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■ Abstract Cosmic microwave background (CMB) temperature anisotropies have
and will continue to revolutionize our understanding of cosmology. The recent discov-
ery of the previously predicted acoustic peaks in the power spectrum has established a
working cosmological model: a critical density universe consisting of mainly dark mat-
ter and dark energy, which formed its structure through gravitational instability from
quantum fluctuations during an inflationary epoch. Future observations should test this
model and measure its key cosmological parameters with unprecedented precision. The
phenomenology and cosmological implications of the acoustic peaks are developed in
detail. Beyond the peaks, the yet to be detected secondary anisotropies and polarization
present opportunities to study the physics of inflation and the dark energy. The analysis
techniques devised to extract cosmological information from voluminous CMB data
sets are outlined, given their increasing importance in experimental cosmology as a
whole.

INTRODUCTION

The field of cosmic microwave background (CMB) anisotropies has dramatically
advanced over the past decade (see White et al. 1994), especially on its obser-
vational front. The observations have turned some of our boldest speculations
about our Universe into a working cosmological model: namely, that the Universe
is spatially flat, consists mainly of dark matter and dark energy, with the small
amount of ordinary matter necessary to explain the light element abundances, and
all the rich structure in it formed through gravitational instability from quantum
mechanical fluctuations when the Universe was a fraction of a second old. Obser-
vations over the coming decade should pin down certain key cosmological param-
eters with unprecedented accuracy (Knox 1995, Jungman et al. 1996, Bond et al.
1997, Zaldarriaga et al. 1997, Eisenstein et al. 1999). These determinations will
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have profound implications for astrophysics, as well as other disciplines. Particle
physicists, for example, will be able to study neutrino masses, theories of inflation
impossible to test at accelerators, and the mysterious dark energy or cosmological
constant.

For the 28 years between the discovery of the CMB (Penzias & Wilson 1965)
and the COBE DMR detection of 10−5 fluctuations in its temperature field across
the sky (Smoot et al. 1992), observers searched for these anisotropies but found
none except the dipole induced by our own motion (Smoot et al., 1977). They
learned the hard way that the CMB is remarkably uniform. This uniformity is in
stark contrast to the matter in the Universe, organized in very nonlinear struc-
tures like galaxies and clusters. The disparity between the smooth photon distri-
bution and the clumpy matter distribution is due to radiation pressure. Matter
inhomogeneities grow owing to gravitational instability, but pressure prevents the
same process from occuring in the photons. Thus, even though both inhomo-
geneities in the matter in the Universe and anisotropies in the CMB apparently
originated from the same source, these appear very different today.

Because the photon distribution is very uniform, perturbations are small, and
linear response theory applies. This is perhaps the most important fact about CMB
anisotropies. Because they are linear, predictions can be made as precisely as their
sources are specified. If the sources of the anisotropies are also linear fluctuations,
anisotropy formation falls in the domain of linear perturbation theory. There are
then essentially no phenomenological parameters that need to be introduced to
account for nonlinearities or gas dynamics or any other of a host of astrophysical
processes that typically afflict cosmological observations.

CMB anisotropies in the working cosmological model, which we briefly review
in “Observables,” fall almost entirely under linear perturbation theory. The most
important observables of the CMB are the power spectra of the temperature and
polarization maps. Theory predicted, and now observations confirm, that the tem-
perature power spectrum has a series of peaks and troughs. In “Acoustic Peaks,” we
discuss the origin of these acoustic peaks and their cosmological uses. Although
they are the most prominent features in the spectrum and are the focus of the cur-
rent generation of experiments, future observations will turn to even finer details,
potentially revealing the physics at the two opposite ends of time. Some of these
are discussed in “Beyond the Peaks.” Finally, the past few years have witnessed
important new advances, introduced in “Data Analysis,” from a growing body of
CMB data analysts on how best to extract the information contained in CMB data.
Some of the fruits of this labor have already spread to other fields of astronomy.

OBSERVABLES

Standard Cosmological Paradigm

Whereas a review of the standard cosmological paradigm is not our intention (see
Narkilar & Padmanabhan 2001 for a critical appraisal), we briefly introduce the
observables necessary to parameterize it.
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The expansion of the Universe is described by the scale factora(t), set to
unity today, and by the current expansion rate, the Hubble constantH0= 100h km
sec−1 Mpc−1, with h' 0.7 (Freedman et al. 2001; compare Theureau et al. 1997,
Sandage et al. 2000). The Universe is flat (no spatial curvature) if the total density
is equal to the critical density,ρc= 1.88h2× 10−29g cm−3; it is open (negative
curvature) if the density is less than this and closed (positive curvature) if greater.
The mean densities of different components of the Universe controla(t) and are
typically expressed today in units of the critical density�i, with an evolution with
a specified by equations of statewi = pi/ρ i, wherepi is the pressure of theith
component. Density fluctuations are determined by these parameters through the
gravitational instability of an initial spectrum of fluctuations.

The working cosmological model contains photons, neutrinos, baryons, cold
dark matter, and dark energy with densities proscribed within a relatively tight
range. For the radiation,�r = 4.17× 10−5 h−2 (wr = 1/3). The photon contribution
to the radiation is determined to high precision by the measured CMB temperature,
T= 2.728± 0.004 K (Fixsen et al. 1996). The neutrino contribution follows from
the assumption of three neutrino species, a standard thermal history, and a negligi-
ble massmν � 1 eV. Massive neutrinos have an equation of statewν = 1/3→ 0 as
the particles become nonrelativistic. Formν ∼ 1 eV this occurs ata∼ 10−3 and can
leave a small but potentially measurable effect on the CMB anisotropies (Ma &
Bertschinger 1995, Dodelson et al. 1996).

For the ordinary matter or baryons,�b≈ 0.02h−2 (wb≈ 0), with statistical un-
certainties at about the 10% level determined through studies of the light element
abundances (for reviews, see Boesgaard & Steigman 1985, Schramm & Turner
1998, Tytler et al. 2000). This value is in strikingly good agreement with that im-
plied by the CMB anisotropies themselves, as we shall see. There is very strong ev-
idence that there is also substantial nonbaryonic dark matter. This dark matter must
be close to cold (wm= 0) for the gravitational instability paradigm to work (Peebles
1982), and when added to the baryons gives a total in nonrelativistic matter of�m'
1/3. Because the Universe appears to be flat, the total�tot must equal one. Thus,
there is a missing component to the inventory, dubbeddark energy, with�3 ' 2/3.
The cosmological constant (w3 = −1) is only one of several possible candidates,
but we generally assume this form unless otherwise specified. Measurements of
an accelerated expansion from distant supernovae (Riess et al. 1998, Perlmutter
et al. 1999) provide entirely independent evidence for dark energy in this amount.

The initial spectrum of density perturbations is assumed to be a power law
with a power law index or tilt ofn≈ 1 corresponding to a scale-invariant spec-
trum. Likewise the initial spectrum of gravitational waves is assumed to be scale-
invariant, with an amplitude parameterized by the energy scale of inflationEi and
compared with the initial density spectrum (see “Gravitational Waves”). Finally
the formation of structure will eventually reionize the Universe at some redshift
6. zri . 20.

Many of the features of the anisotropies will be produced even if these param-
eters fall outside the expected range or even if the standard paradigm is incorrect.
Where appropriate, we try to point these out.
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Cosmic Microwave Background Temperature Field

The basic observable of the CMB is its intensity as a function of frequency and
direction on the skŷn. Because the CMB spectrum is an extremely good blackbody
(Fixsen et al. 1996) with a nearly constant temperature across the skyT, we gener-
ally describe this observable in terms of a temperature fluctuation2(n̂) = 1T/T.

If these fluctuations are Gaussian, then the multipole moments of the tempera-
ture field

2`m =
∫

dn̂Y∗
`m(n̂)2(n̂) (1)

are fully characterized by their power spectrum〈
2∗

`m2`′m′
〉 = δ``′δmm′C`, (2)

whose values as a function of` are independent in a given realization. For this rea-
son predictions and analyses are typically performed in harmonic space. On small
sections of the sky where its curvature can be neglected, the spherical harmonic
analysis becomes ordinary Fourier analysis in two dimensions. In this limit` be-
comes the Fourier wavenumber. Because the angular wavelengthθ = 2π/`, large
multipole moments corresponds to small angular scales with` ∼ 102 representing
degree scale separations. Likewise, because in this limit the variance of the field
is

∫
d2`C`/(2π )2, the power spectrum is usually displayed as

12
T ≡ `(` + 1)

2π
C`T

2, (3)

the power per logarithmic interval in wavenumber for` À 1.
Figure 1 (top) shows observations of1T along with the prediction of the

working cosmological model, complete with the acoustic peaks mentioned in the
“Introduction” and discussed extensively in “Acoustic Peaks,” below. Whereas
COBE first detected anisotropy on the largest scales (inset), observations
in the past decade have pushed the frontier to smaller and smaller scales (left to
right in the figure). The Microwave Anisotropy Probe (MAP) satellite, launched
in June 2001, will go out tò ∼ 1000, whereas the European satellite, Planck,
scheduled for launch in 2007, will go a factor or two higher (see Figure 1,
bottom).

The power spectra shown in Figure 1 all begin at` = 2 and exhibit large errors
at low multipoles. This is because the predicted power spectrum is the average
power in the multipole moment̀ an observer would see in an ensemble of uni-
verses. However, a real observer is limited to one universe and one sky with its
one set of2`m’s, 2̀ + 1 numbers for each̀. This is particularly problematic for
the monopole and dipole (` = 0, 1). If the monopole were larger in our vicinity
than its average value, we would have no way of knowing it. Likewise for the
dipole, we have no way of distinguishing a cosmological dipole from our own pe-
culiar motion with respect to the CMB rest frame. Nonetheless, the monopole and
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dipole—which we will often call simply2 andvγ—are of the utmost significance
in the early Universe. It is precisely the spatial and temporal variation of these
quantities, especially the monopole, which determine the pattern of anisotropies
we observe today. A distant observer sees spatial variations in the local tempera-
ture or monopole, at a distance given by the lookback time, as a fine-scale angular
anisotropy. Similarly, local dipoles appear as a Doppler-shifted temperature that is
viewed analogously. In the jargon of the field this simple projection is referred to
as thefreestreamingof power from the monopole and dipole to higher multipole
moments.

How accurately can the spectra ultimately be measured? As alluded to above,
the fundamental limitation is set by “cosmic variance,” the fact that there are
only 2̀ + 1m-samples of the power in each multipole moment. This leads to an
inevitable error of

1C` =
√

2

2` + 1
C`. (4)

Allowing for further averaging over̀ in bands of1` ≈ `, we see that the precision
in the power spectrum determination scales as`−1, i.e., ∼1% at ` = 100 and
∼0.1% at` = 1000. It is the combination of precision predictions and prospects
for precision measurements that gives CMB anisotropies their unique stature.

There are two general caveats to these scalings. The first is that any source
of noise, instrumental or astrophysical, increases the errors. If the noise is also
Gaussian and has a known power spectrum, one simply replaces the power spec-
trum on the right-hand side of Equation 4 with the sum of the signal and noise
power spectra (Knox 1995). This is why the errors for the Planck satellite increase
near its resolution scale in Figure 1 (bottom). Because astrophysical foregrounds
are typically non-Gaussian, it is usually also necessary to remove heavily con-
taminated regions, e.g., the galaxy. If the fraction of sky covered isfsky, then the
errors increase by a factor off −1/2

sky and the resulting variance is usually dubbed
“sample variance” (Scott et al. 1994). Anfsky= 0.65 was chosen for the Planck
satellite in Figure 1.

Cosmic Microwave Background Polarization Field

Whereas no polarization has yet been detected, general considerations of Thomson
scattering suggest that up to 10% of the anisotropies at a given scale are polar-
ized. Experimenters are currently hot on the trail, with upper limits approaching
the expected level (Hedman et al. 2001, Keating et al. 2001). Thus, we expect
polarization to be an extremely exciting field of study in the coming decade.

The polarization field can be analyzed in a way very similar to the temperature
field, save for one complication. In addition to its strength, polarization also has an
orientation, depending on relative strength of two linear polarization states. The
classical literature has tended to describe polarization locally in terms of the Stokes
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parametersQ and U1, but recently cosmologists (Seljak 1997, Kamionkowski
et al. 1997, Zaldarriaga & Seljak 1997) have found that the scalarE and pseudo-
scalarB, linear but nonlocal combinations ofQ and U, provide a more useful
description. Postponing the precise definition ofE and B until “Polarization,”
below, we can, in complete analogy with Equation 1, decompose each of them in
terms of multipole moments and then, following Equation 2, consider the power
spectra, 〈

E∗
`mE`′m′

〉 = δ``′δmm′CEE
` ,〈

B∗
`mB`′m′

〉 = δ``′δmm′CBB
` ,〈

2∗
`mE`′m′

〉 = δ``′δmm′C2E
` . (5)

Parity invariance demands that the cross correlation between the pseudoscalarB
and the scalars2 or E vanishes.

The polarization spectra shown in Figure 1 (bottom, plotted inµK following
Equation 3) have several notable features. First, the amplitude of theEEspectrum of
Equation 5 is indeed down from the temperature spectrum by a factor of 10. Second,
the oscillatory structure of theEE spectrum is very similar to the temperature
oscillations, although they are apparently out of phase but correlated with each
other. Both of these features are a direct result of the simple physics of acoustic
oscillations, as shown in “Acoustic Peaks” below. The final feature of the po-
larization spectra is the comparative smallness of theBB signal. Indeed, density
perturbations do not produceB modes to first order. A detection of substantial
B polarization, therefore, would be momentous. WhereasE polarization effec-
tively doubles our cosmological information, supplementing that contained inC`,
B detection would push us qualitatively forward into new areas of physics.

