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6 CHAPTER 1. INTRODUCTION

The aim of these lectures is to give a complete overview of the physics of
the relic radiation in cosmology, the Cosmic Microwave Background, in the
framework of modern cosmology. At the end of the course, a student should be
able to understand most of the modern scientific papers on this matter, ranging
from the theoretical details of the CMB anisotropies, down to the physical
content and implications of the current experimental data.
In this chapter, we give an overview of the course, specifying the most important
literature to look at, as well as reviewing the plan of the lectures. In the end,
we also fix the notation we adopt, and introduce very basic elements of general
relativity.

1.1 things to know for attending the course

From the point of view of cosmology, these lectures are almost self consistent,
altough who’s attending might benefit from having familiarity with the physics
of the Friedmann Robertson Walker (FRW) background cosmology, as well as
any knowledge of cosmological perturbations. Moreover, the physics of the CMB
is well known, as the energy scales at which the CMB decouples from the other
components, corresponds to a temperature of about 3000 K.
On the other hand, some knowledge of general relativity is necessary in order to
apprach these lectures properly. Indeed, the whole cosmology is rooted deeply in
general relativity, and with the level of precision of cosmological measurements,
getting to the percent or better, it is no longer possible to take Newtonian
shortcuts. This is relevant in particular for the whole scheme of cosmological
perturbations, which is a relevant part of the present work.

The main text where studying while attending the lectures should be rep-
resented by the present notes. The students are on the other hand welcome to
consult the books and papers from where these notes have been taken. They
are:

• textbook by Scott Dodelson, Modern Cosmology, Elsevier Science, 2003,

• review paper by Hideo Kodama and Misao Sasaki, Progresses of Theoret-
ical Physics Supplement 78, 1, 1984,

• paper by Wayne Hu and Martin White 1997, Phys. Rev. D 56, 596.

The

• textbook by Andrew R. Liddle and David H. Lyth, Cosmological Inflation
and Large Scale Structure, Cambridge Press 2000,

may be also relevant.

1.2 plan of the lectures

The first part of the course is devoted to a summary of the FRW cosmological
background, setting the notation of the course and yielding also a continuity with
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possible previous courses that the students may have attended. The lectures
then cover the following topics:

• cosmological perturbation theory,

• black-body radiation in cosmology,

• Boltzmann equation, gravitational and Thomson scattering,

• harmonic expansion and anisotropies,

• large scale anisotropies and acoustic oscillations,

• CMB observables,

• status of CMB observations.

1.3 notation and micro-elements of general rel-

ativity

Spacetime is described by three spatial dimensions plus the time coordinate.
Greek indeces run from 0 to 3, while latin indeces are used for spatial directions,
from 1 to 3. We use x to indicate a generic spacetime point, ~x and x̂ for its spatial
component and versor, respectively. The fundamental constants we use are the
Boltzmann and Gravitational ones, indicated with kB and G, respectively. We
work with unitary light speed velocity, c = 1, never using the Planck constant
~.

In general relativity, the infinitesimal distance from two spacetime points is
defined as

ds2 = gµνdxµdxν , (1.1)

where gµν(x) is the metric tensor. By an appropriate change on reference frame,
it is always possible to reduce the metric tensor to the Minkowski one, meaning
that the system changes to the one which in free fall locally in x. The signature
of the metric tensor we adopt is the following:

(−, +, +, +) . (1.2)

The inverse of the metric tensor is represented with the indeces up:

gµρg
ρν = δν

µ , (1.3)

where δν
µ is the Kronecker delta. We shall use the Kronecker delta in arbitrary

index configuration:

δν
µ = δµν = δµν = 1 if µ = ν, 0 otherwise. (1.4)
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The Christoffel symbols are defined as usual as

Γαβγ =
1

2

(

∂gαγ

∂xβ
+

∂gγβ

∂xα
− ∂gαβ

∂xγ

)

, Γα
βγ =

1

2
gαα′

(

∂gα′β

∂xγ
+

∂gα′γ

∂xβ
− ∂gβγ

∂xα′

)

.

(1.5)
The Riemann, Ricci and Einstein tensors are given by

Rα
βµν =

Γα
βν

∂xµ
−

Γα
βµ

∂xν
+ Γα

λµΓλ
βν − Γα

λνΓλ
βµ , (1.6)

Rµν = Rα
αµν , (1.7)

and

Gµν = Rµν − 1

2
gµνR , (1.8)

where R = Rµ
µ is the Ricci scalar and the repeated indeces are summed.

To simplify the notation, let us introduce the following conventions for derivation
in general relativity:

• ;µ ≡ ∇µ means covariant derivative with respect to xµ,

• |a ≡ s∇a means covariant derivative with respect to the spatial metric,
i.e. the 3× 3 array obtained removing the time column and row from the
metric tensor in (1.1),

• ,µ means ordinary derivative with respect to xµ .

A uni-dimensional tensor, or vector, vµ can be obtained via covariant derivation
of a scalar quantity s as

vµ = s;µ = s,µ , (1.9)

where the last equality holds for scalars only. A tensor can be obtained via
covariant derivation of a vector as

tµν = vµ;ν = vµ,ν − vαΓα
µν . (1.10)

Further covariant derivative raises the rank of tensors:

uµνρ = tµν;ρ = tµν,ρ − tανΓα
µρ − tµαΓα

ρν

uν
µρ = tνµ;ρ = tνµ,ρ − tναΓα

µρ + tαµΓν
ρα . (1.11)
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The FRW metric is built upon the hypothesis that space is homogeneous
and isotropic at all times. The first condition means that at a given time, the
physical properties, e.g. particle number density, are the same in each point.
The second condition means that any physical quantity does not depend on the
direction of an observer locate in any spacetime point x.
These assumptions simplify dramatically the structure of the metric tensor gµν .
A spherical symmetry around each spacetime location is necessary, and no off-
diagonal terms are left; homegeneity and isotropy leave essentially only two
degrees of freedom to the system. The first one is a global scale factor, fixing
at each time the value of physical lengths. The second one is related to the
spacetime curvature, as an homogeneous metric can be globally more or less
curved. The form of the fundamental length element is therefore

ds2 = −dt2 + a(t)2
(

1

1 − Kr2
dr2 + r2dθ2 + r2 sin2 θdφ2

)

, (2.1)

where a(t) and K represent the global scale factor and the curvature, respec-
tively; r, θ and φ are the usual spherical coordinates for radius, polar and azimut
angle, respectively.
The physical meaning of the scale factor can be read straightforwardly from the
metric, and the only point to discuss concerns its dimension. One may assign
physical dimensions to the scale factor a or to the radial coordinate r; in this
lectures, we choose the second option. Concerning the curvature, some more
discussion is needed. The first point is about dimensions again; if r is dimen-
sionless, K is also dimensionless. If r is a length, then K is the inverse of the
square of a length. Moreover, if K = 0, then the spatial part of the length (2.1)
is Minkowskian, and in this case the FRW metric is flat. If K > 0, there is
an horizon in the metric, given by rH = ±1/

√
K; this means that an infinite

physical distance corresponds to those coordinates, regardless of the value of
the scale factor a, and the FRW metric is closed; note that this does not con-
flict with the assumption of homogeneity, as this property is the same as seen
from all spacetime locations. If K < 0, the opposite happens, as there is no
horizon, and the distance between two space points vanishes at infinity; in this
case the FRW metric is open. Finally, note that one may always change the
overall normalization of a or r in (2.1), and therefore, as a pure convention, we
can restrict our attention to three relevant cases for K:

K = −1 open FRW ,

K = 0 flat FRW , (2.2)

K = +1 closed FRW .

2.1 comoving coordinates

Of course one might apply any change of coordinate to the FRW metric, making
that appearing differently. On the other hand the form (2.1) is the form that
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is common for cosmological purposes. The reason is that the expansion, repre-
sented by the scale factor a, has been factored out of the spatial dependence.
This leads us to the concept of comoving coordinate, i.e. at rest with respect to
the cosmic expansion, or in other words characterized by the spacetime points
for which

r = constant , θ = constant , φ = constant , (2.3)

where r, θ and φ are coordinates in the frame where the metric assumes the
form 2.1. To visualize, one may think that galaxies are the tracers of the cosmic
expansion, or in other words, their motion is approximately described by 2.3. In
the original Hubble view of the cosmic expansion, this corresponds to assign the
whole motion of galaxies to the cosmic expansion, giving them a fixed comoving
coordinate.

2.1.1 conformal time

Although time does not enter in the discussion about comoving coordinates
above, there is a very common time variable which may replace the ordinary
time in (2.1). By performing the coordinate change

dτ =
dt

a(t)
, (2.4)

the FRW metric may be easily written as

gµν ≡ a2 ·









−1 0 0 0
0 (1 − Kr2)−1 0 0
0 0 r2 0
0 0 0 r2 sin2 θ









≡ a2γµν (2.5)

so that the cosmic expansion is completely factored out of the comoving part
of the metric, which we define as γµν ; τ is the conformal time, and is our
time variable in the following, unless otherwise specified. We will indicate the
conformal time derivative with ,̇ while those with respect to the ordinary time are
indicated with the subscript t. It is also useful to define two different quantities
describing the velocity of the expansion, i.e.

H =
at

a
, H =

ȧ

a
, (2.6)

named ordinary and conformal Hubble expansion rates, respectively; as it is
easy to see, the two are related by H = H/a.

2.2 stress energy tensor

The stress energy tensor specifies the contents of spacetime, in terms of physical
entities, i.e. particles and their properties. We limit ourselves here to describe a
perfect relativistic fluid, homogeneous and isotropic. These assumptions restrict
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quite alot the complexity of a general expression for a stress energy tensor. The
quantities that characterized it are just the energy density, ρ, and the pressure p.
The quantities in the stress energy tensor which has direct physical meaning are
those with covariand and controvariant indeces. In this form, T ν

µ is most easy
as the (0, 0) components represent the energy density, while p is isotropically
assigned to all directions as

T ν
µ ≡









−ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p









, (2.7)

where the minus to the energy density is due to the choice of our signature (1.2).
The stress energy tensor may also be written as

Tµν = (ρ + p)uµuν + pgµν , (2.8)

where uµ represents the quadri-velocity of a fluid element, with an affine pa-
rameter which for convenience may be taken as the conformal time itself:

uµ =
dxµ

dτ
. (2.9)

In analogy with the normalization of the quadri-impulse of a particle with mass
m, pµpµ = −m2, and since the energy is absorbed by the term ρ + p in (2.9),
the quadri-velocities are normalized as uµuµ = −1. In comoving coordinates,
where the ua = 0, this condition implies

uµ ≡
(

1

a
, 0, 0, 0

)

. (2.10)

2.3 expansion and conservation

The Einstein and conservation equations

Gµν = 8πGTµν , T ;ν
µν = 0 (2.11)

reduce to two differential equations only, where the independent variable is
the time τ , expressing the dynamics of the expansion, plus the conservation of
energy, respectively. The first one is the Friedmann equation

H2 =
8πG

3
a2ρ − K

a2
, (2.12)

which is equivalent to the equation ruling the acceleration of the expansion:

Ḣ − H2 = −4πG(ρ + p) . (2.13)

The conservation equation becomes

ρ̇ + 3H(ρ + p) = 0 . (2.14)
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As it is evident, it is impossible to solve this system if some relation between
pressue and energy density is given, p(ρ). For interesting cases, as those we
shall see in the next Section, pressure is proportional to the energy density:

p = wρ , (2.15)

where w is the equation of state of the fluid.

