. (Color online) (a) Critical temperature as a function
of dipole-dipole interaction strength Cdd for singlet superfluid at
1/kF a = −1 and for triplet superfluid. (b) Critical temperature as
a function of 1/kF a at Cdd = 1 for singlet superfluid.

increases with the dipolar interaction as expected since the
s-wave interaction does not participate in the pairing mech-
anism. When the system is cooled down from the normal
phase, the actual pairing symmetry, spin singlet or spin triplet,
is determined by which of the critical temperatures are higher.
By tuning the dipolar interaction strength Cdd , the quantum
phase transition between singlet and triplet superfluids may be
realized. In Fig. 5(b), for Cdd = 1, the critical temperature for
the singlet superfluid is clearly a monotonic function of the

s-wave coupling strength. Here we only show Tc in the range
of weak interaction where the mean-field description gives
quantitative reasonable results. For a strong interaction at finite
temperature, the fluctuation contribution is significant and one
needs to resort to methods beyond the mean-field description.

V. EXPERIMENTAL SIGNATURE

The anisotropic nature of the superfluid order parameter and
momentum distribution bear consequences for experimental
observations. The single-particle momentum distribution of
trapped Fermi gases is routinely observed by time-of-flight
measurements [24]. Collecting angle-resolved data from a gas
released from an axially symmetric trap should reveal the
anisotropies predicted in Sec. III. Anisotropic features of the
pairing gap and further details of the single-particle spectrum
could be probed by radio frequency spectroscopy [25,26].
For trapped systems, the Hartree interaction term becomes
relevant, and may additionally influence the anisotropic de-
formation discussed in the previous sections. This term is
expected to become particularly important in oblate trapping
geometries [27] and deserves further study.
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[1] S. Ospelkaus, A. Péer, K.-K. Ni, J. J. Zirbel, B. Neyenhuis,
S. Kotochigova, P. S. Julienne, J. Ye, and D. S. Jin, Nat. Phys. 4,
622 (2008).

[2] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Péer,
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This talk: Dark solitons in BEC-BCS 
crossover

• Introduction
Dispersion relations are relevant for 
understanding dynamics

• Analytic disperion relations at unitarity 
Dark soliton dispersion relations from universal 
scaling and general assumptions

• Crossover mean field theory 
numerical soliton profiles and dispersion relation 
on homogeneous background
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Solitons

6credit: Alex Kasman

Tikhonenko et al. (1996)

Optics

Sengstock group (2008)

Water

Coupled Pedula

BEC
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Dark solitons in a trapped BEC

Solitons in trapped BEC 
oscillate more slowly than 
COM

7Hamburg Experiment: Becker et al. (2008)

ω =
ωtrap√

2

Theory:
•Busch, Anglin PRL (2000)
•Konotop, Pitaevskii, PRL (2004)

Experiment:
•Becker et al. Nat. Phys. (2008)
•Weller et al. PRL (2008)

Movie credits: Nick Parker, Univ. Leeds
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Landau quasiparticle dynamics
• in homogeneous BEC:

one parameter family of 
dark soliton solutions

• in trapped BECs:
– soliton moves on a slowly varying background,

locally conserving energy

                                                 equation of motion

– BEC solitons also locally conserve particle number

8
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dEs(vs, µ(z))

dt
= 0

Ns = f(Es(vs, µ))

Konotop, Pitaevskii, PRL (2004)

Ns ≡
�

(ns − n0)d
3r = −∂Es

∂µ
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Speed limits in the Fermi gas

The soliton velocity is 
limited by

• Sound speed c
 (from compressibility)

• Velocity of BCS 
pair breaking vsp

9

mc2 = n
∂µ

∂n

BEC
unitary

BCS

pair breaking

sound
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Do solitons exist in superfluid Fermi 
gases and what are their properties?
• In the BEC limit (BEC of composite bosons) we 

would expect so. Properties predicted by GP 
theory.

• If we really want to know, have to find them in 
experiment!

• Approaching from theory, this is a hard problem 
since we have strongly correlated system:
– Find (magic) solution to numerically simulate the 

dynamics (or excited states) of strongly correlated 
many-body problem?

– Try crossover mean field theory? 
computationally demanding but doable.

– Exploit universal scaling of the unitary gas?
10
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Soliton properties at unitarity

For this part, forget mean-field theory!
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Scaling arguments:
soliton energy for unitary Fermi gas

Grand canonical energy

Equation of state (homogeneous gas):

Soliton energy:

where               is the dimensionless soliton velocity

particle number: 
12

2

FIG. 2. (Color online) Soliton properties at unitarity η = 0
as a function of velocity: (a) the magnitude of the or-
der parameter in the center, (b) the phase difference δφ =
arg[∆(∞)] − arg[∆(−∞)], (c) the density in the center, and
(d) the number of particles in the soliton.

that is localized along the z direction in a region small
compared to the system length L on a homogeneous back-
ground. We can extract the scaling of the system en-
ergy with density using the inverse Fermi wave number
k−1
F and the Fermi energy EF = !2k2F /(2m) as units

of length and energy, respectively. We may express the
grand canonical energy of the superfluid Fermi system
E′ = 〈Ĥ − µN̂〉 = [εhkFL + E + O((kFL)−1)]k2FAEF ,
where A is the transverse area, εh the dimensionless back-
ground energy and Es ≡ Ek2FAEF is identified as the
soliton energy. Physically, the soliton energy Es(µ, vs, a)
depends on three independent parameters, where vs is
the propagation velocity. Dimensionless E , however, may
only depend on the two dimensionless parameters of ve-
locity ṽ = vs/vF and coupling strength η. The depen-
dence on the chemical potential µ is implicit through the
density, which determines kF .
A special case arises for unitarity, where a → ∞ and

η = 0 becomes independent of µ. Anticipating that Es

is an even function of the velocity, we consider E(ṽ2) as
a function of ṽ2. Employing the equation of state of the
unitary Fermi gas µ = (1 + β)EF , where β is the many-
body parameter, we can extract the dependence on µ

Es(µ, vs) = µ2BE(ṽ2), (1)

where ṽ2 = v2s (1 + β)m/(2µ) and B = 2Am/[(1 + β)!]2.
As a localized wave form, a soliton is characterized not
only by its energy but also by its particle number Ns =
∫

(ns−n0)d3r = −∂Es/∂µ, where ns is the soliton density
and n0 is the background density [8]. We find

Ns = v2s
m

2
(1 + β)BE ′(ṽ2)− 2µBE(ṽ2), (2)

where E ′ = dE/dṽ2. The particle number and energy are
thus completely determined by the same function E(ṽ2).

We are now going to determine this function from the
assumptions (a) – (c).
Assumption (a) requires both Es and Ns to be con-

stants of the motion through inhomogeneous density.
Since we are considering purely one-dimensional motion
of the soliton, treating it as a quasiparticle, there is at
most only a single independent constant of the motion.
The condition that Ns and Es have identical contours in
phase space leads to the condition

∂Ns

∂µ

∂Es

∂vs
=

∂Ns

∂vs

∂Es

∂µ
, (3)

where µ and vs represent the quasiparticle’s coordinate
and momentum, respectively. It follows from Eqs. (1)
and (2) that the third derivative of E vanishes identically
and that E(ṽ2) can be parameterized by

E(ṽ2) = e̊(̊v2 − ṽ2)2, (4)

where e̊ and v̊ are yet undetermined parameters. The
functional form (4) already has important implications
for the soliton trajectories in a trapped gas. Requiring
dEs/dt = 0, we find the Newtonian equation of motion
for the soliton

dµ

dz

∣

∣

∣

∣

z=zs

−
m(1 + β)

v̊2
z̈s = 0. (5)

In the case of harmonic trapping and under validity of
the Thomas Fermi approximation, we can write µ(z) =
µ0 −mω2

t z
2/2 and Eq. (5) reduces to a harmonic oscilla-

tor. The frequency ω/ωt = v̊/
√
1 + β is independent of

amplitude!
The parameter v̊ can be determined from assumption

(b): From Eq. (4) we find that the energy and particle
number vanish when the dimensionless velocity ṽ reaches
the critical value v̊. We expect this to happen at the
speed of sound, which takes the value c =

√

(1 + β)/3vF .