ACOUSTIC PEAKS

When the temperature of the Universe was∼3000 K at a redshiftz∗ ≈ 103, elec-
trons and protons combined to form neutral hydrogen, an event usually known
as recombination (Peebles 1968, Zel’dovich et al. 1969; see Seager et al. 2000
for recent refinements). Before this epoch, free electrons acted as glue between
the photons and the baryons through Thomson and Coulomb scattering, so the
cosmological plasma was a tightly coupled photon-baryon fluid (Peebles & Yu
1970). The spectrum depicted in Figure 1 can be explained almost completely by
analyzing the behavior of this prerecombination fluid.

In “Basics,” below, we start from the two basic equations of fluid mechanics
and derive the salient characteristics of the anisotropy spectrum: the existence of

1There is also the possibility in general of circular polarization, described by the Stokes
parameterV, but this is absent in cosmological settings.
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peaks and troughs, the spacing between adjacent peaks, and the location of the
peaks. These properties depend in decreasing order of importance on the initial
conditions, the energy contents of the Universe before recombination, and those
after recombination. Ironically, the observational milestones have been reached
in almost the opposite order. Throughout the 1990s constraints on the location of
the first peak steadily improved, culminating with precise determinations from the
Toco (Miller et al. 1999), Boomerang (de Bernardis et al. 2000), and Maxima-1
(Hanany et al. 2000) experiments (see Figure 1,top). In the working cosmological
model it shows up right where it should be if the present energy density of the
Universe is equal to the critical density, i.e., if the Universe is flat. The skeptic
should note that the working cosmological model assumes a particular form for
the initial conditions and energy contents of the Universe before recombination,
which we shall see have only recently been tested directly (with an as yet much
lower level of statistical confidence) with the higher peaks.

In “Initial Conditions,” below, we introduce the initial conditions that appar-
ently are the source of all clumpiness in the Universe. In the context of ab initio
models the term “initial conditions” refers to the physical mechanism that gener-
ates the primordial small perturbations. In the working cosmological model this
mechanism is inflation and it sets the initial phase of the oscillations to be the
same across all Fourier modes. Remarkably, from this fact alone comes the pre-
diction that there will be peaks and troughs in the amplitude of the oscillations
as a function of wavenumber. Additionally, the inflationary prediction of an ap-
proximately scale-invariant amplitude of the initial perturbations implies roughly
scale-invariant oscillations in the power spectrum, and inflation generically pre-
dicts a flat Universe. These are all falsifiable predictions of the simplest inflationary
models, and they have withstood the test against observations to date.

The energy contents of the Universe before recombination all leave their distinct
signatures on the oscillations, as discussed in “Gravitational Forcing” and the two
following sections. In particular, the cold dark matter and baryon signatures have
now been seen in the data (Halverson et al. 2001, Netterfield et al. 2001, Lee et al.
2001). The coupling between electrons and photons is not perfect, especially as
one approaches the epoch of recombination. As discussed in “Damping,” below,
this imperfect coupling leads to damping in the anisotropy spectrum: Very small
scale inhomogeneities are smoothed out. The damping phenomenon has now been
observed by the Cosmic Background Imager (CBI) experiment (Padin et al. 2001).
Importantly, fluid imperfections also generate linear polarization as covered in
“Polarization,” below. Because the imperfection is minimal and appears only at
small scales, the polarization generated is small and has not been detected to date.

After recombination the photons essentially travel freely to us today, so the
problem of translating the acoustic inhomogeneities in the photon distribution at
recombination to the anisotropy spectrum today is simply one of projection. This
projection depends almost completely on one number, the angular diameter dis-
tance between us and the surface of last scattering. This number depends on the
energy contents of the Universe after recombination through the expansion rate.
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The hand-waving projection argument of “Basics” is formalized in “Integral Ap-
proach” in the process introducing the popular code used to compute anisotropies,
CMBFAST. Finally, we discuss the sensitivity of the acoustic peaks to cosmolog-
ical parameters in “Parameter Sensitivity.”

Basics

For pedagogical purposes, let us begin with an idealization of a perfect photon-
baryon fluid and neglect the dynamical effects of gravity and the baryons. Pertur-
bations in this perfect fluid can be described by a simple continuity and a Euler
equation that encapsulate the basic properties of acoustic oscillations.

The discussion of acoustic oscillations takes place exclusively in Fourier space.
For example, we decompose the monopole of the temperature field into

2`=0,m=0(x) =
∫

d3k

(2π )3
ei k·x2(k) (6)

and omit the subscript00 on the Fourier amplitude. Because perturbations are very
small, the evolution equations are linear, and different Fourier modes evolve in-
dependently. Therefore, instead of partial differential equations for a field2(x),
we have ordinary differential equations for2(k). In fact, owing to rotational sym-
metry, all2(k) for a givenk obey the same equations. Here and in the following
sections we omit the wavenumber argumentk when no confusion with physical
space quantities will arise.

Temperature perturbations in Fourier space obey

2̇ = −1

3
kvγ . (7)

This equation for the photon temperature2, which does indeed look like the
familiar continuity equation in Fourier space (derivatives∇ become wavenumbers
ik), has a number of subtleties hidden in it, owing to the cosmological setting.
First, the over-dot derivative here is with respect to conformal timeη ≡ ∫

dt/a(t).
Because we are working in units in which the speed of lightc= 1, η is also the
maximum comoving distance a particle could have traveled sincet = 0. It is often
called the comoving horizon or more specifically the comoving particle horizon.
The physical horizon isa times the comoving horizon.

Second, the photon fluid velocity,vγ , has been written as a scalar instead of a
vector. In the early universe only the velocity component parallel to the wavevector
k is expected to be important because it alone has a source in gravity. Specifi-
cally, vγ = −ivγ k̂. In terms of the moments introduced in “Observables,” above,
vγ represents a dipole moment directed alongk. The factor of 1/3 comes about
because continuity conserves photon number, not temperature, and the number
densitynγ ∝ T3. Finally, we reiterate that, for the time being, we are neglecting the
effects of gravity.

The Euler equation for a fluid is an expression of momentum conservation.
The momentum density of the photons is (ργ + pγ )vγ , where the photon pressure



23 Jul 2002 14:3 AR AR166-AA40-06.tex AR166-AA40-06.SGM LaTeX2e(2002/01/18)P1: GJC

CMB ANISOTROPIES 179

pγ = ργ/3. In the absence of gravity and viscous fluid imperfections, pressure
gradients∇pγ = ∇ργ/3 supply the only force. Becauseργ ∝ T4, this becomes
4k2ρ̄γ /3 in Fourier space. The Euler equation then becomes

v̇γ = k2. (8)

Differentiating the continuity equation and inserting the Euler equation yields
the most basic form of the oscillator equation,

2̈ + c2
sk22 = 0, (9)

wherecs ≡ √
ṗ/ρ̇ = 1/

√
3 is the sound speed in the (dynamically baryon-free)

fluid. What this equation says is that pressure gradients act as a restoring force to
any initial perturbation in the system, which thereafter oscillates at the speed of
sound. Physically these temperature oscillations represent the heating and cooling
of a fluid that is compressed and rarefied by a standing sound or acoustic wave.
This behavior continues until recombination. Assuming negligible initial velocity
perturbations, we have a temperature distribution at recombination of

2(η∗) = 2(0) cos(ks∗), (10)

wheres= ∫
cs dη ≈ η/

√
3 is the distance sound can travel byη, usually called the

sound horizon. Asterisks denote evaluation at recombinationz∗.
In the limit of scales that are large compared with the sound horizonks� 1, the

perturbation is frozen into its initial conditions. This is the gist of the statement
that the large-scale anisotropies measured by COBE directly measure the initial
conditions. On small scales the amplitude of the Fourier modes exhibit temporal
oscillations, as shown in Figure 2 [with9 = 0, 9 i = 32(0) for this idealization].
Modes that are caught at maxima or minima of their oscillation at recombination
correspond to peaks in the power, i.e., the variance of2(k, η∗). Because sound
takes half as long to travel half as far, modes corresponding to peaks follow a
harmonic relationshipkn= nπ/s∗, wheren is an integer (see Figure 2a).

How does this spectrum of inhomogeneities at recombination appear to us
today? Roughly speaking, a spatial inhomogeneity in the CMB temperature of
wavelengthλ appears as an angular anisotropy of scaleθ ≈ λ/D, whereD(z)
is the comoving angular diameter distance from the observer to redshiftz. We
address this issue more formally in “Integral Approach,” below. In a flat universe
D∗ = η0− η∗ ≈ η0, whereη0 ≡ η (z= 0). In harmonic space the relationship implies
a coherent series of acoustic peaks in the anisotropy spectrum, located at

`n ≈ n`a, `a ≡ π D∗/s∗. (11)

To get a feel for where these features should appear, note that in a flat
matter-dominated universeη ∝ (1+ z)−1/2so thatη∗/η0≈ 1/30≈ 2◦. Equivalently,
`1 ≈ 200. Notice that because we are measuring ratios of distances, the absolute
distance scale drops out; we see in “Radiation Driving,” below, that the Hubble
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Figure 2 Idealized acoustic oscillations with time measured as the extent of the sound
horizon relative to its value at recombination (s/s∗). (a) Peak scales: The wavemode that
completes half an oscillation by recombination sets the physical scale of the first peak. Both
minima and maxima correspond to peaks in power (dashed lines, absolute value), so higher
peaks are integral multiples of this scale with equal height. Plotted here is the idealization
of Equation 15 (constant potentials, no baryon loading). (b) Baryon loading: Baryon loading
boosts the amplitudes of every other oscillation. Plotted here is the idealization of Equation
16 (constant potentials and baryon loadingR= 1/6) for the third peak.

constant sneaks back into the problem because the Universe is not fully matter-
dominated at recombination.

In a spatially curved universe the angular diameter distance no longer equals the
coordinate distance, making the peak locations sensitive to the spatial curvature of
the Universe (Doroshkevich et al. 1978, Kamionkowski et al. 1994). Consider first
a closed universe with radius of curvatureR= H−1

0 |�tot−1|−1/2. Suppressing one
spatial coordinate yields a two-sphere geometry with the observer situated at the
pole (see Figure 3). Light travels on lines of longitude. A physical scaleλ at fixed
latitude given by the polar angleθ subtends an angleα = λ/Rsinθ . Forα � 1, a
Euclidean analysis would infer a distanceD = Rsinθ , even though the coordinate
distance along the arc isd= θR; thus

D = Rsin(d/R). (12)

For open universes, simply replace sin with sinh. The result is that objects in an
open (closed) universe are closer (further) than they appear, as if seen through a
lens. In fact one way of viewing this effect is as the gravitational lensing caused by
the background density (see “Gravitational Lensing,” below). A given comoving
scale at a fixed distance subtends a larger (smaller) angle in a closed (open) universe
than a flat universe. This strong scaling with spatial curvature indicates that the
observed first peak at̀1 ≈ 200 constrains the geometry to be nearly spatially flat.
We implicitly assume spatial flatness in the following sections unless otherwise
stated.
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Figure 3 Angular diameter distance. In a closed universe objects are further than
they appear to be from Euclidean (flat) expectations, corresponding to the difference
between coordinate distanced and angular diameter distanceD. Consequently, at a
fixed coordinate distance, a given angle corresponds to a smaller spatial scale in a
closed universe. Acoustic peaks therefore appear at larger angles or lower` in a closed
universe. The converse is true for an open universe.

Finally, in a flat dark energy-dominated universe the conformal age of the
universe decreases approximately asη0→ η0 (1+ ln �0.085

m ). For reasonable�m,
this causes only a small shift of`1 to lower multipoles (see Figure 4, color insert)
relative to the effect of curvature. Combined with the effect of the radiation near
recombination, the peak locations provide a means to measure the physical aget0
of a flat universe (Hu et al. 2001).

Initial Conditions

As suggested above, observations of the location of the first peak strongly point
to a flat universe. This is encouraging news for adherents of inflation, a theory
that initially predicted�tot= 1 at a time when few astronomers would sign on to
such a high value (see Liddle & Lyth 1993 for a review). However, the argument
for inflation goes beyond the confirmation of flatness. In particular, the discussion
of the previous subsection begs the question: Whence2(0), the initial conditions
of the temperature fluctuations? The answer requires the inclusion of gravity and
considerations of causality that point to inflation as the origin of structure in the
Universe.

The calculations of the typical angular scale of the acoustic oscillations in the
previous section are familiar in another context: the horizon problem. Because the
sound speed is near the speed of light, the degree scale also marks the extent of a
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causally connected region or particle horizon at recombination. For the picture in
the previous section to hold, the perturbations must have been laid down while the
scales in question were still far outside the particle horizon2. The recent observa-
tional verification of this basic peak structure presents a problem potentially more
serious than the original horizon problem of approximate isotropy: The mecha-
nism that smooths fluctuations in the Universe must also regenerate them with
superhorizon-sized correlations at the 10−5 level. Inflation is an idea that solves
both problems simultaneously.

The inflationary paradigm postulates that an early phase of near exponential
expansion of the Universe was driven by a form of energy with negative pressure. In
most models this energy is usually provided by the potential energy of a scalar field.
The inflationary era brings the observable universe to a nearly smooth and spatially
flat state. Nonetheless, quantum fluctuations in the scalar field are unavoidable
and are carried to large physical scales by the expansion. Because an exponential
expansion is self-similar in time, the fluctuations are scale-invariant, i.e., in each
logarithmic interval in scale the contribution to the variance of the fluctuations is
equal. Because the scalar field carries the energy density of the Universe during
inflation, its fluctuations induce variations in the spatial curvature (Guth & Pi
1985, Hawking 1982, Bardeen et al. 1983). Instead of perfect flatness, inflation
predicts that each scale will resemble a very slightly open or closed universe.
This fluctuation in the geometry of the Universe is essentially frozen while the
perturbation is outside the horizon (Bardeen 1980).