2.4 relativistic and non-relativistic matter, dark

energy

So far we did not consider the case in which the stress energy tensor is made
by more than one component, although in a realistic case, several components
are present at the same time. In this case, the stress energy tensor we treated
so far corresponds to the total one, sum over those corresponding to each of the
components, labeled by c as follows:

Tµν =
∑

c

cTµν . (2.16)

The single stress energy tensors may not be conserved as a result of mutual inter-
actions between the different component. Therefore, the conservation equation
for each component may be written as

cT
;ν
µν = cQµ , (2.17)

where sQµ expresses the non-conservation. Since the total stress energy tensor
must be conserved, the interactions between the different components must be
such that

∑

c

cQµ = 0 . (2.18)

The simplest example of cosmological component is represented by the non-
relativistic (nr) component. The usual example is that of particles at thermal
equilibrium, and characterized by a temperature giving rise to a thermal agita-
tion which is negligible with respect to the mass m, so that the impulse of each
of those particles is

p2 = pµpµ ≃ m2 . (2.19)

Whatever the interaction is, in this regime collisions are negligible. No collisions
means no pressure, therefore for this species, the equation of state is simply zero.
Such component in cosmology is commonly known as Cold Dark Matter (CDM).
As it is easy to verify, the time dependence of this component, assuming that it
is decoupled from the others, may be expressed as a function of the scale factor
as

ρnr ∝ a−3 . (2.20)

The next example is opposite in many respects. Relativistic (r) particles at ther-
mal equilibrium are characterized by an energy which is dominated by thermal



14 CHAPTER 2. HOMOGENEOUS AND ISOTROPIC COSMOLOGY

agitation rather than mass. By applying the laws of statistical quantum me-
chanics for relativistic particles at thermal equilibrium, one finds that pressure
and energy density are related by the following relation:

pr =
1

3
ρr . (2.21)

As it is easy to verify, this implies

ρr ∝ a−4 , (2.22)

which has a direct intuitive meaning. Indeed, taking photons as an example,
each of those carries an energy hν where h is the Planck constant, thus redshift-
ing as a result of the stretching of the wavelenght. This is responsible for the
extra-power in (2.22) with respect to (2.20), which contains only the contribu-
tion from the dilution as a result of the expansion of the volume.
A third case, most interesting and dense of theoretical implications, is the case
in which the energy density is conserved, i.e.

pde = −ρde , (2.23)

where the subscript means dark energy, which is the class of cosmological species
which produces an equation of state close or equal to −1. A constant vacuum
energy density appeared for the first time in the form of a cosmological constant
Λ, introduced by Einstein himself in the Einstein equations as a pure geometrical
term:

Gµν + Λgµν = 8πGTµν . (2.24)

Indeed, bringing it to the right hand side, and passing to the mixed form for
indeces, one gets

Gν
µ = 8πG

(

T ν
µ − Λ

8πG
δν
µ

)

, (2.25)

and looking at the form of the stress energy tensor (1.10) it is straightforward
to verify that the one related to the cosmological constant is characterized by
pΛ = −ρΛ = −Λ/8πG.
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16 CHAPTER 3. COSMOLOGICAL PERTURBATION THEORY

The whole concept is to classify and understand small perturbations around
the FRW metric, in a general relativistic framework. The perturbed FRW metric
tensor may be defined as

ḡµν = gµν + δgµν = a2(γµν + hµν) , (3.1)

where the bar means background plus perturbations, i.e. the complete system.
We limit our analysis to the linear regime: since γµν contains coefficients of
order 1, e.g. in the flat FRW it coincides with the Minkoski metric having ones
on the main diagonal, linearity may be defined as

γµν containing terms of order 1 or larger, hµν ≪ 1 . (3.2)

At the same time, the stress energy tensor is perturbed as

T̄ ν
µ = T ν

µ + δT ν
µ , (3.3)

and in this case linearity may be expressed in terms of the non-zero quantities
in the background tensor, Tµν :

δT ν
µ ≪ ρ, p . (3.4)

One may question what is the motivation for dealing with linear perturbations
only in cosmology. Indeed, structures we see around us are markedly non-linear
in the density distribution, like galaxies of cluster of galaxies. The underlying
assumption is that most of the cosmological evolution occurs in linear regime,
while non-linearity is confined on very small scales, reaching the typical size of
a galaxy or a cluster of galaxies only in cosmologically recent epochs. The great
support for this assumption comes from the CMB itself. As it is well known
nowadays (see e.g. Bennett et al., 2003, and references therein) the CMB tem-
perature anisotropies are at the 105 level relatively to the average temperature
over the whole sky, down to an angular resolution of a few arcminutes. This
remarkable isotropy suffests that the density fluctuations, and cosmological per-
turbations in general, where in a linear regime at the epoch in which the CMB
radiation decoupled from the rest of the system. Then, the linear approximation
should be valid to describe the bulk of physical cosmology on a large interval of
time and physical scales, before and after the CMB origin, breaking down only
recently and on scales smaller than those of galaxy cluster.

3.1 background and perturbation dynamics

Linearity allows to neglect the terms of second or higher orders, i.e. involving
products of fluctuations. A direct consequence concerns the relativistic algebra
of cosmological perturbations. Of course, in a perturbed FRW enviroment, ten-
sor indeces are raised and lowered using the complete metric, ḡµν . On the other
hand, linearity allows to neglect the second or higher order terms. This means
that for cosmological perturbations, represented by δgµν and δTµν , indeces are
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raised and lowered using the background metric gµν . Another, most important
consequence of the linear scheme is that background and perturbation dynam-
ics do not mix: the prescription is no longer valid whenever hµν approaches
unity or δT ν

µ gets close to the background energy density or pressure. There-
fore, any equation in cosmology splits in two, concerning the background and
perturbation dynamics, respectively:

Ḡµν = 8πGT̄µν ≡
{

Gµν = 8πGTµν

δGµν = 8πGδTµν
, (3.5)

T̄ ;ν
µν = 0 ≡

{

T ;ν
µν = 0

δT ;ν
µν = 0

. (3.6)

This does not mean that the background and perturbation dynamics are fully
decoupled. The scale factor evolution, as well as the dynamics of energy density
and pressure do affect the perturbation equations, appearing explicitely in those,
as we shall see in the following.

3.2 decomposition of cosmological perturbations

in general relativity

We now carry out a general discussion concerning the different components of
the cosmological perturbations, hµν and δTµν . This is done on the basis of their
physical properties in a general relativistic framework, yielding a general classi-
fication, which is one of the basis of modern cosmology. The fluctuations depend
on the spacetime point x ≡ (τ, ~x). The decomposition is made considering the
spatial part only, while the perturbed Einstein and conservation equations (3.5,
3.6) give the time dependence of each species.
Let us consider in general the space dependence of functions in general relativity,
but restricting ourselves to the spatial metric at a fixed time, γij . Under spatial
rotations, a function of the space may behave as a scalar, vector or tensor:

s(~x) , vi(~x) , tij(~x) . (3.7)

While the physical nature of scalars is unique, the classifiction gets non-trivial
already for vectors. Indeed, each vector function may be divided in full gener-
ality in a part which may be derived by space covariant derivation of a scalar,
and the rest. The first component is called scalar-type component of vectors,
while the second one is called vector-type component of vectors. In a similar
way, tensors may be divided in three components. The first one, called scalar-
type component of tensors, comes from double space covariant derivation of a
scalar function. The second one, called vector-type component of tensors, comes
from space covariant derivation of a vectory-type component of a vector. The
remaining part is called tensor-type component of tensors. Let us see all that
in formulas now. For vectors, one has

vi = s|i + vi
∗ , (3.8)
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indicating scalar-type and vector-type components, respectively. Still maintin-
ing full generality, s may be chosen is such in order to be responsivle for the
divergence of the whole vector function:

�s ≡ s
|i
|i = vi

|i = v . (3.9)

This implies that the vector-type component is divergenceless:

vi
∗|i = 0 . (3.10)

As we will see in a moment, this has a direct and intuitive physical meaning.
For tensors, the decomposition may be written as

tij = s|ij + v
i|j
∗ + tij∗ . (3.11)

In analogy with what has been done for vectors, in general the scalar-type
component is responsible for the trace of the tensor, obeying the equation

�s = tii ≡ t , (3.12)

while the vector-type is divergenless and obeys the same condition as in (3.10).
This implies that the tensor-type component is traceless:

ti∗i = 0 . (3.13)

Moreover, the tensor-type components may be also shown such that

t
|j
∗ij = 0 . (3.14)

The physical interpretation of this decomposition is rather simple. Consider
for example the vector field of velocities caused by gravitational infall toward
the center of some overdensity. That is an example of scalar-type component
of a vector field, as the divergence of this field is non-null. Physically, the
nature of such motion is clearly of scalar origin, because it is completely caused
by the overdensity in the center. Consider now a vortex. In this case, no
static density perturbation can cause such motion, which is divergenless by
construction. This is an example of a vector field which is made completely
by its vector-type component. To finish with the examples, the tensor-type
component of tensors correspond to the tensor fluctuation modes in general
relativity, i.e. the gravitational waves, as we see below.

3.3 Fourier expansion of cosmological perturba-

tions

The perturbed Einstein and conservation equations will have in general the form

A · δ1 + B · δ2 + C · δ3 + ... = 0 , (3.15)
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where A, B, C, ... are function of time only, while the δi represent perturbations
and their time derivatives; no products between perturbations are allowed in a
linear theory. As a consequence, working in the Fourier space becomes feasible,
as the absence of products between perturbed quantities makes each Fourier
mode evolving independently on the others. Working in the Fourier space is
particularly useful in the present context, since in cosmology observables are
often probed by studying their angular distribution, which correspond to cos-
mological scales, or Fourier wavenumbers, at a given redshift. The CMB is a
striking example of this. Indeed, as we will see, the last scattering is a rather
sudden event in cosmology, and the thickness of the last scattering surface is
just about 10 Mpc, compared with almost 10000 Mpc of distance between us
and that epoch in space. The angular distribution of CMB anisotropies directly
corresponds to its Fourier expansion, expecially on small angular scales. In this
Section, therefore, we lay down the formalism necessary to study cosmological
perturbations in the real space, and that will be our framework in the following.

