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What’s this lecture about?

This lecture
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Where do the data come from?

Ground 
• Heavy hardware

• large telescopes (resolution)
• large receivers (sensitivity)

• Environment contamination 
(atmosphere, ground…)

• Cutting-edge technology
• Maintenance possible
• <10y to deploy
• ~ 10 M€

Space 
• Light hardware
• Extremely reliable technology
• Stable environment
• ~20y to deploy
• around G€
• full sky
• ~Only galactic contamination

Balloon are midway: 
(notably, limited atmosphere)
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Antennas

Microstrip 
Filter

TES 
bolometer

An example of CMB imager (POLARBEAR)

2.
5 

M
et

er
s

Read at 
~200 Hz:
Time
Ordered
Data

6



Credits: Lloyd Watkin

The detector
Optical 

power on 
antennas

Absorber
temperature

Resistance

Current

C
A
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Superconducting transition:
➡ small change in temperature 

causes big change in current

Myers (2010)

WHAT WE  
MEASURE

However,
• drifts in the system
• 1/f noise
• …
➡ limit to the low frequency sensitivity

• response time
➡ limit to high frequency sensitivity

Telescopes scan the sky.
Scanning speed defines a correspondence 
between frequency and angular scales

Adapted from 
Rahlin et al. (2014)
(multipole axis modified)
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The beam
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A “cone” is  funnelled
onto the detector 

(exaggerated)

For given pointing direction the sky signal is convolved 
with the beam function.

Planck 217 GHz

B
`

It is approximated as a function of the angle 
from the center         , which can be expanded 
in multipoles:          

B(✓)
B`

Given a sky                            the actual sky seen by the detectors is  

➡ the beam suppresses small scales power

B`

FWHM / wavelenght

primary diameter

8



TODs are not just CMB
ATMOSPHERE

• obstacle for high frequencies 

• not (significantly) polarized
• but atmospheric fluctuations behave like 1/f noise and 

can leak to polarization (e.g. bandpass mismatch, 
instrumental polarization…)

Precipitable
water
vapour

Adapted from Tremblin et al. 2012

Detector noise

Atmospheric noise

Temperature

Polarization

Adapted from Kermish et al. (2012)

GROUND pickup:
• The beam has sidelobes. They have very low 

amplitude but the ground is very bright
• Other effects (e.g., local magnetic field)
➡ ground-synchronous signal

Atmosphere

Ground

Cosmic rays

AND MORE:
• cosmic rays,
• instrumental glitches,
• … 
• ??? 

hours

Tristram and Ganga (2008)
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CMB Data analysis, quantitatively

• Time-Ordered data:  
Polarbear:  
Volume = sampling rate x detector number x observation time  
            =    ~100 Hz   x      ~1000         x        ~107  s      =  ~1012 samples (~10 TB)   

• Map-making  
Planck HF maps: 1.7 arcmin resolution, full sky: 5 x 107 pixels 
Polarbear: 1.7 arcmin, 0.1% sky:  5 x 104  pixels

• Component separation  
Typically, information compression of O(1)

• Power spectrum estimation  
Typically O(10)-O(100) power spectrum points

• Estimation of O(1)-O(10) cosmological parameters

Compression has to 
be efficient and 
effective
➡ computer science 

and statistics play 
important roles 
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Map-making

dt = Ipt + cos(2't)Qpt + sin(2't)Upt + nt

Samples of the TOD
recorded at time t

Pixelized maps
of the Stokes 
parameters

Sky pixel observedOrientation of the 
detector projected 

on the sky

Noise contribution

The complete time stream

d = As+ n

A = Pointing matrix

s = sky signal

n = noise with covariance N

Generalised 
Least
Squared  
estimator

ŝ = (A>WA)�1A>Wd

Minimize the “chi-square”

W can be any symmetric positive definite matrix.  
 
Minimum variance when W = N-1

➡Noise characterization important

(d�As)>W(d�As)
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Map-making challenges
We saw earlier that:

• Noise is correlated
➡ The optimal W is not diagonal

• Data are not just CMB and noise:  
Ty models the contaminating signals (known templates with unknown amplitude)
➡ The GLS solution becomes 

                                        is a filtering operator:
ŝ = (A>FTA)�1A>FTd

ŷ = (T>FAT)�1T>FAdFT ⌘ N�1 �N�1T(T>N�1T)�1T>N�1 FTT = 0

d = As+Ty + n

T = Templates

y = Amplitudes of T
FT ⌘ W �WT(T>WT)�1T>W

ŝ = Np ⇥Np
Np ⇥Nt

�1. . Np ⇥Nt.Nt ⇥Nt
Np = 106

Nt = 1012

Remind, sensible values are 

Speed of processors  
is ~109 operations/sec

Careful choice of  W 
and T to make this 

feasible

Mostly determined by the scanning strategy
➡ A priori dense
➡ Challenging inversion
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Map-making: solving a (too) large inverse problem

How to invert this              matrix? Inversion requires                 operations (100 cpu y)
➡ Find approximate solution without explicit inversion using the Preconditioned Conjugate 

Gradient technique

Np ⇥Np N 3
p ⇠ 1018

It assumes B precomputed and 
stored (often it isn’t)

It can be reduced by proper 
preconditioning

N 2
p ⇥Niter ⇠ 10

12 ⇥ [O(10) to O(1000)] ⇠ 0.1 cpu y (optimistic)

It assumes 100% cpu
(never achieved)

Solve  B x = b   with B symmetric positive definite.
Idea:
• use B as scalar product,  given a search direction    (with                  ), the projection onto it  

        
can be interpreted as an approximate solution.