Formally, curvature fluctuations are perturbations to the space-space piece of
the metric. In a Newtonian coordinate system, or gauge, where the metric is di-
agonal the spatial curvature fluctuation is calledδgi j = 2a28δi j (see, e.g., Ma &
Bertschinger 1995). The more familiar Newtonian potential is the time-time fluc-
tuationδgtt = 29 and is approximately9 ≈ −8. Approximate scale invariance
then says that12

8 ≡ k3P8(k)/2π2∝ kn−1, whereP8(k) is the power spectrum of8
and the tiltn≈ 1.

Now let us relate the inflationary prediction of scale-invariant curvature fluc-
tuations to the initial temperature fluctuations. Newtonian intuition based on the
Poisson equationk28 = 4πGa2δρ tells us that on large scales (smallk) density and
hence temperature fluctuations should be negligible compared with Newtonian
potential. General relativity says otherwise because the Newtonian potential is
also a time-time fluctuation in the metric. It corresponds to a temporal shift of
δt/t = 9. The CMB temperature varies as the inverse of the scale factor, which
in turn depends on time asa∝ t2/[3(1+p/ρ)]. Therefore, the fractional change in the
CMB temperature

2 = −δa

a
= −2

3

(
1 + p

ρ

)−1
δt

t
. (13)

2Recall that the comoving scalek does not vary with time. At very early times, then, the
wavelengthk−1 is much larger than the horizonη.
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Thus, a temporal shift produces a temperature perturbation of−9/2 in the
radiation-dominated era (whenp= ρ/3) and−29/3 in the matter-dominated
epoch (p= 0) (Sachs & Wolfe 1967, Peacock 1991, White & Hu 1997). The initial
temperature perturbation is therefore inextricably linked with the initial gravita-
tional potential perturbation. Inflation predicts scale-invariant initial fluctuations
in both the CMB temperature and the spatial curvature in the Newtonian gauge.

Alternate models that seek to obey causality can generate curvature fluctuations
only inside the particle horizon. Because the perturbations are then not generated
at the same epoch independent of scale, there is no longer a unique relationship
between the phase of the oscillators. That is, the argument of the cosine in Equa-
tion 10 becomesks∗ + φ(k), whereφ is a phase that can in principle be different
for different wavevectors, even those with the same magnitudek. This leads to
temporal incoherence in the oscillations and hence a washing out of the acoustic
peaks (Albrecht et al. 1996), most notably in cosmological defect models (Allen
et al. 1997, Seljak et al. 1997). Complete incoherence is not a strict requirement of
causality because there are other ways to synch up the oscillations. For example,
many isocurvature models, in which the initial spatial curvature is unperturbed, are
coherent because their oscillations begin with the generation of curvature fluctua-
tions at horizon crossing (Hu & White 1996). Still they typically haveφ 6= 0 (com-
pare Turok 1996). Independent of the angular diameter distanceD∗, the ratio of the
peak locations gives the phase:`1 : `2 : `3 ∼ 1 : 2 : 3 forφ = 0. Likewise indepen-
dent of a constant phase, the spacing of the peaks`n − `n−1 = `A gives a measure of
the angular diameter distance (Hu & White 1996). The observations, which indi-
cate coherent oscillations withφ = 0, therefore, have provided a nontrivial test of
the inflationary paradigm and supplied a substantially more stringent version of
the horizon problem for contenders to solve.

Gravitational Forcing

We saw above that fluctuations in a scalar field during inflation get turned into
temperature fluctuations via the intermediary of gravity. Gravity affects2 in more
ways than this. The Newtonian potential and spatial curvature alter the acoustic
oscillations by providing a gravitational force on the oscillator. The Euler equa-
tion (8) gains a term on the right-hand side owing to the gradient of the potential
k9. The main effect of gravity then is to make the oscillations a competition be-
tween pressure gradientsk2 and potential gradientsk9 with an equilibrium when
2 + 9 = 0.

Gravity also changes the continuity equation. Because the Newtonian curvature
is essentially a perturbation to the scale factor, changes in its value also generate
temperature perturbations by analogy to the cosmological redshiftδ2 = −δ8, and
so the continuity equation (7) gains a contribution of−8̇ on the right-hand side.

These two effects bring the oscillator equation (9) to

2̈ + c2
sk22 = −k2

3
9 − 8̈. (14)
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In a flat universe and in the absence of pressure8 and9 are constant. Also, in
the absence of baryons,c2

s = 1/3, so the new oscillator equation is identical to
Equation 9 with2 replaced by2 + 9. The matter-dominated epoch is then

[2 + 9](η) = [2 + 9](ηmd) cos(ks)

= 1

3
9(ηmd) cos(ks), (15)

whereηmd represents the start of the matter-dominated epoch (see Figure 2a). We
have used the matter-dominated “initial conditions” for2 given in the previous
section, assuming large scales,ksmd� 1.

The results from the idealization of “Basics,” above, carry through with a few
exceptions. Even without an initial temperature fluctuation to displace the oscilla-
tor, acoustic oscillations would arise by the infall and compression of the fluid into
gravitational potential wells. Because it is the effective temperature2 + 9 that
oscillates, they occur even if2(0)= 0. The quantity2 + 9 can be thought of as
an effective temperature in another way: After recombination, photons must climb
out of the potential well to the observer and thus suffer a gravitational redshift of
1T/T= 9. The effective temperature fluctuation is therefore also the observed
temperature fluctuation. We now see that the large scale limit of Equation 15 re-
covers the famous Sachs-Wolfe result that the observed temperature perturbation
is 9/3 and overdense regions correspond to cold spots on the sky (Sachs & Wolfe
1967). When9 < 0, although2 is positive, the effective temperature2 + 9 is
negative. The plasma begins effectively rarefied in gravitational potential wells. As
gravity compresses the fluid and pressure resists, rarefaction becomes compres-
sion and rarefaction again. The first peak corresponds to the mode that is caught
in its first compression by recombination. The second peak at roughly half the
wavelength corresponds to the mode that went through a full cycle of compression
and rarefaction by recombination. We will use this language of the compression
and rarefaction phase inside initially overdense regions, but one should bear
in mind that there are an equal number of initially underdense regions with the
opposite phase.

Baryon Loading

So far we have been neglecting the baryons in the dynamics of the acoustic os-
cillations. To see whether this is a reasonable approximation consider the photon-
baryon momentum density ratioR= ( pb+ ρb)/( pγ + ργ ) ≈ 30�bh2(z/103)−1. For
typical values of the baryon density this number is of order unity at recombination,
and so we expect baryonic effects to begin appearing in the oscillations just as they
are frozen in.

Baryons are conceptually easy to include in the evolution equations because
their momentum density provides extra inertia in the joint Euler equation for
pressure and potential gradients to overcome. Because inertial and gravitational
mass are equal, all terms in the Euler equation except the pressure gradient are
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multiplied by 1+ R, leading to the revised oscillator equation (Hu & Sugiyama,
1995)

c2
s

d

dη

(
c−2

s 2̇
) + c2

sk22 = −k2

3
9 − c2

s

d

dη

(
c−2

s 8̇
)
, (16)

where we have used the fact that the sound speed is reduced by the baryons to
cs= 1/

√
3(1+ R).

To get a feel for the implications of the baryons take the limit of constantR, 8,
and9. Thend2(R9)/dη2(= 0) may be added to the left-hand side to again put
the oscillator equation in the form of Equation 9 with2 → 2 + (1+ R)9. The
solution then becomes

[2 + (1 + R)9](η) = [2 + (1 + R)9](ηmd) cos(ks). (17)

Aside from the lowering of the sound speed, which decreases the sound horizon,
baryons have two distinguishing effects: They enhance the amplitude of the oscil-
lations and shift the equilibrium point to2 = −(1+ R)9 (see Figure 2b). These
two effects are intimately related and are easy to understand because the equations
are exactly those of a massm= 1+ Ron a spring in a constant gravitational field.
For the same initial conditions, increasing the mass causes the oscillator to fall
further in the gravitational field, leading to larger oscillations and a shifted zero
point.

The shifting of the zero point of the oscillator has significant phenomenolog-
ical consequences. Because it is still the effective temperature2 + 9 that is the
observed temperature, the zero-point shift breaks the symmetry of the oscillations.
The baryons enhance only the compressional phase, i.e., every other peak. For
the working cosmological model these are the first, third, fifth. . .. Physically, the
extra gravity provided by the baryons enhances compression into potential wells.

These qualitative results remain true in the presence of a time-variableR. An
additional effect arises owing to the adiabatic damping of an oscillator with a
time-variable mass. Because the energy/frequency of an oscillator is an adiabatic
invariant, the amplitude must decay as (1+ R)−1/4. This can also be understood
by expanding the time derivatives in Equation 16 and identifying theṘ2̇ term as
the remnant of the familiar expansion drag on baryon velocities.

Radiation Driving

We have hitherto also been neglecting the energy density of the radiation in
comparison to the matter. The matter-to-radiation energy-density ratio scales as
ρm/ρr ≈ 24�mh2(z/103)−1and so is also of order unity at recombination for reason-
able parameters. Moreover, fluctuations corresponding to the higher peaks entered
the sound horizon at an earlier time, during radiation domination.

Including the radiation changes the expansion rate of the Universe and hence
the physical scale of the sound horizon at recombination. It introduces yet another
potential ambiguity in the interpretation of the location of the peaks. Fortunately,
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Figure 5 Radiation driving and diffusion damping. The decay of the potential9 drives
the oscillator in the radiation-dominated epoch. Diffusion generates viscosityπγ , i.e., a
quadrupole moment in the temperature, which damps oscillations and generates polarization.
Plotted here is the numerical solution to Equation 18 and Equation 19 for a mode with
wavelength much smaller than the sound horizon at decoupling,ks∗ � 1.

the matter-radiation ratio has another effect in the power spectrum by which it
can be distinguished. Radiation drives the acoustic oscillations by making the
gravitational force evolve with time (Hu & Sugiyama 1995). Matter does not.

The exact evolution of the potentials is determined by the relativistic Poisson
equation. However, qualitatively, we know that the background density is de-
creasing with time, so unless the density fluctuations in the dominant component
grow unimpeded by pressure, potentials will decay. In particular, in the radiation-
dominated era once pressure begins to fight gravity at the first compressional
maxima of the wave, the Newtonian gravitational potential and spatial curvature
must decay (see Figure 5).

This decay actually drives the oscillations: It is timed to leave the fluid maxi-
mally compressed with no gravitational potential to fight as it turns around. The net
effect is doubled because the redshifting from the spatial metric fluctuation8 also
goes away at the same time. When the Universe becomes matter dominated, the
gravitational potential is no longer determined by photon-baryon density pertur-
bations but by the pressureless cold dark matter. Therefore, the amplitudes of the
acoustic peaks increase as the cold dark matter-to-radiation ratio decreases (Seljak
1994, Hu & Sugiyama 1995). Density perturbations in any form of radiation will
stop growing around horizon crossing and lead to this effect. The net result is
that across the horizon scale at matter-radiation equality (keq≡ (4− 2

√
2)/ηeq)

the acoustic amplitude increases by a factor of 4–5 (Hu & Sugiyama 1996). By
eliminating gravitational potentials, photon-baryon acoustic oscillations eliminate
the alternating peak heights from baryon loading. The observed high third peak
(Halverson et al. 2001) is a good indication that cold dark matter both exists and
dominates the energy density at recombination.
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Damping

The photon-baryon fluid has slight imperfections corresponding to shear viscosity
and heat conduction in the fluid (Silk 1968, Weinberg 1971). These imperfections
damp acoustic oscillations. To consider these effects, we now present the equations
of motion of the system in their full form, including separate continuity and Euler
equations for the baryons. Formally the continuity and Euler equations follow from
the covariant conservation of the joint stress-energy tensor of the photon-baryon
fluid. Because photon and baryon numbers are separately conserved, the continuity
equations are unchanged,

2̇ = −k

3
vγ − 8̇, δ̇b = −kvb − 38̇, (18)

whereδb andvb are the density perturbation and fluid velocity of the baryons. The
Euler equations contain qualitatively new terms:

v̇γ = k(2 + 9) − k

6
πγ − τ̇ (vγ − vb),

v̇b = − ȧ

a
vb + k9 + τ̇ (vγ − vb)/R. (19)

For the baryons the first term on the right accounts for cosmological expansion,
which makes momenta decay asa−1. The third term on the right accounts for mo-
mentum exchange in the Thomson scattering between photons and electrons (pro-
tons are very tightly coupled to electrons via Coulomb scattering), with ˙τ ≡ neσTa,
the differential Thomson optical depth, and is compensated by its opposite in the
photon Euler equation. These terms are the origin of heat conduction imperfections.
If the medium is optically thick across a wavelength, ˙τ/k À 1 and the photons and
baryons cannot slip past each other. As it becomes optically thin, slippage dissi-
pates the fluctuations.