This leads to v̊ =
√

(1 + β)/3 and yields the oscillation
frequency ω/ωt = 1/

√
3.

The remaining coefficient e̊ can be determined from the
relation between the physical momentum of the soliton
ps = mNsvs and the canonical momentum pc, which is
defined by ∂Es/∂pc|µ = vs. The difference between the
two quantities accounts for the counterflow that would
have to occur in a toroidal system to compensate for
the phase difference δφ in the superfluid order parameter
across the soliton [12]. For the superfluid Fermi gas the
counterflow term was recently found by Pitaevskii [6]

ps − pc = !n1(π − δφ)/2, (6)

where n1 = nA = k3FA/(3π
2) is the one-dimensional den-

sity. From Eqs. (1) and (4) we evaluate the difference
using pc =

∫

v−1
s ∂Es/∂vs dvs = −!n16π2e̊ṽ [̊v2 − ṽ2/3]

to yield

ps − pc = !n14π
2 e̊̊v2ṽ. (7)

µ = (1 + β)EF = (1 + β)
�2k2F
2m

ṽ =
vsm

�kF

2

FIG. 2. (Color online) Soliton properties at unitarity η = 0
as a function of velocity: (a) the magnitude of the or-
der parameter in the center, (b) the phase difference δφ =
arg[∆(∞)] − arg[∆(−∞)], (c) the density in the center, and
(d) the number of particles in the soliton.

that is localized along the z direction in a region small
compared to the system length L on a homogeneous back-
ground. We can extract the scaling of the system en-
ergy with density using the inverse Fermi wave number
k−1
F and the Fermi energy EF = !2k2F /(2m) as units

of length and energy, respectively. We may express the
grand canonical energy of the superfluid Fermi system
E′ = 〈Ĥ − µN̂〉 = [εhkFL + E + O((kFL)−1)]k2FAEF ,
where A is the transverse area, εh the dimensionless back-
ground energy and Es ≡ Ek2FAEF is identified as the
soliton energy. Physically, the soliton energy Es(µ, vs, a)
depends on three independent parameters, where vs is
the propagation velocity. Dimensionless E , however, may
only depend on the two dimensionless parameters of ve-
locity ṽ = vs/vF and coupling strength η. The depen-
dence on the chemical potential µ is implicit through the
density, which determines kF .
A special case arises for unitarity, where a → ∞ and

η = 0 becomes independent of µ. Anticipating that Es

is an even function of the velocity, we consider E(ṽ2) as
a function of ṽ2. Employing the equation of state of the
unitary Fermi gas µ = (1 + β)EF , where β is the many-
body parameter, we can extract the dependence on µ

Es(µ, vs) = µ2BE(ṽ2), (1)

where ṽ2 = v2s (1 + β)m/(2µ) and B = 2Am/[(1 + β)!]2.
As a localized wave form, a soliton is characterized not
only by its energy but also by its particle number Ns =
∫

(ns−n0)d3r = −∂Es/∂µ, where ns is the soliton density
and n0 is the background density [8]. We find

Ns = v2s
m

2
(1 + β)BE ′(ṽ2)− 2µBE(ṽ2), (2)

where E ′ = dE/dṽ2. The particle number and energy are
thus completely determined by the same function E(ṽ2).

We are now going to determine this function from the
assumptions (a) – (c).
Assumption (a) requires both Es and Ns to be con-

stants of the motion through inhomogeneous density.
Since we are considering purely one-dimensional motion
of the soliton, treating it as a quasiparticle, there is at
most only a single independent constant of the motion.
The condition that Ns and Es have identical contours in
phase space leads to the condition

∂Ns

∂µ

∂Es

∂vs
=

∂Ns

∂vs

∂Es

∂µ
, (3)

where µ and vs represent the quasiparticle’s coordinate
and momentum, respectively. It follows from Eqs. (1)
and (2) that the third derivative of E vanishes identically
and that E(ṽ2) can be parameterized by

E(ṽ2) = e̊(̊v2 − ṽ2)2, (4)

where e̊ and v̊ are yet undetermined parameters. The
functional form (4) already has important implications
for the soliton trajectories in a trapped gas. Requiring
dEs/dt = 0, we find the Newtonian equation of motion
for the soliton

dµ

dz

∣

∣

∣

∣

z=zs

−
m(1 + β)

v̊2
z̈s = 0. (5)

In the case of harmonic trapping and under validity of
the Thomas Fermi approximation, we can write µ(z) =
µ0 −mω2

t z
2/2 and Eq. (5) reduces to a harmonic oscilla-

tor. The frequency ω/ωt = v̊/
√
1 + β is independent of

amplitude!
The parameter v̊ can be determined from assumption

(b): From Eq. (4) we find that the energy and particle
number vanish when the dimensionless velocity ṽ reaches
the critical value v̊. We expect this to happen at the
speed of sound, which takes the value c =

√

(1 + β)/3vF .

This leads to v̊ =
√

(1 + β)/3 and yields the oscillation
frequency ω/ωt = 1/

√
3.

The remaining coefficient e̊ can be determined from the
relation between the physical momentum of the soliton
ps = mNsvs and the canonical momentum pc, which is
defined by ∂Es/∂pc|µ = vs. The difference between the
two quantities accounts for the counterflow that would
have to occur in a toroidal system to compensate for
the phase difference δφ in the superfluid order parameter
across the soliton [12]. For the superfluid Fermi gas the
counterflow term was recently found by Pitaevskii [6]

ps − pc = !n1(π − δφ)/2, (6)

where n1 = nA = k3FA/(3π
2) is the one-dimensional den-

sity. From Eqs. (1) and (4) we evaluate the difference
using pc =

∫

v−1
s ∂Es/∂vs dvs = −!n16π2e̊ṽ [̊v2 − ṽ2/3]

to yield

ps − pc = !n14π
2 e̊̊v2ṽ. (7)

Es(µ, vs) = Ek2FAEF = µ2BE(ṽ2)
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Three assumptions
(A) Under adiabatic change of the environment, the 

soliton can conserve both energy and particle 
number, simultaneously.

(B) Energy and particle number vanish as the 
soliton velocity approaches the speed of sound c.

(C) The superfluid order parameter has
a well defined phase step across 
the soliton that vanishes under the 
conditions of (B).
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Three assumptions
(A) Under adiabatic change of the environment, the 

soliton can conserve both energy and particle 
number, simultaneously.
Consequence:

can be solved for dimensionless soliton energy:

so far two undetermined parameters
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FIG. 2. (Color online) Soliton properties at unitarity η = 0
as a function of velocity: (a) the magnitude of the or-
der parameter in the center, (b) the phase difference δφ =
arg[∆(∞)] − arg[∆(−∞)], (c) the density in the center, and
(d) the number of particles in the soliton.

that is localized along the z direction in a region small
compared to the system length L on a homogeneous back-
ground. We can extract the scaling of the system en-
ergy with density using the inverse Fermi wave number
k−1
F and the Fermi energy EF = !2k2F /(2m) as units

of length and energy, respectively. We may express the
grand canonical energy of the superfluid Fermi system
E′ = 〈Ĥ − µN̂〉 = [εhkFL + E + O((kFL)−1)]k2FAEF ,
where A is the transverse area, εh the dimensionless back-
ground energy and Es ≡ Ek2FAEF is identified as the
soliton energy. Physically, the soliton energy Es(µ, vs, a)
depends on three independent parameters, where vs is
the propagation velocity. Dimensionless E , however, may
only depend on the two dimensionless parameters of ve-
locity ṽ = vs/vF and coupling strength η. The depen-
dence on the chemical potential µ is implicit through the
density, which determines kF .
A special case arises for unitarity, where a → ∞ and

η = 0 becomes independent of µ. Anticipating that Es

is an even function of the velocity, we consider E(ṽ2) as
a function of ṽ2. Employing the equation of state of the
unitary Fermi gas µ = (1 + β)EF , where β is the many-
body parameter, we can extract the dependence on µ

Es(µ, vs) = µ2BE(ṽ2), (1)

where ṽ2 = v2s (1 + β)m/(2µ) and B = 2Am/[(1 + β)!]2.
As a localized wave form, a soliton is characterized not
only by its energy but also by its particle number Ns =
∫

(ns−n0)d3r = −∂Es/∂µ, where ns is the soliton density
and n0 is the background density [8]. We find

Ns = v2s
m

2
(1 + β)BE ′(ṽ2)− 2µBE(ṽ2), (2)

where E ′ = dE/dṽ2. The particle number and energy are
thus completely determined by the same function E(ṽ2).

