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Quantum gases at Massey
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Polar Fermionic Molecules

PHYSICAL REVIEW A 82, 063624 (2010)

Anisotropic superfluidity in the two-species polar Fermi gas

Renyuan Liao and Joachim Brand

Institute for Advanced Study and Centre for Theoretical Chemistry and Physics, Massey University, Auckland 0632, New Zealand
(Received 3 August 2010; revised manuscript received 20 October 2010; published 20 December 2010)

We study the superfluid pairing in a two-species gas of heteronuclear fermionic molecules with equal density.
The interplay of the isotropic s-wave interaction and anisotropic long-range dipolar interaction reveals rich
physics. We find that the single-particle momentum distribution has a characteristic ellipsoidal shape that can
be reasonably represented by a deformation parameter o defined similarly to the normal phase. Interesting
momentum-dependent features of the order parameter are identified. We calculate the critical temperatures of
both the singlet and triplet superfluids, suggesting a possible pairing symmetry transition by tuning the s-wave

or dipolar interaction strength.

Anisotropic momentum distribution
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FIG. 2. (Color online) (a) Momentum-integrated angular number
distribution. (b) Angle-averaged momentum number distribution
ny(k) = fn(k)dQ/4n at 1/kra = —1 and C,y = 1 for the singlet

superfluid.
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Competition between singlet and triplet

superfluid
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FIG. 5. (Color online) (a) Critical temperature as a function
of dipole-dipole interaction strength C,; for singlet superfluid at
1/kra = —1 and for triplet superfluid. (b) Critical temperature as
a function of 1/kra at Cy; = 1 for singlet superfluid. 4



This talk: Dark solitons in BEC-BCS
crossover

* Introduction
Dispersion relations are relevant for
understanding dynamics

* Analytic disperion relations at unitarity
Dark soliton dispersion relations from universal
scaling and general assumptions

* Crossover mean field theory
numerical soliton profiles and dispersion relation
on homogeneous background
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Solitons

Simulation Experiment

E Optics n

Solitons cut through the cold

Tikhonenko et al. (1996)

: : Sengstock group (2008)
credit: Alex Kasman BEC 6
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Dark solitons in a trapped BEC
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Landau quasiparticle dynamics

Konotop, Pitaevskii, PRL (2004)
* in homogeneous BEC:
one parameter family of
dark soliton solutions

Eq(vs, i)
* In trapped BECs:

— soliton moves on a slowly varying background,
locally conserving energy

dES(U;l;MZ)) — () —> equation of motion
— BEC solitons also locally conserve particle number

N, = /(ns —ng)d’r = 8;;8 Ns = f(Es(vs, 1))
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Speed limits in the Fermi gas

The soliton velocity is

limited by

* Sound speed c

(from compressibility)

0
me? = n 2t

on

* Velocity of BCS

pair breaking v

2 2 2
muvs, = V1?4 AL —
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Do solitons exist in superfluid Fermi

gases and what are their properties?

* |In the BEC limit (BEC of composite bosons) we
would expect so. Properties predicted by GP
theory.

* |If we really want to know, have to find them in
experiment!

* Approaching from theory, this is a hard problem
since we have strongly correlated system:
— Find (magic) solution to numerically simulate the

dynamics (or excited states) of strongly correlated
many-body problem?

— Try crossover mean field theory?
computationally demanding but doable.

— Exploit universal scaling of the unitary gas? o
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Soliton properties at unitarity

For this part, forget mean-field theory!
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Scaling arguments:

soliton energy for unitary Fermi gas
Grand canonical energy

(H — uN) = [epkrL + € + O((kp L) N)|k%AEF
Equation of state (homogeneous gas):

h2 2
p= (14 B)Er = (14 B)22F

Soliton energy:
E(u,vs) = EkrAER = u*BE(97)

Vs

where 7 =
T hks

IS the dimensionless soliton velocity

particle number: N, = v 5(1 + B8)BE' (%) — 2uBE(v?)

12
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Three assumptions

(A) Under adiabatic change of the environment, the
soliton can conserve both energy and particle
number, simultaneously.

(B) Energy and particle number vanish as the
soliton velocity approaches the speed of sound c.

(C) The superfluid order parameter has

the soliton that vanishes under the

a well defined phase step across W ,?\/ il
. .zxf-i’ .4-2§24'

conditions of (B). :
¢ pams
S e

4 2
s, € X
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Three assumptions

(A) Under adiabatic change of the environment, the
Soliton can conserve both energy and particle
number, simultaneously.

Consequence:

ONs; OEs  ON, OF;
o Ovs,  Ovs Ou

can be solved for dimensionless soliton energy:
£(0%) = & — 2°)?
so far two undetermined parameters ¢, v

14
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Three assumptions

(B) Energy and particle number vanish as the
soliton velocity approaches the speed of sound c.