We expand perturbations into a complete set of functions which are the
eigenfunctions of the Laplace operator s

�f = γijf|ij. For scalar functions,
those eigenfunctions Y~k(~x) are the solutions of the differential equation

(s
� + k2)Y = 0 . (3.16)

where k = |~k|2 and we drop the explicit arguments of Y~k(~x) in the following.
Note that in flat cosmology s

� is just the double derivative, and the solutions
of the equation above are just plane waves:

Y ∝ ei~k·~x in flat FRW . (3.17)

The scalar-type components of vectors is expanded in Fourier modes exploiting
the simple derivation of the functions above, expressed as

Yi = −1

k
Y|i , (3.18)

where the factor and sign in front is purely conventional. Similarily, the scalar-
type component of tensors may be expanded in the following Fourier modes:

Yij =
1

k2
Y|ij +

1

3
γijY . (3.19)

Note that the expression above is traceless; indeed it will be convenient to
express the trace of tensors separately.
The vector-type component of vectors may be expanded into the vector solutions
of the Laplace operator, i.e. obeying

(s
� + k2)Y

(1)
i = 0 , (3.20)

with the divergenceless constraint

γijY
(1)
i|j = 0 . (3.21)
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The vector-type component of tensors may be expanded into

Y
(1)
ij = − 1

2k

(

Yi|j + Yj|i

)

, (3.22)

where the sum is made in order to keep symmetricity.
Finally, the tensor-type component of tensors may be expanded into the tensor
solutions of the Laplace operator

(s
� + k2)Y

(2)
ij = 0 , (3.23)

with the transverse traceless constraint

Y
(2)|j
i|j = 0 = Y

(2)i
i . (3.24)

From now on, we adopt the Fourier space as our default framework, working
out the analysis for one generic mode; unless otherwise specified, we also drop
the label ~k.

3.4 perturbations in the metric tensor

We have now all the means to define and classify the different species of cos-
mological perturbations in general relativity. The classification is entirely done
in terms of the properties under spatial rotations, defined in section 3.2, and
we consider the perturbations to the metric tensor first, δgµµ; with the ad-
dition of the background component, they represent the total metric tensor
(3.1), ḡµν = gµν + δgµν . As we have seen already, the background non-zero
terms are on the diagonal, δg00 = −a2, δg11 = a2dr2/(1 − Kr2), δg22 = a2r2,
δg33 = a2r2(sin θ)2. We consider δgµν and we define scalar and scalar-type
components, vector and vector-type components, tensor and tensor-type com-
ponents, respectively.

3.4.1 scalar-type components

The δg00 quantity is clearly a scalar, since it does not contain any spatial index.
In the Fourier space, it may be defined as

δg00 = −2a2AY , (3.25)

where A and Y represent the Fourier amplitude and Laplace operator eigen-
function at wavenumber ~k, respectively. As we already mentioned, we omit the
arguments τ in a, τ and ~k in A, ~k and ~x in Y . In the following, those depen-
dences remain the same for all background terms, perturbations and Fourier
eigenfunctions, therefore we omit them unless otherwise specified. Obviously,
at any time the real space counterpart of the perturbations in the Fourier space
may be got as follows:

δg00(τ, ~x) =

∫

d3kA(τ,~k)Y (~k, ~x) . (3.26)
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The quantity δg0i is a vector, and since the background term for that is zero,
it coincides with the component of the total metric tensor, ḡ0i. Just like any
vector in our scheme, it contains scalar-type and vector-type components. Its
scalar-type component may be defined as

δg0i = −a2BYi . (3.27)

The quantity δgij contains scalar-type components on the diagonal, also yielding
a perturbation in its trace, plus vector-type and tensor-type traceless contribu-
tions. It may be written as

δgij = a2(γij + 2HLY γij + 2HT Yij) , (3.28)

where HL and HT represent the amplitude at the Fourier mode ~k of the diagonal
and non-diagonal components of the perturbations to the metric tensor. Indeed,
in the mixed form the second term in the right hand side appears simply as
2HLY δj

i , and Yij is traceless as it is evident from (3.19).

3.4.2 vector-type components

In analogy with (3.27), we may define the vector-type contribution to the metric
tensor fluctuation as

δg
(1)
0i = −a2B(1)Y

(1)
i . (3.29)

The vector-type contribution to δgij does not possess the trace part, reducing
to the shear component only, which we may write as

δg
(1)
ij = 2a2H

(1)
T Y

(1)
ij . (3.30)

3.4.3 tensor-type components

The tensor-type fluctuations in the metric may be written as

δg
(2)
ij = 2a2H

(2)
T Y

(2)
ij , (3.31)

representing the Fourier amplitude of cosmological gravitational waves, corre-
sponding to the transverse traceless perturbation component.

3.5 perturbations in the stress energy tensor

It is convenient to work with the indeces in the mixed form, as they have a
direct physical meaning, e.g. represent energy density, pressure, momentum
density etc. As for the metric tensor, the total stress energy tensor may be
written as in (3.3), where the background non-zero contributions are T 0

0 = −ρ,
T 1

1 = T 2
2 = T 3

3 = p.
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3.5.1 scalar-type perturbations

The perturbation component of T̄ 0
0 concerns the energy density distribution.

We may write it as
δT 0

0 = −δY , (3.32)

introducing the Fourier amplitude of the spatial fluctuations in the density con-
trast, δ(τ,~k) ≡ δρ(τ,~k)/ρ(τ). Similarily, the perturbed momentum concides
with the corresponding component of the total stress energy tensor T̄ i

0 and is
expressed as

δT i
0 = (ρ + p)vY i , (3.33)

where v represents the peculiar velocity, i.e. the velocity component with which
the perturbed fluid drifts away from the Hubble flow, and ρ+p gives the effective
momentum mass. Finally, the scalar-type stress energy perturbations are made
by an isotropic or trace part, plus the traceless component, also called shear,
given by

δT j
i = p(πLδj

i + πT Y j
i ) , (3.34)

where the first component, πL may be seen as the Fourier amplitude of the
perturbation to the pressure contrast, πL(τ,~k) ≡ δp(τ,~k)/p(τ), in analogy with
what has been done for the energy density.

3.5.2 vector-type perturbations

In analogy with the definitions (3.33) and (3.34), but dealing with the vector-
type components, we may write

δT
i(1)
0 = (ρ + p)v(1)Y i(1) , (3.35)

δT
j(1)
i = pπT Y

j(1)
i , (3.36)

which represent the vector-type contributions to the perturbed stress energy
tensor.

3.5.3 tensor-type perturbations

Finally, tensor-type perturbations affect the shear component only, and we may
write those as

δT
j(2)
i = pπT Y

j(2)
i , (3.37)

which represent the stress energy counterpart of the gravitational waves H
(2)
T

defined in (3.31).

3.6 gauge transformations

As we have seen so far, the linearization of general relativity yields a quite sim-
ple decomposition of the different contributions on the basis of their geometrical
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properties. Linearity implies that in the Einstein equations, no terms involving
the product of two perturbations are considered, and that the equations them-
selves slipt in two sub-sets, one evolving the cosmological backgrounds, and one
dealing with the perturbation evolution. In other words, linearization creates a
new set of dynamical variables, the small perturbations around the FRW back-
ground, which does not exist in reality, and is done only for simplicity in the
calculations, i.e. our convenience. Of course, linear perturbations are differ-
ent in different frames, and in particular on those differing from the Hubble
frame made by r, θ and φ in (2.1) by small amounts. Those frames are called
gauges. The coordinate transformations between different gauges, involving co-
ordinate shifts of the same order of the perturbations themselves, determine
how the perturbed quantities in different gauges are related. We indicate gauge
transformations as

x̃µ = xµ + δxµ(x) , (3.38)

where δxµ, function of the spacetime point x, represents the coordinate shift
between the new frame labeled with a tilde, and the original one.
Cosmological perturbations appear different in different gauges. A typical ex-
ample of this is represented by the cosmological dipole, i.e. the dipole term in
the angular expansion of the CMB temperature which is attributed to a Doppler
shift due to the local motion, represented by a peculiar velocity v of our group
of galaxies; the perturbation to the CMB temperature, and consequently our
velocity, are measured to be rather small in units of the light velocity, so that
the arguments of linear cosmological perturbation theory may be applied:

(

δT

T

)

dipole

= v ≃ 10−3 . (3.39)

Indeed, in a frame moving with velocity −v with respect to our local group of
galaxies, no dipole would be seen. That is an example of gauge transformation,
as the velocity shift is small as in (3.39). This example tells two important
aspects. First of all, cosmological perturbations, represented here by the CMB
temperature, do depend on the chosen gauge. Second of all, perturbations may
be zero in some gauges, and non-zero in others. We now treat more formally
these issues.
Gauge transformations are coordinate shifts between two frames, the original
one, labeled with f and a new one, labeled by f̃ :

x̃µ = xµ + δxµ . (3.40)

The coordinate shifts δxµ are functions of the spacetime point x and obey the
same classification as we did in section 3.2:

δx0 is a scalar function, while (3.41)

δxi is a vector function, (3.42)

composed by scalar-type and a vector-type components. We will express the
gauge transformation laws in the Fourier space, therefore it is convenient to
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define the Fourier amplitudes of δxµ:

δx0(τ, ~x) =

∫

d3kT (τ,~k)Y (~k, ~x)

δxi(τ, ~x) =

∫

d3k[L(τ,~k)Y i(~k, ~x) + L1(τ,~k)Y i(1)(~k, ~x)] . (3.43)

Again we omit the arguments above in the following. To find how perturbed
quantities transform under gauge transformations it is enough to use the trans-
formation laws of tensors in general relativity, keeping the linear order both in
the perturbations and in the coordinate shifts as well.