We are now going to determine this function from the
assumptions (a) – (c).
Assumption (a) requires both Es and Ns to be con-

stants of the motion through inhomogeneous density.
Since we are considering purely one-dimensional motion
of the soliton, treating it as a quasiparticle, there is at
most only a single independent constant of the motion.
The condition that Ns and Es have identical contours in
phase space leads to the condition

∂Ns

∂µ

∂Es

∂vs
=

∂Ns

∂vs

∂Es

∂µ
, (3)

where µ and vs represent the quasiparticle’s coordinate
and momentum, respectively. It follows from Eqs. (1)
and (2) that the third derivative of E vanishes identically
and that E(ṽ2) can be parameterized by

E(ṽ2) = e̊(̊v2 − ṽ2)2, (4)

where e̊ and v̊ are yet undetermined parameters. The
functional form (4) already has important implications
for the soliton trajectories in a trapped gas. Requiring
dEs/dt = 0, we find the Newtonian equation of motion
for the soliton

dµ

dz

∣

∣

∣

∣

z=zs

−
m(1 + β)

v̊2
z̈s = 0. (5)

In the case of harmonic trapping and under validity of
the Thomas Fermi approximation, we can write µ(z) =
µ0 −mω2

t z
2/2 and Eq. (5) reduces to a harmonic oscilla-

tor. The frequency ω/ωt = v̊/
√
1 + β is independent of

amplitude!
The parameter v̊ can be determined from assumption

(b): From Eq. (4) we find that the energy and particle
number vanish when the dimensionless velocity ṽ reaches
the critical value v̊. We expect this to happen at the
speed of sound, which takes the value c =

√

(1 + β)/3vF .

This leads to v̊ =
√

(1 + β)/3 and yields the oscillation
frequency ω/ωt = 1/

√
3.

The remaining coefficient e̊ can be determined from the
relation between the physical momentum of the soliton
ps = mNsvs and the canonical momentum pc, which is
defined by ∂Es/∂pc|µ = vs. The difference between the
two quantities accounts for the counterflow that would
have to occur in a toroidal system to compensate for
the phase difference δφ in the superfluid order parameter
across the soliton [12]. For the superfluid Fermi gas the
counterflow term was recently found by Pitaevskii [6]

ps − pc = !n1(π − δφ)/2, (6)

where n1 = nA = k3FA/(3π
2) is the one-dimensional den-

sity. From Eqs. (1) and (4) we evaluate the difference
using pc =

∫

v−1
s ∂Es/∂vs dvs = −!n16π2e̊ṽ [̊v2 − ṽ2/3]

to yield

ps − pc = !n14π
2 e̊̊v2ṽ. (7)
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FIG. 2. (Color online) Soliton properties at unitarity η = 0
as a function of velocity: (a) the magnitude of the or-
der parameter in the center, (b) the phase difference δφ =
arg[∆(∞)] − arg[∆(−∞)], (c) the density in the center, and
(d) the number of particles in the soliton.

that is localized along the z direction in a region small
compared to the system length L on a homogeneous back-
ground. We can extract the scaling of the system en-
ergy with density using the inverse Fermi wave number
k−1
F and the Fermi energy EF = !2k2F /(2m) as units

of length and energy, respectively. We may express the
grand canonical energy of the superfluid Fermi system
E′ = 〈Ĥ − µN̂〉 = [εhkFL + E + O((kFL)−1)]k2FAEF ,
where A is the transverse area, εh the dimensionless back-
ground energy and Es ≡ Ek2FAEF is identified as the
soliton energy. Physically, the soliton energy Es(µ, vs, a)
depends on three independent parameters, where vs is
the propagation velocity. Dimensionless E , however, may
only depend on the two dimensionless parameters of ve-
locity ṽ = vs/vF and coupling strength η. The depen-
dence on the chemical potential µ is implicit through the
density, which determines kF .
A special case arises for unitarity, where a → ∞ and

η = 0 becomes independent of µ. Anticipating that Es

is an even function of the velocity, we consider E(ṽ2) as
a function of ṽ2. Employing the equation of state of the
unitary Fermi gas µ = (1 + β)EF , where β is the many-
body parameter, we can extract the dependence on µ

Es(µ, vs) = µ2BE(ṽ2), (1)

where ṽ2 = v2s (1 + β)m/(2µ) and B = 2Am/[(1 + β)!]2.
As a localized wave form, a soliton is characterized not
only by its energy but also by its particle number Ns =
∫

(ns−n0)d3r = −∂Es/∂µ, where ns is the soliton density
and n0 is the background density [8]. We find

Ns = v2s
m

2
(1 + β)BE ′(ṽ2)− 2µBE(ṽ2), (2)

where E ′ = dE/dṽ2. The particle number and energy are
thus completely determined by the same function E(ṽ2).

We are now going to determine this function from the
assumptions (a) – (c).
Assumption (a) requires both Es and Ns to be con-

stants of the motion through inhomogeneous density.
Since we are considering purely one-dimensional motion
of the soliton, treating it as a quasiparticle, there is at
most only a single independent constant of the motion.
The condition that Ns and Es have identical contours in
phase space leads to the condition

∂Ns

∂µ

∂Es

∂vs
=

∂Ns

∂vs

∂Es

∂µ
, (3)

where µ and vs represent the quasiparticle’s coordinate
and momentum, respectively. It follows from Eqs. (1)
and (2) that the third derivative of E vanishes identically
and that E(ṽ2) can be parameterized by

E(ṽ2) = e̊(̊v2 − ṽ2)2, (4)

where e̊ and v̊ are yet undetermined parameters. The
functional form (4) already has important implications
for the soliton trajectories in a trapped gas. Requiring
dEs/dt = 0, we find the Newtonian equation of motion
for the soliton

dµ

dz

∣

∣

∣

∣

z=zs

−
m(1 + β)

v̊2
z̈s = 0. (5)

In the case of harmonic trapping and under validity of
the Thomas Fermi approximation, we can write µ(z) =
µ0 −mω2

t z
2/2 and Eq. (5) reduces to a harmonic oscilla-

tor. The frequency ω/ωt = v̊/
√
1 + β is independent of

amplitude!
The parameter v̊ can be determined from assumption

(b): From Eq. (4) we find that the energy and particle
number vanish when the dimensionless velocity ṽ reaches
the critical value v̊. We expect this to happen at the
speed of sound, which takes the value c =

√

(1 + β)/3vF .

This leads to v̊ =
√

(1 + β)/3 and yields the oscillation
frequency ω/ωt = 1/

√
3.

The remaining coefficient e̊ can be determined from the
relation between the physical momentum of the soliton
ps = mNsvs and the canonical momentum pc, which is
defined by ∂Es/∂pc|µ = vs. The difference between the
two quantities accounts for the counterflow that would
have to occur in a toroidal system to compensate for
the phase difference δφ in the superfluid order parameter
across the soliton [12]. For the superfluid Fermi gas the
counterflow term was recently found by Pitaevskii [6]

ps − pc = !n1(π − δφ)/2, (6)

where n1 = nA = k3FA/(3π
2) is the one-dimensional den-

sity. From Eqs. (1) and (4) we evaluate the difference
using pc =

∫

v−1
s ∂Es/∂vs dvs = −!n16π2e̊ṽ [̊v2 − ṽ2/3]

to yield

ps − pc = !n14π
2 e̊̊v2ṽ. (7)

e̊, v̊

Saturday, 11 June 2011



Three assumptions
(B) Energy and particle number vanish as the 

soliton velocity approaches the speed of sound c.

