Cosmic Microwave Background:

 observations, data analysis, results and future expectationsCarlo Baccigalupi

Outline

$>$ CMB physics
$>$ Status of the CMB observations and future experimental probes

- Basics of CMB data analysis
$>$ Challenges for future CMB
> The science goals of the Planck satellite
> Conclusions, (8/()
> Adds-on: CMB lensing and dark energy, foreground removal from CMB meaurements, ...

CMB physics

CMB: where and when and how

$>$ Opacity: $\lambda=\left(n_{e} \sigma_{T}\right)^{-1}<H^{-1}$
$>$ Decoupling: $\lambda \approx H^{-1}$

- Free streaming: $\lambda » H^{-1}$
$>$ The cosmological expansion, constants and baryon abundance conspire to activate decoupling about 300000 years after the Big Bang, at about 3000 K photon temperature
> Expansion and the metric perturbations affect all cosmological species
> The CMB is a snapshot of cosmological perturbations in the photon component only

CMB: where, when and how

$>$ Opacity: $\lambda=\left(\mathrm{n}_{\mathrm{e}} \sigma_{T}\right)^{-1} « \mathrm{H}^{-1}$
> Decoupling: $\lambda \approx H^{-1}$
> Free streaming: λ » H^{-1}
> The cosmological expansion, constants and baryon abundance conspire to activate decoupling about 300000 years after the Big Bang, at about 3000 K photon temperature
> Expansion and the metric perturbations affect all cosmological species
> The CMB is a snapshot of cosmological perturbations in the photon component only

CMB physics: Boltzmann equation

d photons
= metric + Compton scattering dt
d baryons+leptons
= metric + Compton scattering dt

CMB physics: Boltzmann equation

d neutrinos

= metric + vveak initaction
dt
d dark matter
= metric + weak interaction (?)

dt

metric $=$ photons + neutrinos + baryons + leptons + dark matter

CMB physics: metric

CMB Physics: Compton scattering

$>$ Compton scattering is anisotropic

- An anisotropic incident intensity determines a linear polarization in the outgoing radiation
> At decoupling that happens due to the finite width of last scattering and the cosmological local quadrupole

CMB anisotropy: total intensity

CMB anisotropy: polarization

Gradient (E):
Curl (B):

CMB anisotropy: reionization

CMB anisotropy: lensing

CMB anisotropy: lensing

CMB anisotropy: lensing

CMB anisotropy: lensing

> N-body simulations are exploited for predicting the pattern and full statistics of the lensing distortion, beyond the semi-analytical estimates concerning the power spectrum

- Carbone (PhD thesis), Bartelmann, Baccigalupi, Matarrese, Springel, in preparation

CMB lensing and dark energy

CMB lensing and dark energy

cosmological constaint

Einstein 1916

CMB lensing and dark energy

tracking quintessence

Ratra \& Peebles, 1988

CMB lensing and dark energy

early quintessence

Wetterich 1988

CMB lensing and dark energy

CMB lensing and dark energy

- By geometry, the lensing cross section is non-zero at intermediate distances between source and observer
> In the case of CMB as a source, the lensing power peaks at about $z=1$
> Any lensing power in CMB anisotropy must be quite sensitive to the expansion rate at the onset of acceleration

Status of the CMB observations and future experimental probes

CMB anisotropies

$T(n), Q(n), U(n), V(n)$

$a^{\top}{ }_{1 m}, a^{\mathrm{E}}{ }_{1 m}, a^{\mathrm{B}}{ }_{1 m}$

information compression

$\mathrm{C}_{\mathrm{I}}=\Sigma_{\mathrm{m}}\left|\mathrm{a}_{\mathrm{Im}}^{\mathrm{T}, \mathrm{E}, \mathrm{B}}\right|^{2} / 2(\mathrm{I}+1)$