Consequences:
. cm 14+ 5
V —= —— — -
hk 3

for dynamics of solitons on Thomas-Fermi
density profile with — ,,(2) = 11 — ~mw?. 22

2 trap
d?z
2_2
— =0
W Zg —+ dt2
W 1
soliton oscillation frequency: = —=
1 Y Wtrap \/g
15
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Oscillation period from time-dependent
simulations

Time-dependent
simulations were
performed by the
Trento group
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@ Our numerics:
2.083 at eta = -0.5 (BCS)
1.748 at eta = O (unitarity)
1.456 at eta = +1 (BEC)

£€8 Trento data (time dependent)
Scott et al. PRL (2011)

Scott, Dalfovo, Pitaevskii, Stringari PRL (2011)
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Three assumptions

(C) The superfluid order parameter has a well
defined phase step across the soliton that
vanishes under the conditions of (B).

Consequence: determines final parameter

recall: Ps — Pe = hni(m — 0¢)/2 Pitaevskii (2010)
physical momentum: p, = mN;v;
canonical momentum: gg.

Op.

Us
yields
e=——, O0¢p=m(l—wvs/c)

17
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Solitons at unitarity
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Assumptions (A), (B), (C) seem to be fulfilled!

Liao, Brand PRA 83, 041604(R) (2011)
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Crossover mean-field theory

find soliton solutions numerically

19



Mean-field theory

« BCS crossover theory (Leggett 1980)

— Extend the use of BCS / BdG theory to the
crossover problem (with renormalised coupling
constant)

— Qualitatively correct equation of state

— Yields GP equation in BEC limit with agp =
2ag,g (correct: agp = 0.6ag,g) (Pieri, Strinati
2003)

20
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Bogoliubov-de Gennes equation

* self-consistently solve
. uy (r,t)\ ho Alr,t) (u(r,t)
w (tern) = (avten i) (o)
h = %VQ —
A(z,t) = Az —vst) = A(§)
A(€) = =92 pn Upn(§)vp n(§)
1/g = m/(4nh?a) — 1/Q>° 1/2€,
* Implemented Broyden's (generalized secant)

method
We find dark soliton solutions, so they do exigt!
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Density profiles
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Liao, Brand PRA 83, 041604(R) (2011)

c.f. Spuntarelli, Carr, Pieri, Strinati NJP 13, 035010 (2011)
22
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Density at unitarity

23

Saturday, 11 June 2011



Order parameter at unitarity

Re(A)
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Dispersion relations

0.014— 00 e o, ° o ; (a) _
0.012] "1 BCS: 1/kpa = —0.5
0.01(()) ' ' ‘ ' '

unitarity: 1/kpa = 0

BEC: 1/krpa =1

Liao, Brand PRA 83, 041604(R) (2011) 25
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Speed limits in the Fermi gas

The soliton velocity is

limited by

* Sound speed c

(from compressibility)

0
2 _ ,9H

on

mc

* Velocity of BCS

pair breaking v

2 2 2
muvs, = V1?4 AL —

Saturday, 11 June 2011

0.8

0.6

0.4

]

26

-y
Pl
K
- " sound -
ol
2 o
_pair breaking ,* i
Pl
o' B
JJJ'
Laao? e
1 1
2 -1 0 | 2
BCS 1 /k
/K a
F* BEC
unitary



Saturday, 11 June 2011

Andreev bound states
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How to make a soliton in the lab?

1.Phase imprinting
NIST, Hannover, JILA, Hamburg

2. Collision of moving BECs
Heidelberg

3. Cavity collapse
Harvard

4.Combined density engineering and phase
imprinting
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Generation and interaction of
solitons in a quasi-1D BEC

Density englneerlng & phase |m|:;r|nt|ng Density manipulation on the size
CF o222 O _---¥0  geale of the healing length allows
0.8 . . -
i ‘[ \i* the specific engineering of one or
0.0? .
0.4 =2 several solitons.
0.2 |
" . . .
| | - (- ° Density engineering alone generates 2
@® x®  or more solitons.
d(x)=Ad¢ tanh(2x/Ax,) @ Pl '“l)"m (b) LA
Phase step of « generates single soliton * ‘
Mxt (X, U
t 0.04 T — 22
‘ S —— 10
30 e ——
20 0.02 Y e R 10 x@&) 20 0 0 10 x(&
0 : —_ L.D. Carr, J. Brand, S. Burger, A. Sanpera,
0 , o] ll . PRA 63, 051601(R) (2001)

0 10 x(3)
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