• project the solution on an increasingly larger subspace until the approximate solution is 
“good enough”: e.g., 

p̂ p̂t Bp̂ = 1

p̂(p̂t
Bx) = p̂(p̂t

b)

|Bx� b|/|b| < 10�6
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High performance computing

• Large computational cost requires careful implementation
✓ efficiency
✓ massive parallelism

Supercomputers are required 
 
Example: Edison (NERSC)
• 5586 nodes
• 24 cores/node at 2.4 GHz
• 64 GB/node RAM
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Component separation

For B-modes 
science, no sky 
region can be 
considered 
foreground-free

The frequency 
dependence of 
the emission law 
is different for 
different 
components

Component 
separation:
from frequency 
maps to 
component maps
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Components are mixed

d⌫ =
X

c

ac,⌫sc + n⌫

For a given direction in the sky:

Components
Component-specific
emission law

Amplitude 
of the
component c

Frequency dependent noise

Frequency data

d = As+ n

Equivalently

Mixing matrix Vector of the components

Noise vectorFrequency data
vector

20



Several solutions

• Assume perfect knowledge of A ➡ GLS solution

• Assume knowledge of A up to some free parameter β. Minimize                                             
with respect to both s and β.  
Maximum likelihood parametric fitting.                                           e.g. Stompor et al. (2008)

• Assume the scaling law of CMB, a. Estimate the CMB as a linear combination, minimizing 
the variance of the output  
 
 
Internal linear combination.                                                      e.g. Delabrouille et al. (2009)

• Many more (Independent component analysis, template fitting…), not necessarily 
in pixel domain (but, e.g., harmonic, needlet…)

(d�A(�) s)>W(d�A(�) s)

is the empirical covariance matrixd = As+ nCMB

Different assumptions, different level of blindness
Most of them are two step processes:
• Use many “pixels” to constrain a distinctive property of the components
• Use this property to separate the components

Examples
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CMB and foregrounds maps

Planck I (2015)  
(combined with WMAP)22
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Expansion on the Legendre polynomials

Assuming statistical isotropy

Angular power spectrum estimation: very basics

Two point correlation function 

Simplest power spectrum estimator

hĈ`i = C`

Cosmic varianceComputational cost (due to the SHT)        N 3/2
p

24
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CMB map                     covering only a fraction of sky, n Gaussian but not isotropic

Covariance of the map

Maximize the likelihood

➡ Doable only for large scales (ell < few tens)

➡ Small scales: keep the            scaling (with large or very large pre-factor)

• Pseudo-power spectrum estimators

• Gibbs sampling

ŝ = ŝ =

Partial sky coverage and (inhomogeneous) noise

ŝ =

cost ⇠ N 3

p ⇠ `6
max

N 3/2
p

Not a function of 
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Pseudo-power spectrum estimators

26

Problem with                     : alm are not available (partial sky coverage)

Cl is estimated by
• sampling the power of s along functions in the l subspace (the {Ylm}m∊{-l…l} functions)
• averaging (the expected power on each function is Cl)

In this case the functions are orthogonal but don’t have to be

If a function f straddles multiple l subspaces, the expected power of s along f is a (known) 
linear combination of Cl

Define a pseudo-basis of such f functions:        (any set!) and sample s along them.                         

Pseudo-power spectrum

Compute and “invert” the Mll and and you are done

Notable example:
W is the inverse noise
• handle cut sky
• handle inhomogeneous 

coverage
• Computing the Mll scales 

as N 3/2
pHauser and Peebles (1973),  Hivon et al. (2002), Kogut et al. (2003)
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Likelihood of the cosmological parameters
•        , so           is actually 

No analytical form.
• How to maximize it?
• What shape? (uncertainties, correlations, degeneracies…)

Evaluate on grid of     ? Impossible or inefficient

MCMC algorithms sample from the     distribution
➡ chain of values of     whose density is proportional to
•    . 
• rule for         from  
➡  rejection criterion based on          and

Challenge: fast but accurate evaluation of         , low rejection rate

Cosmological parameter estimation

L(✓)

L(✓)

• CAMB
• CLASS
• …

L(✓)L(✓)
L(✓) L(✓)

✓0
✓i+1 ✓i+1

L(✓i+1)L(✓i)

C`(✓)
L(✓)

L(✓)
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• previous likelihood
• approximations
• …
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Cosmological parameter estimation