3.6.1 metric tensor transformation

The general transformation of gµν between f and f̃ is

ḡµν(x) =
∂x̃µ′

∂xµ

∂x̃ν′

∂xν
˜̄gµ′ν′(x̃) , (3.44)

where as usual the bar means background plus perturbations. It is easy to
express the partial derivatives above as a function of the shifts δxµ:

∂x̃µ′

∂xµ
= δµ′

µ + δxµ′

,µ ,
∂x̃ν′

∂xν
= δν′

ν + δxν′

,ν . (3.45)

By keeping only the first order terms in the shifts, from (3.44) one obtains

ḡµν(x) = ˜̄gµν(x̃) + ˜̄gµ′ν(x̃)δxµ′

,µ + ˜̄gµν′ (x̃)δxν′

,ν . (3.46)

To solve the relation above and find the transformation laws between pertur-
bations, we need to express all quantities above in the same coordinate point.
It is easy to see that to first order the last two terms are the same in x and
x̃: indeed, the two coordinates values differ at a linear level, as those terms are
already, so that any correction would be second order which we discard. The
only operation which is left consists in relating ḡµν(x) and ˜̄gµν(x̃). We choose
to work out the second one, which is just ˜̄gµν(x) + ˜̄gµν(x),ρδx

ρ to first order in
the coordinate shifts. The relation (3.46) finally becomes

gµν + δgµν = gµν + δg̃µν + gµν,ρδx
ρ + gµ′νδxµ′

,µ + gµν′(x̃)δxν′

,ν , (3.47)

where we have made the cosmological perturbations explicit, and kept only the
linear terms in them and in the shifts. Note that the background terms in
the left and right hand side are identical and cancel out. Equation (3.47) with
µ = ν = 0 gives

−a2 − 2a2AY = −a2 − 2a2ÃY − 2aȧδx0 − 2a2δx0
,0 , (3.48)

which with (3.43) becomes

Ã = A − Ṫ −HT . (3.49)
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In the same way, equation (3.47) with µ = 0, ν = i for the scalar-type compo-
nents only gives

−a2BYi = −a2B̃Y − a2TY,i + a2L̇Yi . (3.50)

By using (3.18), the result is

B̃ = B + L̇ + kT . (3.51)

Finally, equation (3.47) with µ = i, ν = j for the scalar-type components only
gives

a2γij+2a2HLY γij+2a2HT Yij = a2γij+2a2H̃LY γij+2a2H̃T Yij+(a2γij),ρδx
ρ+a2L(Yi,j+Yj,i) .

(3.52)
The term (a2γij),ρδx

ρ splits in two parts: the one with spatial indeces only
combines with a2L(Yi,j + Yj,i) to give covariant derivatives, a2L(Yi|j + Yj|i).
Using (3.18, 3.19) and the fact that Yi|j = −Y|ij/k = −kYij + kγijY/3 one gets

2a2HLY γij+2a2HT Yij = 2a2H̃LY γij+2a2H̃T Yij+2a2L

(

−kYij +
k

3
γijY

)

+2aȧTY γij ,

(3.53)
which splits in

H̃L = HL − k

3
L + HT , (3.54)

H̃T = HT + kL . (3.55)

This completes the gauge transformation laws for the scalar-type components
of the metric tensor perturbations. In order to get the gauge transformation
law for B(1), one can repeat the same passages done for B but starting from the
vector-type component of equation (3.47) with µ = 0, ν = i, not considering
the term involving T as that is a scalar-type quantity:

B̃(1) = B1 + L̇1 . (3.56)

In the same way, the gauge transformation laws for H
(1)
L and H

(1)
T can be ob-

tained repeating the same passages done for HL and HT but starting from the
vector-type component of equation (3.47) with µ = i, ν = j, not considering
the term involving T as that is a scalar-type quantity:

H̃
(1)
L = H

(1)
L − k

3
L(1) , (3.57)

H̃
(1)
T = H

(1)
T + kL(1) . (3.58)

Finally, a most important consideration is that since gauge transformations may
be scalar-type or vector-type only, any tensor-type cosmological perturbation is
gauge invariant.
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3.6.2 stress energy tensor transformation

We proceed as for the metric tensor, exploiting the tensor transformation laws
(3.44), except that for the stress energy tensor it is convenient to work that out
in the mixed form:

T̄ ν
µ (x) =

∂x̃µ′

∂xµ

∂xν

∂x̃ν′

˜̄T
ν′

µ′(x̃) . (3.59)

The first factor in the right hand side is identical to (3.45). It is easy to see that
the second one is

∂xν

∂x̃ν′
= δν

ν′ − δxν
,ν′ , (3.60)

to the first order in the coordinate shift. Using this in (3.59), one obtains

T̄ ν
µ (x) = ˜̄gµν(x̃) + ˜̄T

ν

µ′(x̃)δxµ′

,µ − ˜̄T
ν′

µ (x̃)δxν
,ν′ . (3.61)

As in the case of the metric tensor, to solve the relation above and find the
transformation laws between perturbations, we need to express all quantities
in the same coordinate point. Again, to first order the last two terms are the
same in x and x̃: indeed, the two coordinates values differ at a linear level, as
those terms are already, so that any correction would be second order which we

discard. The only operation which is left consists in relating T̄ ν
µ (x) and ˜̄T

ν

µ(x̃).

We choose to work out the second one, which is just ˜̄T
ν

µ(x)+ ˜̄T
ν

µ(x),ρδx
ρ to first

order in the coordinate shifts. The relation (3.61) finally becomes

T ν
µ + δT ν

µ = T ν
µ + δT̃ ν

µ + T ν
µ ,ρδx

ρ + T ν
µ′δxµ′

,µ − T ν′

µ δxν
,ν′ , (3.62)

where we have made the cosmological perturbations explicit, and kept only the
linear terms in them and in the shifts. As for the metric tensor, the background
terms in the left and right hand side are identical and cancel out. In equation
(3.62) with µ = ν = 0 the two last terms cancel out, too, giving

δ̃ = δ + ρ̇T/ρ = δ + 3H(1 + w)T . (3.63)

In the same way, equation (3.47) with µ = 0, ν = i for the scalar-type compo-
nents only gives

(ρ + p)vY i = (ρ + p)ṽY i + ρ(δxi),0 + p(δxi),0 , (3.64)

which with (3.43) becomes
ṽ = v − L̇ . (3.65)

Finally, in equation (3.62) with µ = i, ν = j the last two terms cancel out
again, leaving for the scalar-type components the relation

p(δj
i + πLY δj

i + πT Y j
i ) = p(δj

i + π̃LY δj
i + π̃T Y j

i ) + ṗδj
i TY , (3.66)

which splits in

π̃L = πL − ṗT/p = πL + 3Hc2
s

(

1 +
1

w

)

T , (3.67)
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π̃T = πT , (3.68)

where we notice that the anisotropic stress does not depend on the gauge, al-
ready at the scalar-type level. This completes the gauge transformation laws for
the scalar-type components of the stress energy tensor perturbations. In order
to get the gauge transformation law for v(1), one can repeat the same passages
done for v but starting from the vector-type component of equation (3.62) with
µ = 0, ν = i:

ṽ(1) = v(1) − L̇(1) . (3.69)

Finally the same reasoning done before for equation (3.62) with µ = 0, ν = i
yields

π̃
(1)
T = π

(1)
T . (3.70)

As for H
(2)
T , also π

(2)
T does not depend on the gauge adopted, as gauge trans-

formations do not affect tensor-type components.

3.6.3 gauge dependence, independence, invariance and spu-

riosity

We may summarize the gauge transformation laws in the following set of equa-
tions, concerning metric and stress energy tensors:

Ã = A − Ṫ −HT , (3.71)

B̃ = B + L̇ + kT , (3.72)

B̃(1) = B(1) + L̇(1) , (3.73)

H̃L = HL − k

3
L −HT , (3.74)

H̃T = HT + kL , (3.75)

H̃
(1)
T = H

(1)
T + kL(1) , (3.76)

H̃
(2)
T = H

(2)
T , (3.77)

δ̃ = δ + 3H(1 + w)T , (3.78)

ṽ = v − L̇ , (3.79)

ṽ(1) = v(1) − L̇(1) , (3.80)

π̃L = πL + 3Hc2
s

(

1 +
1

w

)

T , (3.81)

π̃T = πT , (3.82)

π̃
(1)
T = π

(1)
T , (3.83)

π̃
(2)
T = π

(2)
T . (3.84)

On the basis of these relations, we distinguish four different and general con-
cepts about gauge transformation in cosmology, which conclude this section and
chapter.
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The first one is gauge dependence. A perturbation effecting one single ele-
ment of the metric or stress energy tensor is gauge dependent. Let us consider
for example the relation (3.71). Suppose that in the original frame f A is
non-zero. In the frame f̃ differing with respect to f because of a time shift T
satisfying Ṫ + HT = A, one has Ã = 0. That means that an observer in f̃
sees clocks running as the unperturved FRW. This same issue clearly holds for
other perturbations; an important example concerning the stress energy tensor
is represented by the energy density contrast. Although that seems an intu-
itive and simple concept which does not depend on coordinate issues, a gauge
transformation does affect its value: indeed, whatever is δ in f , in the frame f̃
characterized by a time shift T satisfying T = −δ/3H(1 + w), one has δ̃ = 0.
That means that a bump, or a hole in the energy density distribution in a gauge
may be absent in another one if the time shift between the two is chosen appro-
priately. More precisely, for scalar-type components, one has 8 perturbations,
4 for the metric tensor and 4 for the stress energy tensors, and 2 functions de-
scribing the gauge shifts, L and T . In general, those may be used to put to
zero 2 of the eight scalar-type quantities. For vector-type components, one has
4 perturbations, 2 for the metric tensor and 2 for the stress energy tensor, and
1 function describing the gauge shift, L(1). In general, that may be used to
put to zero 1 of the 4 vector-type quantities. On the other hand, tensor-type
perturbations are not affected by the coordinate shifts, and have the same value
in all gauges.

This brings us to the second general concept, the gauge independence. Sim-
ply, that means that since one has not enough degrees of freedom from gauge
shifts to nullify all perturbations at once, the concept of perturbation in cosmol-
ogy is gauge independent; that means that equations and perturbed quantities
may differ in different gauges, but if the cosmological system is perturbed in
one gauge, then it is perturbed in all the others.

