# An introduction to CMB data analysis PhD course

Davide Poletti and Nicoletta Krachmalnicoff

01/03/2017

SISSA

- Linear Cosmological Perturbations and CMB anisotropies

## What's this lecture about?



## Elements of CMB data analysis:

- Instrument and observations
- Time-Ordered data
- Map-making
- Component separation
- Power spectrum estimation
- Parameter estimation



## Elements of CMB data analysis:

- Instrument and observations
- Time-Ordered data
- Map-making
- Component separation
- Power spectrum estimation
- Parameter estimation



## Where do the data come from?



Ground

- Heavy hardware
  - large telescopes (resolution)
  - large receivers (sensitivity)
- Environment contamination (atmosphere, ground...)
- Cutting-edge technology
- Maintenance possible
- <10y to deploy</pre>
- ~ I0 M€





## Space

- Light hardware
- Extremely reliable technology
- Stable environment
- ~20y to deploy
- around G€  $\,$
- full sky
- Only galactic contamination

**Balloon** are midway: (notably, limited atmosphere)

## An example of CMB imager (POLARBEAR)







Read at ~200 Hz: Time Ordered Data

## The detector



However,

- drifts in the system
- I/f noise

Imit to the low frequency sensitivity

- response time
- limit to high frequency sensitivity

Telescopes scan the sky. Scanning speed defines a correspondence between **frequency** and **angular scales** 



Optical power on antennas CALIBRATION Absorber temperature Resistance Current

> Adapted from Rahlin et al. (2014) (multipole axis modified)

## The beam



Given a sky  $T(\hat{n}) = \sum_{i} a_{lm} Y_{lm}(\hat{n})$  the actual sky seen by the detectors is  $T(\hat{n}) = \sum_{i} a_{lm} Y_{lm}(\hat{n}) B_{\ell}$ 

the beam suppresses small scales power

## TODs are not just CMB

### ATMOSPHERE

• obstacle for high frequencies



- not (significantly) polarized
- but atmospheric fluctuations behave like I/f noise and can leak to polarization (e.g. bandpass mismatch, instrumental polarization...)





GROUND pickup:

- The beam has sidelobes. They have very low amplitude but the ground is very bright
- Other effects (e.g., local magnetic field)
- ground-synchronous signal

### AND MORE:

- cosmic rays,
- instrumental glitches,
- •
- ???

9







- **Time-Ordered data**: Polarbear: Volume = sampling rate x detector number x observation time
- Map-making Planck HF maps: 1.7 arcmin resolution, full sky:  $5 \times 10^7$  pixels Polarbear: I.7 arcmin, 0.1% sky: 5 x 10<sup>4</sup> pixels
- **Component separation** Typically, information compression of O(1)
- **Power spectrum estimation** Typically O(10)-O(100) power spectrum points
- Estimation of O(I)-O(IO) cosmological parameters  $\bullet$

# $\sim 100 \text{ Hz} x \sim 1000 \text{ x} \sim 10^7 \text{ s} = \sim 10^{12} \text{ samples} (\sim 10 \text{ TB})$

# Compression has to be efficient and effective computer science and statistics play important roles



## Map-making

 $d_t = I_{p_t} + \cos(2\varphi_t)Q_{p_t} + \sin(2\varphi_t)U_{p_t} + n_t - \text{Noise contribution}$ 

Samples of the TOD recorded at time t

Pixelized maps of the Stokes parameters

Orientation of the detector projected on the sky

The complete time stream

- $\mathbf{d} = \mathbf{A}\mathbf{s} + \mathbf{n}$
- $\mathbf{A} = \text{Pointing matrix}$
- $\mathbf{s} = sky signal$
- $\mathbf{n}$  = noise with covariance  $\mathbf{N}$

Generalised Least Squared estimator

W can be any symmetric positive definite matrix.