Typical analysis of 
the MC chains

1-D marginal distribution

2-
D
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Planck XI (2015)  



30Cosmological parameter estimation

Typical analysis of 
the MC chains

1-D marginal distribution

2-D marginal distribution

Schuhmann et al. (2016)  
Note: actually in this example the contours are not derived from the 
points
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Wrap up



Recap: amazing physics with the CMB angular power spectrum

Accurately measure crucial 
cosmological parameters
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All figs: Challinor and Peiris (2009)



Recap: angular power spectrum main uncertainties
Large 
Scales

Small 
Scales

Foregrounds

Galactic Extra-
galactic

Correlated
noise

Cosmic
variance

White
noise
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Final remarks

CMB science is much more than its power spectrum 

• Sunyaev-Zeldovich effect
• Lensing
• Cross-correlations
• Spectral distortions
• Non gaussianities
• l.o.s integrated effects (e.g., cosmic birefringence)
• …
Far infrared and microwave observations are not only CMB 
• Cosmic infrared background
• Synchrotron
• Interstellar medium
• Galactic magnetic field
• …
CMB data analysis (and instrumentation) is much more than the overview proposed
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Join the force

The SISSA group is at the forefront of the CMB effort, with POLARBEAR/Simons Array.

• POLARBEAR 
• Lensing reconstruction Phys. Rev. Lett. 112, 131302 (2014); Phys. Rev. Lett. 112, 131302 (2014)

• BB spectrum Astrophysical J. 794, 171 (2014)

• Cosmic birefringence Phys. Rev. D  92, 123509 (2015)

• POLARBEAR2 (Summer 2017)
• new telescope and receiver 

• 7,588 detectors
• Multichroic pixels (95/150 GHz)

• Simons Array (Early 2018)  
new telescopes, 2 new PB2-like receivers

• 22,764 detectors
• 95/150/220 GHz channel

• Simons Observatory
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Fig. 12.— Binned CBB
� spectrum measured using data from all three patches (⇥ 30 deg2). A theoretical wmap-9 ⇥CDM high-resolution

CBB
� spectrum with ABB= 1 is shown. The uncertainty shown for the band powers is the diagonal of the band power covariance matrix,

including beam covariance.

TABLE 8
Reported Polarbear band powers and the diagonal

elements of their covariance matrix

Central ⇥ ⇥ (⇥+ 1)CBB
� /2� [µK2] �{⇥ (⇥+ 1)CBB

� /2�} [µK2]
700 0.093 0.056

1100 0.149 0.117
1500 �0.317 0.236
1900 0.487 0.482

trum; including statistical uncertainty and beam covari-
ance, this PTE is 42%. Table 8 enumerates the band
powers reported here.
We fit the band powers to a �CDM cosmological

model with a single ABB amplitude parameter. We find
ABB = 1.12 ± 0.61(stat)+0.04

�0.10(sys) ± 0.07(multi), where
ABB = 1 is defined by the wmap-9 �CDM spectrum.
To calculate the lower bound on the additive uncertain-
ties on this number, we linearly add, in each band, the
upper bound band powers of all the additive systematic
e⇥ects discussed in Section 7, and the uncertainty in the
removal of E to B leakage. We then subtract this possi-
ble bias from the measured band powers, and calculate
ABB . This produces a lower ABB , and sets the lower
bound of the additive uncertainty. We then repeat the

process to measure the upper bound. The multiplicative
uncertainties are the quadrature sum of all the multi-
plicative uncertainties discussed in Section 7.
The measurement rejects the hypothesis of no CBB

�
from lensing with a confidence of 97.5%. This is calcu-
lated using the bias-subtracted band powers described
above (the most conservative values to use for rejecting
this null hypothesis), and integrating the likelihood of
ABB> 0. This significance is the equivalent of 2.0� for a
normal distribution.

9. SUMMARY & DISCUSSION

We have reported a measurement of the CMB’s B-
mode angular power spectrum, CBB

� , over the multipole
range 500 < ⇥ < 2100. This measurement is enabled by
the unprecedented combination of high angular resolu-
tion (3.5⇥) and low noise that characterizes the Polar-
bear CMB polarization observations.
To validate the Polarbear measurement of this faint

signal, we performed extensive tests for systematic er-
rors. We evaluated nine null tests and estimated twelve
sources of instrumental contamination using a detailed
instrument model, and found that all the systematic un-
certainties were small compared to the statistical uncer-
tainty in the measurement. To motivate comprehensive

BB spectrumcosmic birefringence

polarized dust @ 95GHzp=15%, fsky=65%

polarized dust @ 95GHzp=15%, fsky=5%

polarized synchrotron @ 95GHz

p=15%, fsky=65%
polarized synchrotron @ 95GHz

p=15%, fsky=5%

r=0.1

r=0.01

95% c.l. upper limit on
the foreground residual

Combined combined with 
Planck and C-Bass with DESI BAO

�(r = 0.1) = 6 · 10�3

(4 · 10�3)

�(⌃m⌫) = 40 meV
(19 meV)