In the photon Euler equation there is an extra force on the right-hand side
owing to anisotropic stress gradients or radiation viscosity in the fluid,πγ . The
anisotropic stress is directly proportional to the quadrupole moment of the photon
temperature distribution. A quadrupole moment is established by gradients invγ

as photons from, for example, neighboring temperature crests meet at a trough
(see Figure 6, “damping and polarization”). However, it is destroyed by scatter-
ing. Thus,πγ = 2(kvγ/τ̇ )Av, where the order unity constant can be derived from
the Boltzmann equation asAv = 16/15 (Kaiser 1983). Its evolution is shown in
Figure 5. With the continuity Equation 7,kvγ ≈ −32̇, so viscosity takes the form
of a damping term. The heat conduction term can be shown to have a similar effect
by expanding the Euler equations ink/τ̇ . The final oscillator equation including
both terms becomes

c2
s

d

dη

(
c−2

s 2̇
) + k2c2

s

τ̇
[ Av + Ah]2̇ + c2

sk22 = −k2

3
9 − c2

s

d

dη

(
c−2

s 8̇
)
, (20)
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where the heat conduction coefficientAh= R2/(1+ R). Thus, we expect the inho-
mogeneities to be damped by an exponential factor of ordere−k2η/τ̇ (see Figure 5).
The damping scalekd is thus of order

√
τ̇ /η, corresponding to the geometric mean

of the horizon and the mean free path. Damping can be thought of as the result of
the random walk in the baryons that takes photons from hot regions into cold and
vice versa (Silk 1968). Detailed numerical integration of the equations of motion
are required to track the rapid growth of the mean free path and damping length
through recombination itself. These calculations show that the damping scale is
of orderkds∗ ≈ 10, leading to a substantial suppression of the oscillations beyond
the third peak.

How does this suppression depend on the cosmological parameters? As the
matter densityÄmh2 increases, the horizonη∗ decreases because the expansion rate
goes up. Because the diffusion length is proportional to

√
η∗, it too decreases as the

matter density goes up but not as much as the angular diameter distanceD∗, which is
also inversely proportional to the expansion rate. Thus, more matter translates into
more damping at a fixed multipole moment; conversely, it corresponds to slightly
less damping at a fixed peak number. The dependence on baryons is controlled by
the mean free path, which is in turn controlled by the free electron density: The
increase in electron density caused by an increase in the baryons is partially offset
by a decrease in the ionization fraction caused by recombination. The net result
under the Saha approximation is that the damping length scales approximately
as (Äbh2)−1/4. Accurate fitting formulae for this scale in terms of cosmological
parameters can be found in (Hu & White 1997c).

Polarization

The dissipation of the acoustic oscillations leaves a signature in the polarization
of CMB in its wake (see e.g., Hu & White 1997a and references therein for a
more complete treatment). Much like reflection off of a surface, Thomson scat-
tering induces a linear polarization in the scattered radiation. Consider incoming
radiation in the−x direction scattered at right angles into thez direction (see
Figure 7, top left). Heuristically, incoming radiation shakes an electron in the
direction of its electric field vector or polarization ˆε′, causing it to radiate with
an outgoing polarization parallel to that direction. However, because the outgo-
ing polarization ˆε must be orthogonal to the outgoing direction, incoming radi-
ation that is polarized parallel to the outgoing direction cannot scatter, leaving
only one polarization state, more generally, the Thomson differential cross section
dσ T/dÄ ∝ |ε̂′ · ε̂|2.

Unlike the reflection of sunlight off a surface, the incoming radiation comes
from all angles. If it were completely isotropic in intensity, radiation coming along
the ŷ would provide the polarization state that is missing from that coming along
x̂, leaving the net outgoing radiation unpolarized. Only a quadrupole tempera-
ture anisotropy in the radiation generates a net linear polarization from Thomson
scattering. As we have seen, a quadrupole can only be generated causally by the
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motion of photons and only if the Universe is optically thin to Thomson scattering
across this scale (i.e., it is inversely proportional to ˙τ ). Polarization generation
suffers from a Catch-22: The scattering that generates polarization also suppresses
its quadrupole source.

The fact that the polarization strength is of order the quadrupole in amplitude ex-
plains the shape and height of the polarization spectra in Figure 1b. The monopole
and dipole2 andvγ are of the same order of magnitude at recombination, but
their oscillations areπ/2 out of phase as follows from Equation 9 and Equation 10.
Because the quadrupole is of orderkvγ /τ̇ (see Figure 5), the polarization spectrum
should be smaller than the temperature spectrum by a factor of orderk/τ̇ at recom-
bination. As in the case of the damping, the precise value requires numerical work
(Bond & Efstathiou 1987) because ˙τ changes so rapidly near recombination. Cal-
culations show a steady rise in the polarized fraction with increasingl ork to a maxi-
mum of about 10% before damping destroys the oscillations and hence the dipole
source. Becausevγ is out of phase with the monopole, the polarization peaks should
also be out of phase with the temperature peaks. Indeed, Figure 1b shows that this
is the case. Furthermore, the phase relation also tells us that the polarization is
correlated with the temperature perturbations. Because the correlation powerC2E

`

is the product of the two, it exhibits oscillations at twice the acoustic frequency.
Until now, we have focused on the polarization strength without regard to its

orientation. The orientation, like a two-dimensional vector, is described by two
components,E and B. The E and B decomposition is simplest to visualize in
the small scale limit, where spherical harmonic analysis coincides with Fourier
analysis (Seljak 1997). The wavevectork picks out a preferred direction against
which the polarization direction is measured (see Figure 7,top right). Because
the linear polarization is a “headless vector” that remains unchanged upon a 180◦

rotation, the two numbersE andB that define it represent polarization aligned or
orthogonal with the wavevector (positive and negativeE ) and crossed at±45◦

(positive and negativeB).
In linear theory scalar perturbations such as the gravitational potential and

temperature perturbations have only one intrinsic direction associated with them,
that provided byk, and the orientation of the polarization inevitably takes it cue
from that one direction, thereby producing anE-mode. The generalization to an all-
sky characterization of the polarization changes none of these qualitative features.
TheE-mode and theB-mode are formally distinguished by the orientation of the
Hessian of the Stokes parameters that define the direction of the polarization itself.
This geometric distinction is preserved under summation of all Fourier modes as
well as the generalization of Fourier analysis to spherical harmonic analysis.

The acoustic peaks in the polarization appear exclusively in theEEpower spec-
trum of Equation 5. This distinction is very useful, as it allows a clean separation
of this effect from those occuring beyond the scope of the linear perturbation
theory of scalar fluctuations: in particular, gravitational waves). Moreover, in the
working cosmological model, the polarization peaks and correlation are precise
predictions of the temperature peaks, as they depend on the same physics. As
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such, their detection would represent a sharp test of the implicit assumptions of
the working model, especially its initial conditions and ionization history.

Integral Approach

The discussion in the previous sections suffices for a qualitative understanding
of the acoustic peaks in the power spectra of the temperature and polarization
anisotropies. To refine this treatment we must consider more carefully the sources
of anisotropies and their projection into multipole moments.

Because the description of the acoustic oscillations takes place in Fourier space,
the projection of inhomogeneities at recombination onto anisotropies today has an
added level of complexity. An observer today sees the acoustic oscillations in
effective temperature as they appeared on a spherical shell atx = D∗n̂ at recombi-
nation, wherên is the direction vector andD∗ = η0− η∗ is the distance light can
travel between recombination and the present (see Figure 6). Having solved for
the Fourier amplitude [2 + 9](k, η∗), we can expand the exponential in Equation
6 in terms of spherical harmonics, so the observed anisotropy today is

2(n̂, η0) = 4π
∑
`m

Ỳ m(n̂)

[
(−i )`

∫
d3k

(2π )3
a`(k)Y∗

`m(k̂)

]
, (21)

where the projected sourcea`(k) = [2 + 9](k, η∗) j`(kD∗). Because the spherical
harmonics are orthogonal, Equation 1 implies that2`m today is given by the in-
tegral in square brackets today. A given plane wave actually produces a range of
anisotropies in angular scale, as is obvious from Figure 6. The one-to-one map-
ping between wavenumber and multipole moment described in “Basics,” above, is
only approximately true and comes from the fact that the spherical Bessel function
j`(kD∗) is strongly peaked atkD∗ ≈ `. Notice that this peak corresponds to con-
tributions in the direction orthogonal to the wavevector where the correspondence
betweeǹ andk is one-to-one (see Figure 6).

Projection is less straightforward for other sources of anisotropy. We have hith-
erto neglected the fact that the acoustic motion of the photon-baryon fluid also
produces a Doppler shift in the radiation that appears to the observer as a temper-
ature anisotropy as well. In fact, we argued above thatvb≈ vγ is of comparable
magnitude but out of phase with the effective temperature. If the Doppler effect
projected in the same way as the effective temperature, it would wash out the
acoustic peaks. However, the Doppler effect has a directional dependence as well
because it is only the line-of-sight velocity that produces the effect. Formally, it is
a dipole source of temperature anisotropies and hence has an` = 1 structure. The
coupling of the dipole and plane-wave angular momenta implies that the projec-
tion of the Doppler effect involves a combination ofj`±1 that may be rewritten as
j ′
`(x) ≡ d j`(x)/dx. The structure ofj ′

` lacks a strong peak atx = `. Physically this
corresponds to the fact that the velocity is irrotational and hence has no component
in the direction orthogonal to the wavevector (see Figure 6). Correspondingly, the
Doppler effect cannot produce strong peak structures (Hu & Sugiyama 1995). The
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observed peaks must be acoustic peaks in the effective temperature, not Doppler
peaks.

There is one more subtlety involved when passing from acoustic oscillations
to anisotropies. Recall from “Radiation Driving,” above, that radiation leads to
decay of the gravitational potentials. Residual radiation after decoupling therefore
implies that the effective temperature is not precisely [2 + 9](η∗). The photons
actually have slightly shallower potentials to climb out of and lose the perturbative
analogue of the cosmological redshift, so the [2 + 9](η∗) overestimates the dif-
ference between the true photon temperature and the observed temperature. This
effect of course is already in the continuity equation for the monopole Equation 18,
so the source in Equation 21 gets generalized to

a`(k) = [2 + 9] (η∗) jl (kD∗) + vb(k, η∗) j ′
`(kD∗) +

∫ η0

η∗
dη(9̇ − 8̇) jl (kD). (22)

The last term vanishes for constant gravitational potentials but is nonzero if residual
radiation driving exists, as it will in low�mh2 models. Note that residual radiation
driving is particularly important because it adds in phase with the monopole: The
potentials vary in time only near recombination, so the Bessel function can be set
to jl(kD∗) and removed from theη integral. This complication has the effect of
decreasing the multipole value of the first peak`1 as the matter-radiation ratio at
recombination decreases (Hu & Sugiyama 1995). Finally, we mention that time
varying potentials can also play a role at very late times owing to nonlinearities or,
a cosmological constant. Those contributions, to be discussed more in “Integrated
Sachs-Wolfe Effect,” are sometimes referred to as late integrated Sachs-Wolfe
effects and do not add coherently with [2 + 9](η∗).

Putting these expressions together and squaring, we obtain the power spectrum
of the acoustic oscillations

C` = 2

π

∫
dk

k
k3a2

` (k). (23)

This formulation of the anisotropies in terms of projections of sources with
specific local angular structure can be completed to include all types of sources
of temperature and polarization anisotropies at any given epoch in time, linear
or nonlinear: the monopole, dipole, and quadrupole sources arising from density
perturbations, vorticity, and gravitational waves (Hu & White 1997b). In a curved
geometry one replaces the spherical Bessel functions with ultraspherical Bessel
functions (Abbott & Schaefer 1986, Hu et al. 1998). Precision in the predictions
of the observables is then limited only by the precision in the prediction of the
sources. This formulation is ideal for cases in which the sources are governed by
nonlinear physics, even though the CMB responds linearly, as we see in “Beyond
the Peaks,” below.

Perhaps more importantly, the widely usedCMBFAST code (Seljak &
Zaldarriaga 1996) exploits these properties to calculate the anisotropies in lin-
ear perturbation efficiently. It numerically solves for the smoothly varying sources
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on a sparse grid in wavenumber, interpolating in the integrals for a handful of`’s
in the smoothly varyingC`. It has largely replaced the original ground breaking
codes (Wilson & Silk 1981, Bond & Efstathiou 1984, Vittorio & Silk 1984) based
on tracking the rapid temporal oscillations of the multipole moments that simply
reflect structure in the spherical Bessel functions themselves.

Parameter Sensitivity

The phenomenology of the acoustic peaks in the temperature and polarization is
essentially described by four observables and the initial conditions (Hu et al. 1997).
These are the angular extents of the sound horizon`a ≡ π D∗/s∗, the particle hori-
zon at matter radiation equalitỳeq≡ keqD∗, and the damping scalèd ≡ kdD∗,
as well as the value of the baryon-photon momentum density ratioR∗. `a sets
the spacing between of the peaks;`eq and`d compete to determine their ampli-
tude through radiation driving and diffusion damping.R∗ sets the baryon loading
and, along with the potential well depths set by`eq, fixes the modulation of the
even and odd peak heights. The initial conditions set the phase, or equivalently
the location of the first peak in units of̀a, and an overall tiltn in the power
spectrum.

In the model of Figure 1, these numbers are`a = 301 (̀ 1 = 0.73̀ a), `eq= 149,
`d = 1332,R∗ = 0.57, andn= 1, and in this family of models the parameter sensi-
tivity is approximately (Hu et al. 2001)

1`a
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1�mh2

�mh2
+ 0.07

1�b h2
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�tot
,
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1�3
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,

1`d
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≈ −0.21

1�mh2

�mh2
+ 0.20

1�bh2

�bh2
− 0.17

1�3

�3

− 1.1
1�tot

�tot
, (24)

and1R∗/R∗ ≈ 1.01�bh2/�bh2. Current observations indicate that`a = 304± 4,

`eq= 168 ± 15, `d = 1392± 18, R∗ = 0.60± 0.06, andn= 0.96± 0.04 (Knox
et al. 2001; see also Wang et al. 2001, Pryke et al. 2001, de Bernardis et al. 2002) if
gravitational wave contributions are subdominant and the reionization redshift is
low, as assumed in the working cosmological model (see “Standard Cosmological
Paradigm,” above).

The acoustic peaks therefore contain three rulers for the angular diameter dis-
tance test for curvature, i.e., deviations from�tot= 1. However, contrary to popular
belief, any one of these alone is not a standard ruler whose absolute scale is known
even in the working cosmological model. This is reflected in the sensitivity of
these scales to other cosmological parameters. For example, the dependence of`a

on �mh2, and hence on the Hubble constant, is quite strong. However, in combi-
nation with a measurement of the matter-radiation ratio from`eq, this degeneracy
is broken.