CMB angular power spectrum

Angle $\approx 200 / \ell$ degrees

CMB angular power spectrum

Angle $\approx 200 / \ell$ degrees

WMAP first year

Angle $\approx 200 / l$ degrees

WMAP third year

Angle $\approx 200 / l$ degrees

CMB angular power spectrum

WMAP

Cosmological concordance model

Cosmological concordance model

Cosmological concordance model

CMB anisotropy statistics: unknown,

 probably still hidden by systematics> Evidence for North south asymmetry (Hansen et al. 2005)
$>$ Evidence for Bianchi models (Jaffe et al. 2006)
$>$ Poor constraints on inflation, the error is
 about 100 times the predicted deviations from Gaussianity (Komatsu et al. 2003)
> Lensing detection out of reach

Other cosmological backgrounds?

> Neutrinos: abundance comparable to photons (), decoupling at MeV (), cold as photons (3), weak interaction (8)
> Gravity waves: decoupling at Planck energy (©), abundance unknown ($)$, gravitational interaction (2)
$>$ Morale: insist with the CMB, still for many years...that's the best we have for long...

Forthcoming CMB polarization probes

> Planck

- EBEx (NASA funded, data analysis people in the US, France, Italy), baloon, same launch time scale as Planck for the north american flight
> QUIET (US, UK), ground based
> Clover (UK, ...)
$>$ Brain
> The complete list of ongoinf an planned available at the Lambda archive lambda.gsfc.nasa.gov

Cosmic vision beyond Einstein

> NASA and ESA put out separate calls of opportunity for a polarization oriented future (2020 or so) CMB satellite
> Technologies, design, options for joint or separate missions are being discussed in these months
> Promises: gravity waves, lensing and high redshift dark energy, inflationary nonGaussianity

Beyond einstein logo

Basics of CMB data analysis

CMB data analysis: super-zip

> Before super-zip: a probe takes records of the sky radiation at about few tens KHz rate per detector, for weeks or years

CMB data analysis: super-zip

> Before super-zip: a probe takes records of the sky radiation at about few tens KHz rate per detector, for weeks or years
$>$ After super-zip: few numbers measuring relevant cosmological quantities

Super-zip main phases

- Time ordered data
> Map-making
> Component separation

CMB data analysis: time ordered data

$>$ Beam: at each point, the radiation is collected from a finite solid angle
$>$ Noise: this is the stage where the noise is born

- Calibration: Volts must be converted in CMB units

CMB data analysis: co-adding map-making

CMB data analysis: co-adding map-making

(e)

CMB data analysis:

 maximum likelihood map-making
$\mathrm{D}=\mathrm{Pm}+\mathrm{n}$ $\mathrm{m}=\left(\mathrm{P}^{\top} \mathrm{N}^{-1} \mathrm{P}\right)^{-1} \mathrm{P}^{\top} \mathrm{N}^{-1} \mathrm{~d}$

$>$ P: pointing matrix, mixed time and map domain
$>$ N: noise correlation matrix in the time domain
> N^{-1} : O(sample number ${ }^{2}$)
> P ${ }^{\top} \mathrm{N}^{-1} \mathrm{P}$: O(sample number${ }^{2}$)
> PTN-1d: O(sample number²)

CMB data analysis: destriping map-making

- Exploit redundancy, i.e. points in which different circles intersect, in order to estimate the noise offsets in the intersection points
- Subtract the offsets in order

CMB data analysis: component separation

$$
\begin{aligned}
& x_{\mathrm{I}}=a_{\mathrm{II}}+a_{\mathrm{I} 2}+\mathrm{n}_{\mathrm{I}} \\
& \mathrm{x}_{2}=a_{2 \mathrm{I}}+\mathrm{m}_{2}+\sqrt{2}+a_{22}\left(\sqrt{2}+n_{2}\right.
\end{aligned}
$$

