An introduction to CMB lensing

PhD course Linear Cosmological Perturbations and CMB anisotropies

Davide Poletti and Nicoletta Krachmalnicoff

01/03/2017

SISSA

CMB weak lensing

Obstacle

. . .

- statistics is modified
 - Power spectrum, smoothed and small scales power
 - Non gaussianities
- Conversion of primordial E to observed B

Intervening structures bend the path of CMB photons

observed CMB is a "distorted" picture" of the last scattering surface

Review references:

- Lewis and Challinor 2006: comprehensive review
- Hanson, Challinor, Lewis 2010 simpler and concise
- Reasonably recent cosmology books, e.g. Dodelson 2003

Probe

- Information about structure formation
- Dark energy
- Neutrino mass

CMB weak lensing: why

- Lensing, in general:
 - **Backlight** with some known property
 - **Intervening** gravitational **field** alter this property
 - Use this change to constrain the intervening field
- CMB lensing
 - ✓ The most distant light ($z \sim 1100$)
 - ✓ Full-sky
 - ✓ CMB is linearly polarized: 3 observables per line of sight
 - ✓ To (very) good approximation Gaussian Moreover, two-point correlation well understood

Lensing in action

Lensing OFF

$T(\hat{n}) \ (\pm 350 \mu K)$

$E(\hat{n}) \ (\pm 25 \mu K)$

$\mathbf{B}(\hat{n}) \ (\pm 2.5 \mu K)$

Credit: D. Hanson

Lensing in action

Lensing ON

$T(\hat{n}) \ (\pm 350 \mu K)$

$E(\hat{n}) \ (\pm 25 \mu K)$

Credit: D. Hanson

The order of magnitude of the effect

Adapted from Lewis & Challinor (2006) • $\Psi \sim 2 \cdot 10^{-5}$ depth of the potential • $\delta\beta \sim 2\Psi \sim 10^{-4}$

 $\Delta \chi \sim 300 \; \mathrm{Mpc}$ characteristic comoving size of matter perturbations

affects the total deflection

 $14000/300 \sim 50$ incoherent lenses encountered total deflection is $\alpha \sim \sqrt{50} \ \delta\beta \sim 7 \cdot 10^{-4} \sim 2 \ \mathrm{arcmin}$

affects the coherency of the deflection

photons within $300/7000 \sim 2 \deg$ see the ~same lenses

CMB lensing: arcminute effect coherent over a degree scale

Displacement field and lensing potential

- To first order $\alpha(\mathbf{x}) = \nabla \psi(\mathbf{x}) \qquad \qquad \psi(\mathbf{x}) = -2 \int_{0}^{\chi_{*}} d\chi \left(\frac{\chi_{*} - \chi}{\chi_{*}\chi}\right) \Psi(\chi \mathbf{x}; \eta_{0} - \chi)$ \uparrow Displacement Lensing Gravitational potential
- Power spectrum of the lensing potential

$$C_{l}^{\psi\psi} = 16\pi \int \frac{dk}{k} \mathscr{P}_{\mathscr{R}}(k) \begin{bmatrix} \int_{0}^{\chi_{*}} d\chi T_{\Psi}(k; \eta_{0} - \chi) j_{l}(k\chi) \left(\frac{\chi_{*} - \chi}{\chi_{*}\chi}\right) \end{bmatrix}$$

Primordial 3-D
power spectrum
of density
perturbations
Structure formation:
• Dark energy
• neutrino mass
and actually also
• non-linear evolution

Effect on CMB power spectrum

Observed
$$\longrightarrow \tilde{T}(\mathbf{x}) = T(\mathbf{x} + \alpha(\mathbf{x}))$$
 \longrightarrow **Unlensed**
 $= T(\mathbf{x}) + \alpha^a \nabla_a T(\mathbf{x}) + \frac{1}{2} \alpha^a \alpha^b \nabla_a \nabla_b T(\mathbf{x}) + \cdots$
 $\begin{bmatrix} \tilde{Q} \pm i \tilde{U} \end{bmatrix} (\mathbf{x}) = [Q \pm i U] (\mathbf{x} + \alpha(\mathbf{x}))$
 $= [Q \pm i U] (\mathbf{x}) + \alpha^a \nabla_a [Q \pm i U] (\mathbf{x}) + \frac{1}{2} \alpha^a \alpha^b \nabla_a \nabla_b [Q \pm i U] (\mathbf{x}) + \cdots$

$$\rightarrow \delta \tilde{T}(\boldsymbol{l}) = \int \frac{d^2 l'}{(2\pi)^2} T(\boldsymbol{l}') \left[\mathbf{l}' \cdot \left(\mathbf{l} - \mathbf{l}' \right) \boldsymbol{\psi} \left(\mathbf{l} - \mathbf{l}' \right) \right]$$
$$\rightarrow \delta \left[\tilde{Q} \pm i \tilde{U} \right] = \int \frac{d^2 l'}{(2\pi)^2} \left[Q \pm i U \right] (\boldsymbol{l}') \left[\mathbf{l}' \cdot \left(\mathbf{l} - \mathbf{l}' \right) \boldsymbol{\psi} \left(\mathbf{l} - \mathbf{l}' \right) \right]$$

E/B mixing

$$[E(\mathbf{l}) \pm iB(\mathbf{l})] = [Q(\mathbf{l}) \pm iU(\mathbf{l})]e^{\mp 2i\xi_1} \qquad \xi_1$$

 $\varphi_{l'l} = \xi_l - \xi_l$

angle between **1** and the *x*-axis

Suppose no primordial B modes. Some B-modes are observed.