23 Jul 2002 14:3 AR AR166-AA40-06.tex AR166-AA40-06.SGM LaTeX2e(2002/01/18)P1: GJC

CMB ANISOTROPIES 193

The weaker degeneracy of`a on the baryons can likewise be broken from a
measurement of the baryon-photon ratioR∗. The damping scalèd provides an
additional consistency check on the implicit assumptions of the working model,
e.g., recombination and the energy contents of the Universe during this epoch.
What makes the peaks so valuable for this test is that the rulers are standardizable
and contain a built-in consistency check.

There remains a weak but perfect degeneracy between�tot and�3 because they
both appear only inD∗. This is called the angular diameter distance degeneracy in
the literature and can readily be generalized to dark energy components beyond
the cosmological constant assumed here. Because the effect of�3 is intrinsically
so small, it creates a correspondingly small ambiguity in�tot for reasonable values
of �3. The down side is that dark energy can never be isolated through the peaks
alone because it only takes a small amount of curvature to mimic its effects. The
evidence for dark energy through the CMB comes about by allowing for external
information. The most important is the nearly overwhelming direct evidence for
�m< 1 from local structures in the Universe. The second is the measurements of a
relatively high Hubble constanth≈ 0.7; combined with a relatively low�mh2 that
is preferred in the CMB data, it implies�m< 1, but at low significance currently.

The upshot is that precise measurements of the acoustic peaks yield precise de-
terminations of four fundamental parameters of the working cosmological model:
�mh2,�mh2,D∗, andn. More generally, the first three can be replaced by`a, `eq, `d,
andR∗ to extend these results to models in which the underlying assumptions of
the working model are violated.

BEYOND THE PEAKS

Once the acoustic peaks in the temperature and polarization power spectra have
been scaled, the days of splendid isolation of CMB theory, analysis, and experi-
ment will have ended. Beyond and beneath the peaks lies a wealth of information
about the evolution of structure in the Universe and its origin in the early uni-
verse. As CMB photons traverse the large-scale structure of the Universe on their
journey from the recombination epoch, they pick up secondary temperature and
polarization anisotropies. These depend on the intervening dark matter, dark en-
ergy, baryonic gas density, and temperature distributions, and even the existence
of primordial gravity waves, so the potential payoff of their detection is enormous.
The price for this extended reach is the loss of the ability both to make precise
predictions, owing to uncertain and/or nonlinear physics, and to make precise
measurements, owing to the cosmic variance of the primary anisotropies and the
relatively greater importance of galactic and extragalactic foregrounds.

We begin in the following section with a discussion of the matter power spec-
trum to set the framework for the discussion of secondary anisotropies. Secondaries
can be divided into two classes: those caused by gravitational effects and those
induced by scattering off of electrons. The former are treated in “Gravitational
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Secondaries” and the latter in “Scattering Secondaries.” Secondary anisotropies
are often non-Gaussian, so they show up not only in the power spectra of “Ob-
servables,” above, but in higher point functions as well. We briefly discuss non-
Gaussian statistics in “Non-Gaussianity,” below. All of these topics are subjects
of current research to which this review can only serve as an introduction.

Matter Power Spectrum

The same balance between pressure and gravity that is responsible for acoustic
oscillations determines the power spectrum of fluctuations in nonrelativistic matter.
This relationship is often obscured by focusing on the density fluctuations in
the pressureless cold dark matter itself, so we instead consider the matter power
spectrum from the perspective of the Newtonian potential.

PHYSICAL DESCRIPTION After recombination, without the pressure of the pho-
tons, the baryons simply fall into the Newtonian potential wells with the cold dark
matter, an event usually referred to as the end of the Compton drag epoch. We
claimed in “Radiation Driving,” above, that above the horizon at matter-radiation
equality the potentials are nearly constant. This follows from the following dynam-
ics: Where pressure gradients are negligible, infall into some initial potential causes
a potential flow ofvtot∼ (kη)9 i (see Equation 19) and causes density enhancements
by continuity ofδtot∼ −(kη)vtot∼ −(kη)29 i. The Poisson equation says that the
potential at this later time9 ∼ −(kη)−2δtot∼ 9 i, so this rate of growth is exactly
right to keep the potential constant. Formally, this Newtonian argument only ap-
plies in general relativity for a particular choice of coordinates (Bardeen 1980),
but the rule of thumb is that if what is driving the expansion (including spatial
curvature) can also cluster unimpeded by pressure, the gravitational potential will
remain constant.

Because the potential is constant in the matter-dominated epoch, the large-scale
observations of COBE set the overall amplitude of the potential power spectrum
today. Translated into density, this is the well-known COBE normalization. It is
usually expressed in terms ofδH, the matter density perturbation at the Hubble
scale today. Because the observed temperature fluctuation is approximately9/3
(Sachs & Wolfe 1967),

12
T

T2
≈ 1

9
12

9 ≈ 1

4
δ2

H , (25)

where the second equality follows from the Poisson equation in a fully matter-
dominated universe with�m= 1. The observed COBE fluctuation of1T ≈ 28µK
(Smoot et al. 1992) impliesδH ≈ 2× 10−5. For corrections for�m< 1, where the
potential decays because the dominant driver of the expansion cannot cluster, see
Bunn & White (1997).

On scales below the horizon at matter-radiation equality, we have seen in “Radi-
ation Driving,” above, that pressure gradients from the acoustic oscillations them-
selves impede the clustering of the dominant component, i.e., the photons, and lead
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to decay in the potential. Dark matter density perturbations remain but grow only
logarithmically from their value at horizon crossing, which (just as for large scales)
is approximately the initial potential,δm≈ −9 i. The potential for modes that have
entered the horizon already will therefore be suppressed by9 ∝ −δm/k2∼ 9 i/k2

at matter domination (neglecting the logarithmic growth), again according to the
Poisson equation. The ratio of9 at late times to its initial value is called thetransfer
function. On large scales, then, the transfer function is close to one, and it falls off
ask−2 on small scales. If the baryons fractionρb/ρm is substantial, baryons alter
the transfer function in two ways. First, their inability to cluster below the sound
horizon causes further decay in the potential between matter-radiation equality and
the end of the Compton drag epoch. Second, the acoustic oscillations in the bary-
onic velocity field kinematically cause acoustic wiggles in the transfer function
(Hu & Sugiyama 1996). These wiggles in the matter power spectrum are related
to the acoustic peaks in the CMB spectrum, like twins separated at birth, and are
actively being pursued by the largest galaxy surveys (Percival et al. 2001). For
fitting formulas for the transfer function that includes these effects see Eisenstein
& Hu (1998).

COSMOLOGICAL IMPLICATIONS The combination of the COBE normalization, the
matter transfer function, and the near scale-invariant initial spectrum of fluctuations
tells us that by the present, fluctuations in the cold dark matter or baryon density
fields will have gone nonlinear for all scalesk & 10−1hMpc−1. It is a great triumph
of the standard cosmological paradigm that there is just enough growth between
z∗ ≈ 103 andz= 0 to explain structures in the Universe across a wide range of
scales.

In particular, because this nonlinear scale also corresponds to galaxy clusters,
measurements of their abundance yield a robust measure of the power near this scale
for a given matter density�m. The agreement between the COBE normalization and
the cluster abundance at low�m∼ 0.3–0.4 was pointed out immediately following
the COBE result (e.g., White et al. 1993, Bartlett & Silk 1993) and is one of the
strongest pieces of evidence for the parameters in the working cosmological model
(Ostriker & Steinhardt 1995, Krauss & Turner 1995).

More generally, the comparison between large-scale structure and the CMB is
important in that it breaks degeneracies between effects owing to deviations from
power law initial conditions and the dynamics of the matter and energy contents
of the Universe. Any dynamical effect that reduces the amplitude of the matter
power spectrum corresponds to a decay in the Newtonian potential that boosts the
level of anisotropy (see “Radiation Driving,” above, and “Integrated Sachs-Wolfe
Effect,” below). Massive neutrinos are a good example of physics that drives the
matter power spectrum down and the CMB spectrum up.

The combination is even more fruitful in the relationship between the acoustic
peaks and the baryon wiggles in the matter power spectrum. Our knowledge of the
physical distance between adjacent wiggles provides our best calibrated standard
ruler for cosmology (Eisenstein et al. 1998). For example, at very lowz the radial
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distance out to a galaxy iscz/H0. The unit of distance is thereforeh−1 Mpc,
and a knowledge of the true physical distance corresponds to a determination of
h. At higher redshifts the radial distance depends sensitively on the background
cosmology (especially the dark energy), so a future measurement of baryonic
wiggles at, for instance,z∼ 1 would be a powerful test of dark energy models. To
a lesser extent, the shape of the transfer function, which mainly depends on the
matter-radiation scale inh Mpc−1, i.e.,�mh, is another standard ruler (see, e.g.,
Tegmark et al. 2001 for a recent assessment), more heralded than the wiggles but
less robust owing to degeneracy with other cosmological parameters.

For scales corresponding tok & 10−1hMpc−1, density fluctuations are nonlinear
by the present. NumericalN-body simulations show that the dark matter is bound
up in a hierarchy of virialized structures or halos (see Bertschinger 1998 for a
review). The statistical properties of the dark matter and the dark matter halos
have been extensively studied in the working cosmological model. Less certain
are the properties of the baryonic gas. We see that both enter into the consideration
of secondary CMB anisotropies.

Gravitational Secondaries

Gravitational secondaries arise from two sources: the differential redshift from
time-variable metric perturbations (Sachs & Wolfe 1967) and gravitational lens-
ing. There are many examples of the former, one of which we have already
encountered in “Integral Approach” in the context of potential decay in the radia-
tion-dominated era. Such gravitational potential effects are usually called the in-
tegrated Sachs-Wolfe (ISW) effect in linear perturbation theory (see next section),
the Rees-Sciama (“Rees-Sciama and Moving Halo Effects,” below) effect in the
nonlinear regime, and the gravitational wave effect for tensor perturbations (“Grav-
itation Waves,” below). Gravitational waves and lensing also produceB-modes in
the polarization (see “Polarization,” below), by which they may be distinguished
from acoustic polarization.

INTEGRATED SACHS-WOLFE EFFECT As we have seen in the previous section, the
potential on a given scale decays whenever the expansion is dominated by a com-
ponent whose effective density is smooth on that scale. This occurs at late times
in an�m< 1 model at the end of matter domination and the onset dark energy (or
spatial curvature) domination. If the potential decays between the time a photon
falls into a potential well and when it climbs out, it gets a boost in temperature
of δ9 owing to the differential gravitational redshift and−δ8 ≈ δ9 owing to an
accompanying contraction of the wavelength (see “Gravitational Forcing,” above).

Potential decay owing to residual radiation was introduced in “Integral Ap-
proach,” above, but that owing to dark energy or curvature at late times induces
much different changes in the anisotropy spectrum. What makes the dark energy
or curvature contributions different from those owing to radiation is the longer
length of time over which the potentials decay, on order of the Hubble time today.
Residual radiation produces its effect quickly, so the distance over which photons
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feel the effect is much smaller than the wavelength of the potential fluctuation.
Recall that this meant thatjl (kD) in the integral in Equation 23 could be set to
jl (kD∗) and removed from the integral. The final effect then is proportional to
jl (kD∗) and adds in phase with the monopole.

The ISW projection, indeed the projection of all secondaries, is much different
(see Figure 6). Because the duration of the potential change is much longer, photons
typically travel through many peaks and troughs of the perturbation. This cancella-
tion implies that many modes have virtually no impact on the photon temperature.
The only modes that do have an impact are those with wavevectors perpendicular
to the line of sight, so that along the line of sight the photon does not pass through
crests and troughs. What fraction of the modes contributes to the effect then? For
a given wavenumberk and line of sight instead of the full spherical shell at ra-
dius 4πk2dk, only the ring 2πkdk with k ⊥ n participates. Thus, the anisotropy
induced is suppressed by a factor ofk (or ` = kD in angular space). Mathemati-
cally, this arises in the line-of-sight integral of Equation 23 from the integral over
the oscillatory Bessel function

∫
dx j̀ (x) ≈ (π/2`)1/2 (see also Figure 6).

The ISW effect thus generically shows up only at the lowest`’s in the power
spectrum (Kofman & Starobinskii 1985). This spectrum is shown in Figure 7
(bottom left). Secondary anisotropy predictions in this figure are for a model with
�tot= 1,�3 = 2/3,�bh2= 0.02,�mh2= 0.16,n= 1, andzri = 7 and an inflationary
energy scaleEi � 1016 GeV. The ISW effect is especially important in that it is
extremely sensitive to the dark energy: its amount, equation of state, and clustering
properties (Coble et al. 1997, Caldwell et al. 1998, Hu 1998). Unfortunately, being
confined to the low multipoles, the ISW effect suffers severely from the cosmic
variance in Equation 4 in its detectability. Perhaps more promising is its correlation
with other tracers of the gravitational potential [e.g., X-ray background (Boughn
et al. 1998) and gravitational lensing (see below)].

This type of cancellation behavior and corresponding suppression of small-
scale fluctuations is a common feature of secondary temperature and polarization
anisotropies from large-scale structure and is quantified by the Limber equation
(Limber 1954) and its CMB generalization (Hu & White, 1996; Hu, 2000a). It is
the central reason why secondary anisotropies tend to be smaller than the primary
ones fromz∗ ≈ 103 despite the intervening growth of structure.