The third general concept is gauge invariance. The gauge invariant nature
of cosmological perturbations may be formalized, as it was done for the first
time by Bardeen (1980), by combining the cosmological perturbations in a set
of variables which do have the same value in all gauges. Such variables are there-
fore gauge invariant. The two classical examples of scalar-type gauge invariant
perturbations in the metric tensor are represented by the Bardeen potentials:

Φ = HL +
1

3
HT +

H
k

(

B − 1

k
ḢT

)

, (3.85)

Ψ = A +
H
k

(

B − 1

k
ḢT

)

+
1

k

(

Ḃ − 1

k
ḦT

)

. (3.86)

By exploiting the relations (3.71,3.72,3.74,3.74), it is easy to verify that ˜Phi =
Φ, P̃ si = Ψ. Any linear combination of them involving factors made by con-
stants or background quantities is gauge invariant as well. On the other hand,
for vector-type perturbations, the gauge invariant metric perturbation is unique:

σ(1)
g = B1 − 1

k
Ḣ

(1)
T . (3.87)
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Note that also the scalar-type version of (3.87), B − ḢT /k is gauge invariant.
Two conventient choices of gauge invariant quantities involving quantities re-
lated to the stress energy tensor are

∆ = δ +
3H(1 + w)

k
(v − B) , (3.88)

V = v − 1

k
ḢT , (3.89)

which generalize density contrast and peculiar velocity, respectively. As for the
metric tensor, such choice is not unique as any combination of the quantities
above is gauge invariant as well. It is interesting to build up two gauge invariant
quantities involving the stress energy tensor only:

Γ = πL − c2
s

w
δ , (3.90)

πT . (3.91)

Γ has a direct physical meaning in terms of thermal equilibrium of the compo-
nents in the cosmic fluid. Indeed, the condition Γ = 0 implies

πL ≡ δp

p
=

c2
s

w
δ ≡ c2

s

w

δρ

ρ
, (3.92)

which is equivalent to
δp

δρ
=

ṗ

ρ̇
. (3.93)

The condition above is known as adiabaticity. The reason is that it is satis-
fied when cosmological perturbations keep thermal equilibrium unaltered. Let’s
suppose to have a radiation thermal bath, characterized by p = wρ = ρ/3.
The latter relation comes from statistical mechanics. Γ is zero when also
δp = δρ/3, which means that pressure fluctuations follow adiabatically those
of the energy density, keeping thermal equilibrium for radiation, specified by
the condition w = 1/3, valid everywhere. Note that this is not true in general:
δp = (δw)ρ + w(δρ). That is, if w possesses a dependence on space, then ther-
mal equilibrium is also perturbed, and this is expressed by the fact that the
adiabaticity condition (3.93) is violated. To end up on this issue, let us define
two relevant vector-type stress energy tensor gauge invariant quantities, which
are merely a generalization of (3.89) and (3.91):

V (1) = v(1) − 1

k
Ḣ

(1)
T , (3.94)

π
(1)
T . (3.95)

Again the tensor-type stress energy tensor perturbation, π
(2)
T , is gauge invariant

as no gauge coordinate shifts is tensor-type.
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We now come to the last point, the gauge spuriosity. In extreme synthesis,
the issue is that different observers, belonging to different gauges, may see the
same numerical value of cosmological perturbations; the coordinate shifts among
those observers, not to be confused with cosmological perturbations, are known
as spurious gauge modes. The best way to see this point is two consider two
most popular example of gauges.
The synchronous gauge is defined by using T , L and L(1) in such a way to
confine the perturbations in the metric tensor to the spatial area only:

Ã = B̃ = ˜B(1) = 0 . (3.96)

As we have already seen, the first condition above means that the time shift
between f and f̃ must satisfy the condition

Ṫ + HT = A . (3.97)

The solution to this equation is not unique. Actually, there are infinite solutions,
made by the sum of a particular one, plus all the solutions of the homogeneous
equation, Ṫ + HT = 0, which is satisfied by Tg ∝ 1/a. This means that there
are an infinite number of frames which are in the synchronous gauge. The gauge
mode Tg is spurious in the sense that it is not a cosmological perturbation, but
just the time shift between all frames seeing the same numerical value of cosmo-
logical perturbations. Spurious gauge modes usually affect several quantities:
for example, the energy density fluctuation picks up a spurious gauge mode
given by

δg = 3H(1 + w)Tg . (3.98)

Moreover, the second condition in (3.96), which is written as

L̇ + kT = −B , (3.99)

does not determine L uniquely; indeed, all frames differing by a shift given by

Lg = −k

∫

Tgdτ + constant (3.100)

are in the synchrotron gauge. Note that a constant means a Dirac delta in the
real space, meaning that the coordinate shift affects a single point in spacetime.
This also produces a gauge spurious mode in the velocity:

vg = −Lg . (3.101)

Finally, also the third condition in (3.96) leaves a constant spurious vector-type

gauge mode, L
(1)
g = constant. In principle, one may track the spurious gauge

modes in the computations. In practice however, it is much better to performing
those in a gauge without spuriosity. We see now an example of gauge where
that is absent.
The Newtonian gauge is specified by

B̃ = H̃T = H̃
(1)
T = 0 , (3.102)
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thus allowing the perturbed metric tensor to be non-null on the diagonal only
in the scalar-type component. It is easy to see that the second condition is
satisfied performing a coordinate change between f and f̃ such that

L = −1

k
HT , (3.103)

which is uniquely fixed. The second condition also fixed uniquely T :

T = −1

k

(

B + L̇
)

. (3.104)

Similarly, at the vector-type level the coordinate transformation needed to go
in the Newtonian gauge is

L(1) = −1

k
H

(1)
T , (3.105)

which completes the set of coordinate shifts necessary to go in the Newtonian
gauge. This is therefore an example where gauge spuriosity is absent. Spurios-
ity is usually something to avoid when dealing with cosmological perturbations.
Spurious gauge modes may activate or accidentally put to zero cosmological per-
turbation modes in energy density, velocity, or metric fluctuations. By working
in a gauge free of spuriosity, one is sure that all the solutions of the cosmological
perturbation evolution equations are physical, unaffected by gauge modes.
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In this chapter we work out and discuss the Boltzmann equation for photons
in cosmology. Unless otherwise specified, we assume a flat FRW metric in
the background, and work at first order in cosmological perturbations. We
also assume that photons are at thermal equilibrium, obeying a Bose-Einstein
distribution statistics; we also assume that cosmological perturbations do not
alter the equilibrium.

Let us consider a generic distribution function of photons, d̄, as measured by
an observer moving with quadri-velocity ūµ, normalized as usual, ūµūµ = −1.
If p̄µ is the photon quadri-momenta, the energy accessible to the observer (see
e.g. Abbott , Wise (1986)) is

Ē = −ūµḡµν p̄ν . (4.1)

The distribution d̄ gives the photon number per unit volume as a function of
spacetime position xµ, quadri-velocity of the observer ūµ, and photon quadri-
momentum p̄µ. One of the four components of p̄µ is redundant, as photons are
massless: ḡµν p̄µp̄ν = 0. The latter relation, together with (4.1) if the observer
quadri-velocity is known, give two relations between p̄0 and ~̄p. By knowing the
photon propagation direction ˆ̄n, which is proportional to ~̄p, those two relations
fully determine ~̄p

µ
. As we shall see later, for our purposes the background value

n̂ is enough, as the photon propagation direction appears always multiplied by
quantities which are at first order; as it may be easily seen from the condition
pµpµ = 0, n̂ is simply given by ~p/p0. There are however very important pro-
cesses affecting the photon propagation direction, which we ignore here, such
as the lensing, i.e. the light bending due to forming cosmological structures
along the line of sight; that is an example of second order perturbation, as the
perturbations in the cosmological structures lens the CMB anisotropies, which
are perturbations as well. Being second order, we ignore it in the present treat-
ment, although the CMB lensing is extremely important for cosmology (see e.g.
Bartelmann , Schneider, 2001, and references therein). Therefore we keep Ē
and n̂ as the independent variables for d̄:

d̄(τ, ~x, Ê, n̂) . (4.2)

In absence of interaction, photons simply keep their distribution function un-

changed, and the Boltzmann equation assumes its simplest form, ˙̄d = 0; inter-
actions, or collisions, are usuall described by a term C̄ which appears on the
right hand side of it. By propagating the total time derivative in all arguments,
the Boltzmann equation for photons may be written as

˙̄d =
∂d̄

∂τ
+

∂d̄

∂xi
˙̄x
i
+

∂d̄

∂Ē
˙̄E +

∂d̄

∂ni
ṅi = C̄ . (4.3)

This equation may be further simplified by exploiting our assumption on the
photon distribution statistics. The unperturbed Bose-Einstein distribution func-
tion is given by

d =
1

[exp (E/kBT ) − 1]
, (4.4)
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where E and T (τ) are the background photon energy and blackbody temper-
ature, depending on time as any background quantity. We may describe in
general the linear fluctuations of the Bose-Einstein statistics by introducing the
corrections

E

kBT
→ E

kBT
(1 − Θ) , (4.5)

where formally Θ = δT/T − δE/E; in our assumption of thermal equilibrium
also at a perturbed level, perturbations cannot depend on E; therefore, the
distinction between δE/E and δT/T is redundant and we may keep one of
them only, which may be formally seen as the perturbation to E or T or both.
By making the arguments of the fluctuation explicit, one gets

δT

T
(τ, ~x, n̂) − δE

E
(τ, ~x, n̂) ≡ Θ(τ, ~x, n̂) ≪ 1 . (4.6)

Thus the first order perturbation to the Bose-Einstein distribution assumes the
form

δd = T
∂d

∂T
Θ = −E

∂d

∂E
Θ . (4.7)

As we shall see later, the evolution of E(τ) is determined by the geodesic equa-
tion for photons; thus, equation (4.3) will determine the evolution of the re-
maining quantities, i.e. T (τ) for the background part and Θ(τ, ~x, n̂) for the
perturbations. Since from (4.5) the Bose-Einstein statistics depends on position
and propagation direction only at first order, we may take the background value

of ˙̄x
i
; the latter is ẋi = dxi/dτ = (dxi/dη) · (dη/dτ) = p̄i/p̄0 = ni. Moreover, in

a flat FRW background the last term in (4.3) contributes only to second order.
As above the Bose-Einstein statistics depends on position and propagation di-
rection only at first order; Moreover, in an unperturbed flat FRW background,
photons go straight, and ṗi ∝ ṅi = 0, deviating because of metric perturbations
again only at first order. Note that if the background were not flat, then ṅi 6= 0
at the background level, and the last term in (4.3) would definitely contribute
at first order. Therefore, the Boltzmann equation (4.3) slpits and becomes

∂d

∂E
Ė +

∂d

∂T
Ṫ = C ,

∂δd

∂τ
+

∂δd

∂xi
ni +

∂d

∂E
˙δE = δC . (4.8)

The collision terms above describes the transfer of the number densities of pho-
tons at different energies and momenta because of the scattering process with
other particles; Ė and ˙δE describe the the change in energy of photons because
of all other reasons. In general relativity, a change in the photon energy occurs
because of the spacetime geometry. In the following, we work out the photon
geodesic equation and collision terms, respectively.
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4.1 photon geodesic equation