Minimum variance when  $W = N^{-1}$ 



Sky pixel observed

$$\mathbf{\hat{s}} = (\mathbf{A}^{\top} \mathbf{W} \mathbf{A})^{-1} \mathbf{A}^{\top} \mathbf{W} \mathbf{d}$$
$$\mathbf{\hat{s}} = \mathbf{\mathcal{N}}_{p} \times \mathcal{N}_{p}^{-1} \mathbf{\mathcal{N}}_{p} \times \mathcal{N}_{t}$$
$$\mathcal{N}_{p} \times \mathcal{N}_{t}$$

Minimize the "chi-square"  $(\mathbf{d} - \mathbf{As})^{\top} \mathbf{W} (\mathbf{d} - \mathbf{As})$ 

➡Noise characterization important

## Map-making challenges

We saw earlier that:

- Noise is correlated
  - $\rightarrow$  The optimal W is <u>not</u> diagonal
- Data are not just CMB and noise:  $\mathbf{d} = \mathbf{As} + \mathbf{b}$  $\bullet$ Ty models the contaminating signals (known
  - igstarrow The GLS solution becomes  $\ \mathbf{\hat{s}} = (\mathbf{A}^{ op} \mathbf{F}_{\mathbf{T}} \mathbf{A})$  $\mathbf{F}_{\mathbf{T}} \equiv \mathbf{W} - \mathbf{W}\mathbf{T}(\mathbf{T}^{\top}\mathbf{W}\mathbf{T})^{-1}\mathbf{T}^{\top}\mathbf{W}$  is a filtering op

### Remind, sensible values are

$$\mathcal{N}_p = 10^6$$
$$\mathcal{N}_t = 10^{12}$$

Speed of processors is  $\sim 10^9$  operations/sec

$$\mathbf{\hat{s}} = \boxed{\mathcal{N}_p \times \mathcal{N}_p}^{-1} \qquad \qquad \mathcal{N}_p$$

Mostly determined by the scanning strategy

- A priori dense
- Challenging inversion

$$\mathbf{T}\mathbf{y} + \mathbf{n}$$
  
templates with unknown amplitude)  
 $\mathbf{A}^{-1}\mathbf{A}^{\top}\mathbf{F}_{T}\mathbf{d}$   
erator:  $\mathbf{F}_{T}\mathbf{T} = 0$ 



Careful choice of W and T to make this feasible

## Map-making: solving a (too) large inverse problem

How to invert this  $N_p \times N_p$  matrix? Inversion requires  $N_p^3 \sim 10^{18}$  operations (100 cpu y) Find approximate solution without explicit inversion using the Preconditioned Conjugate **G**radient technique

Solve  $\mathbf{B} \mathbf{x} = \mathbf{b}$  with  $\mathbf{B}$  symmetric positive definite. Idea:

• use **B** as scalar product, given a search direction  $\hat{\mathbf{p}}$  (with  $\hat{\mathbf{p}}^t \mathbf{B} \hat{\mathbf{p}} = 1$ ), the projection onto it  $\hat{\mathbf{p}}(\hat{\mathbf{p}}^t \mathbf{B} \mathbf{x}) = \hat{\mathbf{p}}(\hat{\mathbf{p}}^t \mathbf{b})$ 

can be interpreted as an approximate solution.

• project the solution on an increasingly larger subspace until the approximate solution is "good enough": e.g.,  $|\mathbf{B}\mathbf{x} - \mathbf{b}| / |\mathbf{b}| < 10^{-6}$ 

 $\mathcal{N}_p^2 \times \mathcal{N}_{\text{iter}} \sim 10^{12} \times [O(10) \text{ to } O(1000)] \sim 0.1 \text{ cpu y (optimistic)}$ It can be reduced by proper It assumes **B** precomputed and preconditioning stored (often it isn't)

It assumes 100% cpu (never achieved)

Large computational cost requires careful implementation efficiency massive parallelism







## **Component separation**



For B-modes science, no sky region can be considered foreground-free

The frequency dependence of the emission law is different for different components

Component separation: from frequency maps to component maps

## **Components are mixed**





Equivalently

Frequency data  $\longrightarrow$   $\mathbf{d} = \mathbf{As} + \mathbf{n}$ vector

Mixing matrix



Different assumptions, different level of blindness Most of them are two step processes:

- Use many "pixels" to constrain a distinctive property of the components
- Use this property to separate the components