Consequences:

for dynamics of solitons on Thomas-Fermi 
density profile with

soliton oscillation frequency:  
15

v̊ =
cm

�kF
=

�
1 + β

3

µ(z) = µ0 −
1

2
mω2

trapz
2

ω2z2s +
d2z

dt2
= 0

ω

ωtrap
=

1√
3
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Oscillation period from time-dependent 
simulations

Time-dependent
simulations were
performed by the 
Trento group
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FIG. 2: Ts (a) andNs (b) plotted against 1/kfa. We find that
Ts = 1.7Tx for 1/kfa = 0. White (light gray, dark gray, black)
crosses denote data for Ec = 30Ef (50Ef , 75Ef , 100Ef ).

are equivalent enlargements for 1/kfa = 0 and 1 respec-
tively. We take Ec = 30Ef (Ec = 50Ef) for 1/kfa < 0
(1/kfa ≥ 0). For 1/kfa = −0.5 [Figs. 1(a) and (b)],
the soliton creates a shallow depression in the density of
the cloud, on either side of which are smaller oscillations,
known as Friedel oscillations. We also plot |# (∆)| and
|$ (∆)| in the region contained within the dotted white
box in Fig. 1(b) as left and right insets respectively. Ini-
tially |$ (∆)| is zero, indicating that Jϕ = π. As the
soliton accelerates, the density depression becomes shal-
lower, |$ (∆)| increases from zero and Jϕ reduces. The
insets also show that both |# (∆)| and |$ (∆)| contain
Friedel oscillations in the vicinity of the soliton [15], as
in the density profile. This is in contrast to solitonic so-
lutions of the Gross-Pitaevskii (GP) equation for a BEC,
which always have a constant imaginary component of
the order parameter [16].
As 1/kfa increases, the Friedel oscillations become

fainter in both the density and∆. At unitarity [Fig. 1(c)],
the Friedel oscillations are barely visible in the density
profile, but |$ (∆)| (right inset) still contains a small dip
at the position of the soliton. When 1/kfa reaches 1.0
[Fig. 1(d)], |$ (∆)| (right inset) is almost constant across
the cloud, as expected for a molecular BEC. We also ob-
serve that the density depression becomes deeper. For
1/kfa = 1.0, the density minimum in the soliton is close
to zero when it is stationary at the apex of an oscillation.
Figure 1 also illustrates that the period Ts decreases as

we move from the BCS to the BEC regime. This effect
is quantified in Fig. 2(a), which plots Ts against 1/kfa.
The graph shows that Ts drops rapidly as we move from
the BCS to unitary regimes, before tending to the GP
prediction of

√
2Tx [17] in the BEC limit of large 1/kfa.

It is computationally difficult to reach convergence for
large 1/kfa, because a large number of states must be
included in order to describe the formation of Bosonic
molecules. To illustrate the gradual convergence towards
the GP prediction, we plot three points for 1/kfa = 1
with Ec = 50Ef , 75Ef and 100Ef , with a light gray,
dark gray and black cross respectively. We also note that
Ts for 1/kfa = −0.5 is lower than expected by looking
at the general trend. This is a real effect that occurs

FIG. 3:
[

(Ts/Tx)
2 − 1

]

plotted against 1/Ns. White (light
gray, dark gray, black) symbols denote data for Ec = 30Ef

(50Ef , 75Ef , 100Ef ). Solid line shows the prediction of
Eq. (14). Inset shows V versus Jϕ, with data points for
1/kfa = −0.25 (triangle), 0 (circle) and 1.0 (plus sign). Solid
line shows the GP prediction for a = 1/kf [Eq. (13)].

because the pair size is becoming comparable with the
width of the cloud. It can be avoided by reducing ωx.
To compare the numerical results with the prediction

of Eq. (9), we must also calculate Ns and dJϕ/dV . The
quantityNs may be determined from stationary solutions
of Eq. (10). We plot results in Fig. 2(b) as a function of
1/kfa. The graph shows that Ns increases monotonically
with 1/kfa, in agreement with previous work [5].
We determine dJϕ/dV by measuring V and Jϕ as the

soliton passes the center of the trap. In the inset in Fig. 3,
we plot results for 1/kfa = −0.25, 0 and 1.0, with a tri-
angle, circle and plus sign respectively. As expected, the
result for 1/kfa = 1 lies close to the GP prediction [16]
(black line) for a = 1/kf and small V , which is

V =
√

π!2np/4kfm2 (π − Jϕ) . (13)

Suprisingly, the data points for 1/kfa = −0.25 and 0
also lie near the black line. They are, in fact, slightly be-
low the black line, suggesting that the quantity dJϕ/dV
increases slightly as 1/kfa decreases. However, the vari-
ation in dJϕ/dV is comparable to the error in our simu-
lations, so we approximate dJϕ/dV by a constant, given
by the black GP line in the Fig. 3 inset. Using Eq. (13),
and taking mB = 2m, Eq. (9) becomes

(

Ts

Tx

)2

− 1 =

(

3

π

)1/6 L2
⊥
n2/3
p

Ns
. (14)

To test Eq. (14), we plot (Ts/Tx)
2 − 1 against 1/Ns in

Fig. 3. Our numerical data obtained from the TDBdG
equations, shown by the crosses, is in good agreement

√
3

√
2

Analytics
Our numerics:

2.083 at eta = -0.5 (BCS)
1.748 at eta = 0 (unitarity)
1.456 at eta = +1 (BEC)

Trento data (time dependent)
Scott et al. PRL (2011)
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FIG. 2: Ts (a) andNs (b) plotted against 1/kfa. We find that
Ts = 1.7Tx for 1/kfa = 0. White (light gray, dark gray, black)
crosses denote data for Ec = 30Ef (50Ef , 75Ef , 100Ef ).

are equivalent enlargements for 1/kfa = 0 and 1 respec-
tively. We take Ec = 30Ef (Ec = 50Ef) for 1/kfa < 0
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tially |$ (∆)| is zero, indicating that Jϕ = π. As the
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lower, |$ (∆)| increases from zero and Jϕ reduces. The
insets also show that both |# (∆)| and |$ (∆)| contain
Friedel oscillations in the vicinity of the soliton [15], as
in the density profile. This is in contrast to solitonic so-
lutions of the Gross-Pitaevskii (GP) equation for a BEC,
which always have a constant imaginary component of
the order parameter [16].
As 1/kfa increases, the Friedel oscillations become
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the Friedel oscillations are barely visible in the density
profile, but |$ (∆)| (right inset) still contains a small dip
at the position of the soliton. When 1/kfa reaches 1.0
[Fig. 1(d)], |$ (∆)| (right inset) is almost constant across
the cloud, as expected for a molecular BEC. We also ob-
serve that the density depression becomes deeper. For
1/kfa = 1.0, the density minimum in the soliton is close
to zero when it is stationary at the apex of an oscillation.
Figure 1 also illustrates that the period Ts decreases as

we move from the BCS to the BEC regime. This effect
is quantified in Fig. 2(a), which plots Ts against 1/kfa.
The graph shows that Ts drops rapidly as we move from
the BCS to unitary regimes, before tending to the GP
prediction of
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2Tx [17] in the BEC limit of large 1/kfa.