The photon energy dynamics due to the fluctuactions in the metric may be got
from the photon geodesic equation

dp̄µ

dη
+ Γ̄µ

νρp̄
ν p̄ρ = 0 , (4.9)

where η is an affine parameter parametrizing the trajectory, which by means of
linearity splits as usual in background and first order perturbation terms:

dpµ

dη
+ Γµ

νρp
νpρ = 0 , (4.10)

dδpµ

dη
+ δΓµ

νρp
νpρ + 2Γµ

νρδp
νpρ = 0 . (4.11)

It is easy to see that E possesses a background term scaling inversely propor-
tional to the scale factor. Indeed, by taking (4.10) with µ = 0, one has

p0 dp0

dτ
+ H

(

p0p0 + pipi
)

, (4.12)

where we used dp0/dη = p0dp0/dτ and the Christoffel symbol has been ex-
plicited using (1.5). From pµpµ = 0 one gets pipi = p0p0, implying p0 ∝ a−2.
Therefore, using (2.10) it is easy to see that the background component of E is
made by u0 scaling as 1/a, g00 scaling as a2, and p0 scaling as 1/a2, making the
overall scaling as 1/a. Let us now consider fluctuations. By using the definition
(4.1) one has immediately the expression of the fluctuations in E:

δE = −δuµgµνpν − uµδgµνpν − uµgµνδpν . (4.13)

The first term comes from peculiar velocities of the observer with respect to
a frame at rest with respect to the FRW metric. In order not to introduce
any effect coming from the motion of the observer, we choose to describe the
fluctuations with respect to that frame, for which δui = 0, while δu0 may
be expressed as a function of the metric fluctuations as follows: the condition
ūµūµ = −1 splits in the background term, uµuµ = −1, and the perturbed one,
which is

2δuµgµνuν + uµuνδgµν , (4.14)

which fixes δu0 to be δu0 = δg00/2a3 = h00/2a = AY/a. The remaining two
terms give the relevant contributions in terms of metric fluctuations. By taking
the only non-zero terms in the background ones, equation (4.13) simplifies as
follows:

δE = −a(h00p
0 + h0νpν + δp0) . (4.15)

The time derivative of the relation above gives the term in the Boltzmann equa-
tion (4.8) we are looking for. By using the definition of the metric perturbations,
and integrating the geodesic equations (4.10,4.11), the result is

˙(δE)

E
= −HδE

E
+

1

2
ḣijn

inj − ḣ0in
i − 1

2
h00,in

i , (4.16)
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where the first term represents the background scaling, affecting perturbations
also, and the remaining ones come from perturbations.

4.2 Compton scattering

The CMB decouples at redshift z ≃ 1100; the CMB temperature today is T ≃
3K which corresponds to about 1/4000 eV in energy units. Therefore, using
(4.35), at decoupling the CMB temperature is some fraction of eV in energy
units. At these energies, according to the present understanding of cosmology,
the cosmic budget is composed by photons γ, free electrons e− in non-relativistic
regime as me ≃ 900 MeV, hydrogen and helium atoms and nuclei, plus many
other particles, interacting at most weakly with the former classes, e.g. neutrinos
ν, dark matter. The most relevant interaction for photons and these energies
and lower is Compton scattering onto non-relativistic electrons, indicated by
the following relation

e−(qµ) + γ(pµ) → e−(qµ′

) + γ(pµ′

) , (4.17)

where qµ, pµ, qµ′

, pµ′

are the electron and photon incoming and outcoming quadri-
momenta, respectively.
In the Boltzmann equation (4.8), we are interested in the change in the photon
distribution d̄ from Compton scattering; it will be necessary for a while to con-
sider the electron distribution function, d̄e. In the spacetime point x, in the time
interval dt, a number of electron and photon states given by the product be-
tween d̄e(x, qµ′

) and d̄(x, p̄µ′

), respectively, determine an outgoing photon with
quadri-momentum p̄µ corresponding to our variables Ē and n̂, and therefore
an increase in d̄. At the same time, a number of states given by the product
between d̄e(x, q̄µ) and d̄(x, p̄µ) determines an outgoing photon with momentum

p̄µ′

and a decrease in d̂. Schematically, the term C̄ in (4.8) may be written as

C̄ =
∑

qµ,qµ′ ,pµ′

T (d̄e(x, qµ′

)d̄(x, pµ′

) − d̄e(x, qµ)d̄(x, pµ)) , (4.18)

where T is a constant or non perturbative quantity and indicates the strength of
the interaction. Let us now make some consideration on the expression above,
which simplify the calculations below. First of all, there is no background term
in (4.18); as we explain now, the reason is simply that in this problem we may
take a perturbative approach not only in the cosmological perturbations, but
also in the energy exchange between photons. Indeed, at energies comparable or
lower than the eV, the energy transfer between photons is a small quantity with
respect to the typical energy of electrons, which is of the order of their mass,
me ≃ 900 MeV. Therefore the photon energy exchange p0′ − p0 = E′ − E in
(4.18) may be treated perturbatively; in the present analysis, we only keep terms
which are at first order in cosmological perturbations or photon energy exchange.
Moreover, due to the small spacetime scales involved by the interaction, we
make the approximation of special relativity. Thus in this section the metric
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is Minkowskian unless otherwise specified, and the energy of photons is simply
given by E = |~p|, while that of electrons by Ee =

√

m2
e + |~q|2. Since the

background term in (4.18) vanishes, we may write

C = 0 . (4.19)

More simplifications may be found by looking at first order in (4.17); making
the background and fluctiation terms in the electron energy distribution explicit,
one gets

δC =
∑

qµ,qµ′ ,pµ′

T {[δde(x, qµ′

)]d(x, pµ′

) + de(x, qµ′

)[d̄(x, pµ′

)]−

−[δde(x, qµ)]d(x, pµ)) − de(x, qµ)[d̄(x, pµ)]} . (4.20)

Because of the reason above, the difference between the first and third term is
first order in the photon energy exchange. That means that the difference be-
tween those terms is a product between cosmological perturbations and photon
energy exchange, which we neglect in the present treatment. This allows us
to use the background electron density distribution only. Applying the laws of
electromagnetism, the right form for (4.20) is

δC =

∫

d3q

(2π)32Ee

∫

d3q′

(2π)32E′
e

∫

d3p′

(2π)32E′
· ·16π4T

E
·

·δ(E + Ee − E′ − E′
e)δ

3(~p + ~q − ~p′ − ~q′)[d′ed̄(x, pµ′

) − ded̄(x, pµ)] , (4.21)

Again neglecting terms of order higher than the first in cosmological perturba-
tions and energy transfer, since the electrons are non-relativistic their energy is
given by me + |~q|2/2me, where the second term is of the order of the thermal
energy of the system, the eV, which is much smaller than me. Therefore in the
denominator of (4.21) may be replaced by me. With that we may perform the
integration over ~q′, which yields

δC =
π

4m2
e

∫

d3q

(2π)3

∫

d3p′

(2π)32E

T
E

δ(E + Ee − E′ − E′
e)·

·[ded̄(x, pµ′

) − ded̄(x, pµ)] , (4.22)

where the first electron distribution is now calculated in |q0 + p0 − p0′ |, which
is just me in our approximation. At energies comparable or lower than the eV,
the energy transfer between photons is a small quantity with respect to the
typical energy of electrons, which is of the order of their mass, me. Therefore,
the argument of the Dirac delta above may be treated as follows. In the non-
relativistic regime, the energy of electrons if given by me + |~q|2/2me; their
difference in (4.22) is given by

|~q|2
2me

− |~q + ~p − ~p′|2
2me

≃ ~q(~p′ − ~p)

me
, (4.23)
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so that the Dirac delta becomes

δ(E − E′ +
~q(~p − ~p′)

me
) . (4.24)

The next simplification concerns the last term in (4.22). Indeed, the difference
is first order in E′ − E or Θ, even ignoring the spacetime and momentum
dependence in the first de term. The latter terms would therefore induce a
correction of second order E′ − E which we ignore. In this way the electron
distribution de may be factored out of the integral:

C =
π

4m2
e

∫

de(q
µ)

(2π)3
d3q·

·
∫

d3p′

(2π)32E′

T
E

δ

[

E − E′ +
~q(~p − ~p′)

me

]

[d(x, pµ′

) − d(x, pµ)] . (4.25)

In order to proceed, we need now a recipe for T . In general the Compton
scattering is anisotropic, in the sense that the intensity of the light emitted
depends on the angular distribution of the incoming radiation. Moreover, an
unpolarized but anisotropic incoming radiation is re-scattered linearly polarized,
due to the motion of the electron, following the direction of the incoming electric
field. At decoupling, the photons have time to acquire a quadrupole before
investing the last scattered electron on our direction, and therefore we do expect
a linear polarization in the CMB radiation. The latter is an entire branch of
CMB science, and we come back on that later. For now, we are interested in
the shift of the temperature of the whole black body spectrum, and therefore
we consider only the isotropic term in T , which is

T = 8πaσT m2
e , (4.26)

where σT = 8πe4/3c4m2
e is the Thomson cross section, and the factor a is

simply due to the use of the conformal time in the time derivative of the photon
distribution function, which is otherwise derived with respect to the ordinary
time, dt = adτ . We are about to conclude this calculation. We expand the
photon distributions d(x, pµ) and d(x, pµ′

) to first order in Θ, and the second
one to first order in E′ − E, too:

d(x, pµ) ≃ d(E) − E
∂d

∂E
Θ , (4.27)

d(x, pµ′

) ≃ d(E) +
∂d

∂E
(E′ − E) − E

∂d

∂E
Θ′ . (4.28)

Any other term is second order in the photon momenta difference, or Θ, or their
product, and we neglect it. Therefore, the term in parenthesis in (4.25) becomes

d(x, pµ′

) − d(x, pµ) ≃ ∂d

∂E
(E′ − E) − E

∂d

∂E
(Θ′ − Θ) . (4.29)

Note that the prime for Θ means that it is calculated on the direction n̂′. The
fact that the term above does not possess a zero-th order simplifies alot the



40CHAPTER 4. COSMOLOGICAL BOLTZMANN EQUATION FOR PHOTONS

calculations in the remaining quantities, which may be simply calculated at the
zero-th order in E − E′ and Θ. Let us go back to the integral (4.25). First
we pass to spherical coordinates for ~p′: d3p = E2′

dE′dΩ′. In the first integral,
done with the first term in (4.29), the Dirac delta makes E′ − E calculated in
~q(n̂ − n̂′)E/me; indeed, the difference between E and E′ is not taken into ac-
count in the term dependent on directions, since it is multiplied by the electron
momentum, which represents a cosmological perturbation. The second term
gives zero when integrated over the directions on the spheres, dΩ′. The inte-
gral in d3q merely represents the definition of the average peculiar velocity of
electrons:

∫

d3q~q = ne~ve . (4.30)

The second integral, done with the second term in (4.29), is already first order
in Θ, and may be calculated in E = E′. The integration in dΩ′ on the term
dependent on Θ simply produces 4πΘ, as the latter is evaluated along n̂. The
same integral applied on Θ′ produces the interesting term

4πΘ0 =

∫

Θ′dΩ′ , (4.31)

which represents the monopole of the CMB temperature fluctuations, i.e. the
displacement that the temperature has locally, in the spacetime point x, from its
average value. In this case, the integral in d3q simply produces the background
density of electrons, ne. Combining all these calculations together, the final
result for the collision term from Compton scattering, in our approximations, is

δC = −aneσT E
∂d

∂E
(Θ0 − Θ + n̂~ve) . (4.32)

Using this result and (4.16), we may now write down the Boltzmann equation
for photons up to the first order in cosmological perturbations.