CMB data analysis: component separation

$$
\begin{aligned}
& \mathrm{s}_{2} \text { (}+a_{\mathrm{I} 2} \quad \mathrm{~s}_{2} \\
& \mathrm{x}_{\mathrm{I}}=\mathrm{a}_{\mathrm{II}} \quad \mathrm{~s}_{\mathrm{I}}+\mathrm{n}_{\mathrm{I}} \\
& \mathrm{x}_{2}=a_{2 \mathrm{I}} \quad \mathrm{~s}_{\mathrm{I}}+\mathrm{a}_{22} \\
& \mathrm{~s}_{2}
\end{aligned}+\mathrm{n}_{2}
$$

CMB data analysis: component separation

Invert for s!

CMB data analysis: component separation

$x=A s+n$

> Non-blind approach: use prior knowledge on A and s in order to stabilize the inversion, likely to be suitable for total intensity
> Blind approach: do not assume any prior either on A or s, likely to be used in polarization
> Parametrization: introduce extra "cosmological parameters" parametrizing the foreground unknowns, and fit the data with those in, marginalizing afterwards, prosmising results in total intensity, to be tested in polarization
> Relevant literature from Brandt et al. 1994, to Maino et al. 2006, successful applications to COBE, BEAST, WMAP

CMB data analysis:

independent component analysis

Components

CMB data analysis:

independent component analysis

Unknown s

CMB data analysis:

independent component analysis

Unknown s Unknown A

CMB data analysis:

independent component analysis

Components

Unknown s Unknown A

CMB data analysis:

 independent component analysis

Challenges for future CMB

Challenges for future CMB

> The sensitivity can be increases with the detector number ©
> The systematics from the instrument must be controlled at the level of Jarosik et al. 2006 the signal © 8
> The emission from foregrounds may cover the B signal over the all sky, at all frequency ©

Challenges for future CMB:

 systematics from beam shape- Asymmetric beams cause unwanted polarization from total intensity, leakage of E modes into B, \ldots
- No way to circularize the beams, rather the beam shape has to be reconstructed in filight to subtract the
 bias from the signal

Challenges for future CMB: foreground emission

Bennett et al. 2006
$>$ In total intensity, at frequencies between 60 and 90 GHz , after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB

Challenges for future CMB: foreground emission
 Bennett et al. 2006

$>$ In total intensity, at frequencies between 60 and 90 GHz , after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB
$>$ In polarization, at frequencies between 60 and 90 GHz , after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB

Challenges for future CMB: foreground emission
 Bennett et al. 2006

> In total intensity, at frequencies between 60 and 90 GHz , after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB bolarization, at frequu. hetween 60 and 90 GHz , ritting. out the brighest par. the Galactic emission +h sky is dominater .

Challenges for future CMB: foreground emission

Page et al. 2006

Planck reference sky

Are there foreground clean regions at all in polarization?
 Page et al. 2006

- WMAP has no detection in large sky areas in polarization
- Very naive estimates may be attempted in those areas, indicating that the foreground level might be comparable to the cosmological B mode at all frequencies, in all sky regions

Shall we ever get rid of foregrounds?

> Component separation studies how to separate CMB and foregrounds in astrophysical multi-frequency observations
> The independent component analysis exploits the statistical differences between the almost Gaussian CMB and the strongly non-Gaussian foregrounds
> Results are encouraging, although obtained so far without instrumental systematics

Stivoli et al. 2006

The science goals of the Planck satellite

Source: Planck scientific program bluebook, available at www.rssd.esa.int/Planck

Planck

> Hardware: third generation CMB probe, ESA medium size mission, NASA (JPL, Pasadena) contribution
> Software from 400 collaboration members in EU and US
> Two data processing centers (DPCs): Paris + Cambridge (laP + IoA), Trieste (OAT + SISSA)

Planck contributors

Cambridge
Paiss Theste

Planck data processing sites

Planck data deliverables

> All sky maps in total intensity and polarization, at 9 frequencies between 30 and 857 GHz
> Angular resolution from 33^{\prime} to $7^{\prime \prime}$ between 30 and 143 GHz , 5 , at higher frequencies
$>S / N \approx 10$ for CMB in total intensity, per resolution element