It is computationally difficult to reach convergence for
large 1/kfa, because a large number of states must be
included in order to describe the formation of Bosonic
molecules. To illustrate the gradual convergence towards
the GP prediction, we plot three points for 1/kfa = 1
with Ec = 50Ef , 75Ef and 100Ef , with a light gray,
dark gray and black cross respectively. We also note that
Ts for 1/kfa = −0.5 is lower than expected by looking
at the general trend. This is a real effect that occurs
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line shows the GP prediction for a = 1/kf [Eq. (13)].

because the pair size is becoming comparable with the
width of the cloud. It can be avoided by reducing ωx.
To compare the numerical results with the prediction

of Eq. (9), we must also calculate Ns and dJϕ/dV . The
quantityNs may be determined from stationary solutions
of Eq. (10). We plot results in Fig. 2(b) as a function of
1/kfa. The graph shows that Ns increases monotonically
with 1/kfa, in agreement with previous work [5].
We determine dJϕ/dV by measuring V and Jϕ as the

soliton passes the center of the trap. In the inset in Fig. 3,
we plot results for 1/kfa = −0.25, 0 and 1.0, with a tri-
angle, circle and plus sign respectively. As expected, the
result for 1/kfa = 1 lies close to the GP prediction [16]
(black line) for a = 1/kf and small V , which is

V =
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π!2np/4kfm2 (π − Jϕ) . (13)

Suprisingly, the data points for 1/kfa = −0.25 and 0
also lie near the black line. They are, in fact, slightly be-
low the black line, suggesting that the quantity dJϕ/dV
increases slightly as 1/kfa decreases. However, the vari-
ation in dJϕ/dV is comparable to the error in our simu-
lations, so we approximate dJϕ/dV by a constant, given
by the black GP line in the Fig. 3 inset. Using Eq. (13),
and taking mB = 2m, Eq. (9) becomes
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Fig. 3. Our numerical data obtained from the TDBdG
equations, shown by the crosses, is in good agreement
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The canonical and physical momenta are different be-
cause, despite being a localized object from the point
of view of the density profile and the velocity field, the
soliton creates a jump Jϕ in the phase ϕ of the macro-
scopic wave function (order parameter). This phase jump
is exploited when creating solitons in experiment with
the “phase imprinting” technique [7–9]. In any real ex-
periment, where the soliton is created by a localized
perturbation, this phase difference will be compensated
by a “counterflow”, which carries an additional momen-
tum ∆P . This difference between Ps and Pc was first
found for a soliton in a BEC described by the Gross-
Pitaevskii (GP) equation [10], and its physical mean-
ing was discussed in Ref. [11]. Far from the soliton we
may say that v = !∇ϕ/mB, in which mB = m for
Bosons and mB = 2m for Fermions. Hence we obtain
∆P = −n1d0m

∫

vdx = −!n1d0Jϕm/mB, and

Pc = Ps +∆P = Ps − !n1d0Jϕm/mB. (6)

Interestingly, Eq. (6) implies that |Pc| ≤ π!n1d0m/mB.
This property is also valid for the “soliton-like” branch
of elementary exitations in a 1D Bose gas [12]. Taking
into account that V = 0 for Jϕ = π, and using Eqs. (4)
and (5), Eq. (6) yields the important relation [13]

mNsV − 2

∫ V

0

∂Es

∂V 2
dV = "n1d0(Jϕ − π)m/mB . (7)

We then differentiate both sides of Eq. (7) with respect
to V to obtain

m
d (NsV )

dV
−mI =

!n1d0m

mB

dJϕ
dV

. (8)

Substituting mI using Eq. (2), for V → 0 we obtain the
final result for Ts:

(

Ts

Tx

)2

− 1 = −
!n1d0

mBNs

dJϕ
dV

. (9)

To test Eq. (9), we model the dynamics of a superfluid
Fermi gas by solving the time-dependent Bogoliubov-de
Gennes (TDBdG) equations [6]

[

Ĥ ∆(r)
∆∗(r) −Ĥ

] [

uη(r)
vη(r)

]

= i!
∂

∂t

[

uη(r)
vη(r)

]

, (10)

where Ĥ = −!2∇2/2m+U −µ and the order parameter
∆ is calculated as

∆ = −g
∑

η

uηv
∗
η (11)

in which g is given by [14]

1

kfa
=

8πEf

gk3f
+

2

π

√

Ec

Ef
. (12)

FIG. 1: (a): Soliton oscillating in the density profile of a
40K superfluid for 1/kfa = −0.5 with ωx = 2π50 rad s−1,
L⊥ = 3.3 µm and a peak density np = 1.8 × 1018 m−3. (b):
Enlargement of region contained within the dashed white box
in (a). (c) & (d): Corresponding enlargements for 1/kfa = 0.0
and 1.0. Left and right insets in (b), (c) and (d) show |# (∆)|
and |$ (∆)| in the regions contained within the dotted white
boxes. Horizontal bars show scale.

Here a is the 3D s-wave scattering length characterizing
the interaction between atoms of different spins, while

Ef = !2k2f/2m and kf =
(

3π2n
)1/3

are the Fermi energy
and momentum of an ideal Fermi gas of density n. The
cut-off energy Ec is introduced in order to remove the ul-
traviolet divergences in the BdG equations with contact
potentials. The density of the gas is n(r) = 2

∑

η |vη(r)|
2.

Since the potential U has no y or z dependence, we write
the BdG eigenfunctions as uη(r) = uη(x)ei(kyy+kzz) and
vη(r) = vη(x)ei(kyy+kzz), in which ky and kz are quan-
tized according to ky = 2παy/L⊥ and kz = 2παz/L⊥,
where αy and αz are integers and L⊥ is the width of the
box in the y- and z-directions.

As initial states at t = 0, we find stationary solu-
tions of Eq. (10). This has been done previously to in-
vestigate stationary black solitons across the BEC-BCS
crossover [5]. We use the same technique to generate mo-
mentarily stationary solitons away from the trap center.
When such an initial state is evolved in time, the black
soliton is accelerated by the trap potential, and becomes
grey. We create solitons close to the trap center so that
the density is roughly constant.

Figure 1 presents three typical simulations of the
TDBdG equations. Panel (a) shows a soliton oscillat-
ing in the density profile of a 40K superfluid for 1/kfa =
−0.5, with ωx = 2π50 rad s−1, L⊥ = 3.3 µm and a peak
density np = 1.8 × 1018 m−3 = n1d(0)/L2

⊥
. Panel (b)

is an enlargement of the central region of panel (a) con-
tained within the dashed white box. Panels (c) and (d)
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Three assumptions
(C) The superfluid order parameter has a well 

defined phase step across the soliton that 
vanishes under the conditions of (B).

Consequence: determines final parameter

recall:
physical momentum:
canonical momentum:

yields
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FIG. 2. (Color online) Soliton properties at unitarity η = 0
as a function of velocity: (a) the magnitude of the or-
der parameter in the center, (b) the phase difference δφ =
arg[∆(∞)] − arg[∆(−∞)], (c) the density in the center, and
(d) the number of particles in the soliton.

that is localized along the z direction in a region small
compared to the system length L on a homogeneous back-
ground. We can extract the scaling of the system en-
ergy with density using the inverse Fermi wave number
k−1
F and the Fermi energy EF = !2k2F /(2m) as units

of length and energy, respectively. We may express the
grand canonical energy of the superfluid Fermi system
E′ = 〈Ĥ − µN̂〉 = [εhkFL + E + O((kFL)−1)]k2FAEF ,
where A is the transverse area, εh the dimensionless back-
ground energy and Es ≡ Ek2FAEF is identified as the
soliton energy. Physically, the soliton energy Es(µ, vs, a)
depends on three independent parameters, where vs is
the propagation velocity. Dimensionless E , however, may
only depend on the two dimensionless parameters of ve-
locity ṽ = vs/vF and coupling strength η. The depen-
dence on the chemical potential µ is implicit through the
density, which determines kF .
A special case arises for unitarity, where a → ∞ and

η = 0 becomes independent of µ. Anticipating that Es

is an even function of the velocity, we consider E(ṽ2) as
a function of ṽ2. Employing the equation of state of the
unitary Fermi gas µ = (1 + β)EF , where β is the many-
body parameter, we can extract the dependence on µ

Es(µ, vs) = µ2BE(ṽ2), (1)

where ṽ2 = v2s (1 + β)m/(2µ) and B = 2Am/[(1 + β)!]2.
As a localized wave form, a soliton is characterized not
only by its energy but also by its particle number Ns =
∫

(ns−n0)d3r = −∂Es/∂µ, where ns is the soliton density
and n0 is the background density [8]. We find

Ns = v2s
m

2
(1 + β)BE ′(ṽ2)− 2µBE(ṽ2), (2)

where E ′ = dE/dṽ2. The particle number and energy are
thus completely determined by the same function E(ṽ2).