REES-SCIAMA AND MOVING HALO EFFECTS The ISW effect is linear in the pertur-
bations. Cancellation of the ISW effect on small scales leaves second-order and
nonlinear analogues in its wake (Rees & Sciama 1968). From a single isolated
structure, the potential along the line of sight can change not only from evolution
in the density profile but more importantly from its bulk motion across the line of
sight. In the context of clusters of galaxies, this is called the moving cluster effect
(Birkinshaw & Gull 1983). More generally, the bulk motion of dark matter halos
of all masses contributes to this effect (Tuluie & Laguna 1995, Seljak 1996b), and
their clustering gives rise to a low level of anisotropies on a range of scales but
is never the leading source of secondary anisotropies on any scale (see Figure 7,
bottom left).
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Figure 8 Gravitational waves and the energy scale of inflationEi. (Left) Temperature
and polarization spectra from an initial scale-invariant gravitational wave spectrum with
power∝ E4

i = (4× 1016 GeV)4. (Right) 95% confidence upper limits statistically achievable
onEi and the scalar tiltn by the MAP and Planck satellites as well as an ideal experiment out
to ` = 3000 in the presence of gravitational lensingB-modes.

GRAVITATIONAL WAVES A time-variable tensor metric perturbation similarly
leaves an imprint in the temperature anisotropy (Sachs & Wolfe 1967). A ten-
sor metric perturbation can be viewed as a standing gravitational wave and pro-
duces a quadrupolar distortion in the spatial metric. If its amplitude changes, it
leaves a quadrupolar distortion in the CMB temperature distribution (Polnarev
1985). Inflation predicts a nearly scale-invariant spectrum of gravitational waves.
Their amplitude depends strongly on the energy scale of inflation,3 (power∝ E4

i )
(Rubakov et al. 1982, Fabbri & Pollock 1983), and its relationship to the curva-
ture fluctuations discriminates between particular models for inflation. Detection
of gravitational waves in the CMB therefore provides our best hope to study the
particle physics of inflation.

Gravitational waves, like scalar fields, obey the Klein-Gordon equation in a flat
universe, and their amplitudes begin oscillating and decaying once the perturbation
crosses the horizon. Although this process occurs even before recombination,
rapid Thomson scattering destroys any quadrupole anisotropy that develops (see
“Damping,” above). This fact dicates the general structure of the contributions to
the power spectrum (see Figure 8,left panel): They are enhanced at` = 2 or the
present quadrupole and sharply suppressed at a multipole larger than that of the
first peak (Abbott & Wise 1984, Starobinskii 1985, Crittenden et al. 1993). As is
the case for the ISW effect, confinement to the low multipoles means the isolation
of gravitational waves is severely limited by cosmic variance.

The signature of gravitational waves in the polarization is more distinct. Be-
cause gravitational waves cause a quadrupole temperature anisotropy at the end
of recombination, they also generate a polarization. The quadrupole generated by

3E4
i ≡ V(φ), the potential energy density associated with the scalar field(s) driving inflation.



23 Jul 2002 14:3 AR AR166-AA40-06.tex AR166-AA40-06.SGM LaTeX2e(2002/01/18)P1: GJC

CMB ANISOTROPIES 199

a gravitational wave has its main angular variation transverse to the wavevector
itself (Hu & White 1997a). The resulting polarization has components directed
both along or orthogonal to the wavevector and at 45◦ angles to it. Gravitational
waves therefore generate a nearly equal amount ofE andB mode polarization
when viewed at a distance that is much greater than a wavelength of the fluctua-
tion (Kamionkowski et al. 1997, Zaldarriaga & Seljak 1997). TheB-component
presents a promising means of measuring the gravitational waves from inflation
and hence the energy scale of inflation (see Figure 8,right panel). Models of infla-
tion correspond to points in then, Ei plane (Dodelson et al. 1997). Therefore, the
anticipated constraints discriminate among different models of inflation, probing
fundamental physics at scales well beyond those accessible in accelerators.

GRAVITATIONAL LENSING The gravitational potentials of large-scale structure also
lens the CMB photons. Because lensing conserves surface brightness, it only af-
fects anisotropies and hence is second order in perturbation theory (Blanchard &
Schneider 1987). The photons are deflected according to the angular gradient of the
potential projected along the line of sight with a weighting of 2(D∗ − D)/(D∗ D).
Again the cancellation of parallel modes implies that it is mainly the large-scale
potentials that are responsible for deflections. Specifically, the angular gradient of
the projected potential peaks at a multipole` ∼ 60, corresponding to scales of a
k∼ few 10−2 Mpc−1 (Hu 2000b). The deflections are therefore coherent below the
degree scale. The coherence of the deflection should not be confused with its rms
value, which in the model of Figure 1 is a few arcminutes.

This large coherence and small amplitude ensures that linear theory in the
potential is sufficient to describe the main effects of lensing. Because lensing is a
one-to-one mapping of the source and image planes, it simply distorts the images
formed from the acoustic oscillations in accord with the deflection angle. This
warping naturally also distorts the mapping of physical scales in the acoustic peaks
to angular scales (see “Integral Approach,” above) and hence smooths features
in the temperature and polarization (Seljak 1996a). The smoothing scale is the
coherence scale of the deflection angle1` ≈ 60 and is sufficiently wide to alter
the acoustic peaks with1` ∼ 300. The contributions, shown in Figure 7 (bottom
left), are therefore negative (dashed) on scales corresponding to the peaks.

For the polarization, the remapping not only smooths the acoustic power spec-
trum but actually generatesB-mode polarization (see Figure 1 and Zaldarriaga &
Seljak 1998). Remapping by the lenses preserves the orientation of the polarization
but warps its spatial distribution in a Gaussian random fashion and hence does not
preserve the symmetry of the originalE-mode. TheB-modes from lensing set a
detection threshold for gravitational waves for a finite patch of sky (Hu 2002).

Gravitational lensing also generates a small amount of power in the anisotropies
on its own, but this is only noticable beyond the damping tail, where diffusion has
destroyed the primary anisotropies (see Figure 7,bottom left). On these small
scales, the anisotropy of the CMB is approximately a pure gradient on the sky,
and the inhomogeneous distribution of lenses introduces ripples in the gradient
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on the scale of the lenses (Seljak & Zaldarriaga 2000). In fact, the moving halo
effect of “Rees-Sciama and Moving Halo Effects,” above, can be described as the
gravitational lensing of the dipole anisotropy owing to the peculiar motion of the
halo (Birkinshaw & Gull, 1983).

Because the lensed CMB distribution is not linear in the fluctuations, it is
not completely described by changes in the power spectrum. Much of the recent
work in the literature has been devoted to utilizing the non-Gaussianity to isolate
lensing effects (Bernardeau 1997, 1998; Zaldarriaga & Seljak 1999; Zaldarriaga
2000) and their cross-correlation with the ISW effect (Goldberg & Spergel 1999,
Seljak & Zaldarriaga 1999). In particular, there is a quadratic combination of the
anisotropy data that optimally reconstructs the projected dark matter potentials
for use in this cross-correlation (Hu 2001b). The cross-correlation is especially
important in that in a flat universe it is a direct indication of dark energy and can be
used to study the properties of the dark energy beyond a simple equation of state
(Hu 2002).

Scattering Secondaries

From the observations both of the lack of a Gunn-Peterson trough (Gunn &
Peterson 1965) in quasar spectra and its preliminary detection (Becker et al. 2001),
we know that hydrogen was reionized atzri & 6. This is thought to occur through the
ionizing radiation of the first generation of massive stars (see, e.g., Loeb & Barkana
2001 for a review). The consequent recoupling of CMB photons to the baryons
causes a few percent of them to be rescattered. Linearly, rescattering induces three
changes to the photon distribution: suppression of primordial anisotropy, genera-
tion of large angle polarization, and a large angle Doppler effect. The latter two are
suppressed on small scales by the cancellation highlighted in “Integrated Sachs-
Wolfe Effect”, above. Nonlinear effects can counter this suppression; these are
the subject of active research and are outlined in “Modulated Doppler Effect,”
below.

PEAK SUPPRESSION Like scattering before recombination, scattering at late times
suppresses anisotropies in the distributions that have already formed. Reionization
therefore suppresses the amplitude of the acoustic peaks by the fraction of photons
rescattered, approximately the optical depth∼τ ri (see Figure 7,bottom right,
dotted lineand negative,dashed line; contributions corresponding to|δ12

T |1/2

between thezri = 7 andzri = 0 models). Unlike the plasma before recombination,
the medium is optically thin, so the mean free path and diffusion length of the
photons is of order the horizon itself. New acoustic oscillations cannot form.
On scales approaching the horizon at reionization, inhomogeneities have yet to
be converted into anisotropies (see “Integral Approach,” above) so large angle
fluctuations are not suppressed. Whereas these effects are relatively large compared
with the expected precision of future experiments, they mimic a change in the
overall normalization of fluctuations except at the lowest, cosmic variance limited,
multipoles.
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LARGE-ANGLE POLARIZATION The rescattered radiation becomes polarized be-
cause, as discussed in “Integral Approach,” temperature inhomogeneities become
anisotropies by projection, passing through quadrupole anisotropies when the per-
turbations are on the horizon scale at any given time. The result is a bump in the
power spectrum of theE-polarization on angular scales corresponding to the hori-
zon at reionization (see Figure 1). Because of the low optical depth of reionization
and the finite range of scales that contribute to the quadrupole, the polarization
contributions are on the order of tenths ofµK on scales of̀ ∼ few. In a perfect,
foreground free world, this is not beyond the reach of experiments and can be used
to isolate the reionization epoch (Hogan et al. 1982, Zaldarriaga et al. 1997). As
in the ISW effect, cancellation of contributions along the line of sight guarantees
a sharp suppression of contributions at higher multipoles in linear theory. Spatial
modulation of the optical depth owing to density and ionization (see “Modulated
Doppler Effects,” below) does produce higher order polarization but at an entirely
negligible level in most models (Hu 2000a).

DOPPLER EFFECT Naively, velocity fields of orderv ∼ 10−3 (c= 1; see, e.g.,
Strauss & Willick 1995 for a review) and optical depths of a few percent would
imply a Doppler effect that rivals the acoustic peaks themselves. That this is not the
case is the joint consequence of the cancellation described in “Integrated Sachs-
Wolfe Effect,” above, and the fact that the acoustic peaks are not “Doppler peaks”
(see “Integral Approach,” above). Because the Doppler effect comes from the pe-
culiar velocity along the line of sight, it retains no contributions from linear modes
with wavevectors perpendicular to the line of sight. However, as we have seen,
these are the only modes that survive cancellation (see Figure 6 and Kaiser 1984).
Consequently, the Doppler effect from reionization is strongly suppressed and is
entirely negligible beloẁ ∼ 102 unless the optical depth in the reionization epoch
approaches unity (see Figure 7,bottom right).

MODULATED DOPPLER EFFECTS The Doppler effect can survive cancellation if the
optical depth has modulations in a direction orthogonal to the bulk velocity. This
modulation can be the result of either density or ionization fluctuations in the gas.
Examples of the former include the effect in clusters and linear as well as nonlinear
large-scale structures.

Cluster modulation The strongly nonlinear modulation provided by the presence
of a galaxy cluster and its associated gas leads to the kinetic Sunyaev-Zel’dovich
effect. Cluster optical depths on order of 10−2 and peculiar velocities of 10−3 im-
ply signals in the 10−5 regime in individual arcminute-scale clusters, which are of
course rare objects. Although this signal is reasonably large, it is generally dwarfed
by the thermal Sunyaev-Zel’dovich effect (see below) and has yet to be detected
with high significance (see Carlstrom et al. 2001 and references therein). The ki-
netic Sunyaev-Zel’dovich effect has negligible impact on the power spectrum of
anisotropies, owing to the rarity of clusters, and can be included as part of the
general density modulation effect below.
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Linear modulation At the opposite extreme, linear density fluctuations modulate
the optical depth and give rise to a Doppler effect, as pointed out by Ostriker &
Vishniac (1986) and calculated by Vishniac (1987) (see also Efstathiou & Bond
1987). The result is a signal at theµK level peaking at̀ ∼ few× 103 that increases
roughly logarithmically with the reionization redshift (see Figure 7,bottom right).

General density modulation Both the cluster and linear modulations are lim-
iting cases of the more general effect of density modulation by the large-scale
structure of the Universe. For the low reionization redshifts currently expected
(zri ≈ 6–7), most of the effect comes neither from clusters nor the linear regime
but from intermediate-scale dark matter halos. An upper limit to the total effect
can be obtained by assuming the gas density traces the dark matter density (Hu
2000a) and implies signals on the order of1T ∼ few µK at ` > 103 (see Figure 7,
bottom right). Based on simulations, this assumption should hold in the outer pro-
files of halos (Pearce et al. 2001, Lewis et al. 2000), but gas pressure will tend to
smooth out the distribution in the cores of halos and reduce small scale contribu-
tions. In the absence of substantial cooling and star formation, these net effects can
be modeled under the assumption of hydrostatic equilibrium (Komatsu & Seljak
2001) in the halos and included in a halo approach to the gas distribution (Cooray
2001).

Ionization modulation Finally, optical depth modulation can also come from
variations in the ionization fraction (Aghanim et al. 1996, Gruzinov & Hu 1998,
Knox et al. 1998). Predictions for this effect are the most uncertain, as it involves
both the formation of the first ionizing objects and the subsequent radiative transfer
of the ionizing radiation (Bruscoli et al. 2000, Benson et al. 2001). It is, however,
unlikely to dominate the density-modulated effect except perhaps at very high mul-
tipoles of` ∼ 104 (crudely estimated, following Gruzinov & Hu 1998) (Figure 7,
bottom right).

