Scientific expectations and challenges for Planck and future CMB experiments Carlo Baccigalupi, SISSA, Trieste, Italy #### Outline - CMB physics - > Status of CMB observations - Challenges for future CMB - > The science goals of the Planck satellite - > Conclusions, ⊗/⊚ # CMB physics #### CMB: where and when? - > Opacity: $\lambda = (n_e \sigma_T)^{-1} \ll H^{-1}$ - Decoupling: λ ≈ H⁻¹ - Free streaming: λ » H⁻¹ - Cosmological expansion, constants and baryon abundance conspire to activate decoupling about 300000 years after the Big Bang, at about 3000 K photon temperature ### CMB anisotropy: phenomenology - Primordial perturbations in the curvature affect all cosmological species - Perturbation evolution for all components dictated by the cosmic expansion - The anisotropy in the CMB represents the snapshot of cosmological perturbations in the photon component only, at decoupling time #### CMB physics: Boltzmann equation #### CMB physics: Boltzmann equation ``` d neutrinos = metric + weak interaction dt d dark matter = metric + weak interaction (?) dt ``` metric = photons + neutrinos + baryons + leptons + dark matter # CMB physics: metric #### CMB Physics: Compton scattering - Compton scattering is anisotropic - An anisotropic incident intensity determines a linear polarization in the outgoing radiation - At decoupling that happens due to the finite width of last scattering and the cosmological local quadrupole # CMB anisotropy: total intensity # CMB anisotropy: polarization # CMB anisotropy: reionization # CMB anisotropy: lensing # CMB anisotropy: lensing # CMB anisotropy: lensing # Status of CMB observations #### CMB anisotropies T(n), Q(n), U(n), V(n) spherical harmonics information compression a^{T}_{lm} , a^{E}_{lm} , a^{B}_{lm} $$C_{l} = \Sigma_{m} |a_{lm}^{T,E,B}|^{2}/2(l+1)$$ ### CMB angular power spectrum ### CMB angular power spectrum Angle ≈ 200/ℓ degrees # WMAP first year ### WMAP third year ### CMB angular power spectrum #### Cosmological concordance model #### Cosmological concordance model #### Cosmological concordance model # CMB anisotropy statistics: unknown, probably still hidden by systematics - Evidence for North south asymmetry (Hansen et al. 2005) - Evidence for Bianchi models (Jaffe et al. 2006) - Poor constraints on inflation, the error is about 100 times the predicted deviations from Gaussianity (Komatsu et al. 2003) - Lensing detection out of reach #### Other cosmological backgrounds? - ➤ Neutrinos: abundance comparable to photons ②, decoupling at MeV ②, cold as photons ③, weak interaction ⑤ - ➤ Gravity waves: decoupling at Planck energy ②, abundance unknown ③, gravitational interaction ③ - Morale: insist with the CMB, still for many years...that's the best we have for long... #### Forthcoming CMB polarization probes - > Planck - EBEx (NASA, France, Italy, UK), baloon, same launch time scale as Planck for the north american flight - QUIET (US, UK), ground based - Clover (UK, ...) - > Brain - > ... - Complete list available at lambda.gsfc.nasa.gov #### Cosmic vision beyond Einstein - NASA and ESA put out separate calls of opportunity for a polarization oriented future (2020 or so) CMB satellite - Technologies, design, options for joint or separate missions are being discussed in these months - Promises: gravity waves, lensing and high redshift dark energy, inflationary non-Gaussianity Beyond einstein logo # Challenges for future CMB #### Challenges for future CMB - ➤ The sensitivity can be increases with the detector number © - ➤ The systematics from the instrument must be controlled at the level of the signal ⁽³⁾ - The emission from foregrounds may cover the B signal over the all sky, at all frequency ⁽²⁾ # Challenges for future CMB: systematics from beam shape - Asymmetric beams cause unwanted polarization from total intensity, leakage of E modes into B, ... - No way to circularize the beams, rather the beam shape has to be reconstructed in flight to subtract the bias from the signal In total intensity, at frequencies between 60 and 90 GHz, after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB - In total intensity, at frequencies between 60 and 90 GHz, after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB - In polarization, at frequencies between 60 and 90 GHz, after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB In total intensity, at frequencies between 60 and 90 GHz, after cutting out the brighest part of the Galactic emission, the sky is dominated by CMB frequence between 60 and 90 Graph, cutting out the brighest putting the Galactic emission sky is dominate. Page et al. 2006 Planck reference sky ### Are there foreground clean regions at all in polarization? Page et al. 2006 - WMAP has no detection in large sky areas in polarization - Very naive estimates may be attempted in those areas, indicating that the foreground level might be comparable to the cosmological B mode at all frequencies, in all sky regions $$x_I = a_{II}$$ $$s_{I}$$ $$+ a_{I2}$$ $$s_2$$ $$\pm n_{I}$$ $$x_2 = a_{2I}$$ $$S_2$$ $$+ n_2$$ $$x = As + n$$ ### Invert for s! $$x = As + n$$ - Non-blind approach: use prior knowledge on A and s in order to stabilize the inversion, likely to be suitable for total intensity - Blind approach: do not assume any prior either on A or s, likely to be used in polarization - Relevant literature from Brandt et al. 1994, to Maino et al. 2006, successful applications to COBE, BEAST, WMAP #### Component separation in polarization - Component separation studies how to separate CMB and foregrounds in astrophysical multi-frequency observations - The independent component analysis exploits the statistical differences between the almost Gaussian CMB and the strongly non-Gaussian foregrounds - Results are encouraging, although obtained so far without instrumental systematics Stivoli et al. 2006 # The science goals of the Planck satellite Source: Planck scientific program bluebook, available at www.rssd.esa.int/Planck #### Planck - Hardware: third generation CMB probe, ESA medium size mission, NASA (JPL, Pasadena) contribution - Software from 400 collaboration members in EU and US - Two data processing centers (DPCs): Paris + Cambridge (IaP + IoA), Trieste (OAT + SISSA) #### Planck contributors #### Planck data processing sites #### Planck data deliverables - All sky maps in total intensity and polarization, at 9 frequencies between 30 and 857 GHz - Angular resolution from 33' to 7' between 30 and 143 GHz, 5' at higher frequencies - S/N ≈ 10 for CMB in total intensity, per resolution element - Catalogues with tens of thousands of extra-Galactic sources | | Frequency [GHz] | | | | | |---|-----------------|------|------|------|-------| | | 143 | 217 | 353 | 550 | 850 | | Confusion limit [mJy, 3 σ] | 6.3 | 14.1 | 44.7 | 112 | 251 | | Planck All Sky Survey sensitivity [mJy, 3σ] | 26 | 37 | 75 | 180 | 300 | | Planck Deep Survey sensitivity [mJy, 3\sigma] | 10 | 18.4 | 49 | 170 | 280 | | Number of galaxies [all sky] | 570 | 860 | 1700 | 4400 | 35000 | ## Planck scientific deliverables: CMB total intensity and the era of imaging ## Planck scientific deliverables: CMB polarization #### Planck and polarization CMB B modes ## Planck scientific deliverables: cosmological parameters #### Non-CMB Planck scientific deliverables - Thousands of galaxy clusters - Tens of thousands of radio and infrared extra-Galactic sources - Templates for the diffuse gas in the Galaxy, from 30 to 857 GHz - > ... #### Conclusions - The CMB will be the best signal from the early universe for long - We have some knowledge of the two point correlation function, but most of the signal is presently unknown - If detected, the hidden signatures might reveal mysteries for physics, like gravitational waves, or the machanism of cosmic acceleration - We don't know if we will ever see those things, systematics and foregrounds might prevent that - But we've no other way to get close to the Big Bang, so let's go for it and see how far we can go - First go/no go criteria from Planck and other probes in just a few years, possible scenarios... - Polarized foreground too intense, no sufficient cleaning, systematics out of control - Increase by one digit the cosmological parameters measurement, mostly from improvements in total intensity measurements - > Time scale: few years - Modest or controllable foreground emission, systematics under control - Cosmological gravity waves discovered from CMB B modes! Expected precision down to one thousandth of the scalar amplitude - Percent measurement of the dark energy abundance at the onset of acceleration, from CMB lensing - > Time scale: 10 years