We are now going to determine this function from the
assumptions (a) – (c).
Assumption (a) requires both Es and Ns to be con-

stants of the motion through inhomogeneous density.
Since we are considering purely one-dimensional motion
of the soliton, treating it as a quasiparticle, there is at
most only a single independent constant of the motion.
The condition that Ns and Es have identical contours in
phase space leads to the condition

∂Ns

∂µ

∂Es

∂vs
=

∂Ns

∂vs

∂Es

∂µ
, (3)

where µ and vs represent the quasiparticle’s coordinate
and momentum, respectively. It follows from Eqs. (1)
and (2) that the third derivative of E vanishes identically
and that E(ṽ2) can be parameterized by

E(ṽ2) = e̊(̊v2 − ṽ2)2, (4)

where e̊ and v̊ are yet undetermined parameters. The
functional form (4) already has important implications
for the soliton trajectories in a trapped gas. Requiring
dEs/dt = 0, we find the Newtonian equation of motion
for the soliton

dµ

dz

∣

∣

∣

∣

z=zs

−
m(1 + β)

v̊2
z̈s = 0. (5)

In the case of harmonic trapping and under validity of
the Thomas Fermi approximation, we can write µ(z) =
µ0 −mω2

t z
2/2 and Eq. (5) reduces to a harmonic oscilla-

tor. The frequency ω/ωt = v̊/
√
1 + β is independent of

amplitude!
The parameter v̊ can be determined from assumption

(b): From Eq. (4) we find that the energy and particle
number vanish when the dimensionless velocity ṽ reaches
the critical value v̊. We expect this to happen at the
speed of sound, which takes the value c =

√

(1 + β)/3vF .

This leads to v̊ =
√

(1 + β)/3 and yields the oscillation
frequency ω/ωt = 1/

√
3.

The remaining coefficient e̊ can be determined from the
relation between the physical momentum of the soliton
ps = mNsvs and the canonical momentum pc, which is
defined by ∂Es/∂pc|µ = vs. The difference between the
two quantities accounts for the counterflow that would
have to occur in a toroidal system to compensate for
the phase difference δφ in the superfluid order parameter
across the soliton [12]. For the superfluid Fermi gas the
counterflow term was recently found by Pitaevskii [6]

ps − pc = !n1(π − δφ)/2, (6)

where n1 = nA = k3FA/(3π
2) is the one-dimensional den-

sity. From Eqs. (1) and (4) we evaluate the difference
using pc =

∫

v−1
s ∂Es/∂vs dvs = −!n16π2e̊ṽ [̊v2 − ṽ2/3]

to yield

ps − pc = !n14π
2 e̊̊v2ṽ. (7)

ps = mNsvs

∂Es

∂pc
= vs

3

Comparing Eqs. (7) and (6), we find that the phase dif-
ference varies linearly with velocity in contrast to the
GP soliton, where cos(δφGP/2) = vs/cGP. Fixing the re-
maining constant e̊ by requiring the phase step to vanish
at the speed of sound [assumption (c)], we find

e̊ =
v̊−3

8π
, δφ = π(1 − vs/c). (8)

Thus, the energy and particle number dispersion as well
as the phase step for the family of dark solitons in the
unitary gas are obtained without any free parameters.
The success of this derivation shows, that the assumption
(a) of particle-number conservation under quasiparticle
motion is consistent with the universal scaling relations
of the unitary Fermi gas.
We have not yet proven that dark solitons exist.

Within the realm of mean-field theory, this can be done
by finding self-consistent solutions of the BdG equations.
In addition to testing the stated assumptions against a
physical theory, this allows us to determine spatial pro-
files as well as dispersion relations outside the unitary
regime.
We now more generally consider a Fermi gas with equal

density for two spin components at zero temperature.
The time-dependent BdG equations provide a convenient
mean-field theory of the BEC-BCS crossover [4]

i!∂t

(

uν(r, t)
vν(r, t)

)

=

(

ĥ ∆(r, t)
∆∗(r, t) −ĥ

)(

uν(r, t)
vν(r, t)

)

, (9)

where ĥ = !
2

2m∇2 − µ and u and v are space-
and time-dependent quasi-particle amplitudes satsify-
ing

∫

d3r [u∗

ν(r, t)uν′(r, t) + v∗ν(r, t)vν′ (r, t)] = δνν′ . The
problem simplifies to a time-independent eigenvalue
problem when we seek soliton solutions of the superfluid
order parameter of the form ∆(z, t) = ∆(z− vst) = ∆(ξ)
and write vν(r, t) = (LA)−1/2ei(pxx+pyy)−iEp,nt/!vp,n(ξ)
and likewise for u. The energies Ep,n are the eigen-
values of the resulting time-independent BdG equation,
which contain the soliton velocity vs as a parameter. The
transverse momentum p is discretized according to the
transverse area A of the computational box. The above
equations must be solved together with the equation
for the order parameter ∆(ξ) = −g

∑

p,n up,n(ξ)v∗p,n(ξ)
in a self-consistent way. The density is then given
by n(ξ) = 2

∑

p,n |vp,n(ξ)|2. All sums are restricted
to 0 ≤ Ep,n ≤ Ec where Ec is a high energy cut-
off. The coupling strength g relates to the scattering
length a through the cutoff-dependent renormalization
1/g = m/(4π!2a) − 1/Ω

∑

ν 1/2εν [13, 14] where εν is
the energy of the state ν in the normal phase. Open
boundary conditions are imposed by ensuring the her-
miticity of the matrix and the proper symmetry of ∆(ξ)
in a self-consistent way. We have implemented a gener-
alized secant (Broyden’s) method to find self-consistent
solutions (with very small self-consistency error of 10−8

FIG. 3. (Color online) The spatial structure of the soliton
order parameter ∆ at different velocities by its imaginary part
(a) and magnitude (b) in the BCS regime at η = −0.5 (1a,b),
unitarity limit η = 0 (2a,b), and BEC regime η = 1 (3a,b).

or better) from an initial profile with nontrivial phase
structure.
The spatial structure of the dark soliton solutions is

shown in Figs. 3 and 4 for three values of the interac-
tion parameter η. The main feature is a density notch
and dip in the order parameter, which become shallower
with increasing velocity for all interacting regimes. In
the BEC regime, the profiles most closely resemble the
GP dark solitons with constant imaginary part (with
appropriate choice of a global phase) and bell-shaped,
const − sech2(z/)), density notch. This is expected as
the BdG equation converges toward the GP equation for
large positive η [15]. The imaginary part of the order
parameter clearly develops structure for finite velocities
in the unitarity and BCS regime, which is a striking new
feature of the BdG grey solitons as seen in panels (1a)
and (2a) in Fig. 3.
While the length scale for the BEC soliton is ) =

!/(m
√

c2 − v2s) from GP theory, there is no clear evi-
dence in our data for a velocity dependence of the length
scale in the unitarity limit. There we expect on general
grounds that the only length scale is k−1

F . In the BCS
regime, we expect small scale Friedel oscillations with
size 2k−1

F , and a second length scale in the Cooper pair
size ξC = !vF /∆0, which evaluates to about 5k−1

F for
η = −0.5 [5]. From Fig. 3, panel (1a) and our experience
with boundary effects, it appears that there is an addi-
tional velocity dependence and the total size grows with
increasing velocity.
Relevant velocity scales for the problem are the speed

of sound c =
√

n(∂µ/∂n)/m and the pair breaking veloc-

ity mv2sp =
√

µ2 +∆2
0−µ. We consistently found it diffi-

cult to converge to self-consistent solutions approaching
these velocities from below and thus assume that soli-
ton solutions exist only below vc = min(c, vsp), which is

Pitaevskii (2010)
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Solitons at unitarity

Assumptions (A), (B), (C) seem to be fulfilled!
18Liao, Brand PRA 83, 041604(R) (2011)
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Crossover mean-field theory

find soliton solutions numerically
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Mean-field theory

• BCS crossover theory (Leggett 1980)
– Extend the use of BCS / BdG theory to the 

crossover problem (with renormalised coupling 
constant)

– Qualitatively correct equation of state
– Yields GP equation in BEC limit with aGP = 

2aBdG (correct: aGP = 0.6aBdG) (Pieri, Strinati 
2003)
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Bogoliubov-de Gennes equation

• self-consistently solve

• implemented Broyden’s (generalized secant) 
method

21
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Comparing Eqs. (7) and (6), we find that the phase dif-
ference varies linearly with velocity in contrast to the
GP soliton, where cos(δφGP/2) = vs/cGP. Fixing the re-
maining constant e̊ by requiring the phase step to vanish
at the speed of sound [assumption (c)], we find

e̊ =
v̊−3

8π
, δφ = π(1 − vs/c). (8)

Thus, the energy and particle number dispersion as well
as the phase step for the family of dark solitons in the
unitary gas are obtained without any free parameters.
The success of this derivation shows, that the assumption
(a) of particle-number conservation under quasiparticle
motion is consistent with the universal scaling relations
of the unitary Fermi gas.
We have not yet proven that dark solitons exist.