SUNYAEV-ZEL’DOVICH EFFECT Internal motion of the gas in dark matter halos also
gives rise to Doppler shifts in the CMB photons. As in the linear Doppler effect,
shifts that are first order in the velocity are canceled as photons scatter off of
electrons moving in different directions. At second order in the velocity, there is a
residual effect. For clusters of galaxies where the temperature of the gas can reachTe

∼ 10 keV, the thermal motions are a substantial fraction of the speed of lightvrms=
(3 Te/me)1/2∼ 0.2. The second-order effect represents a net transfer of energy
between the hot electron gas and the cooler CMB and leaves a spectral distortion
in the CMB where photons on the Rayleigh-Jeans side are transferred to the Wien
tail. This effect is called the thermal Sunyaev-Zel’dovich (SZ) effect (Sunyaev &
Zel’dovich 1972). Because the net effect is of orderτ clusterTe/me∝ neTe, it is a probe
of the gas pressure. Like all CMB effects, once imprinted, distortions relative
to the redshifting background temperature remain unaffected by cosmological
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dimming, so one might hope to find clusters at high redshift using the SZ effect.
However, the main effect comes from the most massive clusters because of the
strong temperature weighting, and these have formed only recently in the standard
cosmological model.

Great strides have recently been made in observing the SZ effect in indi-
vidual clusters, following pioneering attempts that spanned two decades
(Birkinshaw 1999). The theoretical basis has remained largely unchanged save
for small relativistic corrections asTe/me approches unity. Both developments are
comprehensively reviewed by Carlstrom et al. (2001). Here we instead consider
the implications of the SZ effect as a source of secondary anisotropies.

The SZ effect from clusters provides the most substantial contribution to tem-
perature anisotropies beyond the damping tail. On scales much larger than an
arcminute, in which clusters are unresolved, contributions to the power spec-
trum appear as uncorrelated shot noise (C` = const. or1T∝ `). The additional
contribution owing to the spatial correlation of clusters turns out to be almost
negligible in comparison because of the rarity of clusters (Komatsu & Kitayama
1999). Below this scale, contributions turn over as the clusters become resolved.
Though there has been much recent progress in simulations (Refregier et al. 2000,
Seljak et al. 2001, Springel et al. 2001), dynamic range still presents a serious
limitation.

Much recent work has been devoted to semi-analytic modeling following the
technique of Cole & Kaiser (1988), in which the SZ correlations are described
in terms of the pressure profiles of clusters, their abundance, and their spatial
correlations [now commonly referred to as an application of the “halo model”
(see Komatsu & Kitayama 1999, Atrio-Barandela & M¨ucket 1999, Cooray 2001,
Komatsu & Seljak 2001)]. We show the predictions of a simplified version in
Figure 7, (bottom right, Rayleigh-Jeans limit), where the pressure profile is ap-
proximated by the dark matter halo profile and the virial temperature of the halo.
Although this treatment is comparatively crude, the inaccuracies that result are
dwarfed by “missing physics” in both the simulations and more sophisticated
modeling, e.g., the nongravitational sources and sinks of energy that change the
temperature and density profile of the cluster, often modeled as a uniform “pre-
heating” of the intercluster medium (Holder & Carlstrom 2001).

Although the SZ effect is expected to dominate the power spectrum of secondary
anisotropies, it does not necessarily make the other secondaries unmeasurable or
contaminate the acoustic peaks. Its distinct frequency signature can be used to
isolate it from other secondaries (see, e.g., Cooray et al. 2000). Additionally, it
mainly comes from massive clusters that are intrinsically rare. Hence, contribu-
tions to the power spectrum are non-Gaussian and concentrated in rare, spatially
localized regions. Removal of regions identified as clusters through X rays and
optical surveys or ultimately through high-resolution CMB maps themselves can
greatly reduce contributions at large angular scales at which they are unresolved
(Persi et al. 1995, Komatsu & Kitayama 1999).
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Non-Gaussianity

As we have seen, most of the secondary anisotropies are not linear in nature
and hence produce non-Gaussian signatures. Non-Gaussianity in the lensing and
SZ signals is important for their isolation. The same is true for contaminants
such as galactic and extragalactic foregrounds. Finally, the lack of an initial non-
Gaussianity in the fluctuations is a testable prediction of the simplest inflationary
models (Guth & Pi 1985, Bardeen et al. 1983). Consequently, non-Gaussianity
in the CMB is a very active field of research. The primary challenge in studies
of non-Gaussianity is in choosing the statistic that quantifies it. Non-Gaussianity
tells us what the distribution is not, not what it is. The secondary challenge is to
optimize the statistic against the Gaussian “noise” of the primary anisotropies and
instrumental or astrophysical systematics.

Early theoretical work on the bispectrum, the harmonic analogue of the three-
point function, addressed its detectability in the presence of the cosmic variance of
the Gaussian fluctuations (Luo 1994) and showed that the inflationary contribution
is not expected to be detectable in most models (Allen et al. 1987, Falk et al.
1993, Gangui et al. 1994). The bispectrum is defined by a triplet of multipoles, or
configuration, that defines a triangle in harmonic space. The large cosmic variance
in an individual configuration is largely offset by the great number of possible
triplets. Interest was spurred by reports of significant signals in specific bispectrum
configurations in the COBE maps (Ferreira et al. 1998) that turned out to be caused
by systematic errors (Banday et al. 2000). Recent investigations have focused on
the signatures of secondary anisotropies (Goldberg & Spergel 1999, Cooray &
Hu 2000). These turned out to be detectable with experiments that have both high
resolution and angular dynamic range but require the measurement of a wide range
of configurations of the bispectrum. Data analysis challenges for measuring the full
bispectrum largely remain to be addressed (see Heavens 1998, Spergel & Goldberg
1999, Phillips & Kogut 2001).

The trispectrum, the harmonic analogue of the four-point function, also has
advantages for the study of secondary anisotropies. Its great number of config-
urations are specified by a quintuplet of multipoles that correspond to the sides
and diagonal of a quadrilateral in harmonic space (Hu 2001a). The trispectrum is
important in that it quantifies the covariance of the power spectrum across mul-
tipoles that are often very strong in nonlinear effects, e.g., the SZ effect (Cooray
2001). It is also intimately related to the power spectra of quadratic combinations
of the temperature field and has been applied to study gravitational lensing effects
(Bernardeau 1997, Zaldarriaga 2000, Hu 2001a).

The bispectrum and trispectrum quantify non-Gaussianity in harmonic space
and have clear applications for secondary anisotropies. Tests for non-Gaussianity
localized in angular space include the Minkowski functionals (including the genus)
(Winitzki & Kosowsky 1997), the statistics of temperature extrema (Kogut et al.
1996), and wavelet coefficients (Aghanim & Forni 1999). These may be more
useful for examining foreground contamination and trace amounts of topological
defects.
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DATA ANALYSIS

The very large CMB data sets that have begun arriving require new, innovative
tools of analysis. The fundamental tool for analyzing CMB data—the likelihood
function—has been used since the early days of anisotropy searches (Readhead
et al. 1989, Bond et al. 1991, Dodelson & Jubas 1993). Brute-force likelihood
analyses (Tegmark & Bunn 1995) were performed even on the relatively large
COBE data set, with 6000 pixels in its map. Present data sets are a factor of 10
larger, and this factor will soon increase by yet another factor of 100. The brute-
force approach, the time for which scales as the number of pixels cubed, no longer
suffices.

In response, analysts have devised a host of techniques that move beyond the
early brute-force approach. The simplicity of CMB physics—owing to linearity—
is mirrored in analysis by the apparent Gaussianity of both the signal and many
sources of noise. In the Gaussian limit, “optimal statistics” are easy to identify.
These compress the data so that all of the information is retained, but the subsequent
analysis—because of the compression—becomes tractable.

The Gaussianity of the CMB is not shared by other cosmological systems
because gravitational nonlinearities turn an initially Gaussian distribution into a
non-Gaussian one. Nontheless, many of the techniques devised to study the CMB
have been proposed for studying the 3D galaxy distribution (Tegmark et al. 1998),
the 2D galaxy distribution (Efstathiou & Moody 2001, Huterer et al. 2001), the
Lyman alpha forest (Hui et al. 2001), and the shear field from weak lensing (Hu
& White 2001), among others. Indeed, these techniques are now indispensible,
powerful tools for all cosmologists, and we would be remiss not to at least outline
them in a disussion of the CMB, the context in which many of them were developed.

Figure 9 summarizes the path from the data analyis starting point, a timestream
of data points, to the end, the determination of cosmological parameters. Preceding
this starting point comes the calibration and the removal of systematic errors from
the raw data, but being experiment specific, we do not attempt to cover such

Figure 9 Data pipeline and radical compression. Maps are constructed for each frequency
channel from the data timestreams, combined, and cleaned of foreground contamination by
spatial (represented here by excising the galaxy) and frequency information. Bandpowers
are extracted from the maps and cosmological parameters from the bandpowers. Each step
involves a substantial reduction in the number of parameters needed to describe the data,
from potentially 1010→ 10 for the Planck satellite.
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issues here.4 Each step radically compresses the data by reducing the number of
parameters used to describe it. Although this data pipeline and our discussion
below focus on temperature anisotropies, similar steps have been elucidated for
polarization (Bunn 2001, Tegmark & de Oliveira-Costa 2001, Lewis et al. 2001).

Mapmaking

An experiment can be characterized by the datadt taken at many different times;
a “pointing matrix,” Pti , relating the data timestream to the underlying signal
at pixelized positions indexed byi; and a noise matrixCd,t t ′ characterizing the
covariance of the noise in the timestream. A model for the data then isdt = Pti 2i +
nt (with implicit sum over the repeating indexi); it is the sum of signal plus noise.
Herent is drawn from a distribution (often Gaussian) with mean zero and covariance
〈ntnt ′ 〉 = Cd,t t ′ . In its simplest form the pointing matrixP contains rows—which
correspond to a particular time—with all zeroes in it except for one column with
a one (see Figure 9). That column corresponds to the particular pixel observed
at the time of interest. Typically, a pixel will be scanned many times during an
experiment, so a given column will have many ones in it, corresponding to the
many times the pixel has been observed.

Given this model, a well-posed question is, What is the optimal estimator for
the signal2i? In effect, what is the best way to construct a map? The answer stems
from the likelihood functionL, defined as the probability of getting the data, given
the theoryL ≡ P[data|theory]. In this case the theory is the set of parameters2i,

L2(dt ) = 1

(2π )Nt /2
√

detCd
exp

[
−1

2
(dt − Pti 2i ) C−1

d,t t ′ (dt ′ − Pt ′ j 2 j )

]
. (26)

That is, the noise, the difference between the data and the modulated signal, is
assumed to be Gaussian with covarianceCd.

Two important theorems are useful in the construction of a map and more
generally in each step of the data pipeline (Tegmark et al. 1997). The first is Bayes’
theorem. In this context, it says thatP[2i|dt], the probability that the temperatures
are equal to2i given the data, is proportional to the likelihood function times a
prior P(2i). Thus, with a uniform prior,

P[2i |dt ] ∝ P[dt |2i ] ≡ L2(dt ), (27)

with the normalization constant determined by requiring the integral of the prob-
ability over all 2i to be equal to one. The probability on the left is the one of
interest. The most likely values of2i therefore are those that maximize the likeli-
hood function. Because the log of the likelihood function in question, Equation 26,
is quadratic in the parameters2i, it is straightforward to find this maximum point.
Differentiating the argument of the exponential with respect to2i and setting to

4Aside from COBE, experiments to date have had a sizable calibration error (∼5–10%) that
must be factored into the interpretation of Figure 1.
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zero leads immediately to the estimator

2̂i = CN,i j Pjt C
−1
d,t t ′ dt ′ , (28)

whereCN≡ (Ptr Cd
−1 P)−1. As the notation suggests, the mean of the estimator is

equal to the actual2i, and the variance is equal toCN.
The second theorem states that this maximum likelihood estimator is also the

minimum variance estimator. The Cramer-Rao inequality says no estimator can
measure the2i with errors smaller than the diagonal elements ofF−1, where the
Fisher matrix is defined as

F2,i j ≡
〈
− ∂2 lnL2

∂2i ∂2 j

〉
. (29)

Inspection of Equation 26 shows that, in this case, the Fisher matrix is precisely
equal toC−1

N . Therefore, the Cramer-Rao theorem implies that the estimator of
Equation 28 is optimal: It has the smallest possible variance (Tegmark 1997a).
No information is lost if the map is used in subsequent analysis instead of the
timestream data, but huge factors of compression have been gained. For example,
in the recent Boomerang experiment (Netterfield et al. 2001), the timestream con-
tained 2× 108 numbers, and the map had only 57,000 pixels. The map resulted in
compression by a factor of 3500.

There are numerous complications that must be dealt with in realistic applica-
tions of Equation 28. Perhaps the most difficult is estimation ofCd, the timestream
noise covariance. This typically must be done from the data itself (Ferreira & Jaffe
2000, Stompor et al. 2001). Even ifCd were known perfectly, evaluation of the map
involves invertingCd, a process that scales as the number of raw data points cubed.
For both of these problems, the assumed “stationarity” ofCd,t t ′ (it depends only on
t − t′) is of considerable utility. Iterative techniques to approximate matrix inversion
can also assist in this process (Wright et al. 1996). Another issue that has received
much attention is the choice of pixelization. The CMB community has converged
on the Healpix pixelization scheme (http://www.eso.org/science/healpix/), now
freely available.

Perhaps the most dangerous complication arises from astrophysical foregrounds,
both within and from outside the Galaxy, the main ones being synchrotron, brem-
msstrahlung, dust, and point source emission. All of the main foregrounds have
spectral shapes different than the blackbody shape of the CMB. Modern experi-
ments typically observe at several different frequencies, so a well-posed question
is, How can we best extract the CMB signal from the different frequency channels
(Bouchet & Gispert 1999)? The blackbody shape of the CMB relates the signal
in all the channels, leaving one free parameter. Similarly, if the foreground shapes
are known, each foreground comes with just one free parameter per pixel. A like-
lihood function for the data can again be written down and the best estimator for
the CMB amplitude determined analytically. In the absence of foregrounds, one
would extract the CMB signal by weighting the frequency channels according to
inverse noise. When foregrounds are present, the optimal combination of different
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frequency maps is a more clever weighting that subtracts out the foreground con-
tribution (Dodelson 1997). One can do better if the pixel-to-pixel correlations of
the foregrounds can also be modeled from power spectra (Tegmark & Efstathiou
1996) or templates derived from external data.

