Cosmic Microwave Background

Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5 These lectures are available in pdf format at people.sissa.it/~bacci/work/lectures

CMB observables

Outline

Generalities and historical remarks
Cosmological fossils
Total intensity and polarization: T, E, B
Angular power spectra
Status of the CMB observations
Suggested lectures

Generalities and historical remarks

Expanding universe \Rightarrow CMB

- compression in the early stages of an expanding universe causes lots of radiation arising from thermonuclear explosions
- Reactions are rapid enough to achieve thermalization and a black body spectrum
- It is possible to compute the rarefaction caused by the expansion since that epoch
- The relic radiation is predicted to peak in microwaves, temperature of a few Kelvin, known today as the Cosmic Microwave Background (CMB, Gamow et al. 1948)

George Gamow, three years old in Odessa, Ukraine, 1907

Discovery

Arno Penzias and Robert Wilson

Early 1960s - Penzias and Wilson are hired by Bell Labs to evaluate the performance of the new radio telescope to be used in trans-Atlantic telephone communications.

They find a small, unexplained signal regardless of the direction the telescope is pointed. It is not enough to be a problem, but they are curious.

1964 - They become aware that the noise in their telescope is the cosmic background radiation predicted by the Big Bang theory.

CMB: where and when?

- > Opacity: $\lambda = (n_e \sigma_T)^{-1} \ll horizon$
- > Decoupling: $\lambda \approx$ horizon
- Free streaming: λ » horizon
- Cosmological expansion, Thomson cross section and electron abundance conspire to activate decoupling about 300000 years after the Big Bang, at about 3000 K CMB photon temperature

A postcard from the big bang

- From the Stephan Boltzmann law, regions at high temperature should carry high density
- The latter is activated by perturbations which are intrinsic of the fluid as well as of spacetime
- Thus, the maps of the CMB temperature is a kind of snapshot of primordial cosmological perturbations

Animation from the NASA WMAP team

COsmic Background Explorer

From COBE to the Wilkinson Microwave Anisotropy Probe

- About 20 years of insight into one of the most important observables in physics
- Lots of experiments, from ground as well as the stratosphere
- A fantastic technological and data analysis progress, in parallel to theory
- lambda.gfsc.nasa.gov

Animation from the NASA WMAP team

Cosmological fossils

CMB physics: Boltzmann equation

d photons

= metric + Compton scattering

dt

d baryons+leptons

= metric + Compton scattering

dt

CMB physics: Boltzmann equation

d neutrinos = metric + weak interaction dt d dark matter = metric + weak interaction (?) dt

metric = photons + neutrinos + baryons + leptons + dark matter

CMB physics: metric

CMB Physics: Compton scattering

- Compton scattering is anisotropic
- An anisotropic incident intensity determines a linear polarization in the outgoing radiation
- At decoupling that happens due to the finite width of last scattering and the cosmological local quadrupole

CMB anisotropy: total intensity

CMB anisotropy: polarization

Gradient (E):

CMB anisotropy: reionization

CMB anisotropy: lensing

Anisotropies

Angular power spectrum

Status of the CMB observations and future experimental probes

CMB angular power spectrum

Angle ≈ 200/ℓ degrees

CMB angular power spectrum

WMAP first year

Angle ≈ 200/ℓ degrees

WMAP third year

Angle ≈ 200/ℓ degrees

CMB angular power spectrum

boomerang

WMAP

Cosmological concordance model

Cosmological concordance model

Cosmological concordance model

CMB anisotropy statistics: unknown, probably still hidden by systematics

- Evidence for North south asymmetry (Hansen et al. 2005)
- Evidence for Bianchi models (Jaffe et al. 2006)
- Poor constraints on inflation, the error is about 100 times the predicted deviations from Gaussianity (Komatsu et al. 2003)
- Lensing detection out of reach

Other cosmological backgrounds?

Neutrinos: abundance comparable to photons ③, decoupling at MeV ③, cold as photons ⑧, weak interaction ⑧

Gravity waves: decoupling at Planck energy ⁽²⁾, abundance unknown ⁽²⁾, gravitational interaction ⁽³⁾

Morale: insist with the CMB, still for many years...that's the best we have for long...

> See lambda.gfsc.nasa.gov

Suggested reading

- Modern Cosmology textbook from Scott Dodelson
- My lecture notes from the course at SISSA, people.sissa.it/~bacci/lectures/
- Cosmological inflation and large scale structure, textbook from Andrew R. Liddle and David H. Lyth
- These lectures are available in pdf format at people.sissa.it/~bacci/work/lectures/