Within the realm of mean-field theory, this can be done
by finding self-consistent solutions of the BdG equations.
In addition to testing the stated assumptions against a
physical theory, this allows us to determine spatial pro-
files as well as dispersion relations outside the unitary
regime.
We now more generally consider a Fermi gas with equal

density for two spin components at zero temperature.
The time-dependent BdG equations provide a convenient
mean-field theory of the BEC-BCS crossover [4]

i!∂t
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uν(r, t)
vν(r, t)

)

=
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ĥ ∆(r, t)
∆∗(r, t) −ĥ

)(

uν(r, t)
vν(r, t)

)

, (9)

where ĥ = !
2

2m∇2 − µ and u and v are space-
and time-dependent quasi-particle amplitudes satsify-
ing

∫

d3r [u∗

ν(r, t)uν′(r, t) + v∗ν(r, t)vν′ (r, t)] = δνν′ . The
problem simplifies to a time-independent eigenvalue
problem when we seek soliton solutions of the superfluid
order parameter of the form ∆(z, t) = ∆(z− vst) = ∆(ξ)
and write vν(r, t) = (LA)−1/2ei(pxx+pyy)−iEp,nt/!vp,n(ξ)
and likewise for u. The energies Ep,n are the eigen-
values of the resulting time-independent BdG equation,
which contain the soliton velocity vs as a parameter. The
transverse momentum p is discretized according to the
transverse area A of the computational box. The above
equations must be solved together with the equation
for the order parameter ∆(ξ) = −g

∑

p,n up,n(ξ)v∗p,n(ξ)
in a self-consistent way. The density is then given
by n(ξ) = 2

∑

p,n |vp,n(ξ)|2. All sums are restricted
to 0 ≤ Ep,n ≤ Ec where Ec is a high energy cut-
off. The coupling strength g relates to the scattering
length a through the cutoff-dependent renormalization
1/g = m/(4π!2a) − 1/Ω

∑

ν 1/2εν [13, 14] where εν is
the energy of the state ν in the normal phase. Open
boundary conditions are imposed by ensuring the her-
miticity of the matrix and the proper symmetry of ∆(ξ)
in a self-consistent way. We have implemented a gener-
alized secant (Broyden’s) method to find self-consistent
solutions (with very small self-consistency error of 10−8

FIG. 3. (Color online) The spatial structure of the soliton
order parameter ∆ at different velocities by its imaginary part
(a) and magnitude (b) in the BCS regime at η = −0.5 (1a,b),
unitarity limit η = 0 (2a,b), and BEC regime η = 1 (3a,b).

or better) from an initial profile with nontrivial phase
structure.
The spatial structure of the dark soliton solutions is

shown in Figs. 3 and 4 for three values of the interac-
tion parameter η. The main feature is a density notch
and dip in the order parameter, which become shallower
with increasing velocity for all interacting regimes. In
the BEC regime, the profiles most closely resemble the
GP dark solitons with constant imaginary part (with
appropriate choice of a global phase) and bell-shaped,
const − sech2(z/)), density notch. This is expected as
the BdG equation converges toward the GP equation for
large positive η [15]. The imaginary part of the order
parameter clearly develops structure for finite velocities
in the unitarity and BCS regime, which is a striking new
feature of the BdG grey solitons as seen in panels (1a)
and (2a) in Fig. 3.
While the length scale for the BEC soliton is ) =

!/(m
√

c2 − v2s) from GP theory, there is no clear evi-
dence in our data for a velocity dependence of the length
scale in the unitarity limit. There we expect on general
grounds that the only length scale is k−1

F . In the BCS
regime, we expect small scale Friedel oscillations with
size 2k−1

F , and a second length scale in the Cooper pair
size ξC = !vF /∆0, which evaluates to about 5k−1

F for
η = −0.5 [5]. From Fig. 3, panel (1a) and our experience
with boundary effects, it appears that there is an addi-
tional velocity dependence and the total size grows with
increasing velocity.
Relevant velocity scales for the problem are the speed

of sound c =
√

n(∂µ/∂n)/m and the pair breaking veloc-

ity mv2sp =
√

µ2 +∆2
0−µ. We consistently found it diffi-

cult to converge to self-consistent solutions approaching
these velocities from below and thus assume that soli-
ton solutions exist only below vc = min(c, vsp), which is
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Comparing Eqs. (7) and (6), we find that the phase dif-
ference varies linearly with velocity in contrast to the
GP soliton, where cos(δφGP/2) = vs/cGP. Fixing the re-
maining constant e̊ by requiring the phase step to vanish
at the speed of sound [assumption (c)], we find

e̊ =
v̊−3

8π
, δφ = π(1 − vs/c). (8)

Thus, the energy and particle number dispersion as well
as the phase step for the family of dark solitons in the
unitary gas are obtained without any free parameters.
The success of this derivation shows, that the assumption
(a) of particle-number conservation under quasiparticle
motion is consistent with the universal scaling relations
of the unitary Fermi gas.
We have not yet proven that dark solitons exist.

Within the realm of mean-field theory, this can be done
by finding self-consistent solutions of the BdG equations.
In addition to testing the stated assumptions against a
physical theory, this allows us to determine spatial pro-
files as well as dispersion relations outside the unitary
regime.
We now more generally consider a Fermi gas with equal

density for two spin components at zero temperature.
The time-dependent BdG equations provide a convenient
mean-field theory of the BEC-BCS crossover [4]
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2m∇2 − µ and u and v are space-
and time-dependent quasi-particle amplitudes satsify-
ing

∫

d3r [u∗

ν(r, t)uν′(r, t) + v∗ν(r, t)vν′ (r, t)] = δνν′ . The
problem simplifies to a time-independent eigenvalue
problem when we seek soliton solutions of the superfluid
order parameter of the form ∆(z, t) = ∆(z− vst) = ∆(ξ)
and write vν(r, t) = (LA)−1/2ei(pxx+pyy)−iEp,nt/!vp,n(ξ)
and likewise for u. The energies Ep,n are the eigen-
values of the resulting time-independent BdG equation,
which contain the soliton velocity vs as a parameter. The
transverse momentum p is discretized according to the
transverse area A of the computational box. The above
equations must be solved together with the equation
for the order parameter ∆(ξ) = −g

∑

p,n up,n(ξ)v∗p,n(ξ)
in a self-consistent way. The density is then given
by n(ξ) = 2

∑

p,n |vp,n(ξ)|2. All sums are restricted
to 0 ≤ Ep,n ≤ Ec where Ec is a high energy cut-
off. The coupling strength g relates to the scattering
length a through the cutoff-dependent renormalization
1/g = m/(4π!2a) − 1/Ω

∑

ν 1/2εν [13, 14] where εν is
the energy of the state ν in the normal phase. Open
boundary conditions are imposed by ensuring the her-
miticity of the matrix and the proper symmetry of ∆(ξ)
in a self-consistent way. We have implemented a gener-
alized secant (Broyden’s) method to find self-consistent
solutions (with very small self-consistency error of 10−8
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order parameter ∆ at different velocities by its imaginary part
(a) and magnitude (b) in the BCS regime at η = −0.5 (1a,b),
unitarity limit η = 0 (2a,b), and BEC regime η = 1 (3a,b).