4.3 Boltzmann equation

We now put together the gravitational and collision terms in the Boltzmann
equation (4.8). As usual, we separate our analyisis in background and pertur-
bations. Concerning the latter, we write down the general expression containing
all kinds of fluctuations, and then we further specialize the analysis to the case
of scalar-type perturbations only, and Newtonian gauge, restricting the physical
degrees of freedom to the metric tensor fluctuations in the diagonal.

−2Ψ = h00 , 2Φ = hii . (4.33)

The names chosen for the gravitational potentials is conventional and differ
from A and HL because in the Newtonian gauge the two coincide with the
gauge invariant Bardeen potentials, see (3.86) and (3.85).
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4.3.1 zero-th order

We have already seen the implication of the Boltzmann equation at the back-
ground level. The first of the conditions (4.8) implies

Ṫ

T
=

Ė

E
= −H , (4.34)

which is equivalent to

T ∝ 1

a
, (4.35)

and tells that the unperturbed bose-einstein distribution keeps its form during
the cosmological expansion, with just redshifting temperature.

4.3.2 first order

By putting together (4.16) and (4.32), the first order Boltzmann equation in
(4.8) becomes

Θ̇ +
∂Θ

∂xi
ni +

1

2
ḣijn

inj − ḣ0in
i − 1

2
h00,in

i = neσT a(Θ0 − Θ + n̂ · ~ve) . (4.36)

The equation above is general in the sense that collects contributions from
all cosmological perturbations, and expressed in the real space. As anticipated
above, for an easier understanding of the phenomenology, it is convenient at this
point to further simplify this equation assuming scalar-type perturbations only,
and also adopting a particular gauge, the Newtonian one, specified for scalar-
type components by (4.33). These simplifications affect mostly the expression
of the equation (4.36) in the Fourier space, which is our next step.
First, let us define the Fourier transform of the photon temperature fluctuation:

Θ =

∫

d3kΘ~k(τ)Y (~k, ~x) . (4.37)

In our hypothesis of flat FRW, Y may be thought as a plane wave, ei~k·~x; it
is easy to handle these in the Fourier space, as spatial derivatives bring down
components of ~k multiplied by i. Those also appear contracted with n̂ in (4.36).
Therefore, indicating with x, y, z the usual Cartesian coordinates, one has

∇ ≡
(

∂

∂x
,

∂

∂y

∂

∂z

)

→ i~k , n̂ · ∇ = in̂ · ~k . (4.38)

Therefore it is convenient to define the quantity

cos θ =
~k · n̂

k
= k̂ · n̂ . (4.39)

We also define the photon optical depth

τ =

∫ τ0

0

ne(τ)σT a(τ)dτ =

∫ t0

0

ne(t)σT dt . (4.40)
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which counts the number of Compton scattering targets along the photons line
of sight. Finally, by transforming (4.36) in the Fourier space, using the scalar-
type components only in the Newtonian gauge, and exploiting the definitions
(3.18), (4.39) and (4.40), one gets

Θ̇ + ik cos θΘ + Φ̇ + ik cos θΨ = τ̇ (Θ0 − Θ − i cos θve) . (4.41)

where the angular dependence is now completely contained in the cos θ term,
i.e. the cosine of the angle between k̂ and n̂, mapping directions with respect
to the photon propagation direction in the Fourier space.

4.4 relativistic and non-relativistic species other

than photons

The photon Boltzmann equation provides the evolution of the photon temper-
ature distribution as a function of the background expansion and the rest of
cosmological perturbations. Before concluding this chapter, it is convenient to
complete the dynamical system, by writing down the evolution equations for the
other components. In cosmology, they are represented by dark matter, neutrinos
and the other particles of the standard model of particle physics, i.e. baryons
and leptons.

4.4.1 dark matter and neutrinos

Dark matter and neutrinos interact at most weakly with the rest of the system.
At the epoch of decoupling, or after, they may be treated as effectively decoupled
from the rest of the system. Therefore, the relevant equations for their evolution
are given by the conservation of the stress-energy tensor:

xT ν
µ;ν = δ(xT ν

µ;ν) = 0 . (4.42)

While the first one fives as usual ρ̇x + 3H(ρx + px) = 0, the second set of
equation determines the evolution of energy density and peculiar velocities; their
expressions in the Newtonian gauge, and flat FRW, are

˙(ρxδx) + 3Hρxδx + 3HpxπLx + k(ρx + px)vx = −3(ρx + px)Φ (4.43)

d

dτ
[(ρx+px)(vx)]+4H(ρx+px)vx−ikρxπLx+

2

3
ikpxπTx = ik(ρx+px)Ψ . (4.44)

Ψ and Φ evolve according to the perturbed Einstein equations, which in the
Newtonian gauge are

k2Ψ = 4πGa2ρ∆ , k2(Ψ + Φ) = −a2pΠ , (4.45)

where ρ∆ =
∑

x ρxδx + 3(ρx + px)Hvx/k, pΠ =
∑

x pxπTx. The isotropic and
anisotropic stresses are determined by the micro-scopic nature of the particles
involved. The dark matter, for our purposes here, may be described as a pres-
sureless component. Neutrinos are like photons, i.e. with equation of state equal
to 1/3, and possess an anisotropic stress due to their intrinsic asymmetry.
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4.4.2 leptons and baryons

The rest of the particles in the standard model are baryons and leptons. In
cosmology it is customary to talk about baryons only; the reason is that electrons
and protons are tightly coupled by the Coulomb interaction, which at the energy
considered. The fluid is therefore dominated by baryons in terms of mass. Note
that, on the other hand, in terms of Compton interaction electrons play the
major role, as they are lighter. Since however they stick together to baryons
because of the Coulomb interaction, we drop the subscript e and we substitute
it with b. Because of the Compton interaction with photons treated in the
previous sections, baryons are not conserved and obey the following equation:

δ(bT
µ;ν
ν ) = δbQ

µ . (4.46)

The terms of exchange with photons balance out:

δeQ
µ + δγQµ = 0 . (4.47)

Therefore the one which we are treating here may be obtained from the Compton
interaction we treated already. The first aspect to consider is that

eδQ
0 = 0 . (4.48)

To see this, it is enough to consider that

Θ0 ∝ δργ , (4.49)

as the first term is the integral over all directions of the perturbation to the
distribution of photons. Therefore, equation (4.41) becomes an equation for δργ

when integrated over all directions. It is easy to see that the latter operation
puts the right hand side member to zero, which implies (4.48). Therefore, the
only non-null term is δbQ

i. That is given by the change in the number density of
electrons undergoing the Compton interaction with photons, time their spatial
momentum. Again ignoring the presence of protons, undergoing a negligible
interaction with photons, such quantity is the opposite of the corresponding
one for photons, exploiting (4.47). Therefore, all we have to do is taking δC in
(4.32) with a minus in front of it, going in the Fourier space, multiply by the

photon momentum ~p, and integrate over all possible directions, keeping k̂ as the
polar direction for convenience:

δbQ
i = aneσT

∫

d3p

(2π)3
E2 ∂d

∂E
cos θ (Θ0 − Θ − vb cos θ) =

aneσT

∫

dE

2π2
E4 ∂d

∂E

∫ 1

−1

d cos θ

2
cos θ (Θ0 − Θ − vb cos θ) . (4.50)

The integral over energies gives −4ργ . In the integral over the directions, only
the second and third term survive. The first one of those highlights the dipole
in the CMB temperature anisotropies:

Θ1 =

∫

dΩ(−i cos θ)Θ = i

∫ 1

−1

d cos θ cos θΘ . (4.51)
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With this, the conservation equation for the velocity term for baryons, in flat
FRW, Fourier space, Newtonian gauge and scalar-type perturbations only, be-
comes

d

dτ
(ρbvb) + 4Hρbvb = kρbΨ + τ̇

4ργ

3ρb
(Θ1 − vb) , (4.52)

where we described the baryons as a pressureless component.



Chapter 5

The cosmic microwave

background anisotropies

45



46CHAPTER 5. THE COSMIC MICROWAVE BACKGROUND ANISOTROPIES

In this chapter we provide a complete mathematical description of CMB
anisotropies, and provide evolution equations for them, which are based on the
Boltzmann equation we wrote in the previous chapter. Again we assume a
background flat FRW cosmology.

5.1 angular expansion for total intensity

We first provide a basis of expansion for total intensity anisotropies, represented
by the temperature fluctuation Θ. In the real space, the arguments of Θ are:

Θ ≡ Θ(τ, ~x, n̂) . (5.1)

We already formalized the Fourier harmonic modes Y (~k, ~x), which are simply

plane waves, ei~k·~x, in our hypotheses. We need to perform the angular expan-
sion. For this, we use the usual spherical harmonics algebra, after fixing the
reference axes for n̂. For this, it is most convenient to distinguish between
the angular expansion which may be performed in a laboratory, and and the
one we are making here. Indeed, when expanding in the angular domain the
Boltzmann equation (4.41), for reasons which will be clear in the following it
is convenient to perform the expansion by keeping each Fourier mode as the
polar axis. Therefore we distinguish between the laboratory frame, lab−frame,
where the anisotropies are observed and expanded for convenience in the an-
gular domain keeping the same frame for all Fourier modes, and the k̂−frame,
valid for each Fourier mode separately, having the direction of ~k coincident with
the polar axis. Therefore, our expansion set for (5.1) is

Gl(~x,~k, n̂) = (−i)lY (~x,~k)

√

4π

2l + 1
Y 0

l (n̂k̂) (5.2)

where Y m
l (n̂k̂) are the usual spherical harmonics, where the subscript indicates

that n̂ is expressed in the k̂−frame, and the constants in front are purely con-
ventional. Note that since the Boltzmann equation (4.41) depends on cos θ =

chatn · k̂, the spherical harmonics calculated in m = 0 are sufficient. The har-
monic coefficients of Θ along the basis (5.2) are given by

Θl(τ,~k) =

∫

d3x

∫

2π sin θdθΘ(τ, ~x, n̂)Gl(~k, ~x, n̂) . (5.3)

In the following, we explicitate the arguments of the various functions only if
necessary.