- Catalogues with tens of thousands of extraGalactic sources

Planck scientific deliverables: CMB total intensity and the era of imaging

The Same 100 Square Degree Patch Cut From Each Full-Sky Map
-WMAP -

- Planck -

Planck scientific deliverables: CMB polarization

Planck and polarization CMB B modes

Planck scientific deliverables: cosmological parameters

Non-CMB Planck scientific deliverables

- Thousands of galaxy clusters
- Tens of thousands of radio and infrered extra-Galactic sources
$>$ Templates for the diffuse gas in the Galaxy, from 30 to 857 GHz

Conclusions

- The CMB will be the best signal from the early universe for long
- We have some knowledge of the two point correlation function, but most of the signal is presently unknown
- If detected, the hidden signatures might reveal mysteries for physics, like gravitational waves, or the machanism of cosmic acceleration
> We don't know if we will ever see those things, systematics and foregrounds might prevent that
- But we've no other way to get close to the Big Bang, so let's go for it and see how far we can go
> First go/no go criteria from Planck and other probes in just a few years, possible scenarios...
> Polarized foreground too intense, no sufficient cleaning, systematics out of control
> Increase by one digit the cosmological parameters measurement, mostly from improvements in total intensity measurements

- Time scale: few years
> Modest or controllable foreground emission, systematics under control
> Cosmological gravity waves discovered from CMB B modes! Expected precision down to one thousandth of the scalar amplitude
> Percent measurement of the dark energy abundance at the onset of acceleration, from CMB lensing
> Time scale: from a few to 20 years

Add-on I: CMB lensing and dark energy

CMB lensing: a science per se

$>$ Lensing is a second order cosmological effect

- Lensing correlates scales
> The lensing pattern is non-Gaussian
> Statistics characterization in progress, preliminary investigations indicate an increase by a factor 3 of the uncertainty from
 cosmic variance

Smith et al. 2006, Lewis \& Challinor 2006, Lewis 2005, ...

So let's play...

> Upgrade a Boltzmann code for lensing computation in dark energy cosmologies (Acquaviva et al. 2004 experienced doing that with cmbfast, lensing.f has to be substantially changed...)

- Get lensed CMB angular power spectra for different dark energy dynamics
> Look at the amplitude of lensing B modes

Play...

, SUGRA vs. Ratra-Peebles quintessence

- Check structure formation, linear perturbation growth rate, ...
- Perturbations and distances affected by geometry coherently.
- Effects sum up in the lensing kernel

Play...

> TT and EE spectra: slight projection shift
> BB amplitude: reflecting cosmic density at structure formation/onset of acceleration

Acquaviva \& Baccigalupi 2005

Breaking projection degeneracy

Acquaviva \& Baccigalupi 2005

Get serious...

- A Fisher matrix analysis indicates that a $1 \%-$ 10% measuremtent on both w_{0} and w_{a} is achievable by having lensing B modes measured on a large sky area, few arcminute resolution, micro-K noise
$>$ New relevance for searching B modes in CMB polarization?
$>$ Independent check of the efficiency of the effect ongoing...
> Confirmed!

Add-on II:

ICA performance

Independent Component Analysis (ICA)

> Assume statistical independence between different astrophysical emissions
> Their superposition tends to be close to Gaussianity
$>$ Reverse the process with linear combinations of the signals at different frequencies, extremizing the non-Gaussianity
> Each extremum corresponds to one independent component

ICA performance

Mix	CMB	$\&$
Synchrotron at	50	

ICA performance

ICA performance

ICA performance

Blue: sky at the two frequencies. Black solid (dashed): CMB output (input)

ICA performance

Blue: sky at the two frequencies. Black solid (dashed): synchrotron output (input)