This picture is complicated somewhat because the foreground shapes are not
precisely known, varying across the sky, e.g., from a spatially varying dust temper-
ature. This too can be modeled in the covariance and addressed in the likelihood
analysis (Tegmark 1998, White 1998). The resulting cleaned CMB map is obvi-
ously noisier than if foregrounds were not around, but the multiple channels keep
the degradation managable. For example, the errors on some cosmological para-
meters coming from Planck may degrade by almost a factor of 10 as compared with
the no-foreground case. However, many errors will not degrade at all, and even the
degraded parameters will still be determined with unprecedented precision (Knox
1999, Prunet et al. 2000, Tegmark et al. 2000).

Many foregrounds tend to be highly non-Gaussian, in particular well-localized
regions of the map. These pixels can be removed from the map as was done for
the region around the galactic disk for COBE. This technique can also be highly
effective against point sources. Indeed, even if there is only one frequency channel,
external foreground templates set the form of the additional contributions toCN,
which, when properly included, immunize the remaining operations in the data
pipeline to such contaminants (Bond et al. 1998). The same technique can be used
with templates of residual systematics or constraints imposed on the data, from,
e.g., the removal of a dipole.

Bandpower Estimation

Figure 9 indicates that the next step in the compression process is extracting
bandpowers from the map. What is a bandpower and how can it be extracted from
the map? To answer these questions, we must construct a new likelihood function,
one in which the estimated2i are the data. No theory predicts an individual2i, but
all predict the distribution from which the individual temperatures are drawn. For
example, if the theory predicts Gaussian fluctuations, then2i is distributed as a
Gaussian with mean zero and covariance equal to the sum of the noise covariance
matrix CN and the covariance due to the finite sample of the cosmic signalCS.
Inverting Equation 1 and using Equation 2 for the ensemble average leads to

CS,i j ≡ 〈2i 2 j 〉 =
∑

`

12
T,`W`,i j , (30)

where12
T,` depends on the theoretical parameters throughC` (see Equation 3).

Here W`, the window function, is proportional to the Legendre polynomial
P̀ (n̂i · n̂ j ) and a beam and pixel smearing factorb2

` . For example, a Gaussian
beam of widthσ dictates that the observed map is actually a smoothed picture
of true signal, insensitive to structure on scales smaller thanσ . If the pixel scale
is much smaller than the beam scale,b2

` ∝ e−`(`+1)σ 2
. Techniques for handling
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asymmetric beams have also recently been developed (Wu et al. 2001, Wandelt &
Gorski 2001, Souradeep & Ratra 2001, Fosalba et al. 2001). Using bandpowers
corresponds to assuming that12

T,` is constant over a finite range, or band, of`,
equal toBa for `a − δ`a/2< ` < `a + δ`a/2. Figure 1 gives a sense of the width
and number of bandsNb probed by existing experiments.

For Gaussian theories, then, the likelihood function is

LB(2i ) = 1

(2π )Np/2
√

detC2

exp

(
−1

2
2i C

−1
2,i j 2 j

)
, (31)

whereC2 = CS+ CN andNp is the number of pixels in the map. As before,LB is
Gaussian in the anisotropies2i, but in this case2i are not the parameters to be
determined; the theoretical parameters are theBa, upon which the covariance matrix
depends. Therefore, the likelihood function is not Gaussian in the parameters, and
there is no simple, analytic way to find the point in parameter space (which is
multidimensional depending on the number of bands being fit) at whichLB is a
maximum. An alternative is to evaluateLB numerically at many points in a grid
in parameter space. The maximum of theLB on this grid then determines the
best fit values of the parameters. Confidence levels on, e.g.,B1 can be determined
by finding the region within which

∫ b
a dB1[5Nb

i = 2

∫
dBi ]LB = 0.95, e.g., for 95%

limits.
This possibility is no longer viable owing to the sheer volume of data. Consider

the Boomerang experiment withNp= 57,000. A single evaluation ofLB involves
computation of the inverse and determinant of theNp× NpmatrixC2, both of which
scale asN3

p. Whereas this single evaluation might be possible with a powerful
computer, a single evaluation does not suffice. The parameter space consists of
Nb= 19 bandpowers equally spaced fromla= 100 up tola= 1000. A blindly placed
grid on this space would require at least 10 evaluations in each dimension, so the
time required to adequately evaluate the bandpowers would scale as 1019N3

p. No
computer can do this. The situation is rapidly getting worse (better) because Planck
will have of order 107 pixels and be sensitive to of order 103 bands.

It is clear that a “smart” sampling of the likelihood in parameter space is nec-
essary. The numerical problem, searching for the local maximum of a function,
is well posed, and a number of search algorithms might be used.LB tends to be
sufficiently structureless that these techniques suffice. Bond et al. (1998) proposed
the Newton-Raphson method, which has become widely used. One expands the
derivative of the log of the likelihood function—which vanishes at the true maxi-
mum ofLB—around a trial point in parameter space,B(0)

a . Keeping terms second
order inBa− B(0)

a leads to

B̂a = B̂(0)
a + F̂−1

B,ab

∂ lnLB

∂ Bb
, (32)

where the curvature matrix̂F B,ab is the second derivative of−lnLB with respect
to Ba andBb. Note the subtle distinction between the curvature matrix and the
Fisher matrix in Equation 29,F = 〈F̂〉. In general, the curvature matrix depends
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on the data, on the2i. In practice, though, analysts typically use the inverse of the
Fisher matrix in Equation 32. In that case, the estimator becomes

B̂a = B̂(0)
a + 1

2
F−1

B,ab

(
2i C

−1
2,i j

∂C2, jk

∂ Bb
C−1

2,ki2i − C−1
2,i j

∂C2, j i

∂ Bb

)
, (33)

quadratic in the data2i. The Fisher matrix is equal to

FB,ab = 1

2
C−1

2,i j

∂C2, jk

∂ Ba
C−1

2,kl

∂C2,li

∂ Bb
. (34)

In the spirit of the Newton-Raphson method, Equation 33 is used iteratively but
often converges after just a handful of iterations. The usual approximation is then to
take the covariance between the bands as the inverse of the Fisher matrix evaluated
at the convergent pointCB= F−1

B . Indeed, Tegmark (1997b) derived the identical
estimator by considering all unbiased quadratic estimators and identifying this one
as the one with the smallest variance.

Although the estimator in Equation 33 represents a∼10Nb improvement over
brute force coverage of the parameter space—converging in just several iterations—
it still requires operations that scale asN3

p. One means of speeding up the calcula-
tions is to transform the data from the pixel basis to the so-called signal-to-noise
basis, based on an initial guess as to the signal and throwing out those modes that
have low signal to noise (Bond 1995, Bunn & Sugiyama 1995). The drawback is
that this procedure still requires at least oneN3

p operation and potentially many,
as the guess at the signal improves by iteration. Methods to truly avoid this pro-
hibitive N3

p scaling (Oh et al. 1999, Wandelt & Hansen 2001) have been devised
for experiments with particular scan strategies, but the general problem remains.
A potentially promising approach involves extracting the real space correlation
functions as an intermediate step between the map and the bandpowers (Szapudi
et al. 2001). Another involves consistently analyzing coarsely pixelized maps with
finely pixelized submaps (Dore et al. 2001).

Cosmological Parameter Estimation

The huge advantage of bandpowers is that they represent the natural meeting
ground of theory and experiment. The above two sections outline some of the
steps involved in extracting them from the observations. Once they are extracted,
any theory can be compared with the observations without knowledge of experi-
mental details. The simplest way to estimate the cosmological parameters{ci} is
to approximate the likelihood as

Lc(B̂a) ≈ 1

(2π )Nc/2
√

detCB
exp

[
−1

2
(B̂a − Ba)C−1

B,ab(B̂b − Bb)

]
(35)

and evaluate it at many points in parameter space (the bandpowers depend on
the cosmological parameters). Because the number of cosmological parameters
in the working model isNc∼ 10, this represents a final radical compression of
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information in the original timestream, which recall has up toNt ∼ 1010 data
points.

In the approximation that the bandpower covarianceCB is independent of the
parametersc, maximizing the likelihood is the same as minimizingχ2 the argument
of the exponential. This has been done by dozens of groups over the past few
years, especially since the release ofCMBFAST(Seljak & Zaldarriaga, 1996), which
allows fast computation of theoretical spectra. Even after all the compression
summarized in Figure 9, these analyses are still computationally cumbersome
owing to the large numbers of parameters varied. Various methods of speeding up
spectra computation have been proposed (Tegmark & Zaldarriaga 2000), based on
the understanding of the physics of peaks outlined in “Acoustic Peaks,” above, and
Monte Carlo explorations of the likelihood function (Christensen et al. 2001).

Again the inverse Fisher matrix gives a quick and dirty estimate of the errors.
Here the analogue of Equation 29 for the cosmological parameters becomes

Fc,i j = ∂ Ba

∂ci
C−1

B,ab

∂ Bb

∂cj
. (36)

In fact, this estimate has been widely used to forecast the optimal errors on cosmo-
logical parameters, given a proposed experiment and a band covariance matrixCB

that includes diagonal sample and instrumental noise variance. The reader should
be aware that no experiment to date has even come close to achieving the precision
implied by such a forecast!

As we enter the age of precision cosmology, a number of caveats will become
increasingly important. No theoretical spectra are truly flat in a given band, so the
question of how to weight a theoretical spectrum to obtainBa can be important. In
principle, one must convolve the theoretical spectra with window functions (Knox
1999) distinct from those in Equation 30 to produceBa. Among recent experi-
ments, Degree Angular Scale Interferometer (DASI) (Pryke et al. 2001), among
others, have provided these functions. Another complication arises because the
true likelihood function forBa is not Gaussian, i.e., not of the form in Equation 35.
The true distribution is skewed: The cosmic variance of Equation 4 leads to larger
errors for an upward fluctuation than for a downward fluctuation. The true distri-
bution is closer to log-normal (Bond et al. 2000), and several groups have already
accounted for this in their parameter extractions.

DISCUSSION

Measurements of the acoustic peaks in the CMB temperature spectrum have al-
ready shown that the Universe is nearly spatially flat and began with a nearly
scale-invariant spectrum of curvature fluctuations, consistent with the simplest
of inflationary models. In a remarkable confirmation of a prediction of big bang
nucleosynthesis, the CMB measurements have now verified that baryons account
for about 4% of the critical density. Further, they suggest that the matter
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density is about 10 times higher than this, implying the existence of nonbaryonic
dark matter and dark energy.

Future measurements of the morphology of the peaks in the temperature and
polarization should determine the baryonic and dark matter content of the Universe
with exquisite precision. Beyond the peaks, gravitational wave imprint on the
polarization, the gravitational lensing of the CMB, and gravitational and scattering
secondary anisotropies hold the promise of elucidating the physics of inflation and
the impact of dark energy on structure formation.

The once and future success of the CMB anisotropy enterprise rests on three
equally important pillars: advances in experimental technique, precision in theory,
and development of data analysis techniques. The remarkable progress in the field
over the past decade owes much to the efforts of researchers in all three disciplines.
That much more effort will be required to fulfill the bright promise of CMB suggests
that the field will remain active and productive for years to come.
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Figure 1 (Top) Temperature anisotropy data with boxes representing 1-σ errors and
approximatel-bandwidth. (Bottom) Temperature and polarization spectra forÄtot= 1,
Ä3 = 2/3,Äbh2= 0.02,Ämh2= 0.16,n= 1,zri = 7,Ei = 2.2× 1016 GeV.Dashed lines
represent negative cross correlation andboxesrepresent the statistical errors of the
Planck satellite.
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Figure 4 Sensitivity of the acoustic temperature spectrum to four fundamental cos-
mological parameters. (a) The curvature as quantified byÄtot. (b) The dark energy
as quantified by the cosmological constantÄ3 (w3 = −1). (c) The physical baryon
densityÄbh2. (d) The physical matter densityÄmh2. All are varied around a fiducial
model ofÄtot= 1, Ä3 = 0.65,Äbh2= 0.02,Ämh2= 0.147,n= 1, zri = 0, Ei = 0.
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Figure 6 Integral approach. Cosmic Microwave Background anisotropies can be
thought of as the line-of-sight projection of various sources of plane wave temperature
and polarization fluctuations: the acoustic effective temperature and velocity or Doppler
effect (see§3.8), the quadrupole sources of polarization (see§3.7) and secondary
sources (see§4.2,§4.3). Secondary contributions differ in that the region over which
they contribute is thick compared with the last scattering surface at recombination and
the typical wavelength of a perturbation.



2 Aug 2002 16:7 AR AR166-06-COLOR.tex AR166-06-COLOR.SGM LaTeX2e(2002/01/18)P1: GDL

Figure 7 (Top) Polarization generation and classification. Thomson scattering of
quadrupole temperature anisotropies generates linear polarization. The component of
the polarization that is parallel or perpendicular to the wavevectork is called theE-
mode, and the one at 45◦ angles is called theB-mode. (Bottom) Secondary anisotropies.
(a) Gravitational secondaries: Integrated Sachs-Wolfe, lensing, and Rees-Sciama (mov-
ing halo) effects. (b) Scattering secondaries: Doppler, density (δ), and ionization (i)
modulated Doppler, and the Sunyaev-Zel’dovich effects. Curves and model are de-
scribed in the text.