or better) from an initial profile with nontrivial phase
structure.
The spatial structure of the dark soliton solutions is

shown in Figs. 3 and 4 for three values of the interac-
tion parameter η. The main feature is a density notch
and dip in the order parameter, which become shallower
with increasing velocity for all interacting regimes. In
the BEC regime, the profiles most closely resemble the
GP dark solitons with constant imaginary part (with
appropriate choice of a global phase) and bell-shaped,
const − sech2(z/)), density notch. This is expected as
the BdG equation converges toward the GP equation for
large positive η [15]. The imaginary part of the order
parameter clearly develops structure for finite velocities
in the unitarity and BCS regime, which is a striking new
feature of the BdG grey solitons as seen in panels (1a)
and (2a) in Fig. 3.
While the length scale for the BEC soliton is ) =
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c2 − v2s) from GP theory, there is no clear evi-
dence in our data for a velocity dependence of the length
scale in the unitarity limit. There we expect on general
grounds that the only length scale is k−1

F . In the BCS
regime, we expect small scale Friedel oscillations with
size 2k−1

F , and a second length scale in the Cooper pair
size ξC = !vF /∆0, which evaluates to about 5k−1

F for
η = −0.5 [5]. From Fig. 3, panel (1a) and our experience
with boundary effects, it appears that there is an addi-
tional velocity dependence and the total size grows with
increasing velocity.
Relevant velocity scales for the problem are the speed

of sound c =
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n(∂µ/∂n)/m and the pair breaking veloc-

ity mv2sp =
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µ2 +∆2
0−µ. We consistently found it diffi-

cult to converge to self-consistent solutions approaching
these velocities from below and thus assume that soli-
ton solutions exist only below vc = min(c, vsp), which is
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Comparing Eqs. (7) and (6), we find that the phase dif-
ference varies linearly with velocity in contrast to the
GP soliton, where cos(δφGP/2) = vs/cGP. Fixing the re-
maining constant e̊ by requiring the phase step to vanish
at the speed of sound [assumption (c)], we find

e̊ =
v̊−3

8π
, δφ = π(1 − vs/c). (8)

Thus, the energy and particle number dispersion as well
as the phase step for the family of dark solitons in the
unitary gas are obtained without any free parameters.
The success of this derivation shows, that the assumption
(a) of particle-number conservation under quasiparticle
motion is consistent with the universal scaling relations
of the unitary Fermi gas.
We have not yet proven that dark solitons exist.

Within the realm of mean-field theory, this can be done
by finding self-consistent solutions of the BdG equations.
In addition to testing the stated assumptions against a
physical theory, this allows us to determine spatial pro-
files as well as dispersion relations outside the unitary
regime.
We now more generally consider a Fermi gas with equal

density for two spin components at zero temperature.
The time-dependent BdG equations provide a convenient
mean-field theory of the BEC-BCS crossover [4]
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ĥ ∆(r, t)
∆∗(r, t) −ĥ
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problem simplifies to a time-independent eigenvalue
problem when we seek soliton solutions of the superfluid
order parameter of the form ∆(z, t) = ∆(z− vst) = ∆(ξ)
and write vν(r, t) = (LA)−1/2ei(pxx+pyy)−iEp,nt/!vp,n(ξ)
and likewise for u. The energies Ep,n are the eigen-
values of the resulting time-independent BdG equation,
which contain the soliton velocity vs as a parameter. The
transverse momentum p is discretized according to the
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equations must be solved together with the equation
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alized secant (Broyden’s) method to find self-consistent
solutions (with very small self-consistency error of 10−8
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order parameter ∆ at different velocities by its imaginary part
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or better) from an initial profile with nontrivial phase
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The spatial structure of the dark soliton solutions is

shown in Figs. 3 and 4 for three values of the interac-
tion parameter η. The main feature is a density notch
and dip in the order parameter, which become shallower
with increasing velocity for all interacting regimes. In
the BEC regime, the profiles most closely resemble the
GP dark solitons with constant imaginary part (with
appropriate choice of a global phase) and bell-shaped,
const − sech2(z/)), density notch. This is expected as
the BdG equation converges toward the GP equation for
large positive η [15]. The imaginary part of the order
parameter clearly develops structure for finite velocities
in the unitarity and BCS regime, which is a striking new
feature of the BdG grey solitons as seen in panels (1a)
and (2a) in Fig. 3.
While the length scale for the BEC soliton is ) =
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c2 − v2s) from GP theory, there is no clear evi-
dence in our data for a velocity dependence of the length
scale in the unitarity limit. There we expect on general
grounds that the only length scale is k−1

F . In the BCS
regime, we expect small scale Friedel oscillations with
size 2k−1

F , and a second length scale in the Cooper pair
size ξC = !vF /∆0, which evaluates to about 5k−1

F for
η = −0.5 [5]. From Fig. 3, panel (1a) and our experience
with boundary effects, it appears that there is an addi-
tional velocity dependence and the total size grows with
increasing velocity.
Relevant velocity scales for the problem are the speed
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n(∂µ/∂n)/m and the pair breaking veloc-

ity mv2sp =
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0−µ. We consistently found it diffi-

cult to converge to self-consistent solutions approaching
these velocities from below and thus assume that soli-
ton solutions exist only below vc = min(c, vsp), which is
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Comparing Eqs. (7) and (6), we find that the phase dif-
ference varies linearly with velocity in contrast to the
GP soliton, where cos(δφGP/2) = vs/cGP. Fixing the re-
maining constant e̊ by requiring the phase step to vanish
at the speed of sound [assumption (c)], we find

e̊ =
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Thus, the energy and particle number dispersion as well
as the phase step for the family of dark solitons in the
unitary gas are obtained without any free parameters.
The success of this derivation shows, that the assumption
(a) of particle-number conservation under quasiparticle
motion is consistent with the universal scaling relations
of the unitary Fermi gas.
We have not yet proven that dark solitons exist.

Within the realm of mean-field theory, this can be done
by finding self-consistent solutions of the BdG equations.
In addition to testing the stated assumptions against a
physical theory, this allows us to determine spatial pro-
files as well as dispersion relations outside the unitary
regime.
We now more generally consider a Fermi gas with equal

density for two spin components at zero temperature.
The time-dependent BdG equations provide a convenient
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We find dark soliton solutions, so they do exist!
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Density profiles

22

BCS: 1/kFa = −0.5

unitarity: 1/kFa = 0

BEC: 1/kFa = 1

c.f. Spuntarelli, Carr, Pieri, Strinati NJP 13, 035010 (2011)

Liao, Brand PRA 83, 041604(R) (2011)
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Density at unitarity
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Order parameter at unitarity

24

Saturday, 11 June 2011



Dispersion relations
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BCS: 1/kFa = −0.5

unitarity: 1/kFa = 0

BEC: 1/kFa = 1

Liao, Brand PRA 83, 041604(R) (2011)
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Speed limits in the Fermi gas

The soliton velocity is 
limited by

• Sound speed c
 (from compressibility)

• Velocity of BCS 
pair breaking vsp

26

mc2 = n
∂µ

∂n

BEC
unitary

BCS

pair breaking

sound
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Andreev bound states
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v = 0

v = 0.3 vF

v = 0.38 vF
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How to make a soliton in the lab?

1.Phase imprinting
    NIST, Hannover, JILA, Hamburg

2.Collision of moving BECs
    Heidelberg

3.Cavity collapse
    Harvard

4.Combined density engineering and phase 
imprinting

28
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Generation and interaction of 
solitons in a quasi-1D BEC

L.D. Carr, J. Brand, S. Burger, A. Sanpera, 
PRA 63, 051601(R) (2001)

Density engineering & phase imprinting

Phase step of π generates single soliton

Density engineering alone generates 2 
or more solitons.

Density manipulation on the size 
scale of the healing length allows 
the specific engineering of one or 
several solitons.
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Thanks!

Renyuan Liao
Oleksandr Fialko

Robin Scott
Franco Dalfovo
Sandro Stringari
Lev Pitaevskii
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