Effect on CMB power spectrum

$$C_{l}^{\tilde{T}\tilde{T}} = \left(1 - l^{2}R^{\psi}\right)C_{l}^{TT} + \int \frac{d^{2}\mathbf{l}'}{(2\pi)^{2}}\left[\mathbf{l}'\cdot(\mathbf{l}-\mathbf{l}')\right]^{2}C_{|\mathbf{l}-\mathbf{l}'|}^{\psi\psi}C_{l}^{T}$$
$$C_{l}^{\tilde{E}\tilde{E}} = \left(1 - l^{2}R^{\psi}\right)C_{l}^{EE} + \int \frac{d^{2}\mathbf{l}'}{(2\pi)^{2}}\left[\mathbf{l}'\cdot(\mathbf{l}-\mathbf{l}')\right]^{2}C_{|\mathbf{l}-\mathbf{l}'|}^{\psi\psi}C_{l}^{T}$$

$$C_{l}^{\tilde{B}\tilde{B}} = \int \frac{d^{2}\mathbf{l}'}{(2\pi)^{2}} \left[\mathbf{l}' \cdot \left(\mathbf{l} - \mathbf{l}'\right)\right]^{2} C_{|\mathbf{l} - \mathbf{l}'|}^{\psi\psi} C_{l'}^{EE} \sin^{2}\left[2\left(\xi_{\mathbf{l}'} - \xi_{\mathbf{l}}\right)\right]$$

Temperature:

Polarization:

- TT smoothed E
- Small scale limit

$$C_l^{\tilde{T}\tilde{T}} \approx l^2 C_l^{\psi\psi} \int \frac{dl'}{l'} \frac{\left(l'\right)^4 C_{l'}^{TT}}{4\pi} \approx l^2 C_l^{\psi\psi} R^T,$$

$$R^{\psi} \equiv \frac{1}{2} \left\langle |\nabla \psi|^2 \right\rangle = \frac{1}{4\pi} \int \frac{dl}{l} l^4 C_l^{\psi\psi} \sim 3 \times 10^{-7}$$

 $C_{l'}^{EE} \cos^2 \left[2 \left(\xi_{l'} - \xi_{l}\right)\right]$

],

EE smoothed

Lensing B-modes are produced from primordial E-modes

E and B modes, same small scale limit $\frac{1}{2}l^2C_l^{\psi}R^E$

Large scales BB limit is a white spectrum $C_l^{\tilde{B}\tilde{B}} \sim \frac{1}{4\pi} \int \frac{dl'}{l'} {l'}^4 C_{l'}^{\psi\psi} {l'}^2 C_{l'}^{EE} \sim 2 \times 10^{-6} \,\mu \text{K}^2$ White noise equivalent

Effect on CMB power spectrum, polarization

Adapted from Lewis & Challinor (2006)

(more than TT because EE peaks sharper)

Estimating the lensing potential

- Assuming that the primordial CMB was gaussian, for $l \neq l'$ $\langle T(\mathbf{l})T(\mathbf{l'})\rangle = 0$
- But with lensing

$$\delta \tilde{T}(\boldsymbol{l}) = \int \frac{d^2 \boldsymbol{l}'}{(2\pi)^2} T(\boldsymbol{l}') \, \boldsymbol{l}' \cdot \left(\boldsymbol{l} - \boldsymbol{l}'\right) \, \boldsymbol{\psi} \left(\boldsymbol{l} - \boldsymbol{l}'\right)$$

and therefore

$$\langle \tilde{T}(\mathbf{l})\tilde{T}(\mathbf{l}')\rangle \sim \langle \tilde{T}(\mathbf{l})\delta\tilde{T}(\mathbf{l}')\rangle \propto \psi(\mathbf{l}-\mathbf{l}')$$

The lensing potential can be estimated using off-diagonal correlations This holds for polarization as well, EB eventually will give the best constraints

Hu and Okamoto (2002), Okamoto and Hu (2003), Hirata and Seljak (2003)

Dark energy and Neutrinos

Lewis & Challinor (2006)

Lewis & Challinor (2006)

Intervening structures bend the path of CMB photons

observed CMB is a "distorted picture" of the last scattering surface

Main effects

statistics is modified	1
 Power spectrum, smoothed and 	104
small-scales power	10 ³
 Non gaussianities 	10 ²
 Conversion of primordial E to observed B 	$[mK^{2}]$ 10 ¹
 Obstacle for primordial GW detection 	$^{0}\ell_{\ell}^{\ell}(\ell+1)\ell/2_{\pi}$
 Information about structure formation Dark energy 	ن 10 ⁻²
 Neutrino mass 	10 ⁻³
•	10 ⁻⁴]

otons e last scattering surface

Backup

...more precisely

Displacement for any direction on the sky **X**

$$\alpha(\mathbf{x}) = -2\int_{0}^{\chi_{*}} d\chi \frac{\chi_{*} - \chi}{\chi_{*}}$$

- its contribution to α is given by $\delta\beta(\chi_* \chi)/\chi_*$
- Integration over the path of the photon

Born approximation: integration over the undeflected path

$$\blacktriangleright \nabla_{\mathbf{x}} = \chi^{-1} \nabla_{\perp}$$

$$\Rightarrow \alpha(\mathbf{x}) = \nabla \psi(\mathbf{x}) \qquad \psi(\mathbf{x}) = -2 \int_{0}^{\chi_{*}} d\chi \left(\frac{\chi_{*} - \chi}{\chi_{*}\chi}\right) \Psi(\chi \mathbf{x}; \eta_{0} - \chi).$$

 $\nabla_{\perp} \Psi(\chi \mathbf{x}; \eta_0 - \chi)$

• photon at $(\chi \mathbf{x}; \eta_0 - \chi)$ gets deflected by $\delta \beta = -2 d\chi \nabla_{\perp} \Psi$

IILIAI