## Examples

- Assume perfect knowledge of A ➡ GLS solution
- Assume knowledge of A up to some free parameter  $\beta$ . Minimize  $(\mathbf{d} \mathbf{A}(\beta)\mathbf{s})^{\top}\mathbf{W}(\mathbf{d} \mathbf{A}(\beta)\mathbf{s})$ with respect to both s and  $\beta$ . Maximum likelihood parametric fitting.
- Assume the scaling law of CMB, a. Estimate the CMB as a linear combination, minimizing the variance of the output

 $\hat{s}_{CMB} = \frac{a^t \widehat{R}^{-1}}{a^t \widehat{R}^{-1} a} d$   $\widehat{R}$  is the empirical covariance matrix

Internal linear combination.

• Many more (Independent component analysis, template fitting...), not necessarily in pixel domain (but, e.g., harmonic, needlet...)



# e.g. Stompor et al. (2008)

e.g. Delabrouille et al. (2009)

## CMB and foregrounds maps





Angular power spectrum estimation: very basics

$$C(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}') \equiv \langle X^*(\hat{\boldsymbol{x}}) X(\hat{\boldsymbol{x}}') \rangle \text{ Two point correlation}$$

$$Assuming statistical isotropy$$

$$C(\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}') \equiv C(\hat{\boldsymbol{x}} \cdot \hat{\boldsymbol{x}}') \equiv \frac{1}{4\pi} \sum_{\ell=0}^{\infty} (2\ell+1)C_{\ell}P_{\ell}(\ell)$$

$$f = \sum_{\ell=0}^{\infty} (2\ell+1)C_{\ell}P_{\ell}(\ell)$$
Expansion on the Legendre polynomials

Simplest power spectrum estimator

$$\hat{C}_{\ell} = \sum_{m=-\ell}^{\ell} \frac{a_{\ell m}^* a_{\ell m}}{2\ell + 1} \qquad \langle \hat{C}_{\ell} \rangle = C_{\ell}$$

 $\mathcal{N}_n^{3/2}$ Computational cost (due to the SHT)

### on function

# $(\hat{\boldsymbol{x}} \cdot \hat{\boldsymbol{x}}') \quad \blacksquare \quad \langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$

 $\operatorname{Var}(\hat{C}_{\ell}) = \frac{2}{2\ell + 1} C_{\ell}^2 \frac{1}{f_{sky}}$ 

Cosmic variance

Partial sky coverage and (inhomogeneous) noise

CMB map  $\hat{\mathbf{s}} = s + n$  covering only a fraction of sky, *n* Gaussian but not isotropic Covariance of the map N + C  $\uparrow$ Not a function of  $\hat{x} \cdot \hat{x}'$   $C(\hat{x}, \hat{x}') \equiv \frac{1}{4\pi}$ 

Maximize the likelihood

$$P(\boldsymbol{x}|C_{\ell}) = \mathcal{L}(C_{\ell}) = \frac{\exp\{\frac{1}{2}\hat{\mathbf{s}}^{\top}(\boldsymbol{N}+\boldsymbol{C})^{-}}{\sqrt{(2\pi)^{\mathcal{N}_{p}}}\det(\boldsymbol{N}+\boldsymbol{C})}$$



- Doable only for large scales (ell < few tens)
- $\blacksquare$  Small scales: keep the  $\mathcal{N}_p^{3/2}$  scaling (with large or very large pre-factor)
  - Pseudo-power spectrum estimators
  - Gibbs sampling

$$\frac{1}{4\pi} \sum_{\ell=0}^{\infty} (2\ell+1) C_{\ell} P_{\ell}(\hat{\boldsymbol{x}} \cdot \hat{\boldsymbol{x}}')$$



## Pseudo-power spectrum estimators

# Problem with $\hat{C}_{\ell} = \sum_{m=-\ell}^{\ell} \frac{a_{\ell m}^* a_{\ell m}}{2\ell + 1}$ : $a_{lm}$ are not available (partial sky coverage)

 $C_l$  is estimated by

- sampling the power of s along functions in the l subspace (the  $\{Y_{lm}\}_{m \in \{-l,...l\}}$  functions) averaging (the expected power on each function is  $C_l$ )
- lacksquarelacksquareIn this case the functions are orthogonal but don't have to be