5.2 angular expansion of the Boltzmann equa-

tion

For convenience, let us write here the Boltzmann equation (4.41):

Θ̇ + ik cos θΘ + Φ̇ + ik cos θΨ = τ̇(Θ0 − Θ − i cos θvb) . (5.4)
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Notice that with respect to (4.41) we just substituted the subscript of electrons
with the one for baryons, as leptons and baryons are tightly coupled by Coulomb
scattering, as we saw in section 4.4.2. The equation is already expressed in the
Fourier space, i.e. the first integral in (5.3) has been performed, the Y functions

have been simplified on both sides, and Θ is a function of τ , ~k and n̂. The
gravitational potentials, Φ and Ψ, as well as the baryon peculiar velocity, vb,
do not depend on the photon propagation direction, as they are just metric
fluctuations. We need now to exploit the spherical harmonics in (5.2) to perform
the angular expansion. Let us do that term by term in (5.4). The first term
produces Θ̇l; similarly, the second term on the right hand side produces τ̇Θl.
The third one and the first one in the right hand side are also trivial since they
contribute to the monopole only, as they do not depend on n̂. For the same
reason, the fourth term in the left hand side and the third one in the right hand
side represent two pure dipole terms, as they are both a monopole multiplied
by cos θ, which corresponds to Y 0

1 in (5.2), and therefore to G1. The latter also
multiplies the second term in the left hand side, but in this case a more careful
analysis is needed: indeed, the product ik cos θΘ implies products between Y 0

1

and the other sherical harmonics coming from the angular expansion of Θ itself.
There exist a relation between spherical harmonics which we exploit here, and
allows to express the product of them at a given l as a linear combination of
others, computed at l, l±1; such relations also involves the spin of the spherical
harmonics, as they may correspond to the expansion of scalars, i.e. the ones
we are exploiting here, as well as vectors and tensors. Indicating the spherical
harmonic spin with s, such relation is

√

4π

3
Y 0

1 ·sY m
l =

s‖m
l

√

(2l + 1)(2l − 1)
s

Y m
l − ms

l(l + 1) s

Y m
l +

s‖m
l+1

√

(2l + 1)(2l + 3)
s

Y m
l+1 ,

(5.5)
where

s‖m
l =

√

(l2 − m2)(l2 − s2)

l2
. (5.6)

Let us first get an equation from Θ0. In the right hand side, the monopole
cancels out, while vb contributes to the dipole. For the same reason, only the
first gravitational potential in the left hand side contributes at the monopole
level. The only non-trivial term is given by the second one on the left hand side,
which must be worked out using (5.5). The result is

Θ̇0 +
k

3
Θ1 + Φ̇ = 0 . (5.7)

Let us now find an equation for Θ1. In the right hand side, the last two terms
contribute. In the left hand side, everything except Φ̇ gives a contribution, and
again one must use (5.5) in order to work things out. The result is

Θ̇1 − kΘ0 +
2

5
Θ2 − kΨ = τ̇ (Θ1 − vb) . (5.8)
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We may write down the equations for the rest of the system, i.e. l ≥ 3, this
time ignoring the monopole and dipole terms in (5.4), and using (5.5) again.
The result is

Θ̇l − k

(

0‖m
l

2l − 1
− 0‖m

l+1

2l + 3

)

= −τ̇Θl , (5.9)

where the numerical coefficients may be obtained from (5.6).

5.3 Solution in the tight coupling approxima-

tion

On all cosmologically relevant scales, before decoupling the quantity τ̇/k is large,
which means that the mean Compton scattering free path for photons, 1/τ̇ , is
much smaller than them. For simplicity assuming 1/τ̇ → 0, then from (5.8)
one gets Θ1 = vb. By calculating the photon peculiar velocity vγ from their
perturbed statistical distribution given by (4.4) and (4.5), i.e. multiplying the
number density of states by their momenta, and integrating over all of them,
one gets Θ1 = vγ . Combining that with the previous relation, that means that
that photons and baryons move with the same velocity in the limit of vanishing
photon mean free path. But then, comparing (4.43) for baryons, (4.52), (5.7)
and (5.8), one gets also Θ0 = 3δb, Θ2 = 0. From the equations (5.9), also Θl≥3

must be all zero. That means that in the tight coupling regime photons and
baryons behave as the same fluid. That has several interesting consequences.
First of all, initial conditions must activate either Θ0 or Θ1, in order to provide
a dynamics. Second, when the free electron number density drops because of
recombination, the quantity τ̇ /k decreases rapidly, and power is gradually trans-
mitted to the higher order multipoles, Θl≥2, through the hierarchic equations
(5.9). Third, while the tight coupling limit is active, there exist a dynamics
in the CMB, although confined to Θ0 and Θ1, or equivalently δγ/4 and vγ , or
equivalently 3δb/4 and vb, respectively. Let us solve the system of equations
(5.7), (5.8), (5.9) in the tight coupling regime. The zero-th order in 1/τ̇ is given
by

Θ̇0 = −k

3
Θ1 − Φ̇ ,

˙(mγbΘ1) = k(Θ0 + mγbΨ) , (5.10)

where mγb = 1+3ρb/4ργ . They combine in the following second order equation
for Θ:

˙(mγbΘ̇0) +
k3

3
Θ0 = −k3

3
mγbΨ − ˙(mγbΦ̇) . (5.11)

In absence of metric perturbations, the equation above has exact solutions:

Θ0 =
1

m
1/4
γb

[A cos(ks) + B sin(ks)] , (5.12)



5.4. THE CMB TEMPERATURE ANISOTROPY ANGULAR POWER SPECTRUM49

where A and B are constants, and

s =

∫ τ

0

dτ ′

√

3mγb

, (5.13)

represents the sound horizon for the fluid made by the tightly coupled baryons
and photons. Θ1 may be easily obtained from (5.10). The solution (5.12) may be
further simplified by neglecting the presence of baryons at decoupling. Indeed,
at decoupling dark matter is about one order of magnitude more abundant than
radiation; baryons density is a few percent of the dark matter one and therefore
it makes sense to neglect them in order to clearify the phenomenology. In this
limit mγb = 1, s = τ/

√
3, therefore

Θ0 = A cos

(

kτ√
3

)

+ B sin

(

kτ√
3

)

. (5.14)

The phenomenology does not change much if the metric fluctuations in the right
hand side of equation (5.11) are taken into account. In the limit in which the
gravitational potentials are constant in time, the solution (5.14) holds for Θ+Ψ,
which means that the gravitational potential simply changes the zero level of
the oscillations in (5.14).
Let us now consider the evolution of the Θl≥3 coefficients in the tight coupling
regime. As we have already seen, at the zero-th order in 1/τ̇ they are simply
zero. The power transfers from Θ0 and Θ1 gradually to higher multipoles, with
increasing powers in k

τ̇ . It is easy to see that an approximate solution for that
is given by

Θl = −k

τ̇
0‖l−1

2l − 1
Θl−1 , (5.15)

since in this way, Θl is always of order higher than Θl−1, and the terms involving
Θ̇l and Θl+1 may be ignored in (5.9) because they are of order higher than Θl.

5.4 The CMB temperature anisotropy angular

power spectrum

We are now ready to compute the angular power spectrum of CMB anisotropes
in the lab−frame. We start from the angular expansion of temperature anisotropy

Θ(τ, ~x, n̂) =
∑

lm

almY m
l , alm =

∫

dΩYlm(n̂)Θ(τ, ~x, n̂) . (5.16)

Note that now the angular expansion is global and not depending on any Fourier
wavevector, which does not even appear in (5.16). The coefficients of the angular
power spectrum are defined as

Cl =
1

2l + 1

∑

m

|alm|2 , (5.17)
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and they correspond to the coefficients of the expansion of the correlation func-
tion in Legendre polynomials:

∫

dΩdΩ′[Θ(τ, ~x, n̂)Θ(τ, ~x, n̂′)]n̂n̂′=cos θ =
∑

l

(2l + 1)ClPl(cos θ) . (5.18)

The definitions above may be applied to any given sky signal. Usually the-
ory predicts the average of the realizations of possible universes, with a given
variance. For the angular power spectrum of the CMB, that means that the-
ory predicts the average of the Cl over all possible realizations, which may be
written as

Cl =< |alm|2 > , (5.19)

where the average is done over an assumed statistics.
In our case

|alm|2 =

∫

d3kd3k′dΩdΩ′
∑

l′l′′

Y m
l (n̂)Y m∗

l (n̂′)Θl′(τ,~k)Gl′ (~x,~kn̂k̂)Θl′′(τ,~k
′)∗Gl′′(~x,~k′n̂′

k̂
)∗ .

(5.20)

The average in (5.19) operates in the product Θl′(τ,~k)Θl′(τ,~k
′). The current

pictures of the early universe assume an initial Gaussianity in fluctuations. That
means that the correlation between different wavevectors in null, and that the
coefficients depend on k only:

< Θl′(τ,~k)Θl′′(τ,~k
′) >= δ(~k − ~k′)Θl′(τ, k)Θl′′ (τ, k) > . (5.21)

This first eliminates one of the two Fourier integrals in (5.20). The angular com-

ponent of the harmonic functions Gl depends on n̂ · k̂ only, which is essentially
given by the Legendre polynomial Pl(n̂ · k̂). A useful relation between Legendre
polynomials and spherical harmonics allows us to write

Pl′(n̂ · k̂) =
4π

2l + 1

∑

m′

Y m′

l (n̂)Y m′∗
l (k̂) . (5.22)

and of course the same expression for Pl′′ (n̂
′ · k̂). This makes it possible to

perform the integral in n̂ and n̂′ above, which selects l = l′ = l′′, m = m′ =
m′′. Moreover, the fact that Θl(τ,~k) does not depend on the direction of the

wavevector makes the integrals of |Ylm(k̂)|2 over all the directions of ~k trivially
equal to 1. Working out the normalization factors, the result is

Cl =
2

π

∫

k2dk|Θl(τ, k)|2 , (5.23)

which makes explicit the connection between an observed quantity in the lab−frame
on the left hand side with the angular expansion coefficients of the temperature
anisotropy on the right hand one, evaluated in the k̂−frame.
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