If a function f straddles multiple l subspaces, the expected power of s along f is a (known) linear combination of  $C_l$ 

Define a pseudo-basis of such f functions:  $\tilde{Y}_{\ell m}$  (any set!) and sample s along them.  $\tilde{a}_{\ell m} \equiv \int \tilde{Y}_{\ell m}^* s d\Omega$  $\tilde{C}_{\ell} = \sum_{m=-\ell}^{\ell} \frac{\tilde{a}_{\ell m}^* \tilde{a}_{\ell m}}{2\ell + 1}$  Pseudo-power spectrum  $\bigwedge \langle \tilde{C}_{\ell} \rangle = \sum_{\ell'} M_{\ell\ell'} C_{\ell'}$ 

Compute and "invert" the  $M_{ll}$  and and you are done

Hauser and Peebles (1973), Hivon et al. (2002), Kogut et al. (2003)

Notable example:  $Y_{\ell m} \equiv WY_{\ell m}$ W is the inverse noise

- handle cut sky
- handle inhomogeneous coverage
- Computing the  $M_{ll}$  scales as  $\mathcal{N}_p^{3/2}$



## **Cosmological parameter estimation**

Likelihood of the cosmological parameters  $\theta$ •  $C_{\ell}(\theta)$ , so  $\mathcal{L}(C_{\ell})$  is actually  $\mathcal{L}(\theta)$ 

 previous likelihood • CAMB CLASS approximations . . .

No analytical form.

- How to maximize it?
- What shape? (uncertainties, correlations, degeneracies...)

Evaluate on grid of  $\theta$ ? Impossible or inefficient

MCMC algorithms sample from the  $\theta$  distribution  $\mathcal{L}(\theta)$  $\blacksquare$  chain of values of  $\theta$  whose density is proportional to  $\mathcal{L}(\theta)$ 

- $\theta_0$
- rule for  $\theta_{i+1}$  from  $\theta_i$ 
  - $\blacktriangleright$  rejection criterion based on  $\mathcal{L}(\theta_i)$  and  $\mathcal{L}(\theta_{i+1})$

Challenge: fast but accurate evaluation of  $\mathcal{L}_{22}(\theta)$ , low rejection rate

## **Cosmological parameter estimation**



# Typical analysis of the MC chains

Planck XI (2015)

## **Cosmological parameter estimation**

I-D marginal distribution

2-D marginal distribution



### Schuhmann et al. (2016)

Note: actually in this example the contours are not derived from the points



## Recap: amazing physics with the CMB angular power spectrum



Accurately measure crucial cosmological parameters



l

## Recap: angular power spectrum main uncertainties



## CMB science is much more than its power spectrum

- Sunyaev-Zeldovich effect •
- Lensing •
- Cross-correlations ullet
- Spectral distortions •
- Non gaussianities •
- I.o.s integrated effects (e.g., cosmic birefringence) •
- ۲

## Far infrared and microwave observations are not only CMB

- Cosmic infrared background •
- Synchrotron •
- Interstellar medium ullet
- Galactic magnetic field •
- $\bullet$ . . .

## CMB data analysis (and instrumentation) is much more than the overview proposed

The SISSA group is at the forefront of the CMB effort, with POLARBEAR/Simons Array.

### **POLARBEAR** lacksquare

- Lensing reconstruction Phys. Rev. Lett. 112, 131302 (2014); Phys. Rev. Lett. 112, 131302 (2014)
- BB spectrum Astrophysical J. 794, 171 (2014)
- Cosmic birefringence Phys. Rev. D 92, 123509 (2015)
- **POLARBEAR2** (Summer 2017)  $\bullet$ 
  - new telescope and receiver
    - 7,588 detectors
    - Multichroic pixels (95/150 GHz)
- Simons Array (Early 2018) • new telescopes, 2 new PB2-like receivers
  - 22,764 detectors
  - 95/150/220 GHz channel



**Simons Observatory** 

$$\sigma(r=0.1) =$$

$$\sigma(\Sigma m_{\nu}) = ($$

Combined combined with Planck and C-Bass with DESI BAO

